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“With four parameters I can fit an elephant, and with five I can make him wiggle
his trunk.”

— Von Neumann

Abstract

In this paper, we will introduce a novel deep model named Reconciled Polynomial
Network (RPN) for deep function learning. RPN has a very general architecture
and can be used to build models with various complexities, capacities, and levels
of completeness, which all contribute to the correctness of these models. As indi-
cated in the subtitle, RPN can also serve as the backbone to unify different base
models into one canonical representation. This includes non-deep models, like
probabilistic graphical models (PGMs) - such as Bayesian network and Markov
network - and kernel support vector machines (kernel SVMs), as well as deep
models like the classic multi-layer perceptron (MLP) and the recent Kolmogorov-
Arnold network (KAN).

Technically, inspired by the Taylor’s Theorem, RPN proposes to disentangle the
underlying function to be inferred into the inner product of a data expansion func-
tion and a parameter reconciliation function. Together with the remainder func-
tion, RPN accurately approximates the underlying functions that governs data
distributions. The data expansion functions in RPN project data vectors from the
input space to a high-dimensional intermediate space, specified by the expansion
functions in definition. Meanwhile, RPN also introduces the parameter recon-
ciliation functions to fabricate a small number of parameters into a higher-order

∗© 2024 IFM Lab. All rights reserved. The RPN project and TINYBIG toolkit is developed and maintained
by IFM Lab.
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parameter matrix to address the “curse of dimensionality” problem caused by the
data expansions. In the intermediate space, the expanded vectors are polynomi-
ally integrated and further projected into the low-dimensional output space via
the inner product with the reconciled parameters generated by these parameter
reconciliation functions. Moreover, the remainder functions provide RPN with
additional complementary information to reduce potential approximation errors.

We conducted extensive empirical experiments on numerous benchmark datasets
across multiple modalities, including continuous function datasets, discrete vision
and language datasets, and classic tabular datasets, to investigate the effectiveness
of RPN. The experimental results demonstrate that, RPN outperforms MLP and
KAN with mean squared errors at least ×10−1 lower (and even ×10−2 lower in
some cases) for continuous function fitting. On both vision and language bench-
mark datasets, using much less learnable parameters, RPN consistently achieves
higher accuracy scores than Naive Bayes, kernel SVMs, MLP, and KAN for dis-
crete image and text data classifications. In addition, equipped with the proba-
bilistic data expansion functions, RPN learns better probabilistic dependency re-
lationships among variables and outperforms other probabilistic models, including
Naive Bayes, Bayesian networks, and Markov networks, for learning on classic
tabular benchmark datasets.

Reconciled Polynomial Network (RPN) proposed in this paper provides the op-
portunity to represent and interpret current machine and deep learning models as
sequences of vector space expansions and parameter reconciliations. These func-
tions can all deliver concrete physical meanings about both the input data and
model parameters. Furthermore, the application of simple inner-product and sum-
mation operations to these functions significantly enhances the interpretability of
RPN. This paper presents not only empirical experimental investigations but also
in-depth discussions on RPN, addressing its interpretations, merits, limitations,
and potential future developments.

What’s more, to facilitate the implementation of RPN-based models, we have
developed and released a toolkit named TINYBIG. This toolkit encompasses all
functions, modules, and models introduced in this paper, accompanied by com-
prehensive documentation and tutorials. Detailed information about TINYBIG is
available at the project’s GitHub repository and the dedicated project webpage,
with their respective URLs provided above.

KEY WORDS: Function Learning; Data Expansion; Parameter Reconciliation; Remainder Func-
tion; Deep Learning
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1 Introduction

Over the past 70 years, the field of artificial intelligence has experienced dramatic changes in both the
problems studied and the models used. With the emergence of new learning tasks, various machine
learning models, each designed based on different prior assumptions, have been proposed to address
these problems. As shown in Figure 1, we illustrate the timeline about three types of machine
learning models that have dominated the field of artificial intelligence in the past 50 years, including
probabilistic graphical models [37, 57, 39], support vector machines [12, 76, 8] and deep neural
networks [66, 23]. Along with important technological breakthroughs, these models each had their
moments of prominence and have been extensively explored and utilized in various research and
application tasks related to data and learning nowadays. Besides these three categories of machine
learning models, there are many other models (e.g., the tree based models and clustering models)
that do not fit into these categories, but we will not discuss them in this paper and will leave them
for future investigation instead.

