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Abstract

In this article, we plan to provide an introduction about some basics about robots for
readers. Several key topics of classic robotics will be introduced, including robot represen-
tation, robot rotational motion, coordinates transformation and velocity transformation. By
now, classic rigid-body robot analysis is still the main-stream approach in robot controlling
and motion planning. In this article, no data-driven or machine learning based methods
will be introduced. Most of the materials covered in this article are based on the rigid-body
kinematics that the readers probably have learned from the physics course at high-school
or college. Meanwhile, these classic robot kinematics analyses will serve as the foundation
for the latest intelligent robot control algorithms in modern robotics studies.
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1. Introduction

According to the forecast report from UN (United Nations) [3], the world population aging
will become one of the most challenging global problem of the 21st century. The working
age population growth of the major developing countries (e.g., China, India) will gradually
slow down and even start to decrease together with the major developed countries (e.g.,
UK, France, Germany, Japan and USA). To fulfill the “tremendous gap” between the supply
and demand of working labor forces, various robots and automated machines has been (and
will continue to be) developed and employed for massive production work globally. This is
an irreversible trend for the 21st century. To accomplish such an objective, educating and
training researchers and practitioner on robotics is imperative and critical at present.

1.1 This Article

In this tutorial article, we will provide a brief introduction about robotics for readers, which
covers robot representation, robot motion, coordinate transformation and welocity transfor-
mation in the rotational motions. This tutorial article will also be organized according to
the sequential order these topics. Some more advanced topics about robot kinematics, tra-
jectory generation, robot control, motion planning and manipulation and applications will
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be introduced in the follow-up tutorial articles instead. Besides these tutorial articles, for
readers interested in robot control, we also have several textbooks recommended for you to
read as well, like [1, 2].

This tutorial article will be math-heavy. Just like you, I don’t like math either, but
we have to use math to model the real world. Based on the equations we introduce in the
article, we will be able to write the code to represent and control the robot. The bitter
has to been swallowed first, then the sweet will come afterwards. Before we discuss about
the aforementioned topics, we would like to briefly describe the notations to be used in this
article as follows.

1.2 Basic Notations

In the sequel of this article, we will use the lower case letters (e.g., x) to represent scalars,
lower case bold letters (e.g., x) to denote column vectors, bold-face upper case letters (e.g.,
X)) to denote matrices. Given a vector x, its length is denoted as ||x||. Given a matrix X,
we denote X (7,:) and X(:, j) as its iz, row and jy, column, respectively. The (i, jin) entry
of matrix X can be denoted as either X(4, j) or X; ;, which will be used interchangeably.
We use X' and x ' to represent the transpose of matrix X and vector x. The cross product
of vectors x and y is represented as x X y. A coordinate system is denoted as ¥, and the
vector x in coordinate system ¥ can also be specified as x*!. For a scalar z, vector x and
matrix X, we can also represent their first-order derivatives as i, x and X, and second-order
derivatives as #, x and X.

2. Robot Representation

In this tutorial article, we will focus on rigid-body robots with known shapes. Besides
rigid-body robots, research on soft-body robots is also very popular nowadays, but it is out
of the scope of this tutorial article.

2.1 Robot Structure

At the beginning, we would like to introduce the robot physical structure and its represen-
tation with certain data structures in program for readers.

2.1.1 RoBOT PHYSICAL STRUCTURE

As shown in Figure 1, we provide an example of the rigid-body robot structure, involving
the trunk and a number of links connected together via the joints. For the representation
and motion control simplicity, we prefer to attach the joints to the link that is further away
from the trunk. In this robot structure, each link will have only one joint to control its
motion, so the same algorithm can be applied to control all the links and joints in the robot.

Meanwhile, in the small plot shown at the right-hand side in Figure 1, we also provide
another robot structure, where the joints are attached to the links closer to the trunk. In
such a structure, the robot trunk will have multiple attached motors, e.g., 2 from leg, 2
from arm and 1 from neck. For such a robot structure, the control of the robot trunk with
5 attached joints will be very different from the control of the arms and legs, which may
create extra difficulties in the robot motion and control.
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Figure 2: Data Structure for Representing Robot Body Structure: (a) balanced tree data
structure, (b) binary tree data structure, (c) list of body parts.

2.1.2 DATA STRUCTURE

To represent the robot structure shown in Figure 1 in program, various data structures can
be used to represent the robot body parts and connections among them. In robot control,
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we are especially interested in the parts that are moveable. As illustrated in the Plot (a)
of Figure 2, we can use a tree to represent the robot structure, involving the body and
four limbs directly connected to the trunk body. Meanwhile, each of the four limbs is also
connected to either a hand node or a foot node as their child, respectively.

For the nodes in Plot (a) of Figure 1, we observe that the tree nodes’ out-degrees
are quite different, e.g., the body root node’s out degree is 4, while the arm/leg nodes’ out
degrees are all 1 instead. Such node out-degree inconsistency may create potential problems
in writing the code for robot control.

In Plot (b) of Figure 1, we illustrate another tree structured representation of the robot
physical structure, where each internal node is connected to two other nodes, i.e., one child
and one sibling. For instance, the “Right-Arm” node is connected to both “Right-Hand” (its
child node) and “Left-Arm” (its sibling node). For the nodes without children or siblings,
we can just use the dummy “None” to fill the entries.

Compared with the balanced tree in Plot (a), the new tree structure in Plot (b) is skewed
and inclined to the right-hand side. Meanwhile, the tree structure is a binary tree actually,
as each node connects to two nodes at the lower level, programming based on which will be
much easier. Actually, such a tree data structure can be implemented very easily as a list,
where each node is represented as a record with unique IDs in the table, whose child and
sibling nodes can be indicated as its attributes. An example to implement the binary tree
structure as a list is also illustrated in Plot (c) of Figure 1.

2.1.3 NOTATION TABLE

Besides the basic notations introduced at the end of Section 1.2, in this part, we will also
introduce some other notations that will be used in the following sections for describing the
robot parts and their motions in the following Table 1.

