
BL-MNE: Emerging Heterogeneous Social Network
Embedding through Broad Learning with Aligned

Autoencoder
Jiawei Zhang?, Congying Xia§, Chenwei Zhang§, Limeng Cui†, Yanjie Fu‡ and Philip S. Yu§,¶

?IFM Lab, Department of Computer Science, Florida State University, FL, USA
§University of Illinois at Chicago, Chicago, IL, USA

†School of Computer and Control Engineering, University of Chinese Academy of Sciences, Beijing, China
‡Missouri University of Science and Technology, MO, USA

¶Shanghai Institute for Advanced Communication and Data Science, Fudan University, Shanghai, China
jzhang@cs.fsu.edu, {cxia8, czhang99, psyu}@uic.edu, lmcui932@163.com, fuyan@mst.edu

Abstract—Network embedding aims at projecting the network
data into a low-dimensional feature space, where the nodes are
represented as a unique feature vector and network structure
can be effectively preserved. In recent years, more and more
online application service sites can be represented as massive
and complex networks, which are extremely challenging for
traditional machine learning algorithms to deal with. Effective
embedding of the complex network data into low-dimension
feature representation can both save data storage space and
enable traditional machine learning algorithms applicable to
handle the network data. Network embedding performance will
degrade greatly if the networks are of a sparse structure, like the
emerging networks with few connections. In this paper, we pro-
pose to learn the embedding representation for a target emerging
network based on the broad learning setting, where the emerging
network is aligned with other external mature networks at the
same time. To solve the problem, a new embedding framework,
namely “Deep alIgned autoencoder based eMbEdding” (DIME),
is introduced in this paper. DIME handles the diverse link
and attribute in a unified analytic based on broad learning,
and introduces the multiple aligned attributed heterogeneous
social network concept to model the network structure. A set
of meta paths are introduced in the paper, which define various
kinds of connections among users via the heterogeneous link
and attribute information. The closeness among users in the
networks are defined as the meta proximity scores, which will
be fed into DIME to learn the embedding vectors of users in
the emerging network. Extensive experiments have been done
on real-world aligned social networks, which have demonstrated
the effectiveness of DIME in learning the emerging network
embedding vectors.

I. INTRODUCTION

In the era of big data, a rapidly increasing number of online
application websites appear recently, which can be represented
as massive and complex networks. The representative exam-
ples include online social networks, like Facebook and Twitter,
e-commerce sites, like Amazon and eBay, academic sites, like
DBLP and Google Scholar, as well as POIs recommendation
sites, like Foursquare and Yelp. These network data can
be very difficult to deal with due to their extremely large
scale (involving millions even billions of nodes), complex
structures (containing heterogeneous links) as well as diverse

attributes (attached to the nodes or links). Great challenges
exist in handling these complex network representation data
with traditional machine learning algorithms, which usually
take feature vectors as the input and cannot handle graph data
directly. A general representation of heterogeneous networks
as feature vectors is desired for knowledge discovery from
such complex-structured data. In this paper, we will use
online social networks as the example to illustrate the studied
problem as well as the learning framework.

In recent years, many research works propose to embed
the online social network data into a low-dimensional feature
space [14], [18], [6], in which each node is represented as a
unique feature vector. From these feature vectors, the original
network structure can be effectively reconstructed. With these
embedded feature vectors, classic machine learning algorithms
can be applied to deal with the social network data directly,
and the storage space can also be saved greatly. However, most
existing social network embedding methods are proposed for
homogeneous networks, which learn the feature vectors for
user nodes merely based on the social connections among
them. When applied to handle real-world social network data,
these embedding models can hardly work well. The main
reason is that the internal social links are usually very sparse
in online social networks [18], which can hardly preserve
the complete network structure. For a pair of users who
are not directed connected, these models will not be able
determine the closeness of these users’ feature vectors in the
embedding space. Such a problem will be more severe when
it comes to the emerging social networks [24], which denote
the newly created online social networks with very few social
connections.

Meanwhile, as discovered in [30], to enjoy more social
network services, people nowadays are usually involved in
multiple online social networks at the same time. For instance,
people tend to join in Facebook for casual socialization with
their classmates; they will use Foursquare to search for nearby
restaurants for dinner; and they will turn to use Instagram
to share photos with their friends online. Users who are

TABLE I
SUMMARY OF RELATED PROBLEMS.

Aligned Heterogeneous Translation based Graph Homogeneous Network Heterogeneous Network
Property Network Embedding Embedding [3], [19], [11] Embedding [14], [18], [6] Embedding [4], [5]
target network emerging regular regular regular
network attributed heterogeneous multi-relational homogeneous heterogeneous
#network multiple single single single
proximity meta proximity first order first/second order/random walk first order [4], meta path [5]
multi-source fusion anchor link based fusion N/A N/A N/A

involved in these emerging social networks may have been
using other well-developed social networks (e.g., Facebook,
Twitter) for a long time. Information available for the users
in other aligned mature networks is usually very abundant
and of a sufficient amount. Effective information exchanges
from these mature networks to the emerging networks for
the shared users can help overcome the information sparsity
problem promisingly, which is a important topic covered in
the broad learning task [22], [31] to be introduced as follows.
To denote the accounts owned by the same people in different
online social networks, an anchor link will be added to connect
their account pair between the networks [30]. Formally, the
online social networks connected by the anchor links (between
the shared user accounts) are called multiple aligned social
networks [30].
Problem Studied: In this paper, we propose to study the
emerging network embedding problem across multiple aligned
heterogeneous social networks simultaneously based on the
broad learning setting, which is formally named as the “Broad
Learning based eMerging Network Embedding” (BL-MNE)
problem. In the concurrent embedding process based on the
broad learning setting, BL-MNE aims at distilling relevant
information from both the emerging and other aligned mature
networks to derive compliment knowledge and learn a good
vector representation for user nodes in the emerging network.

Here, “Broad Learning” [22], [31] is a new type of
learning task, which focuses on fusing multiple large-scale
information sources of diverse varieties together and carrying
out synergistic data mining tasks across these fused sources in
one unified analytic [25], [21], [30], [24], [26], [23], [29], [27],
[28]. In the real world, on the same information entities, e.g.,
social media users [25], [21], [30], [24], movie knowledge
library entries [31] and employees in companies [26], [23],
[29], [27], [28], a large amount of information can actually
be collected from various sources. These sources are usually
of different varieties, like Foursquare vs Twitter [25], [21],
[30], [24], IMDB vs Douban Movie sites [31], Yammer vs
company organizational chart [26], [23], [29], [27], [28]. Each
information source provides a specific signature of the same
entity from a unique underlying aspect. Effective fusion of
these different information sources provides an opportunity
for researchers and practitioners to understand the entities
more comprehensively, which renders “Broad Learning” an
extremely important learning task. Fusing and mining multiple
information sources of large volumes and diverse varieties
are the fundamental problems in big data studies. “Broad

Learning” investigates the principles, methodologies and al-
gorithms for synergistic knowledge discovery across multiple
information sources, and evaluates the corresponding benefits
[22], [31]. Great challenges exist in “Broad Learning” for the
effective fusion of relevant knowledge across different aligned
information sources depends upon not only the relatedness
of these information sources, but also the target application
problems. “Broad Learning” aims at developing general
methodologies, which will be shown to work for a diverse
set of applications, while the specific parameter settings can
be learned for each application from the training data [22],
[31].

BL-MNE is significantly different from existing network
embedding problems [3], [19], [14], [11], [18], [4], [6], [5] in
several perspectives. First of all, the target network studied
in BL-MNE is an emerging network suffering from the
information sparsity problem, which is different from the
embedding problems for regular networks [3], [19], [11],
[4], [5]. Secondly, the networks studied in BL-MNE are all
heterogeneous networks containing complex links and diverse
attributes, which renders BL-MNE different from existing
homogeneous network embedding problems [14], [18], [6].
Furthermore, BL-MNE is based on the multiple aligned
networks setting, where information from aligned networks
will be exchanged to refine the embedding results mutually,
and it is different from the existing single-network based
embedding problems [3], [19], [14], [11], [4], [18], [4], [6],
[5]. We also provide a summary about the difference between
BL-MNE and existing works in Table I (which summarizes
and compares several related works in different aspects), and
more information about other related works will be introduced
Section V at the end of the paper.