2000199019801970 2010 20201960

1957: Perceptron 1969: XOR

1986: Error  
Backpropagation

2012: Alexnet

2017: Transformer

2023: LLM

1989: CNN
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Figure 1: The timeline illustrates the development of various dominant machine learning base mod-
els over the past 70 years, with different colors representing different models. Orange Color: prob-
abilistic graphical models (1980s to mid-2000s); Blue Color: support vector machine (mid 1990s to
early 2010s); Green Color: deep learning models (mid-2010s to present); and Purple Color: deep
function learning (2020s to present).

In this paper, we will introduce a novel deep model, namely Reconciled Polynomial Network
(RPN), that can potentially unify these different aforementioned base models into one shared rep-
resentation. In terms of model architecture, RPN consists of three component functions: data
expansion function, parameter reconciliation function and remainder function. Inspired by the
Taylor’s theorem, RPN disentangles the input data from model parameters, and approximates the
target functions to be inferred as the inner product of the data expansion function with the parameter
reconciliation function, subsequently summed with the remainder function.

Based on architecture of RPN, inferring the diverse underlying mapping that governs data distribu-
tions (from inputs to outputs) is actually equivalent to inferring these three compositional functions.
This inference process of the diverse data distribution mappings based on RPN is named as the
function learning task in this paper. Specifically, the “function” term mentioned in the task name
refers to not only the mathematical function components composing the RPN model but also
the cognitive function of RPN as an intelligent system to relate input signals with desired output
response. Function learning has been long-time treated as equivalent to the continuous function
fitting and approximation for regression tasks only. Actually, in psychology and cognitive science,
researchers have also used the function learning concept for modeling the mental induction pro-
cess of stimulus-response relations of human and other intelligent subjects [9, 38], involving the
acquisition of knowledge, manipulation of information and reasoning. In this paper, we argue that
function learning is the most fundamental task in intelligent model learning, encompassing contin-
uous function approximation, discrete vision and language data recognition and prediction,
and cognitive and logic dependency relation induction. The following Section 2 will provide an
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in-depth discussion of function learning and offer a comparative analysis of function learning with
the currently prevailing paradigm of representation learning.

Determined by the definitions of the data expansion functions, RPN will project data vectors from
the input space to an intermediate (higher-dimensional) space represented with new basis vectors.
To address the “curse of dimensionality” issue stemming from the data expansions, the parameter
reconciliation function in RPN fabricates a reduced set of parameters into a higher-order parameter
matrix. These expanded data vectors are then polynomially integrated via the inner product with
these generated reconciled parameters, which further projects these expanded data vectors back to
the desired lower-dimensional output space. Moreover, the remainder function provides RPN with
additional complementary information to further reduce potential approximation errors. All these
component functions within RPN embody concrete physical meanings. These functions, coupled
with the straightforward application of simple inner product and summation operators, provide RPN
with greater interpretability compared to other existing base models.

RPN possesses a highly versatile architecture capable of constructing models with diverse complex-
ities, capacities, and levels of completeness. In this paper, to provide RPN with greater modeling
capabilities in design, we enable RPN to incorporate both a wide architecture featuring multi-heads
and multi-channels (within each layer), as well as a deep architecture comprising multi-layers. Ad-
ditionally, we further offer RPN with a more adaptable and lightweight mechanism for constructing
models with comparable capabilities through the nested and extended data expansion functions.
These powerful yet flexible design mechanisms provide RPN with greater modeling capability, en-
abling it to serve as the backbone for unifying various base models mentioned above into a single
representation. This includes non-deep models, like probabilistic graphical models (PGMs) - such
as Bayesian network [57] and Markov network [37] - and kernel support vector machines (kernel
SVMs) [8], as well as deep models like the classic multi-layer perceptron (MLP) [66] and the recent
Kolmogorov-Arnold network (KAN) [51].