Table 1: Robot Link Notation in Math and Program

Notation Table in Math and Program Code

Parameters of Robot Link Math Notation Code Notation
Link Self-ID J self_id

Child ID N/A child_id
Sibling ID N/A sibling_id
Parent 1D i parent_id

Position Vector

Rotation Matrix

Homogeneous Transition Matrix
Velocity in World Coordinate
Angular Velocity in World Coordinate
Joint Angle

Joint Rotation Velocity

Joint Rotation Acceleration
Mass

Center of Mass

Moment of Inertia

HO 3R g <gmT

Hng&%@s<}ﬂguﬁ
e}
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Figure 3: A Example of Rigid-Body Item Configuration.

2.2 Robot Configuration and Configuration Space

In this part, we will introduce the concepts of robot configuration and configuration space.
Both robot configuration and configuration space play an important role in robot motion,
control and kinematics. In the following sections, when we introduce the robot motion, co-
ordinate transformation and velocity transformation, readers will observe that robot motion
will involve a sequence of robot configurations (more like a configuration path) connecting
from the starting configuration to the desired target configuration within the pre-defined
robot configuration space.

2.2.1 RoBOoT CONFIGURATION

For a rigid-body robot, its location and state can be uniquely specified by its configuration.

Definition 1 (Robot Configuration): The robot configuration denotes a complete speci-
fication of the positions of every point in the robot system.

In the real-world, we cannot enumerate all the points of a robot body to represent its
configuration. For rigid-body robots, since all its composition parts are rigid and have pre-
known shapes, actually only a few numbers will be sufficient to represent its configuration.

Example 1 For instance, as shown in Plot (a) of Figure 3, given a coin lying heads up
on a table (which can be represented as a 2D plane), the location and state of the coin
can be specified with three parameters ((x,y),0): (1) the coordinate parameter pair (x,y)
that denotes its location on the table, and (2) a third parameter 6 that indicates the coin’s
orientation (head up or tail up).
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Example 2 Besides the configuration in 2D space, 3D space is much more frequently used
in robotics. As shown in Plot (b) of Figure 3, for a robot arm with one vertical link (of known
length 11) and a movable arm link (of known length ly) connected by a joint, which forms an
angle 0 between these two links. The robot arm position and state can be represented with
four parameters ((x,y,z),6), where (x,y,z) denotes the position of the base center and 0
indicates the angle between these two arm links.

2.2.2 RoBOT CONFIGURATION SPACE

Definition 2 (Configuration Space): For a given robot, there usually exist different
feasible configurations, and the set of all potential configurations of the robot defines the
configuration space of the robot.

In some textbooks, the robot configuration space is also called the C-space for abbrevi-
ation. It is also easy to observe that given the robot’s configuration space, one of its specific
configuration will actually be a point in the configuration space.

Example 3 For instance, for the coin shown in Plot (a) of Figure 3, let X and Y denote
the sets of potential z-coordinate and y-coordinate values of the coin’s position. Then, the
configuration space of the coin can be represented as X x Y x {Head, Tail}.

Example 4 When it comes to the robot arm shown in Plot (b) of Figure 3, let X, Y and
Z denote the sets of potential x, y and z coordinate values of the robot arm base center, the
configuration space of the robot arm can be represented as X x Y x 7 x [0,2m), where the
arms’ angle 6 can be any value within the range of [0, 27).

In the real world, there exist different ways to define robot configuration space, and we
use the sphere as an example to illustrate different configuration spaces below.

Example 5 For instance, a point on a sphere surface of radius r € R can be uniquely
represented with its “(latitude, longitude)” pair, just like the GPS localization on the earth.
Meanwhile, the point on the sphere surface can also be represented with a (x, y, z) coordinate

pair in the Euclidean space subject to the constraint x> 4+ y? + 22 = r2.

The former representation in the above example is normally called the explicit repre-
sentation, while the latter one is called the implicit representation. Based on the robot
configuration and configuration space concepts introduced above, next we will study robot
representation and coordinate rotational transformation based on the implicit representa-
tion in Euclidean space by default.

2.3 Robot Coordinate System and Representation

Based on the above descriptions, we know that robot’s position and state can be uniquely
represented with its configuration, which denotes a group of numerical parameters. In this
part, we will introduce the robot coordinate system to clearly specify such parameters. The
coordinate systems to be used for representing robots include both the world coordinates
and local coordinates.
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Figure 4: A Example of World Coordinate.

2.3.1 WORLD COORDINATE SYSTEM

To control robots in the real world, we need a fixed coordinate system to define the positions
of all parts of the robot, i.e., the world coordinate.

Definition 3 (World Coordinate): Formally, the world coordinate denotes a coordinate
system with a fixed origin and fived orientations of the x, y and z axes. From the robot
perspective, the orientation of the x axis faces forward, y axis to the left and z axis faces
up. In this tutorial article, we can refer to the world coordinate with a default notation Xy,.

For the world coordinate notation X, the term X denotes the coordinate and the sub-
script w differentiates the world coordinate from other local coordinates to be introduced
later.

Example 6 As shown in Figure 4, we provide an example of the world coordinate X,
whose origin is located at the center of the robot arm base. The robot arm has two links
connected via the joints a and b, and the end point of the second arm link is denoted as e.

Based on the world coordinate Yy, we can represent the vector point from the origin
to the first joint a as a vector p[oz_‘ijl (in the blue color), whose orientation faces upward.
Similarly, we can also represent the vectors pointing from the world coordinate system origin

(Zw] [Zw]

to the joint b and end point e as p,_\; and Poe, respectively.

In the above example, we observe the length of the arm links are [; (from the base to
the first joint), lo (from the first joint to the second one) and I3 (from the second joint to

the end point). Therefore, the vectors pt[)z_‘i}}l, p[oiwg and p[OE_‘Qi can actually be represented as

p = (0,0,1)7, P = (0,0, +1)T, P =(0,0,ls + 1 +15)7, (1)
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where the subscript 0 — a denotes the vector pointing from the origin of the world coordi-
nate to joint a.