The BL-MNE problem is not an easy problem, and it has
several great challenges to deal with, which are provided as
follows:

• Problem Formulation: To overcome the information spar-
sity problem, BL-MNE studies the concurrent embed-
ding of multiple aligned social networks, which is still an
open problem to this context so far. Formal definition and
formulation of the BL-MNE problem is required before
we introduce the solutions.

• Heterogeneity of Networks: The networks studied in this
paper are of very complex structures. Besides the regular
social connections among users, there also exist many
other types of links as well as diverse attributes attached
to the user nodes. Effective incorporating these heteroge-

neous information into a unified embedding analytic is a
great challenge.

• Multiple Aligned Network Embedding Framework: Due
to the significant differences between BL-MNE with the
existing works, few existing network embedding models
can be applied to address the BL-MNE directly. A
new embedding learning framework is needed to learn
the emerging network embedding vectors across multiple
aligned networks synergistically.

To address all these challenges aforementioned, in this
paper, we introduce a novel multiple aligned heterogeneous
social network embedding framework, named “Deep alIgned
autoencoder based eMbEdding” (DIME). To handle the het-
erogeneous link and attribute information in a unified analytic,
we introduce the aligned attribute augmented heterogeneous
network concept in this paper. From these heterogeneous
networks a set of meta paths are introduced to represent the
diverse connections among users in online social networks (via
social links, other diverse connections, and various attributes).
A set of meta proximity measures are defined for each of
the meta paths denoting the closeness among users. The
meta proximity information will be fed into a deep learning
framework, which takes the input information from multi-
ple aligned heterogeneous social networks simultaneously, to
achieve the embedding feature vectors for all the users in
these aligned networks. Based on the connection among users,
framework DIME aims at embedding close user nodes to a
close area in the low-dimensional feature space for each of the
social networks respectively. Meanwhile, framework DIME
also poses constraints on the feature vectors corresponding to
the shared users across networks to map them to a relatively
close region. In this way, information can be transferred from
the mature networks to the emerging network and solve the
information sparsity problem.

The remaining parts of this paper are organized as follows.
We will provide the terminology definition and problem for-
mulation in Section II. Information about the framework is
available in Section III, which will be evaluated in Section IV.
Finally, we will introduce the related works in Section V and
conclude this paper in Section VI.

II. TERMINOLOGY DEFINITION AND PROBLEM
FORMULATION

In this section, we will first introduce the definitions of
several important terminologies, based on which we will then
provide the formulation of the BL-MNE problem.

A. Terminology Definition

The social networks studied in this paper contain different
categories of nodes and links, as well as very diverse attributes
attached to the nodes. Formally, we can represent these net-
work structured data as the attributed heterogeneous social
networks.
Definition 1 (Attributed Heterogeneous Social Networks): The
attributed heterogeneous social network can be represented
as a graph G = (V, E , T), where V =

⋃
i Vi denotes the

set of nodes belonging to various categories and E =
⋃

i Ei
represents the set of diverse links among the nodes. What’s
more, T =

⋃
i Ti denotes the set of attributes attached to the

nodes in V . For user u in the network, we can represent the ith
type of attribute associated to u as Ti(u), and all the attributes
u has can be represented as T (u) =

⋃
i Ti(u).

The social network datasets used in this paper include
Foursquare and Twitter. Formally, the Foursquare and Twitter
can both be represented as the attributed heterogeneous social
networks G = (V, E , T), where V = U ∪ P involves the
user and post nodes, and E = Eu,u ∪ Eu,p contains the links
among users and those between users and posts. In addition,
the nodes in V are also attached with a set of attributes, i.e., T .
For instance, for the posts written by users, we can obtain the
contained textual contents, timestamps and checkins, which
can all be represented as the attributes of the post nodes.

Between Foursquare and Twitter, there may exist a large
number of shared common users, who can align the networks
together. In this paper, we will follow the concept definitions
proposed in [30], and call the user account correspondence
relationships as the anchor links. Meanwhile, the networks
connected by the anchor links are called the multiple aligned
attributed heterogeneous social networks (or aligned social
networks for short).
Definition 2 (Multiple Aligned Social Networks):
Formally, given n attributed heterogeneous social
networks {G(1), · · · , G(n)} with shared users, they
can be defined as multiple aligned social networks
G = ((G(1), · · · , G(n)), (A(1,2), · · · ,A(n−1,n))). Set A(i,j)

represents the anchor links between G(i) and G(j). User pair
(u(i), v(j)) ∈ A(i,j) iff u(i) and v(j) are the accounts of the
same user in networks G(i) and G(j) respectively.

For the Foursquare and Twitter social networks used in
this paper, we can represent them as two aligned social
networks G = ((G(1), G(2)), (A(1,2))), which will be used as
an example to illustrate the models. A simple extension of
the proposed framework can be applied to k aligned networks
very easily.

B. Problem Formulation

Problem Definition (BL-MNE Problem): Given two aligned
networks G = ((G(1), G(2)), (A(1,2))), where G(1) is an
emerging network and G(2) is a mature network, BL-MNE
aims at learning a mapping function f (i) : U (i) → Rd(i)

to
project the user node in G(i) to a feature space of dimension
d(i) (d(i) � |U|(i)). The objective of mapping functions
f (i) is to ensure the embedding results can preserve the
network structural information, where similar user nodes will
be projected to close regions. Furthermore, in the embedding
process, BL-MNE also wants to transfer information between
G(2) and G(1) to overcome the information sparsity problem
in G(1).

III. PROPOSED METHOD

In this section, we will introduce the framework DIME in
detail. At the beginning, we provide the notations used in the

paper. After that, in Section III-B, we will talk about how
to calculate the meta proximity scores among users based on
information in the attributed heterogeneous social networks.
With the meta proximity measures, the DIME framework will
be introduced in Section III-C to obtain the embedding vectors
of user nodes across aligned networks, where information
from other aligned mature networks will be used to refine
the embedding vectors in the emerging sparse network.

A. Notations

In the sequel, we will use the lower case letters (e.g., x)
to represent scalars, lower case bold letters (e.g., x) to denote
column vectors, bold-face upper case letters (e.g., X) to denote
matrices, and upper case calligraphic letters (e.g., X) to denote
sets. Given a matrix X, we denote X(i, :) and X(:, j) as the
ith row and jth column of matrix X respectively. The (ith,
jth) entry of matrix X can be denoted as either X(i, j) or
Xi,j , which will be used interchangeably in this paper. We
use X> and x> to represent the transpose of matrix X and
vector x. For vector x, we represent its Lp-norm as ‖x‖p =

(
∑

i |xi|p)
1
p . The Lp-norm of matrix X can be represented as

‖X‖p = (
∑

i,j |Xi,j |p)
1
p . The element-wise product of vectors

x and y of the same dimension is represented as x�y, while
the element-wise product of matrices X and Y of the same
dimensions is represented as X�Y.

B. Heterogeneous Network Meta Proximity

For each attributed heterogeneous social network, the close-
ness among users can be denoted by the friendship links
among them, where friends tend to be closer compared with
user pairs without connections. Meanwhile, for the users who
are not directly connected by the friendship links, few existing
embedding methods can figure out their closeness, as these
methods are mostly built based on the direct friendship link
only. In this section, we propose to infer the potential closeness
scores among the users with the heterogeneous information
in the networks based on meta path concept [16], which are
formally called the meta proximity in the paper.

1) Friendship based Meta Proximity: In online social net-
works, the friendship links are the most obvious indicator
of the social closeness among users. Online friends tend to
be closer with each other compared with the user pairs who
are not friends. Users’ friendship links also carry important
information about the local network structure information,
which should be preserved in the embedding results. Based
on such an intuition, we propose the friendship based meta
proximity concept as follows.
Definition 3 (Friendship based Meta Proximity): For any two
user nodes u(1)

i , u
(1)
j in an online social network (e.g., G(1)),

if u(1)
i and u(1)

j are friends in G(1), the friendship based meta
proximity between u(1)

i and u(1)
j in the network is 1, otherwise

the friendship based meta proximity score between them will
be 0 instead. To be more specific, we can represent the
friendship based meta proximity score between users u(1)

i , u
(1)
j

as p(1)(u
(1)
i , u

(1)
j) ∈ {0, 1}, where p(1)(u

(1)
i , u

(1)
j) = 1 iff

(u
(1)
i , u

(1)
j) ∈ E(1)

u,u.
Based on the above definition, the friendship based meta

proximity scores among all the users in network G(1) can
be represented as matrix P

(1)
Φ0
∈ R|U(1)|×|U(1)|, where entry

P
(1)
Φ0

(i, j) equals to p(1)(u
(1)
i , u

(1)
j). Here Φ0 denotes the

simplest meta path of length 1 in the form U follow−−−−−→ U,
and its formal definition will be introduced in the following
subsection.