To investigate the effectiveness of RPN for deep function learning tasks, this paper will present
extensive empirical experiments conducted on numerous benchmark datasets. Given RPN’s sta-
tus as a general base model for function learning, we evaluate its performance with datasets in
various modalities, including numerical function datasets (for continuous function fitting and ap-
proximation), image and text datasets (for discrete vision and language data classification), and
classic tabular datasets (for variable dependency relationship inference and induction). The exper-
imental results demonstrate that, RPN outperforms MLP and KAN with mean squared errors at
least ×10−1 lower (and even ×10−2 lower in some cases) on continuous function fitting tasks. On
both vision and language benchmark datasets, using much less learnable parameters, RPN consis-
tently achieves higher accuracy scores than Naive Bayes, kernel SVM, MLP, and KAN for these
discrete data classifications. Moreover, equipped with probabilistic data expansion functions, RPN
also learns better probabilistic dependency relationships among variables and outperforms proba-
bilistic models, including Naive Bayes, Bayesian networks, and Markov networks, for learning on
the tabular benchmark datasets.

We summarize the contributions of this paper as follows:

• RPN for Deep Function Learning: In this paper, we propose the task of “deep function
learning” and introduce a novel deep function learning base model, i.e., the Reconciled
Polynomial Network (RPN). RPN has a versatile model architecture and attains superior
modeling capabilities for diverse deep function learning tasks on various multi-modality
datasets. Moreover, by disentangling input data from model parameters with the expansion,
reconciliation and remainder functions, RPN achieves greater interpretability than existing
deep and non-deep base models.

• Component Functions: In this paper, we introduce a tripartite set of compositional func-
tions - data expansion, parameter reconciliation, and remainder functions - that serve as
the building blocks for the RPN model. By strategically combining these component func-
tions, we can construct a multi-head, multi-channel, and multi-layer architecture, enabling
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RPN to address a wide spectrum of learning challenges across diverse function learning
tasks.

• Base Model Unification: This paper demonstrates that RPN provides a unifying frame-
work for several influential base models, including Bayesian networks, Markov networks,
kernel SVMs, MLP, and KAN. We show that, through specific selections of component
functions, each of these models can be unified into RPN’s canonical representation, char-
acterized by the inner product of a data expansion function with a parameter reconciliation
function, summed with a remainder function.

• Experimental Investigations: This paper presents a series of extensive empirical experi-
ments conducted across numerous benchmark datasets for various deep function learning
tasks, including numerical function fitting tasks, discrete image and language data classifi-
cation tasks, and tabular data based dependency relation inference and induction tasks. The
results demonstrate RPN’s consistently superior performance compared to other existing
base models, providing strong empirical validations of our proposed model.

• The TINYBIG Toolkit: To facilitate the adoption, implementation and experimentation of
RPN, we have released TINYBIG, a comprehensive toolkit for RPN model construction.
TINYBIG offers a rich library of pre-implemented functions, including 25 categories of
data expansion functions, 10 parameter reconciliation functions, and 5 remainder functions,
along with the complete model framework and optimized model training pipelines. This
integrated toolkit enables researchers to rapidly design, customize, and deploy RPN models
across a wide spectrum of deep function learning tasks.

This paper provides a comprehensive investigation of the proposed Reconciled Polynomial Network
model. The remaining parts of this paper will be organized as follows. In Section 2, we will first
introduce the novel function learning concept and compare RPN with several existing base models.
In Section 3, we will cover notations, task formulations, and essential background knowledge on
Taylor’s theorem. In Section 4, we will provide detailed descriptions of RPN model’s architecture
and design mechanisms. Our library of expansion, reconciliation, and remainder functions will be
presented in Section 5. In Section 6, we demonstrate how RPN unifies and represents existing base
models. The experimental evaluation of RPN’s performance on numerous benchmark datasets will
be provided in Section 7. After that, we will discuss RPN’s interpretations from both machine
learning and biological neuroscience perspectives in Section 8. In Section 9, we will critically
discuss the merits, limitations and potential future works of RPN. Finally, we will introduce the
related works in Section 10 and conclude this paper in Section 11.