When there exists one single world coordinate in controlling the robot, we can just omit
the o in representing vectors pointing from the origin to certain points and vector repre-

sentation p[oz_?(]l can be simplified as pLZ“] in the remaining parts of this tutorial. Similarly,

vectors p([)iwg and pLZ_X‘l can also be simplified as pl[)zw] and p?w]_

2.3.2 LocAL COORDINATE SYSTEMS

Besides the world coordinate, we can also introduce various local coordinate systems attached
to different parts of the robot rigid body. For the servo or motor driven robots, we normally
prefer attach the origins of the local coordinate systems to the rotor centers the servo/motor.

Definition 4 (Local Coordinate): By picking one point of the robot rigid body as the
origin and specifying the x, y and z azes, we can construct a local coordinate system for a
robot part. The local coordinate defines the position and state of the robot body parts from
a local perspective.

In the local coordinate systems, the representation of robot position and state will be
very different from what it looks like from the world coordinate

Example 7 As shown in Figure 4, by taking the robot arm joint a as the origin, we can
also build a local coordinate system X, (in the orange color). The orientation of the x, y
and z azes are identical to the axis orientations of the world coordinate ¥vw. In a similar
way, we can introduce the local coordinate system Xy (in the green color) with the identical
azis orientations and have the origin attached to joint b.

Within the local coordinate system Y., we can represent the robot arm pointing from
joint a to the second joint b as a vector

p[Ea} = (07 07 ZZ)Ta (2)

a—b T

where ly denotes the length of the corresponding arm link.
Similarly, in the local coordinate Xy, we can represent the robot arm pointing from joint
b to the end point e as a vector

piiL = (0,0.15)", 3)
where l3 denotes the arm link length.

LZW] [Zw] [Zw]

From the numbers of the vector representations of ps ™", p; " and pe " in the world

coordinate system, as well as pl[;Ea] and p[ez”] in the local coordinate systems, it seems that

pl[)Zw] — L,EW] + p([lz—i}b? (4)
Bl = pp? 4 ppl = pB 4+ ple) + it (5)

Meanwhile, the above equations can hold as the z, y and z axes orientations of the lo-
cal coordinate systems Y, and X, are identical to those of the world coordinate Y, i.e.,
p([lz_‘ﬂb = p([lz_fl]) and pl[i”]e = p,[)i‘g. Meanwhile, when the arm links rotates, the local coordi-
nate orientations will change and necessary transformation needs to be added to the above

equations.
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Figure 5: An Example of Robot Arm Local Coordinate After Rotation.

3. Robot End Point Position

Based on the above robot representation and notations, in this section, we will discuss about
the robot end point position before and after the rotation of the robot arm. To interact
with the world, robot end points play an important role. In this section, we are especially
interested in the position, while the velocity of the end point will discussed in the following
Section 5 instead.

3.1 Single-Link Robot End Point Position

In operation, robot links will rotate around the joint, and will change the position and
state of the robot in the space. Such rotational movement can be clearly described with
the rotation matrix and homogeneous transformation matriz. In this part, we will first
introduce the rotation matriz that can denote the rotation transformation. After that, we
will introduce the homogeneous transformation matrixz that can project any vector from one
coordinate system to another.

3.1.1 ROTATION MATRIX

Let’s first discard the second robot arm link from the example shown in Figure 4 and only
use the 1-arm robot illustrated in Figure 5 as an example.

Example 8 As shown in Figure 5, we rotate the robot arm around joint a from the previous
vertical position in Figure 4 in the clockwise direction with an angle of 6 degrees to the
current position. As the arm link rotates, the local coordinate attached to the robot arm
joint will rotate clockwise with 0 degrees as well, and the new local coordinate system after
the rotation can be denoted as X .

10
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Within the local coordinate system Y., the representations of robot arm link pointing
from joint a to b after the rotation are not changed actually. In other words, in the new
local coordinate Xy, the arm link vector after rotation can still be represented as

plel = (0,0,1)T. (6)

Meanwhile, looking from the world coordinate Xy, we observe that the arm link vector

[Zar]
—

pointing from joint a to b will be different from p,"%, actually, which can be represented as

pt[lz_‘fl]) = (0,lysin @, lycosh) . (7)

To further clearly illustrate the rotations of the local coordinate systems from X, to X/,
we first need to talk about the relationship between the local coordinate systems ¥, and X,/
with the world coordinate . Since the initial local coordinate system 3, axis orientations
are identical to those of Xy, their conversion into each other is super easy and can be done
just by shifting the origins to a new position without any rotation transformation. Next,
we will focus on the rotation transformation from ¥, to ¥, which will be identical to the
rotation transformation from ¥, to X,.

By projecting the x, y and z axes of ¥,/ to Xy, the unit vectors parallel to the z, y and
z axes of Y, within the world coordinate ¥y can be represented as

el = (1,0,0)7 , ey 7 = (0,008, —sin0) T, e T = (05100, c080) 7. (8)

Definition 5 (Rotation Matrix): Based on the above unit vectors projected from X, to
Yw, we can define the ration matrix from X, to Xy as:

1 0 0
REs—=2w] — (egfa’”“'], e?[JE“'HZW], e[ZE“'HZ“']) =10 cosf sinf|. (9)

0 —sinf cos6

With the rotation matriz RZ«=>v] we can actually project the arm link vector pointing
from the joint a to joint b from the local coordinate ¥, to its representation in the world
coordinate Yy:

0 1 0 0 0
lysing| = |0 cosf sinf| (0. (10)
lo cosf 0 —sinf cosO| |l
pgzlwg R[Ea’ —3w] p?j;,]

3.1.2 HOMOGENEOUS TRANSFORMATION MATRIX

Next, let’s have a look at the vector pointing from the world coordinate system origin to the
robot arm joint b after the rotation. Looking from the world coordinate, we can represent
the vector as

pézw} — [aZw] _|_ p([fi;l]y (11)
— pLEw] + R[Ea/ﬁzw]pgz_)a’b] . (12)

11
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Linear algebra will be frequently used in representing robots in this article, and the
above formula can also be rewritten as follows instead:

Sw ’ W Sw [2,/]
[pl[’ 1] _ [R[za -5 pl 1] [PH,] (13)
1 0 1 1

Some extra entries with dummy values (0 or 1) are added to the vectors and matrices in
the above formula just to make their dimensions match with each other.