When network G(1) is an emerging online social network
which has just started to provide services for a very short
time, the friendship links among users in G(1) tend to be very
limited (majority of the users are isolated in the network with
few social connections). In other words, the friendship based
meta proximity matrix P

(1)
Φ0

will be extremely sparse, where
few entries will have value 1 and most of the entries are 0s.
With such a sparse matrix, most existing embedding models
will fail to work. The reason is that the sparse friendship
information available in the network can hardly categorize the
relative closeness relationships among the users (especially for
those who are even not connected by friendship links), which
renders these existing embedding models may project all the
nodes to random regions.

To overcome such a problem, besides the social links, we
propose to calculate the proximity scores for the users with the
diverse link and attribute information in the heterogeneous net-
works in this paper. Based on a new concept named attribute
augmented meta path, a set of meta proximity measures will be
defined with each of the meta paths, which will be introduced
in the following sections.

2) Attribute Augmented Meta Path: To handle the diverse
links and attributes simultaneously in a unified analytic, we
propose to treat the attributes as nodes as well and introduce
the attribute augmented network. If a node has certain at-
tributes, a new type of link “have” will be added to connected
the node and the newly added attribute node. The structure
of the attribute augmented network can be described with the
attribute augmented network schema as follows.
Definition 4 (Attribute Augmented Network Schema): For-
mally, the network schema of a given online social network
G(1) = (V, E) can be represented as SG(1) = (NV∪NT ,RE∪
{have}), where NV and NT denote the set of node and
attribute categories in the network, while RE represents the
set of link types in the network, and {have} represents the
relationship between node and attribute node types.

For instance, about the attributed heterogeneous social
network introduced after Definition 1 in Section II, we can rep-
resent its network schema as SG(1) = (NV∪NT ,RE∪{have}).
The node type set NV involves node types {User,Post} (or
{U,P} for simplicity), while the attribute type set NT includes
{Word, Time, Location} (or {W,T,L} for short). As to the
link types involved in the network, the link type set RE
contains {follow,write}, which represents the friendship link
type and the write link type respectively.

TABLE II
SUMMARY OF SOCIAL META PATHS (FOR BOTH FOURSQUARE AND TWITTER).

ID Notation Heterogeneous Network Meta Path Semantics

Φ0 U → U User
follow−−−−−→ User Follow

Φ1 U → U → U User
follow−−−−−→ User

follow−−−−−→ User Follower of Follower

Φ2 U → U ← U User
follow−−−−−→ User

follow−1

−−−−−−−→ User Common Out Neighbor

Φ3 U ← U → U User
follow−1

−−−−−−−→ User
follow−−−−−→ User Common In Neighbor

Φ4 U ← U ← U User
follow−1

−−−−−−−→ User
follow−1

−−−−−−−→ User Followee of Followee

Φ5 U → P → W ← P ← U User write−−−−→ Post have−−−→ Word have−1
−−−−−−→ Post write−1

−−−−−−→ User Posts Containing Common Words

Φ6 U → P → T ← P ← U User write−−−−→ Post have−−−→ Time have−1
−−−−−−→ Post write−1

−−−−−−→ User Posts Containing Common Timestamps

Φ7 U → P → L ← P ← U User write−−−−→ Post have−−−→ Location have−1
−−−−−−→ Post write−1

−−−−−−→ User Posts Attaching Common Location Check-ins

Based on the attribute augmented network schema, we
can represent the general correlation among users (especially
those who are directly connected by friendship links) with the
attributed augmented meta path starting and ending with the
user node type.
Definition 5 (Attribute Augmented Meta Path): Given a
network schema SG(1) , the attribute augmented meta path
denotes a sequence of node/attribute types connected by the
link types or the “have” relation type (between node and
attribute type). Formally, the attribute augmented meta path
(of length k − 1, k ≥ 2) can be represented as Φ : N1

R1−−→
N2

R2−−→ · · · Rk−1−−−→ Nk, where N1, · · · , Nk ∈ NV ∪ NT and
R1, · · · , Rk−1 ∈ RE ∪R−1

E ∪{have, have−1} (superscript −1
denotes the reverse of relation type direction). In the case that
N1 = Nk = U , i.e., meta paths starts and ends with the user
node type, the meta paths will be called the social meta paths
specifically.

Based on the above definition, a set of different social meta
path {Φ0,Φ1,Φ2, · · · ,Φ7} can be extracted from the network,
whose notations, concrete representations and the physical
meanings are illustrated in Table II. Here, meta paths Φ0−Φ4

are all based on the user node type and follow link type;
meta paths Φ5−Φ7 involve the user, post node type, attribute
node type, as well as the write and have link type. Based on
each of the meta paths, there will exist a set of concrete meta
path instances connecting users in the networks. For instance,
given a user pair u and v, they may have been checked-
in at 5 different common locations, which will introduce 5
concrete meta path instance of meta path Φ7 connecting u
and v indicating their strong closeness (in location check-ins).
In the next subsection, we will introduce how to calculate the
proximity score for the users based on these extracted meta
paths.

3) Heterogeneous Network Meta Proximity: The set of
attribute augmented social meta paths {Φ0,Φ1,Φ2, · · · ,Φ7}
extracted in the previous subsection create different kinds of
correlations among users (especially for those who are not
directed connected by friendship links). With these social meta
paths, different types of proximity scores among the users can
be captured. For instance, for the users who are not friends but
share lots of common friends, they may also know each other
and can be close to each other; for the users who frequently

checked-in at the same places, they tend to be more close to
each other compared with those isolated ones with nothing in
common. Therefore, these meta paths can help capture much
broader network structure information compared with the local
structure captured by the friendship based meta proximity
covered in Section III-B1. In this part, we will introduce the
method to calculate the proximity scores among users based
on these social meta paths.

As shown in Table II, all the social meta paths extracted
from the networks can be represented as set {Φ0,Φ1, · · · ,Φ7}.
Given a pair of users, e.g., u(1)

i and u(1)
j , based on meta path

Φk ∈ {Φ0,Φ1, · · · ,Φ7}, we can represent the set of meta path
instances connecting u

(1)
i and u

(1)
j as P(1)

Φk
(u

(1)
i , u

(1)
j). Users

u
(1)
i and u

(1)
j can have multiple meta path instances going

into/out from them. Formally, we can represent all the meta
path instances going out from user u(1)

i (or going into u
(1)
j),

based on meta path Φk, as set P(1)
Φk

(u
(1)
i , ·) (or P(1)

Φk
(·, u(1)

j)).
The proximity score between u

(1)
i and u

(1)
j based on meta

path Φk can be represented as the following meta proximity
concept formally.
Definition 6 (Meta Proximity): Based on meta path Φk, the
meta proximity between users u(1)

i and u
(1)
j in G(1) can be

represented as

p
(1)
Φk

(u
(1)
i , u

(1)
j) =

2|P(1)
Φk

(u
(1)
i , u

(1)
j)|

|P(1)
Φk

(u
(1)
i , ·)|+ |P(1)

Φk
(·, u(1)

j)|
.

Meta proximity considers not only the meta path instances
between users but also penalizes the number of meta path
instances going out from/into u(1)

i and u(1)
j at the same time.

It is also reasonable. For instance, sharing some common
location check-ins with some extremely active users (who
have thousands of checkins) may not necessarily indicate
closeness with them, since they may have common check-
ins with almost all other users simply due to his very large
check-in record volume instead of their closeness.

With the above meta proximity definition, we can represent
the meta proximity scores among all users in the network G(1)

based on meta path Φk as matrix P
(1)
Φk
∈ R|U(1)|×|U(1)|, where

entry P
(1)
Φk

(i, j) = p
(1)
Φk

(u
(1)
i , u

(1)
j). All the meta proximity

matrices defined for network G(1) can be represented as

{P(1)
Φk
}Φk . Based on the meta paths extracted for network G(2),

similar matrices can be defined as well, which can be denoted
as {P(2)

Φk
}Φk .