2 Deep Function Learning

In this section, we will first introduce the concept of deep function learning task. After that,
we will provide the detailed clarifications about how deep function learning differs from existing
deep representation learning tasks. Based on this concept, we will further compare RPN, the deep
function learning model proposed in this paper, with other existing non-deep and deep base models
to illustrate their key differences.

2.1 What is Deep Function Learning?

As its name suggests, deep function learning, as the most fundamental task in machine learning,
aims to build general deep models composed of a sequence of component functions that infer the
relationships between inputs and outputs. These component functions define the mathematical pro-
jections across different data and parameter spaces. In deep function learning, without any prior
assumptions about the data modalities, the corresponding input and output data can also appear
in different forms, including but not limited to continuous numerical values (such as continuous
functions), discrete categorical features (such as images and language data), probabilistic variables
(defining the dependency relationships between inputs and outputs), and others.
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DEFINITION 1 (Deep Function Learning): Formally, given the input and output spaces Rm and
R

n, the underling mapping that governs the data projection between these two spaces can be de-
noted as:

f : Rm → R
n. (1)

Deep function learning aims to build a model g as a composition of deep mathematical function
sequences g1, g2, · · · , gK to project data cross different vector spaces, which can be represented as

g : Rm → R
n, and g = g1 ◦ g2 ◦ · · · ◦ gk, (2)

where the ◦ notation denotes the component function integration and composition operators. The
component functions gi can be defined on either input data or the model parameters.

For input x ∈ Rm, if the output generated by the model can approximate the desired output, i.e.,

g(x|w,θ) ≈ f(x), (3)

then model is g can serve as an approximated mapping of f . Notations w ∈ Rl and θ ∈ Rl′ denote
the learnable parameters and hyper-parameters of the function learning model, respectively.

Below, we will further clarify the distinctions between deep function learning and current deep
model-based data representation learning tasks. After that, we will compare our RPN model, which
is grounded in deep function learning, against other existing base models.

2.2 Deep Function Learning vs Deep Representation Learning

As mentioned previously, the function learning tasks and models examined in this paper encompass
not only continuous function approximation, but also discrete data classification and the induction
of dependency relations. Besides the literal differences indicated by their names - representation
learning is data oriented but function learning is model oriented - deep function learning significantly
differs from the current deep representation learning in several critical perspectives discussed below.

• Generalizability: Representation learning, to some extent, has contributed to the current
fragmentation within the AI community, as data - the carrier of information - is collected,
represented, and stored in disparate modalities. Existing deep models, specifically designed
for certain modalities, tend to overfit to these modality-specific data representations in addi-
tion to learning the underlying information. Applying a model proposed for one modality to
another typically necessitates significant architectural redesigns. Recently, there have been
efforts to explore the cross-modal applicability of certain models, e.g., CNNs for language
and Transformers for vision, but replicating such cross-modality migration explorations
across all current and future deep models is extremely expensive and unsustainable. Fur-
thermore, to achieve the future artificial general intelligence (AGI), the available data in
a single modality is no longer sufficient for training larger models. Deep function learn-
ing, without any prior assumptions on data modalities, will pave the way for improving the
model generalizability. These learned functions should demonstrate their generalizability
and applicability to multi-modal data from the outset, during their design and investigation
phases.

• Interpretability: Representation learning primarily aims to learn and extract latent patterns
or salient features from data, aligning with the technological advancements in data science
and big data analytics over the past two decades. However, the learned data representations
often lack interpretable physical meanings, rendering most current AI models to be black
boxes. In contrast, to realize the goal of explainable AI (xAI), greater emphasis must
be placed on developing new model architectures with concrete physical meanings and
mathematical interpretations in the future. The RPN based deep function learning, on the
other hand, aims to learn compositional functions with inherent physical interpretability for
building general-purpose models across various tasks, thereby bridging the interpretability
gap of current and future deep models.
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• Reusability: Representation learning converts input data into embedding vectors that
can be stored in vector databases and reused in future applications (e.g., in the retrieval-
augmented generation (RAG) models). However, in practical real-world scenarios, the
direct usability of such pre-computed embedding representations in vector databases can
be quite limited, both in terms of use cases and transactional queries or operations. More-
over, as new data arrives, new architectures are designed, and new model checkpoints are
updated in the dynamically evolving online and offline worlds, we may need to re-learn
all these embedding representation vectors via fine-tuning or retraining from scratch to
maintain consistency, greatly impacting the reusability of representation learning results.
In contrast, function learning focuses on learning compositional functions for underlying
mapping inference, whose disentangled design is inherently well-suited for reusability and
continual learning in future AI systems.