Definition 6 (Homogeneous Transformation Matriz): In the above equation, we in-
troduce a mew matriz representation composed of the position vector p, and the rotation
matriz Ry, which is also named as the homogeneous transformation matriz, i.e.,

, ) R[Ea/—>2w] EZEW]
T[Ea *)Ew} — [ 0 p 1 (14)

The robot homogeneous transformation matriz Ta' =3 will convert all points de-
scribed in the robot arm’s local coordinate to the world coordinate. Therefore, we can
generally say that the homogeneous transformation matriz T>a'=>w] describes the position
and state of the robot arm. Since the robot rotation transformation is very common, to
simplify the notations, we can just use ¥, to represent all the coordinate systems with
origin at joint a (including ¥, and X, discussed before). As to X, is the coordinate system
before or after the rotation, readers can differentiate them from the context by yourself.

3.2 Multi-Link Robot End Point Position

Real-world robots are usually composed of multiple links connected to each other by the
joints. At the end of the first section, we will take a more general robot with two links to
study the local coordinate transformation via the chain rule.

3.2.1 MurTI-LINK ROBOTS WITH LOCAL TO LOCAL COORDINATE SYSTEMS

As illustrated in Figure 6, we rotates both of the two arm links of the robot shown in
Figure 4 with certain degrees: the first robot arm rotates clockwise with an angle of 6
degrees around joint a, while the second link rotates clockwise with an angle ¢ degrees

around joint b. At these two joints, we introduce two local coordinate systems 3, and
(2] (2]

osh s Within these two local

>, and these two arm links are defined as vectors p and p
coordinate systems, respectively.
According to the analysis in the previous parts, by taking 3, as the “world coordinate”,

we can represent the rotation matrix to project coordinate Y to ¥, as

RIZ%] — (2% eLEb—ma]’ eZe—Tal), (15)

where the unit vectors are defined as follows:

el — (1,0,0)7; eLEb%Ea} = (0,cos ¢, —sing) "; el 7%l = (0,sinp,cos ). (16)

12
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Figure 6: A Example of Multi-Link Robot Arm Coordinate Transformation via Chain Rule.

Meanwhile, for the end point of the second arm link, we can represent its position in

the coordinate ¥, as pLEjL, whose representation after the rotation can be represented as

[PLE—E;L] _ [R[Ebﬁza] pLE_aJ)] [Pz[ib]e] ) (17)
1 0 1 1

T[Eb —3a)

The matrix that accomplishes the transformation denotes the homogeneous transforma-
tion matriz TEv—%al from coordinate I to Ug.

3.2.2 CHAIN RULE ON HOMOGENEOUS TRANSFORMATION

By combining Equation 13 and Equation 17, we can further derive the end point’s position
of the second link in the world coordinate to be

p[eEw]
1

On the right-hand side of the equation, we multiply the two homogeneous transforma-
tion matrices TZa=2v] and TEv—2al together to transform the local vector representation
pl[)z_)b]e in coordinate Y to the world coordinate p([sz]. Formally, we can also represent the
multiplication of TEe=SwITEv=¥al a5 the homogeneous transformation matriz from the

local coordinate X to the world coordinate X :

(]
_ T[EEHZW] Pa—e
1

[Zp]
_ T[EQHEW]T[EbHEa] [pb—ﬂi] . (18)
1

T[Ebazw} — T[EGHEW]T[EI,HEGL (19)

13
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and the Equation 18 can also be rewritten as

pLE‘”]
1 1

[Zo]
= TE=2v] [ Poe | (20)

For the robot arms with more than two links, the end point’s position can be derived
in a similar way with the chain rule on the multiple homogeneous transformation matrices
between coordinate systems. By now, we should have provide a detailed introduction on
multi-link rigid-body robot end point position and transformation across coordinate systems
for the readers already. In the next section, we will discuss more about the robot rotational
motion and its relationship with the robot velocity for the readers.

4. Robot Rotation

In the previous section, we have introduced the robot coordinate systems and representa-
tions. We have also briefly talk about the robot arm rotation, as well as the robot position
and state changes due to the rotation movement. In this section, we will provide a more
detailed analysis about the robot’s general rotational motion and illustrate several other
important properties of the rotation matrix defined before.

4.1 General Rotation

The rotation movements we introduce in the previous section are around one certain axis
(e.g., the z axis) and the rotation direction is clockwise. In this part, we will introduce a
more general robot rotation around any axes with either clockwise and counter-clockwise
directions.

4.1.1 ROTATION AXIS

Depending on the orientation of the joints, robots can rotate around the joints not only
along the z, y and z axes but also a combination of them, which will lead to the rotation
in any directions in the 3D space.

Definition 7 (Roll, Pitch and Yaw): Specifically, for the rotations around the x, y and
z azes, we can give them different names to describe the rotation:

e Roll: The rotation movement along the x axis is also called roll.
e Pitch: The rotation movement along the y axis is also called pitch.
o Yaw: The rotation movement along the z axis is also called yaw.

In the roll rotational motion, for all the points in the robot body, their x coordinate is not
changed, while their y and z coordinates will change together with the rotation. Meanwhile,
for the pitch rotation, all the x and z coordinates will change due to the rotation. The yaw
rotation will change the x and y coordinates instead.

Readers may also wonder why the rotation along these axes are named as roll, pitch and
yaw, respectively. These movement names are actually borrowed from the airplane control.
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’%4 Gravity

Figure 7: A Example of Roll, Pitch and Yaw Rotation Movements.

As illustrated in Figure 7, given a airplane, based on the coordinate system definition
provided in Section 2.3.1, we can introduce a coordinate system along the plane body (x
axis faces forward, y axis to the airplane left and z axis faces up).