C. Deep Network Synergistic Embedding

With these calculated meta proximity introduced in the
previous section, we will introduce the embedding framework
DIME in this part. DIME is based on the aligned auto-
encoder model, which extends the traditional deep auto-
encoder model to the multiple aligned heterogeneous networks
scenario. To make this paper self-contained, we will first
briefly introduce some background knowledge about the auto-
encoder model first in Section III-C1. After that, we will talk
about the embedding model component for one single hetero-
geneous network in Section III-C2, which takes the various
meta proximity matrices as input. DIME effectively couples
the embedding process of the emerging network with other
aligned mature networks, where cross-network information
exchange and refinement is achieved via the loss term defined
based on the anchor links.

1) Deep Auto-Encoder Model Review: Auto-encoder is
an unsupervised neural network model, which projects the
instances (in original feature representations) into a lower-
dimensional feature space via a series of non-linear mappings.
Auto-encoder model involves two steps: encoder and decoder.
The encoder part projects the original feature vectors to the
objective feature space, while the decoder step recovers the
latent feature representation to a reconstruction space. In auto-
encoder model, we generally need to ensure that the original
feature representation of instances should be as similar to the
reconstructed feature representation as possible.

Formally, let xi represent the original feature representation
of instance i, and y1

i ,y
2
i , · · · ,yo

i be the latent feature repre-
sentation of the instance at hidden layers 1, 2, · · · , o in the
encoder step, the encoding result in the objective feature space
can be represented as zi ∈ Rd with dimension d. Formally, the
relationship between these variables can be represented with
the following equations:

y1
i = σ(W1xi + b1),

yk
i = σ(Wkyk−1

i + bk),∀k ∈ {2, 3, · · · , o},
zi = σ(Wo+1yo

i + bo+1).

Meanwhile, in the decoder step, the input will be the latent
feature vector zi (i.e., the output of the encoder step), and
the final output will be the reconstructed vector x̂i. The
latent feature vectors at each hidden layers can be represented
as ŷo

i , ŷ
o−1
i , · · · , ŷ1

i . The relationship between these vector
variables can be denoted as

ŷo
i = σ(Ŵo+1zi + b̂o+1),

ŷk−1
i = σ(Ŵkŷk

i + b̂k),∀k ∈ {2, 3, · · · , o},
x̂i = σ(Ŵ1ŷ1

i + b̂1).

The objective of the auto-encoder model is to minimize
the loss between the original feature vector xi and the recon-

structed feature vector x̂i of all the instances in the network.
Formally, the loss term can be represented as

L =
∑
i

‖xi − x̂i‖22 .

2) Deep DIME-SH Model: When applying the auto-
encoder model for one single homogeneous network, e.g., for
G(1), we can fit the model with the node meta proximity
feature vectors, i.e., rows corresponding to users in matrix
P

(1)
Φ0

(introduced in Section III-B1). In the case that G(1) is
heterogeneous, multiple node meta proximity matrices have
been defined before (i.e., {P(1)

Φ0
,P

(1)
Φ1
, · · · ,P(1)

Φ7
}), how to fit

these matrices simultaneously to the auto-encoder models is
an open problem. In this part, we will introduce the single-
heterogeneous-network version of framework DIME, namely
DIME-SH, which will be used as an important component of
framework DIME as well. For each user node in the network,
DIME-SH computes the embedding vector based on each of
the proximity matrix independently first, which will be further
fused to compute the final latent feature vector in the output
hidden layer.

As shown in the architecture in Figure 1 (either the left
component for network 1 or the right component for network
2), about the same instance, DIME-SH takes different feature
vectors extracted from the meta paths {Φ0,Φ1, · · · ,Φ7} as
the input. For each meta path, a series of separated encoder
and decoder steps are carried out simultaneously, whose latent
vectors are fused together to calculate the final embedding
vector z

(1)
i ∈ Rd(1)

for user u(1)
i ∈ V(1). In the DIME-

SH model, the input feature vectors (based on meta path
Φk ∈ {Φ0,Φ1, · · · ,Φ7}) of user ui can be represented as
x

(1)
i,Φk

, which denotes the row corresponding to users u(1)
i in

matrix P
(1)
Φk

defined before. Meanwhile, the latent representa-
tion of the instance based on the feature vector extracted via
meta path Φk at different hidden layers can be represented as
{y(1),1

i,Φk
,y

(1),2
i,Φk

, · · · ,y(1),o
i,Φk
}.

One of the significant difference of model DIME-SH from
traditional auto-encoder model lies in the (1) combination of
multiple hidden vectors {y(1),o

i,Φ0
,y

(1),o
i,Φ1

, · · · ,y(1),o
i,Φ7
} to obtain

the embedding vector z
(1)
i in the encoder step, and (2) the

dispatch of embedding vector z(1)
i back to the hidden vectors

in the decoder step. As shown in the architecture, formally,
these extra steps can be represented as

extra encoder steps
y

(1),o+1
i = σ(

∑
Φk∈{Φ0,··· ,Φ7}W

(1),o+1
Φk

y
(1),o
i,Φk

+ b
(1),o+1
Φk

),

z
(1)
i = σ(W(1),o+2y

(1),o+1
i + b(1),o+2).

extra decoder steps
ŷ

(1),o+1
i = σ(Ŵ(1),o+2z

(1)
i + b̂(1),o+2),

ŷ
(1),o
i,Φk

= σ(Ŵ
(1),o+1
Φk

ŷ
(1),o+1
i + b̂

(1),o+1
Φk

).

In the fusion and dispatch steps, full connection layers are
used in order to incorporate all the information captured by
all the meta paths.

…

…

…

……

…

…

…

Network 1 Network 2

Network
Fusion

Component

…
……

…
…

…

…

…

…

……
… …

…
…

…

……
… … …

…

…

…

…
… …

………
…

z
(1)
i

z
(2)
j

y
(2),o+1
j

ŷ
(2),o+1
j

x̂
(2)
j,�0

ŷ
(2),o
j,�0

y
(2),o
j,�0

x
(2)
j,�0

x
(2)
j,�1

x
(2)
j,�7

x̂
(2)
j,�7

x̂
(2)
j,�1x̂

(1)
i,�1

x̂
(1)
i,�0

x̂
(1)
i,�7

x
(1)
i,�7

x
(1)
i,�1

x
(1)
i,�0

y
(1),1
i,�7

y
(1),o
i,�7

ŷ
(1),o
i,�7

ŷ
(1),1
i,�7

ŷ
(2),1
j,�0

y
(2),1
j,�0

ŷ
(1),o+1
i

y
(1),o+1
i

… …

… …

… …

… …

Fig. 1. The DIME Framework.

TABLE III
PROPERTIES OF THE HETEROGENEOUS NETWORKS

network

property Twitter Foursquare

node
user 5,223 5,392
tweet/tip 9,490,707 48,756
location 297,182 38,921

link
friend/follow 164,920 76,972
write 9,490,707 48,756
locate 615,515 48,756

What’s more, since the input feature vectors are extremely
sparse (lots of the entries are 0s), simply feeding them to the
model may lead to some trivial solutions, like 0 vectors for
both z

(1)
i and the decoded vectors x̂

(1)
i,Φk

. To overcome such
a problem, another significant difference of model DIME-SH
from traditional auto-encoder model lies in the loss function
definition, where the loss introduced by the non-zero features
will be assigned with a larger weight. In addition, by adding
the loss function for each of the meta paths, the final loss
function in DIME-SH can be formally represented as

L(1) =
∑

Φk∈{Φ0,··· ,Φ7}

∑
ui∈V

∥∥∥(x(1)
i,Φk
− x̂

(1)
i,Φk

)
� b

(1)
i,Φk

∥∥∥2

2
,

where vector b
(1)
i,Φk

is the weight vector corresponding to
feature vector x

(1)
i,Φk

. Entries in vector b
(1)
i,Φk

are filled with
value 1s except the entries corresponding to non-zero element
in x

(1)
i,Φk

, which will be assigned with value γ (γ > 1 denoting

a larger weight to fit these features). Here, we need to add a
remark that “simply discarding the entries corresponding zero
values in the input vectors from the loss function” will not
work here, since it will allow the model to decode there entries
to any random values, which will not be what we want. In a
similar way, we can define the loss function for the embedding
result in network G(2), which can be formally represented as
L(2).

3) Deep DIME Framework: DIME-SH has incorporate all
these heterogeneous information in the model building, the
meta proximity calculated based on which can help differen-
tiate the closeness among different users. However, for the
emerging networks which just start to provide services, the
information sparsity problem may affect the performance of
DIME-SH significantly. In this part, we will introduce DIME,
which couples the embedding process of the emerging network
with another mature aligned network. By accommodating the
embedding between the aligned networks, information can
be transferred from the aligned mature network to refine the
embedding results in the emerging network effectively. The
complete architecture of DIME is shown in Figure 1, which
involve the DIME-SH components for each of the aligned
networks, where the information transfer component aligns
these separated DIME-SH models together.