As a special type of machine learning, both deep function learning and deep representation learning
are focused on inferring the underlying distributions of data. In contrast to representation learning,
deep function learning narrows down the model architecture to a sequence of concrete mathematical
functions defined on both data and parameter spaces. The RPN based deep function learning model
also disentangles data from parameters and aims to infer and learn these compositional functions,
each bearing a concrete physical interpretation for mathematical projections between various data
and parameter domains. In contrast, existing deep representation learning models inextricably mix
data and parameters together, rendering model interpretability virtually impossible. Below, we will
further illustrate the differences of RPN with several existing base models.

2.3 RPN vs Other Base Models

Figure 2 compares the RPN model proposed for deep function learning with several base models in
terms of mathematical theorem foundations, formula representations, and model architectures. The
top three Plots (a)-(c) describe the non-deep base models: Bayesian Networks, Markov Networks,
and Kernel SVMs; while the Plots (d)-(i) at the bottom illustrate the architectures of deep base
models: MLPs, KANs, and RPN. For MLPs and KANs, Plots (d)-(e) and (g)-(h) illustrate their
two-layer and three-layer architectures, respectively. Similarly, for RPN, we present its one-layer
and three-layer architectures in Plots (f) and (i).

Based on the plots shown in Figure 2, we can observe significant differences of RPN compared
against these base models, which are summarized as follows:

• RPN vs Non-Deep Base Models: Examining the model plots, we observe that all these
base model architectures can be represented as graph structures composed of variables and
their relationships. The model architecture of the Markov network is undirected, while
that of the Bayesian network is directed. Similarly, for MLP, KAN, and RPN, although we
haven’t shown the variable connection directions, their model architecture are also directed,
flowing from bottom to top. The model architectures of both Markov network and Bayesian
network consist of variable nodes that correspond only to input features and output labels.
In contrast, for kernel SVM, MLP, KAN, and RPN, their model architectures involve not
only nodes representing inputs and outputs, but also those representing expansions and hid-
den layers. Both RPN and kernel SVM involve a data expansion function to project input
data into a high-dimensional space. However, their approaches diverge thereafter. Kernel
SVM directly defines parameters within this high-dimensional space to integrate expansion
vectors into outputs. In contrast, RPN fabricates these high-dimensional parameters via a
reconciliation function from a reduced set of parameters instead.

• RPN vs Deep Base Models: The difference between RPN and MLP is easy to observe.
MLP involves neither data expansion nor parameter reconciliation. Instead, they apply
activation functions to neurons after input integration, which is parameterized by neuron
connection weights. Unlike MLPs with predefined, static activation functions, the recent
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<latexit sha1_base64="xsyNcllLTaK8P4jT2mndwGUyp64=">AAAB+3icbVDLTsJAFL3FF+Kr4tLNRDDBDWlZoEuiG5eYyCOhDZkOU5gwfWRmaiANv+LGhca49Ufc+TdOoQsFTzLJyTn35p45XsyZVJb1bRS2tnd294r7pYPDo+MT87TclVEiCO2QiEei72FJOQtpRzHFaT8WFAcepz1vepf5vScqJIvCRzWPqRvgcch8RrDS0tAsV514wmpOgNXE89PZ4qo6NCtW3VoCbRI7JxXI0R6aX84oIklAQ0U4lnJgW7FyUywUI5wuSk4iaYzJFI/pQNMQB1S66TL7Al1qZYT8SOgXKrRUf2+kOJByHnh6Msso171M/M8bJMq/cVMWxomiIVkd8hOOVISyItCICUoUn2uCiWA6KyITLDBRuq6SLsFe//Im6TbqdrPefGhUWrd5HUU4hwuogQ3X0IJ7aEMHCMzgGV7hzVgYL8a78bEaLRj5zhn8gfH5Ax6Vk9w=</latexit>