If the readers having experiences in driving airplane, the two ailerons on the outer rear
edge of each wing cause the plane to roll to the left or right. The elevator on the horizontal
tail surface controls the pitch movement of the plane. Meanwhile, the rudder on the vertical
tail fin controls swivels from side to side, which will push the tail in a left or right direction
and control the yaw movement of the plane. Similar names of the motions are also used to
describe the robot rotation here.

4.1.2 ROTATION MATRICES FOR ROLL, PITCH AND YAW

For the roll, pitch and yaw rotational motions, to differentiate them from each other, we
can denote their rotation angles as ¢, 6 and 1, respectively. Here, we assume the rotations
are all in the counter-clockwise direction (i.e., the positive angles). Based on the degrees
and the representations we learn from Section 3.1.1, regardless of the coordinate systems,
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we can represent the corresponding rotation matrices for roll, pitch and yaw as follows:

1 0 0

R.(¢) = |0 cos¢ —sing|, (21)
|0 sing cos¢
[ cos® 0 sinf

R,0)=| 0 1 0|, (22)

|—sinf 0 cosd
[cost —sinf 0
R.(¢) = [siny cosf O] . (23)
0 0 1

(24)

Let’s assume, given a vector p pointing from the current joint to the end point, if we
rotate the current joint with a ¢-degree angle around the x axis, a f-degree angle around
the y axis and a i-degree angle around the z axis, we can represent the vector after those
3-way rotations as

P’ = R.(V)Ry(0)Ra(4)p = Ripy (9,0, ¢¥)p, (25)

where the roll-pitch-yaw rotation matrix R,p,(¢,0,1) can be represented as follows:

Rrpy(@f% 0, 7!)) = (26)
cosycosf —sinycosp+ cosysinfsing  sin sin @ + cosy sin 6 cos ¢
sinycosf  costcosd+sinysinfsing  —cossing +sinsinfcos | . (27)
—sin6 cos fsin ¢ cos 0 cos ¢

The readers may have notice the rotation matrix R;(¢) defined in Equation 21 is slightly
different from the rotation matrix defined in Equation 9. The main differences lie at the
rotation direction, which actually follows the right-hand rule. With the right hand index
finger, middle finger, ring finger and little finger following the rotation direction, if the
thumb orientation is the same as the axis positive direction, then the rotation angle will be
positive; otherwise, the rotation angle will be negative.

According to the right-hand rule, for the rotations in the counter-clockwise direction,
their rotation matrices can be simply represented as those in Equation 21. Meanwhile, when
it comes to the clockwise rotation (just like Figure 5), we can add a negative mark to the
angles before applying them in Equation 21 for defining the rotation matrices, which will
lead to the rotation matrix representation in Equation 9.

With the roll-pitch-yaw rotation matrix R,p,(¢,6,1) defined above, arbitrary rotation
can be achieved by the rotation angle pair (¢, 6,1) around the z, y and z axes, respectively.

4.2 Rotation Matrix Property

Theorem 8 Given a rotation matrix R, it will be orthogonal, i.e.,

RR' =1 (28)
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Proof When deriving the rotation matriz in Equation 9, we mention that the rotation
matrix can be represented as a group of unit vectors corresponding to the z, y and z axes.
For instance, the rotation matrix along the x axis in the counter-clockwise direction with
an angle of ¢ degrees can be represented as

1 0 0
R.(¢) = |0 cos¢p —sing| = (eg, ey, e;). (29)
0 sin¢g cos¢
We can observe that the product of Ry (¢) Ry (¢4) will lead to an identity matrix, since
o
Rx(¢)TRx(¢) = e; (ez, ey, e;) (30)
_eZ
fele, ele, ele.
= |leje, ele, ele, (31)
_ezyrea; ejey efez
[1 0 0
=101 0 (32)
00 1
For the rotation matrices along the y and z axes, it is also easy to obtain that
R,(0) 'R, () =1 R R.(¢) 'R.(¢) =1 R*. (33)

How about the roli-pitch-yaw rotation matrix R,py (¢, 0, ) introduced in Equation 267
Since Rypy (0, 0,7¢) = R.(¥)Ry(0)R,(¢), we can get

Ry (¢,0,) Ry (6,0, 7)) (34)
= (R=(¥)Ry(O)R4(9)) " (R:(4)Ry ()R (9) (35)
= R (¢) "Ry(0) "Ra(¢) 'R (¢)Ry (0)Ror(9) (36)
=R.(0)" (Ry(0)" (Ra(4) "R-(v)) Ry (6) ) Ru(9) (37)
~I (38)
Meanwhile, readers can also just calculate the product of Rypy,(¢,0,%) " Rypy(0,0,1)

based on the concrete representations shown in Equation 26 on a piece of paper, whose
result should also be a identity matrix with value 1 on the diagonal. |

Here, if we assume the rotation matrix R is invertible, by multiplying both sides of
equation RRT = I with R™!, we can obtain

R =R L (39)

4.3 Angular Velocity

Before we talk more about the rotation matrix, we would like to have a cut-in subsection
here to talk about the robot rotation angular velocity first. More information about velocity
and transformation will be provided in the following Section 5.

17



JIAWEI ZHANG, IFM LAB DIRECTOR

'y
w
V=wXp
A
',' €,
. .
q \ object
y
S
.
’w
Tm
o & Right hand
¢ Direction of rotation

Figure 8: Angular Velocity Vector (Right Hand Rule).

4.3.1 ANGULAR VELOCITY VECTOR

As shown in Figure 8, given an object rotating in the counter clockwise direction around
the z axis, according to the right-hand rule, we can represent the angular velocity vector
orientation by the unit vector e,. Meanwhile, the rotation speed is denoted by a scalar
G = 1 rad/s. For the angular velocity unit “rad/s”, it is equivalent to an ordinary frequency
of % hertz or cycles per second. So, if an object rotation angular velocity is 27 rad/s, it
will rotate 1 cycle per second.