To be more specific, given a pair of aligned heterogeneous
networks G = ((G(1), G(2)),A(1,2)) (G(1) is an emerging
network and G(2) is a mature network), we can represent
the embedding results as matrices Z(1) ∈ R|U(1)|×d(1)

and
Z(2) ∈ R|U(2)|×d(2)

for all the user nodes in G(1) and G(2)

TABLE IV
LINK PREDICTION RESULT OF THE COMPARISON METHODS (PARAMETER λ CHANGES IN {10%, 20%, · · · , 100%}, θ = 1).

Sampling Ratio λ

metric method 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

A
U

C

DIME 0.792±0.007 0.822±0.006 0.838±0.005 0.843±0.003 0.847±0.003 0.850±0.003 0.852±0.002 0.850±0.004 0.852±0.003 0.852±0.004
DIME-SH 0.774±0.006 0.795±0.005 0.802±0.006 0.809±0.004 0.815±0.005 0.822±0.005 0.827±0.006 0.826±0.005 0.830±0.004 0.833±0.003

Auto-encoder 0.697±0.006 0.731±0.006 0.752±0.005 0.761±0.005 0.761±0.005 0.763±0.004 0.763±0.004 0.770±0.003 0.773±0.005 0.777±0.005
LINE 0.694±0.008 0.716±0.003 0.731±0.007 0.738±0.005 0.741±0.006 0.744±0.005 0.748±0.005 0.748±0.008 0.750±.003 0.750±0.006

DeepWalk 0.671±0.010 0.661±0.011 0.670±0.009 0.675±0.009 0.682±0.005 0.687±0.004 0.701±0.007 0.718±0.007 0.733±0.008 0.747±0.006

A
cc

ur
ac

y DIME 0.719±0.006 0.748±0.005 0.763±0.004 0.767±0.003 0.773±0.003 0.775±0.004 0.777±0.003 0.775±0.003 0.777±0.004 0.777±0.004
DIME-SH 0.704±0.007 0.723±0.004 0.728±0.006 0.737±0.003 0.739±0.006 0.747±0.005 0.753±0.006 0.754±0.006 0.757±0.005 0.761±0.003

Auto-encoder 0.642±0.005 0.668±0.005 0.684±0.005 0.692±0.005 0.691±0.005 0.691±0.004 0.691±0.004 0.699±0.004 0.700±0.005 0.703±0.005
LINE 0.637±0.005 0.666±0.004 0.676±0.008 0.676±0.005 0.677±0.004 0.679±0.006 0.679±0.005 0.679±0.008 0.681±0.003 0.682±0.007

DeepWalk 0.632±0.008 0.626±0.009 0.633±0.008 0.634±0.008 0.637±0.006 0.641±0.004 0.655±0.007 0.669±0.006 0.680±0.006 0.687±0.004

R
ec

al
l

DIME 0.641±0.008 0.702±0.011 0.732±0.007 0.746±0.008 0.755±0.008 0.761±0.006 0.767±0.006 0.768±0.003 0.771±0.005 0.772±0.008
DIME-SH 0.641±0.011 0.689±0.006 0.692±0.010 0.703±0.009 0.707±0.009 0.713±0.013 0.720±0.010 0.719±0.012 0.725±0.009 0.731±0.008

Auto-encoder 0.564±0.016 0.649±0.016 0.714±0.007 0.743±0.013 0.726±0.012 0.680±0.009 0.671±0.007 0.681±0.008 0.680±0.008 0.687±0.007
LINE 0.819±0.008 0.770±0.007 0.800±0.008 0.749±0.011 0.740±0.008 0.731±0.010 0.724±0.007 0.721±0.007 0.715±0.005 0.716±0.009

DeepWalk 0.645±0.020 0.658±0.020 0.678±0.016 0.681±0.016 0.680±0.016 0.682±0.010 0.692±0.009 0.702±0.008 0.706±0.005 0.707±0.007

F1

DIME 0.700±0.007 0.735±0.008 0.756±0.006 0.762±0.006 0.769±0.005 0.772±0.005 0.775±0.004 0.774±0.004 0.776±0.005 0.776±0.006
DIME-SH 0.684±0.009 0.711±0.005 0.718±0.008 0.728±0.006 0.731±0.007 0.738±0.008 0.744±0.007 0.745±0.009 0.749±0.006 0.753±0.005

Auto-encoder 0.612±0.009 0.662±0.009 0.693±0.007 0.707±0.007 0.701±0.007 0.688±0.006 0.685±0.006 0.694±0.006 0.694±0.007 0.698±0.008
LINE 0.693±0.006 0.698±0.005 0.712±0.008 0.698±0.007 0.696±0.006 0.695±0.009 0.693±0.006 0.692±0.009 0.692±0.005 0.693±0.009

DeepWalk 0.636±0.011 0.637±0.014 0.648±0.010 0.650±0.010 0.652±0.010 0.655±0.006 0.667±0.008 0.679±0.006 0.688±0.006 0.693±0.005

respectively. The ith row of matrix Z(1) (or the jth row of
matrix Z(2)) denotes the encoded feature vector of user u(1)

i

in G(1) (or u(2)
j in G(2)). If u(1)

i and u(2)
j are the same user,

i.e., (u
(1)
i , u

(2)
j) ∈ A(1,2), by placing vectors Z(1)(i, :) and

Z(2)(j, :) in a close region in the embedding space, we can
use the information from G(2) to refine the embedding result
in G(1).

Information transfer is achieved based on the anchor links,
and we only care about the anchor users. To adjust the
rows of matrices Z(1) and Z(2) to remove non-anchor users
and make the same rows correspond to the same user, we
introduce the binary inter-network transitional matrix T(1,2) ∈
R|U(1)|×|U(2)|. Entry T (1,2)(i, j) = 1 iff the corresponding
users are connected by anchor links, i.e., (u

(1)
i , u

(2)
j) ∈ A(1,2).

Furthermore, the encoded feature vectors for users in these
two networks can be of different dimensions, i.e., d(1) 6= d(2),
which can be accommodated via the projection W(1,2) ∈
Rd(1)×d(2)

.
Formally, the introduced information fusion loss between

networks G(1) and G(2) can be represented as

L(1,2) =
∥∥∥(T(1,2))>Z(1)W(1,2) − Z(2)

∥∥∥2

F
.

By minimizing the information fusion loss function L(1,2), we
can use the anchor users’ embedding vectors from the mature
network G(2) to adjust his embedding vectors in the emerging
network G(1). Even through in such a process the embedding
vector in G(2) can be undermined by G(1), it will not be a
problem since G(1) is our target network and we only care
about the embedding result of the emerging network G(1) in
the paper.

The complete objective function of framework include the
loss terms introduced by the component DIME-SH for net-
works G(1), G(2), and the information fusion loss, which can
be denoted as

L(G(1), G(2)) = L(1) + L(2) + α · L(1,2) + β · Lreg.

Parameters α and β denote the weights of the information
fusion loss term and the regularization term. In the objective
function, term Lreg is added to the above objective function
to avoid overfitting, which can be formally represented as

Lreg = L(1)
reg + L(2)

reg + L(1,2)
reg ,

L(1)
reg =

∑o(1)+2
i

∑
Φk∈{Φ0,··· ,Φ7}

(∥∥∥W(1),i
Φk

∥∥∥2

F
+
∥∥∥Ŵ(1),i

Φk

∥∥∥2

F

)
,

L(2)
reg =

∑o(2)+2
i

∑
Φk∈{Φ0,··· ,Φ7}

(∥∥∥W(2),i
Φk

∥∥∥2

F
+
∥∥∥Ŵ(2),i

Φk

∥∥∥2

F

)
,

L(1,2)
reg =

∥∥W(1,2)
∥∥2

F
.

To optimize the above objective function, we utilize
Stochastic Gradient Descent (SGD). To be more specific, the
training process involves multiple epochs. In each epoch, the
training data is shuffled and a minibatch of the instances are
sampled to update the parameters with SGD. Such a process
continues until either convergence or the training epochs have
been finished.