�(x)

(a) (b) (c)X1 X2

X3X4

X5

X6

X1

X2

X3

X4

X5

X6

Deep Model Multi-Layer  
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<latexit sha1_base64="7+YSzTc7HPFmHrwsqI72CKShHsE="></latexit>

f(x) ⇡ (W3 � �2 � W2 � �1 � W1)(x)
<latexit sha1_base64="z50qCsC5eI6L85kNWPSgCDKjYio=">AAACRHicbVDLSgMxFM34rPU16tJNsBXaTZmpom6EohuXFewDZoYhk2ba0MyDJCOWoR/nxg9w5xe4caGIWzFtB+nrQODknHtvbo4XMyqkYbxpK6tr6xubua389s7u3r5+cNgUUcIxaeCIRbztIUEYDUlDUslIO+YEBR4jLa9/O/Jbj4QLGoUPchATJ0DdkPoUI6kkV7eKfskOkOx5fvo0LMNr+H+16z06dM+gjSnHcFatLlXN8vSsoqsXjIoxBlwkZkYKIEPd1V/tToSTgIQSMySEZRqxdFLEJcWMDPN2IkiMcB91iaVoiAIinHQcwhCeKqUD/YirE0o4Vqc7UhQIMQg8VTnaUcx7I3GZZyXSv3JSGsaJJCGePOQnDMoIjhKFHcoJlmygCMKcql0h7iGOsFS551UI5vyXF0mzWjEvKuf31ULtJosjB47BCSgBE1yCGrgDddAAGDyDd/AJvrQX7UP71n4mpSta1nMEZqD9/gHTeLDQ</latexit>

f(x) = (�3 ��2 ��1)(x)

learnable learnable 

fixed

(g) (h) (i)

<latexit sha1_base64="zapQR9qkX+yWxsdccmsc90cogic=">AAAB9XicbVDLSgMxFL3js9ZX1aWbYCu4KjNF1GXRjcsK9gHtWDJppg1NMkOSUcrQ/3DjQhG3/os7/8ZMOwttPRA4nHMv9+QEMWfauO63s7K6tr6xWdgqbu/s7u2XDg5bOkoUoU0S8Uh1AqwpZ5I2DTOcdmJFsQg4bQfjm8xvP1KlWSTvzSSmvsBDyUJGsLHSQ6UnsBkFYdqe9r1Kv1R2q+4MaJl4OSlDjka/9NUbRCQRVBrCsdZdz42Nn2JlGOF0WuwlmsaYjPGQdi2VWFDtp7PUU3RqlQEKI2WfNGim/t5IsdB6IgI7mYXUi14m/ud1ExNe+SmTcWKoJPNDYcKRiVBWARowRYnhE0swUcxmRWSEFSbGFlW0JXiLX14mrVrVu6ie39XK9eu8jgIcwwmcgQeXUIdbaEATCCh4hld4c56cF+fd+ZiPrjj5zhH8gfP5A7fekgI=</latexit>

W1

<latexit sha1_base64="e+EPwFBCcDxyCJD7Ic/7yW/LWwc=">AAAB9XicbVDLSgMxFL3js9ZX1aWbYCu4KjNF1GXRjcsK9gHtWDJppg3NJEOSUcrQ/3DjQhG3/os7/8ZMOwttPRA4nHMv9+QEMWfauO63s7K6tr6xWdgqbu/s7u2XDg5bWiaK0CaRXKpOgDXlTNCmYYbTTqwojgJO28H4JvPbj1RpJsW9mcTUj/BQsJARbKz0UOlF2IyCMG1P+7VKv1R2q+4MaJl4OSlDjka/9NUbSJJEVBjCsdZdz42Nn2JlGOF0WuwlmsaYjPGQdi0VOKLaT2epp+jUKgMUSmWfMGim/t5IcaT1JArsZBZSL3qZ+J/XTUx45adMxImhgswPhQlHRqKsAjRgihLDJ5ZgopjNisgIK0yMLapoS/AWv7xMWrWqd1E9v6uV69d5HQU4hhM4Aw8uoQ630IAmEFDwDK/w5jw5L8678zEfXXHynSP4A+fzB7ljkgM=</latexit>