Some Remarks: In this article, we like to use a regular scalar g or vector p to represent
the angular and position of an object, and use ¢ and p to represent its first-order derivatives
(i.e., velocity), and ¢, p to represent the second-order derivatives (i.e., acceleration).

In the 3D space, similar to the velocity and positions, the object rotation angular velocity
can also be represented as a vector. For this example, based on the angular velocity direction
unit vector e, and rotation velocity ¢, we can represent the object rotation angular velocity
can be represented as:

0
w=ge,= (0], (40)
1

where each element has the unit of rad/s.

4.3.2 LINEAR VELOCITY VECTOR

In Figure 8, we also show the object position, which is denoted by a vector p from the
origin pointing to its current position, and the angle between p and the rotation axis w is

18



IFM LAB TUTORIAL SERIES # 8, COPYRIGHT ©IFM LAB

axXb

a

-~
b)) J
=

Figure 9: The Right-Hand Rule Indicating the Direction of the Cross Product Result Vec-
tor. (Given two vectors a and b represented by the index finger and middle finger,
their cross-product result ax b direction is represented by the thumb finger, which
is perpendicular to both a and b.)

0. For the object in rotation, its linear velocity can be represented as a vector denoted as
the cross product of its angular velocity vector and its current position vector.

For the object with angular velocity w and the position vector p, we can represent its
linear velocity vector as

V=w X p. (41)

Background Knowledge: Given two vectors a and b, their cross product result a x b
will also be a vector that it perpendicular to both a and b. To determine the direction of
the result vector, as indicated in Figure 9, it also follows the right hand rule. We just need
to place the index finger to vector a and middle finger to vector b, then the thumb finger
will be the direction of a x b. Following this rule, we can also observe that a x b = —b x a.

With the right hand rule introduced above, we can decide the direction of the linear
velocity vector v, and observe that v 1 w and v L p. As to the length of vector v, it can
be represented to be

V[l = llell p]| sin6. (42)

If we know the elements of the vectors w and p, we can also represent their cross product
to be

Wy Dz WyPz — WzPy
WXP= |Wy| X |Py| = |WzPx — WzPz | - (43)
Wy Dz Wy Py — WyPx
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We observe that the result vector of w x p can actually also be obtained via a matrix-
vector multiplication shown as follows:

WyPz — WPy 0 —Wz Wy Dz
WzPr — WPz | = | Wz 0 —Wy Dy | - (44)
Wy Py — WyPzx —Wy Wy 0 bz

In the following subsection, we will illustrate the physical meanings of the matrix multiplied
with the vector p, which can be build from the angular velocity vector directly.

4.3.3 ROTATION TRANSFORMATION ON VELOCITY VECTORS

If the origin in Figure 8 denotes a robot joint, which may rotate with time, the object’s
angular velocity vector together with the central axis will also change with the rotation.
Here, we can represent the rotation as matrix R. By multiplying both sides of Equation 40
with matrix R, we can get

Rw = Rge,. (45)

If we introduce two new vectors w’ = Rw and €/, = Re,, then the above equation can
be rewritten as follows:
w' = ge., (46)

where w’ denotes the new angular velocity vector and €/, is the new axis. The velocity
scalar value is still ¢ rad/s/. Similarly, by introducing another new vector v = Rv and a
new position vector p’ = Rp, we can also represent the object’s linear velocity vector after
the rotation as

vV =Rv=R(wxp)=(Rw) x (Rp) =w’' xp'. (47)

These above velocity transformation equations and analysis results will be frequently
used in calculating the robot end point velocity in the following Section 5.

4.3.4 ROTATION MATRIX AND ANGULAR VELOCITY VECTOR

Before we have introduced that via the rotation matrix, we can map a robot arm link from
a local coordinate system, e.g., p, to the world coordinate system as follows:

p = Rp. (48)

For robot arm, its link vector representation p within the local coordinate system is
static and has a fixed representation, which can be denoted as

R'p=R'Rp=p=R'p. (49)

Meanwhile, both p and R will change with time. If we take the derivatives of p and R
with regard to time, we can obtain

p=Rp=R (RTp) - (RRT> D, (50)

where p = %’ and R = % represents the changing rate of the object’s position and its
rotation matrix.
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Meanwhile, for an object, its position changing rate is actually its velocity, i.e.,
pPp=VvV=wXDp, (51)

which will lead to an important equation shown as follows

wxp= <RRT> p. (52)
The above equation correlates the object’s angular velocity vector w and position vector p
with its corresponding rotation matrix RR .
Theorem 9 Matriz RR' is skew symmetric, i.e.,

(RR")" = -RR". (53)
Proof We can prove it based on the what we learn from the previous Section 4.2 that

matrix R is orthogonal, i.e., RRT = I. By taking the derivative of both sides of R is
orthogonal, i.e., RRT = I with time, we can get

RRT+RR"=0= (RR")" = —RR', (54)
which concludes the proof that RR is skew symmetric. |
The readers may also wonder how can we represent RR'T? Actually, in Equation 43, we

have provided one potential representation of matrix RR" with elements form the angular
velocity vector w already, i.e.,

0 —Wy Wy P

wxp=| w, 0 —wz| |pyl - (55)
—Wy Wy 0 Dz
RRT p

Definition 10 (Project_ion Opemtors): To simplify the notations, we can also introduce
two operators A : w — RRT and V: RR"T — w.

o Given an angular velocity vector w, we can represent the corresponding matrix RR'
projected from it as

RR" =w", or RR" = &. (56)

o Given a skew symmetric matriz RRT, we can also represent the corresponding angular
velocity vector w constructed from it as

w=(RR")". (57)
Based on the above analysis, we can also rewrite Equation 52 as follows:
w X p = wp, (58)

which can calculate the vector cross-product with the regular matrix-vector multiplication.
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4.4 Rotation Matrix Exponential and Logarithm

As robot arm rotates with angular velocity, it will change the arm’s position with the
rotation matrix. It seems both the angular velocity vector w and the rotation matrix R are
describing the effects of the robot rotation motion. Then, given the angular velocity vector
w, can we directly calculate the corresponding rotation matrix R? And given the rotation
matrix R, can we calculate the corresponding angular velocity vector w?