IV. EXPERIMENTS

To demonstrate the effectiveness of the learnt embedding
feature vectors, extensive experiments have been done on
real-world aligned heterogeneous social networks, Foursquare
and Twitter. Two different tasks are done in this section
for embedding result evaluation purposes, which include link
prediction and community detection. In this section, we will
provide some basic descriptions about the aligned heteroge-
neous social network dataset first. After that, we will introduce
the experimental settings, covering the comparison embedding
methods, as well as the experimental settings, and evaluation
metrics for link prediction and community detection tasks.
Finally, we will show the experimental results about link
prediction and community detection, followed by the parameter
analysis.

A. Dataset Description

The data used in the experiments include two aligned het-
erogeneous social networks Foursquare and Twitter simultane-
ously. The basic statistical information about the Foursquare
and Twitter datasets is available in Table III. The data crawling
strategy and method is introduced in great deital in [8], [30].
• Twitter: Twitter is a famous micro-blogging site that

allows users to write, read and share posts with their
friends online. We have crawled 5, 223 Twitter users, and
164, 920 follow links among them. These crawled Twit-
ter users have posted 9, 490, 707 tweets, among which
615, 515 have location checkins.

• Foursquare: Foursquare is a famous location based social
network (LBSN), which provides users with various kinds
of location-related services. From Foursquare, we have
crawled 5, 392 users together with 76, 972 friendship
links among them. These Foursquare users have written
48, 756 posts which all attach location checkins. Among
these 5, 392 crawled Foursquare users, 3, 388 of them are
aligned by anchor links with Twitter.

In the experiments, we will use Foursquare as the emerging
network and Twitter as the aligned mature network, since
Twitter has more dense information than Foursquare. The
results for the reverse case (Foursquare: mature; Twitter:
emerging) are not shown here due to the limited space.

Source Code: The source code of DIME is available at site:
http://www.ifmlab.org/files/code/Aligned-Autoencoder.zip.

B. Experimental Settings

In this paper, we are mainly focused on studying the
embedding models, and different network embedding com-
parison methods will be introduced first. After that, we will
introduce the experimental settings for both link prediction
and community detection tasks, which will be used as the
evaluation tasks to determine whether the embedding results
are good or not. A set of frequently used evaluation metrics
for link prediciton and community detection will be introduced
afterwards.

1) Embedding Comparison Methods: The network embed-
ding models compared in the experiments are listed as follows
• DIME: DIME is the synergistic embedding model for

multiple aligned heterogeneous networks introduced in
this paper. DIME preserves both the local and global
network structure with a set of meta proximity calculated
from each of the heterogeneous network. DIME trans-
fers the information from the aligned mature networks
to the emerging network with the anchor links, which
accommodate the learnt embedding feature vectors for
the anchor users in the aligned networks.

• DIME-SH: DIME-SH is a variant model of DIME
proposed in this paper, which preserves both the local
and global network structure with a set of meta prox-
imity based on the heterogeneous networks. DIME-SH
effectively fuses the heterogeneous information inside

the network, where the fusion weight of information in
different categories can be learnt automatically.

• Auto-encoder Model: The AUTO-ENCODER model pro-
posed in [2] can project the instances into a low-
dimensional feature space. In the experiments, we build
the AUTO-ENCODER model merely based on the friend-
ship link among users, where the feature vector for each
user is his/her social adjacency vector. Here, we also ad-
just the loss term for AUTO-ENCODER by weighting the
non-zero features more with parameter γ as introduced
in Section III-C2.

• LINE Model: The LINE model is a scalable network
embedding model proposed in [18], which optimizes an
objective function that preserves both the local and global
network structures. LINE also uses a edge-sampling
algorithm to addresses the limitation of the classical
stochastic gradient descent, which improves the inference
effectiveness and the efficiency greatly.

• DeepWalk Model: The DEEPWALK model [14] extends
the word2vec model [12] to the network embedding sce-
nario. DEEPWALK uses local information obtained from
truncated random walks to learn latent representations.

2) Link Prediction Experimental Setting: Given the emerg-
ing network, from which we can obtain all the existing links
inside the network as the positive set. Meanwhile, from the
network, a subset of the non-existing links are randomly
sampled as the negative set according to the negative positive
sampling ratio θ ∈ {1, 2, · · · , 10}. Here θ = 1 denotes that the
negative set is of the same size as the positive set. Meanwhile,
θ = 10 represents the negative set is 9 times larger than the
positive set. The positive and negative sets are divided into
two subsets with 10-fold cross validation, where 9 folds are
used as the training set and 1 fold is used as the testing set.

To denote different degrees of information sparsity, the
emerging network is further sampled to remove information
randomly from the network, which is controlled by the sam-
pling ratio λ ∈ {10%, 20%, · · · , 100%}. Here, the sampling
denotes removing the positive links in the training set, as
well as the posts from the emerging network to make the
network sparse. λ = 10% denotes 10% of the information
is preserved (90% of the information is randomly removed);
while λ = 100% denotes that all the information is preserved
in the emerging network. The network embedding is learnt
based on the training set and network after sampling.

With the learnt embedding feature vectors, the remaining
links in the training set is used to build a supervised link
prediction model. For each link (u, v) in the training set,
the embedding feature vector of the nodes u and v are
concatenated as the link feature vector. Depending on whether
link (u, v) appears in the positive set or negative set, (u, v)
will be assigned with the +1 or −1 label. SVM is used as the
base classifier for all the embedding models. We train SVM
with the training set, and then apply the trained SVM to the
testing set to infer the labels and the formation probabilities of
these links. By comparing the prediction labels (and inference
probabilities) with the ground truth labels, we can evaluate the

TABLE V
COMMUNITY DETECTION RESULT OF THE COMPARISON METHODS (PARAMETER λ CHANGES IN {10%, 20%, · · · , 100%}, k = 10).

Sampling Ratio λ

metric method 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

D
en

si
ty

DIME 0.002±0.000 0.003±0.000 0.003±0.000 0.003±0.000 0.004±0.000 0.003±0.000 0.004±0.000 0.003±0.000 0.003±0.000 0.004±0.000
DIME-SH 0.002±0.000 0.002±0.000 0.003±0.000 0.003±0.000 0.003±0.000 0.003±0.000 0.003±0.000 0.003±0.000 0.003±0.000 0.003±0.000

Auto-encoder 0.002±0.000 0.002±0.000 0.002±0.000 0.002±0.000 0.003±0.000 0.003±0.000 0.003±0.000 0.003±0.000 0.003±0.000 0.003±0.000
LINE 0.001±0.000 0.002±0.000 0.002±0.000 0.002±0.000 0.002±0.000 0.002±0.000 0.002±0.000 0.002±0.000 0.002±0.000 0.002±0.000

DeepWalk 0.001±0.000 0.001±0.000 0.001±0.000 0.001±0.000 0.001±0.000 0.001±0.000 0.001±0.000 0.001±0.000 0.001±0.000 0.001±0.000

Se
pa

ra
bi

lit
y DIME 0.230±0.007 0.296±0.027 0.360±0.021 0.369±0.028 0.440±0.023 0.381±0.028 0.466±0.022 0.347±0.004 0.398±0.025 0.414±0.018

DIME-SH 0.251±0.033 0.235±0.007 0.288±0.013 0.294±0.010 0.311±0.020 0.282±0.018 0.298±0.007 0.370±0.011 0.362±0.010 0.372±0.017

Auto-encoder 0.247±0.031 0.181±0.012 0.201±0.016 0.251±0.020 0.259±0.013 0.272±0.014 0.272±0.019 0.296±0.012 0.281±0.019 0.271±0.011
LINE 0.132±0.003 0.153±0.010 0.167±0.004 0.157±0.007 0.179±0.008 0.186±0.007 0.203±0.007 0.200±0.011 0.190±0.010 0.221±0.013

DeepWalk 0.113±0.001 0.117±0.002 0.120±0.002 0.121±0.003 0.123±0.002 0.121±0.001 0.123±0.002 0.124±0.003 0.124±0.002 0.123±0.002

C
ov

er
ag

e DIME 0.187±0.005 0.228±0.016 0.264±0.011 0.269±0.015 0.306±0.011 0.276±0.014 0.318±0.011 0.258±0.002 0.285±0.013 0.292±0.009
DIME-SH 0.200±0.021 0.190±0.005 0.224±0.008 0.227±0.006 0.237±0.011 0.220±0.011 0.229±0.004 0.270±0.006 0.266±0.005 0.271±0.009

Auto-encoder 0.198±0.020 0.153±0.009 0.167±0.011 0.201±0.013 0.206±0.008 0.214±0.009 0.213±0.012 0.228±0.007 0.219±0.012 0.213±0.007
LINE 0.117±0.003 0.133±0.008 0.143±0.003 0.136±0.005 0.152±0.006 0.157±0.005 0.168±0.005 0.167±0.008 0.160±0.007 0.181±0.009