To answer these two questions, at the end of this section, we will introduce two important
operators defined on the rotation matrix R, i.e., the rotation matriz exponential and rotation
matriz logarithm.

4.4.1 ROTATION MATRIX EXPONENTIAL
For Equation 56, if we multiply both sides with the rotation matrix R, we can get
OR=RR'R=R. (59)
-~
=I

From the calculus course we learn at college, for a function f(x), if f(z) = af(z), then
the function f(x) can be represented as

f(z) = exp™ £(0). (60)

Similar representation can also be applied to represent the matrix R subject to Equa-
tion 59, we can denote the matrix R as

R(t) = exp®’ R(0). (61)

In the above equation, we clearly specify the matrix R has variable ¢t and R(0) denotes the
representation of matrix R at timestamp ¢ = 0. If we assume the initial condition R(0) =1,
the above representation can be further simplified as

R(t) = exp®t. (62)

Meanwhile, let’s come back to the knowledge we learn from the calculus course, according
to the Taylor series, the exponential term exp® we use to represent the f(z) function can
actually be calculated as the sum of a sequence of polynomial terms:

(ax)?  az)?
TR

exp®™ =1+ azx + + - (63)

Therefore, we can further represent the matrix R(¢) shown above as the sum of a
sequence of matrix polynomial terms

R(t) =T+ &t + ot~ o (64)
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Theorem 11 Given the angular velocity vector w, it can be represented as w = ¢e, where
q 1s a scalar denotes the rotation velocity and e is a unit vector representing the angular
velocity direction. Then we can have @ = ¢e. For the unit direction vector e, subject to the
A operator, we have

/éQn—H — (_1)n . /é, (65)
et = (-1 e (66)

We will leave the proof of the above theorem as an exercise for the readers, which can be
done with the mathematical induction on n starting from n = 0.

Based on the above theorem, we can further simplify the Equation 64, the high-order
power of the matrix @ in the equation can be reduced to the sum of € and &

N3 N5 N2 - \4 - \6
Ry =1+ (0 - G5+ O - ey (1R R e

5!
If the readers still remember the Taylor series of sinf and cos#, you will observe that
the above representation of matrix R(¢) can be further simplified as follows:

R(t) = I +@esinf +&%(1 — cosh), (68)

where 0 = ¢t is introduced to further simplify the representations. This equation will be
frequently used in robot control and kinematics to be introduced in the following articles.

4.4.2 ROTATION MATRIX LOGARITHM

Based on the analysis in the above subsection, given the object angular velocity vector @,
we can directly calculate its corresponding rotation matrix R with Equation 68. Meanwhile,
when given a rotation matrix R, can we also directly calculate its corresponding angular
velocity vector or not? This is what we plan to introduce in this part.

According to Equation 62, the rotation matrix R can be represented as exp® (the time
variable t is discarded). By defining the logarithm operator on the rotation matrix, we can
calculate the angular velocity vector w to be

w= (@)’ =(nR)". (69)

Tl T12 713
Depending on the shape and contents of the rotation matrix R = [ro; 122 7ro3|, the
31 T32 T33
actual calculation can be represented as

0,0,0)" ifR=1I
w = (ln R)v = g(TH + 1,790 + 1,733 + 1,) if R is diagonal (70)
qﬁ otherwise.

In the above representation, the scalar ¢ and vector a are defined based on the elements in
matrix R as follows:

a = (rsg — 123,713 — 731,721 — T12) |, q = atan2(||a|| , 711 + rog + 733 — 1), (71)
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Figure 10: An Example of Single-Link Robot End Point Velocity.

where atan2(y, z) is the 2-argument arctangent function and it returns the angle in radians
between the vector (z,y) (composed with the input arguments) and the = axis in the 2D
Cartesian plane.

5. Robot End Point Velocity

In the previous Section 4.3, we have introduce the object rotation angular velocity and linear
velocity. For an object rotating around the axis, we have illustrated their relationships and
also discussed about the transformation on them by the rotation movement.

In this section, we will further discuss about the angular velocity and linear velocity
about the end point of a robot during the rotational motion.

5.1 Single-Link Robot End Point Linear Velocity

We can borrow the example we use in the previous Section 2 here again. As shown in
Figure 10, given the robot arm with one movable link, we can represent its end point in the
world coordinate system as

Pz[;ZW] = plZl 4 R[zﬁzw]p[za] (72)

a—b*

In the above equation, vector pgzj]b pointing from joint @ to the end point b within the

local coordinate system ¥, is fixed and will not change with time. Meanwhile, the other
vectors are all dynamic and will change as the robot moves. By calculating the derivatives
of both sides of the above equation with time, we can obtain the linear velocity of the end
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¥y,

Figure 11: An Example of Multi-Link Robot End Point Velocity.

point b as

vl[)Zw] _ pl[,EWJ — p([lzw} + R[Zaﬁzw]pgzig (73)
— V([IEW] + (ang]R[Ea—)Ew]) p?j}b (74)
— vgzw] + &\JLEW} (R[Za—)Zw] p([fil)]b) (75)
= Vil opl (76)

In the above equation, we use many results obtained from the previous sections: (1) accord-
ing to Equation 59, R = @R, (2) according to Equation 58, @p = w x p, and (3) according

to the above Equation 72, R[E“%Z‘V]szj]b = pﬁ“g], = PI[,EW] - pz[zEW}.

Since there exist one single link that rotates, we can easily get that the angular velocity
of the end point will be equal to the velocity of the joint a, i.e.,

Wit =Wl (78)

5.2 Multi-Link Robot End Point Velocity

For the robot with multiple (more than one) moveable links, the end point’s velocity calcu-
lation will be more difficulty and challenging. We take the multi-link robot arm used before
in this part to illustrate the calculation process for readers.
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5.2.1 MurTIi-LINK ROBOT HOMOGENEOUS TRANSITION MATRIX

As introduced in Section 3.2, for the robot arm involving multiple link, the homogenous
transformation matrices between the local and world coordinate systems can be represented
as follows:

TEe—%a] — [R[Ebﬁza] pLE—iL] , and TZa=%w] — [R[zaﬁzw} p([lz“']] (19)
1 0 1

Based on them, we can represent the homogenous transformation matrices from the
second arm link’s local coordinate ¥ to the world coordinate X, as follows:

T[Zbﬁzw} — T[Ea%ZW]T[Eb_)Z“] (80)
_ (RPN p&z‘”] [R[Eb*za] pizi]b] (81)
0 1 0 1
[Ea—>2w} [2 —>Za] [EG%EW} [Ea} [EW}
:[(R RIM) (R Py ph )| (82)
0 1

According to the physical meanings of elements in the calculated homogeneous trans-
formation matriz T =2l we know that the rotation matriz from local coordinate ¥ at
the second arm link to the world coordinate Y and the arm end point position vector in
the world coordinate > can be represented as

pl[f:W] _ R[Zaﬁzw]pgﬁb + pg W]7 (83)
R[Ebazw] _ R[Ea‘)E\V}R[Eb*}Za]’ (84)

which will help calculate the linear velocity and angular velocity vectors of the end point in
the world coordinate Xyy.

5.2.2 MuLTI-LINK ROBOT LINEAR VELOCITY

[Zo]
b—e

From Equation 1, by projecting the second arm link vector p and adding to the position

vector pl[)zw], we can calculate the end point linear velocity as

p[eZw] _ pl[;EW] + R[Eb*EW]pLib]e (85)
_ pg?w] n R[Eﬁgw]p([lz_a)]b 4 R[zﬁzw]R[zﬁza}p[Eb} (86)

b—e”
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By taking the derivatives for both sides of Equation 83, we can obtain the end point
linear velocity to be

ool = &
i 4 R[gﬁgw}pgz }b+ R[zﬁzW]R[zﬁza]pl[ib]e " R[Ea%Z»\']R[EbﬁEa]pész (88)
—vIE 4 GEMREEpEal | GERE SR ETalplE] (89)

+R[2a—>z“]A[ }R[Eb%Ea}p[Z_l;]e (90)
—vIZv] 4 o] (R[zﬁzw] = a]> o= (R[zﬁzw}R[EwEa}p&L) (91)
n R[Ea—ﬂwla[ al (R[Eb_’za]pl[,ib]e) (92)
VIl s pB] Bl o pIS] | RiEaT (wéza] y Pz[i]e) (93)
B ol ( =] +PIEEXB]) N (R[zﬁzw}wgzag « (R[zﬁzw}pg]& ) (94)
:V[Z\\] + w[Z“] X p[ ] + w[z“] X péi“e] (95)
:v([lg“.] _'_w([lzw] o (p[ezw] B [ ]) +w[ w] (p[ezw} _ PILEW]> ' (96)

5.2.3 MuLTI-LINK ROBOT ANGULAR VELOCITY

Meanwhile, for the angular velocity of the end point, since the end point e is attached to the
arm link in the coordinate system ¥, with origin at joint b, we can calculate it based on the
rotation matrix R >v] introduced in Equation 84. As introduced before in Equation 56,
we know that

S R ] (R[szw})T (97)

d T

[Sa—Swl R [Zo—Ta] [S3— ]

—= (R R ) (R ) (98)
_ (R[zﬁzw]R[zb—ma} + R[za—>zw]R[zb—>za]) (R[zb—>2W]>T (99)
_ (&\JELZW]R[E,I*)EW]R[EI,HEG] + R[Eaﬁzx\r]al[)za]R[Eb%Ea}) (R[Ebﬁzw]>—r (100)
ol (R[zﬁzw]R[zﬁza]) (R[zwzw})T (101)

T

i R[Ea%E\Nv]@l[)Ea]R[Eb%Ea] (R[Ea—Ew]R[Eb—@a]) (102)

—o 4 R[gaﬁgw]al[)za]R[zﬁza] (R[zﬁza})T (R[zﬁzw])T (103)
P 4 RIEDplR <R[2ﬁ2w1>T (104)

N
=G o (R ) (105)
:&\)GEW} +(:'Z[)Ew}‘ (106)
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By applying the V operator to both sides of the above equation, we can represent the
angular velocity of the end point as

UJLEW} — w([le} 4 wgzw]' (107)

To derive the angular velocity and linear velocity of the end point, we use several equa-
tions to replace terms with their equivalent representations, like

RIZa—5v] (wl[)za] o Pz[i:l ) _ (R[zﬁzw}wl[jzag % (R[zﬁzw}p[Ea]> (108)

b—e

and »
1~[Za Ya—Sw Ya—2w a A “9
R[Ea—>2»\]: ,Z[] ] (R[ a ]) = (R[ }wl[) ]> . (1 )

We will leave the proof of the above two equations as an exercise for the readers.

5.3 A General Representation

Based on the above analysis, given the robot arm with multi-links, whose rotation joints are
denoted as a, b, ¢, - - -, we can represent the end point’s linear velocity and angular velocity
of the robot arm as follows:

Angular Velocity: w™ = o] 4 wl[)EW} +wPl (110)

3 3 Sw] _ Sw Sw Sw Sw
Linear Velocity: v = v[Pv] 1 [5v] (p[e [ ]) (111)

Sw W Sw

+wp ™l (pi - ) (112)
+ w[cEw] « <p[eEw] _ p[cEw}) 4o (113)
As to the angular velocity vectors, e.g., w!f“’], wl[)Ew] and w([; W], .-+, and position vectors,
e.g., pl[lzw], pl[)z“'] and p[ez“'], -+, within the world coordinate system X, can be obtained via

the rotation matrix between the local coordinates and the world coordinate as we derive
above.

6. What’s Next?

By now, we have introduced the robot representations, robot rotation, and discuss about the
robot end point velocity after the rotation. In the next article, we will further talk about
several advanced topics about robot motion and control, including forward kinematics,
inverse kinematics, trajectory generation and motion planning.
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