DeepWalk 0.102±0.001 0.105±0.001 0.107±0.002 0.108±0.002 0.110±0.001 0.108±0.001 0.110±0.001 0.110±0.002 0.111±0.002 0.110±0.001

E
xp

an
si

on

DIME 0.813±0.005 0.772±0.016 0.736±0.011 0.731±0.015 0.694±0.011 0.724±0.014 0.682±0.011 0.742±0.002 0.715±0.013 0.708±0.009
DIME-SH 0.800±0.021 0.810±0.005 0.776±0.008 0.773±0.006 0.763±0.011 0.780±0.011 0.771±0.004 0.730±0.006 0.734±0.005 0.729±0.009

Auto-encoder 0.802±0.020 0.847±0.009 0.833±0.011 0.799±0.013 0.794±0.008 0.786±0.009 0.787±0.012 0.772±0.007 0.781±0.012 0.787±0.007
LINE 0.883±0.003 0.867±0.008 0.857±0.003 0.864±0.005 0.848±0.006 0.843±0.005 0.832±0.005 0.833±0.008 0.840±0.007 0.819±0.009

DeepWalk 0.898±0.001 0.895±0.001 0.893±0.002 0.892±0.002 0.890±0.001 0.892±0.001 0.890±0.001 0.890±0.002 0.889±0.002 0.890±0.001

performance of the embedding models with different kinds of
evaluation metrics to be introduced in the next subsection.

In the experiments, 7 hidden layers are involved in frame-
work DIME (3 hidden layers in encoder step, 3 in decoder
step, and 1 fusion hidden layer). The number neuron in these
hidden layers are 500, 50, 50 × 7, 50, 50 × 7, 50 and 500
respectively. Epoch is 600 and the batch size is 64. The
parameters α = 1.0, β = 0.02 and γ = 100.0 are used in
the experiments.

3) Link Prediction Evaluation Metrics: By comparing the
link prediction results in the testing set, i.e., the inference
probabilities, with the ground truth labels, the performance
of different embedding models can be evaluated by AUC as
the metric. Meanwhile, based on the prediction labels, we
can evaluate the performance of these embedding models with
Recall, F1 and Accuracy as the metrics.

4) Community Detection Experimental Setting: Different
from link prediction, community detection is an unsupervised
learning task, where no training set is needed. Based on the
whole network, we randomly sample a subset of information,
i.e., follow links and posts, from the network controlled by
the sampling ratio λ ∈ {10%, 20%, · · · , 100%}. Based on the
sampled network, we learn the embedding of the emerging
network and get the embedded feature vector for each user
in the emerging network. KMeans is applied as the base
clustering model to partition the users into different clusters
based on their learnt embedding feature vectors. We evaluate
the performance of the embedding methods by comparing the
clustering results with the original network structure (involv-
ing users and follow links) before sampling. The evaluation
metrics will be introduced in the following subsection.

5) Community Detection Evaluation Metrics: The commu-
nity detection evaluation metrics used in the experiments in-
clude, Density, Separability, Coverage, and Expansion, which
have been frequently used as the metrics for topological clus-
tering problems. An introduction to these metrics is available

in [1] and [20].

C. Link Prediction Experimental Results

In this link prediction task, we compare the performance
of five different embedding methods under different sampling
ratio λ ∈ {10%, 20%, · · · , 100%}. We try to predict the
follow link relationship in the testing set with the sampled
training data. The negative positive rate θ is set with value 1
here (i.e., negative and positive sets are of the same size).

The method we proposed in this paper, DIME, performs
much better than the other methods in the link prediction task,
since the heterogeneous information from both the emerging
and other aligned mature networks used in DIME can provide
extra information to help the model learn the embedding
feature vectors of the users. Table IV shows the performance of
DIME, DIME-SH, and other three baseline methods, Auto-
eocoder, LINE and DeepWalk, evaluated by AUC, Accuracy,
Recall and F1 with different sampling ratio λs.

When the sampling ratio λ is low, like 10%, the baseline
models will suffer from the information sparsity a lot, but by
transferring information other aligned source networks DIME
can still obtain very good performance. As the sampling ratio
λ increases, the performance of all these methods improves
steadily, and DIME can outperform the other methods with
great advantages consistently.

Among all the baseline methods, DIME can achieve the
best performance in most of the cases (except the Recall
measure with λ ∈ {10%, 20%, 30%, 40%}). For instance,
when λ = 30%, the AUC achieved by DIME is 0.838,
which is 4.5% higher than the AUC obtained by DIME-
SH. It demonstrates our assumption that “information from
other aligned networks can help improve the performance
greatly”. The advantages of DIME will be more significant
compared with the remaining baseline methods. Meanwhile,
with heterogeneous information in the emerging network,
DIME-SH can also outperform the other baseline models built

(a) AUC (b) Recall (c) F1 (d) Accuracy

Fig. 2. Parameter Analysis of negative positive rate θ in link prediction.

with homogeneous information only. For instance, the AUC,
Accuracy, and F1 obtained by DIME-SH are all over 8%
greater than the measures obtained by Auto-encoder, LINE
and DeepWalk. It shows the meta proximity proposed in this
paper can effectively capture the network structure information
for the users.

D. Link Prediction Parameter Sensitivity Analysis

In the link prediction task, we set the negative positive rate
θ equals 1. In this part, we will provide the sensitivity analysis
of parameter θ. Figure 2 shows the AUC, Recall, F1 and
Accuracy of the comparison methods with negative positive
sample rate θ ∈ {1, 2, · · · , 10}.

As the negative positive rate θ increases, more negative
links will be added to the training and testing set, which
renders the link prediction task more challenging. According to
Figure 2, we observe that, the metrics like Recall and F1 are all
decreasing as θ gets larger. The AUC curve is relative stable, as
it is not very sensitive to the class imbalance problem. As for
Accuracy, when the negative positive rate θ increases, the data
gets more imbalanced. In such a class imbalance circumstance,
the high Accuracy scores will not be that meaningful.

Through Figure 2, we can observe that even the metrics
like Recall and F1 will all degrade as the the negative positive
rate θ increase, the decreasing speed of different methods
is different. DIME decreases slower than DIME-SH, while
the decreasing speed of DIME-SH is much slower than
the remaining baseline methods. This means that although
the performance of all the methods are influenced by the
increasing parameter θ, DIME and DIME-SH are more stable
than the other baseline models.

E. Community Detection Experimental Results

In Table V, we show the community detection results
obtained by the comparison methods evaluated by Density,
Separability, Coverage and Expansion with different sampling
ratios λ ∈ {10%, 20%, · · · , 100%}. Here the number of
cluster, i.e., parameter k, is assigned with value 10, whose
sensitivity analysis will be provided in the following subsec-
tion.

According to the results shown in the table, we observe that
DIME performs the best out of all the methods. As we can see,
when the sample ratio increases, the emerging network will
have more information, and the community detection results
obtained by all the comparison methods will increase steadily.

Under the same sample ratio, the comparison methods
sorted in the descending order according to their performance
are as follows: DIME, DIME-SH, Auto-encoder, LINE and
DeepWalk. By comparing DIME with the other baseline
methods, DIME can outperform them with great advantages.
For instance, when sample rate λ equals 0.5, the Separability
of DIME is 0.440, which is 41.5% larger than that obtained by
DIME-SH. Based on the meta proximity and heterogeneous
information in the emerging network, DIME-SH can perform
much better than the other homogeneous network based em-
bedding methods. For instance, the Separability achieved by
DIME-SH is 20% larger than that of Auto-encoder, and over
70% greater than LINE and DeepWalk. The results are also
very similar for other evaluation metrics.

F. Community Detection Parameter Sensitivity Analysis

In the community detection task, we set the community
number k with 10. In this part, we try to analyze how will the
performance be influenced while the number of communities
k differs. Figure 3 shows the change of Density, Separability,
Coverage, Expansion obtained by the comparison methods
while k increases from 10 to 100.

Generally, when the community number k increases from
10 to 20, the performance of all the methods degrades a little
bit, and when k increases from 20 to 30, the performance
increases again, which will keep dropping steadily as k further
increases. In the community detection task, we do not know
how many communities in there. So we need to try different
ks to get best performance. In our case, k = 10 achieves best
performance among the values in {10, 20, · · · , 100}.

If we sort the comparison methods according to their
performance in the decreasing order, the sorted list will be
DIME, DIME-SH, Auto-encoder, LINE and DeepWalk. The
heterogeneous information across the emerging and aligned
source networks used in DIME help the clustering model to
group similar people together.

V. RELATED WORK

Network embedding has become a very hot research prob-
lem in recent years, which can project a graph-structured
data to the feature vector representations automatically. In
the graphs, the relation can be treated as a translation of
the entities, and many translation based embedding models
have been proposed. Model TransE [3] is the initial translation
based embedding work, which projects the entity and relation

(a) Density (b) Separability (c) Coverage (d) Expansion

Fig. 3. Parameter Analysis of community number k.

into a common feature space. TransH [19] improves TransE
by considering the link cardinality constraint in the embed-
ding process, and can achieve comparable time complexity.
In the real-world multi-relational networks, the entities can
have multiple aspects, and the different relations can express
different aspects of the entity. Model TransR [11] proposes to
build the entity and relation embeddings in separate entity and
relation spaces instead.

In recent years, many recent network embedding works
based on random walk model and deep learning models
have proposed, like Deepwalk [14], LINE [18], node2vec [6],
HNE [4]. Perozzi et al. extends the word2vec [12] to the
network scenario and introduce the Deepwalk algorithm [14],
which uses local information obtained from truncated random
walks to learn latent representations by treating walks as the
equivalent of sentences. Tang et al. [18] propose to embed
the networks with LINE algorithm, which can preserve both
the local and global network structures. An edge-sampling
algorithm is applied in LINE that addresses the limitation of
the classical stochastic gradient descent and improves both
the effectiveness and the efficiency of the inference. Grover
et al. [6] introduces a flexible notion of a node’s network
neighborhood and design a biased random walk procedure to
sample the neighbors in the training process, which efficiently
explores diverse neighborhoods. Chang et al. [4] learns the
embedding of heterogeneous networks involving both text and
image information. Chen et al. [5] introduce a task guided
embedding model to learning the representations for the author
identification problem.

Link prediction and recommendation first proposed in [9]
has become a very important problem in online social net-
works, which provides social network researchers with the
opportunity to study both the network properties from the
individuals social connection perspective. Traditional unsu-
pervised link predictor proposed in [9] mainly calculate the
closeness scores among users, and assume that close users tend
to be friends in the network. Hasan et al. [7] is the first to study
the link prediction problem as a supervised learning problem,
where the existing and non-existing social links are treated as
the positive and negative instances respectively. Today, many
social networks are heterogeneous and to conduct the link
prediction in these networks, Sun et al. [17] propose a meta
path-based prediction model to predict co-author relationship
in the heterogeneous bibliographic network.

Clustering method has also been widely used to detect

communities in networks. Newman et al. introduce a modu-
larity function measuring the quality of a division of networks
[13]. Shi et al. introduce the concept of normalized cut and
discover that the eigenvectors of the Laplace matrix provide
a solution to the normalized cut objective function [15]. In
addition, many community detection works have been done on
heterogeneous online social networks. Sun et al. [16] propose
to study the clustering problem with complete link information
but incomplete attribute information. Lin et al. [10] try to
detect the communities in networks with incomplete relational
information but complete attribute information.

VI. CONCLUSION

In this paper, we propose to study the embedding problem
for emerging online social networks with broad learning,
namely the BL-MNE problem. Emerging networks denote
the social networks that newly created containing very little
social information. Traditional embedding models will suffer
from the information sparsity problem a lot in handling such
emerging networks. To solve problem, we introduce a novel
embedding framework DIME. Based on a set of meta proxim-
ity, DIME can make full use of the heterogeneous information
inside the network. Via the cross-network information transfer,
DIME refines the embedding results with information from
other external aligned mature networks. To demonstrate the
effectiveness of DIME, extensive experiments have been done
on real-world social networks, which include two main tasks:
link prediction and community detection. The experimental
results show that DIME can perform very well in learning
the embedding vectors for nodes in the emerging networks.

VII. ACKNOWLEDGEMENT

This work is supported in part by NSF through grants IIS-
1526499, and CNS-1626432, and NSFC 61672313.

This work was also partially supported by University of
Missouri Research Board (UMRB) via the proposal number:
4991.

REFERENCES

[1] H. Almeida, D. Guedes, W. Meira, and M. Zaki. Is there a best quality
metric for graph clusters? In ECML PKDD, 2011.

[2] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. Greedy layer-
wise training of deep networks. In NIPS, 2006.

[3] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko.
Translating embeddings for modeling multi-relational data. In NIPS.
2013.

[4] S. Chang, W. Han, J. Tang, G. Qi, C. Aggarwal, and T. Huang.
Heterogeneous network embedding via deep architectures. In KDD,
2015.

[5] T. Chen and Y. Sun. Task-guided and path-augmented heterogeneous
network embedding for author identification. CoRR, abs/1612.02814,
2016.

[6] A. Grover and J. Leskovec. Node2vec: Scalable feature learning for
networks. In KDD, 2016.

[7] M. Hasan, V. Chaoji, S. Salem, and M. Zaki. Link prediction using
supervised learning. In SDM, 2006.

[8] X. Kong, J. Zhang, and P. Yu. Inferring anchor links across multiple
heterogeneous social networks. In CIKM, 2013.

[9] D. Liben-Nowell and J. Kleinberg. The link prediction problem for
social networks. In CIKM, 2003.

[10] W. Lin, X. Kong, P. Yu, Q. Wu, Y. Jia, and C. Li. Community detection
in incomplete information networks. In WWW, 2012.

[11] Y. Lin, Z. Liu, M. Sun, Y. Liu, and X. Zhu. Learning entity and relation
embeddings for knowledge graph completion. In AAAI, 2015.

[12] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. Distributed
representations of words and phrases and their compositionality. In
NIPS, 2013.

[13] M. Newman and M. Girvan. Finding and evaluating community structure
in networks. Physical Review, 2004.

[14] B. Perozzi, R. Al-Rfou, and S. Skiena. Deepwalk: Online learning of
social representations. In KDD, 2014.

[15] J. Shi and J. Malik. Normalized cuts and image segmentation. TPAMI,
2000.

[16] Y. Sun, C. Aggarwal, and J. Han. Relation strength-aware clustering of
heterogeneous information networks with incomplete attributes. VLDB,
2012.

[17] Y. Sun, R. Barber, M. Gupta, C. Aggarwal, and J. Han. Co-author
relationship prediction in heterogeneous bibliographic networks. In
ASONAM, pages 121–128, 2011.

[18] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei. Line: Large-
scale information network embedding. In WWW, 2015.

[19] Z. Wang, J. Zhang, J. Feng, and Z. Chen. Knowledge graph embedding
by translating on hyperplanes. In AAAI, 2014.

[20] Jaewon Yang and J Leskovec. Defining and evaluating network com-
munities based on ground-truth. In ICDM, 2012.

[21] J. Zhang, J. Chen, S. Zhi, Y. Chang, P. Yu, and J. Han. Link prediction
across aligned networks with sparse low rank matrix estimation. In
ICDE, 2017.

[22] J. Zhang, L. Cui, P. Yu, Y. Lv, and Y. Fu. Bl-ecd: Broad learning
based enterprise community detection via hierarchical structure fusion.
In CIKM, 2017.

[23] J. Zhang, Y. Lv, and P. Yu. Enterprise social link prediction. In CIKM,
2015.

[24] J. Zhang and P. Yu. Community detection for emerging networks. In
SDM, 2015.

[25] J. Zhang and P. Yu. Multiple anonymized social networks alignment.
In ICDM, 2015.

[26] J. Zhang, P. Yu, and Y. Lv. Organizational chart inference. In KDD,
2015.

[27] J Zhang, P. Yu, and Y. Lv. Enterprise community detection. In ICDE,
2017.

[28] J. Zhang, P. Yu, and Y. Lv. Enterprise employee training via project
team formation. In WSDM, 2017.

[29] J. Zhang, P. Yu, Y. Lv, and Q. Zhan. Information diffusion at workplace.
In CIKM, 2016.

[30] J. Zhang, P. Yu, and Z. Zhou. Meta-path based multi-network collective
link prediction. In KDD, 2014.

[31] J. Zhu, J. Zhang, L. He, Q. Wu, B. Zhou, C. Zhang, and P. Yu. Broad
learning based multi-source collaborative recommendation. In CIKM,
2017.