W2

<latexit sha1_base64="Bjyg+D4gkCTQgTWlb7tLS/PdhOo=">AAAB9XicbVC7TsMwFL0pr1JeAUYWixaJqUoKAsYKFsYi0YfUhspxndaq40S2A6qi/gcLAwix8i9s/A1OmwFajmTp6Jx7dY+PH3OmtON8W4WV1bX1jeJmaWt7Z3fP3j9oqSiRhDZJxCPZ8bGinAna1Exz2oklxaHPadsf32R++5FKxSJxrycx9UI8FCxgBGsjPVR6IdYjP0jb0/5ZpW+XnaozA1ombk7KkKPRt796g4gkIRWacKxU13Vi7aVYakY4nZZ6iaIxJmM8pF1DBQ6p8tJZ6ik6McoABZE0T2g0U39vpDhUahL6ZjILqRa9TPzP6yY6uPJSJuJEU0Hmh4KEIx2hrAI0YJISzSeGYCKZyYrICEtMtCmqZEpwF7+8TFq1qntRPb+rlevXeR1FOIJjOAUXLqEOt9CAJhCQ8Ayv8GY9WS/Wu/UxHy1Y+c4h/IH1+QO66JIE</latexit>

W3

<latexit sha1_base64="6BuVWMHK4xFQJcIGrYN7baMRTiQ=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CbaCp7JbRD0WvXisYD+wXUo2zbahSXZJskJZ+i+8eFDEq//Gm//GbLsHbX0w8Hhvhpl5QcyZNq777RTW1jc2t4rbpZ3dvf2D8uFRW0eJIrRFIh6pboA15UzSlmGG026sKBYBp51gcpv5nSeqNIvkg5nG1Bd4JFnICDZWeqz2NRsJPKhXB+WKW3PnQKvEy0kFcjQH5a/+MCKJoNIQjrXueW5s/BQrwwins1I/0TTGZIJHtGepxIJqP51fPENnVhmiMFK2pEFz9fdEioXWUxHYToHNWC97mfif10tMeO2nTMaJoZIsFoUJRyZC2ftoyBQlhk8twUQxeysiY6wwMTakkg3BW355lbTrNe+ydnFfrzRu8jiKcAKncA4eXEED7qAJLSAg4Rle4c3Rzovz7nwsWgtOPnMMf+B8/gCE7pAr</latexit>�2

<latexit sha1_base64="OBN34wldkOcfMFvf7O7HNK0/LMc=">AAAB8XicbVBNSwMxEJ2tX7V+VT16CbaCp7JbRD0WvXisYD+wXUo2zbahSXZJskJZ+i+8eFDEq//Gm//GbLsHbX0w8Hhvhpl5QcyZNq777RTW1jc2t4rbpZ3dvf2D8uFRW0eJIrRFIh6pboA15UzSlmGG026sKBYBp51gcpv5nSeqNIvkg5nG1Bd4JFnICDZWeqz2NRsJPPCqg3LFrblzoFXi5aQCOZqD8ld/GJFEUGkIx1r3PDc2foqVYYTTWamfaBpjMsEj2rNUYkG1n84vnqEzqwxRGClb0qC5+nsixULrqQhsp8BmrJe9TPzP6yUmvPZTJuPEUEkWi8KEIxOh7H00ZIoSw6eWYKKYvRWRMVaYGBtSyYbgLb+8Str1mndZu7ivVxo3eRxFOIFTOAcPrqABd9CEFhCQ8Ayv8OZo58V5dz4WrQUnnzmGP3A+fwCDaZAq</latexit>�1

<latexit sha1_base64="D8sBXG7MlWtbl5jy/pbi38i0AcE=">AAAB83icbVDLSsNAFL2pr1pfVZduBlvBVUmKqMuiG5cV7AOaUCbTSTt0MgkzE7GE/oYbF4q49Wfc+TdO0iy09cDA4Zx7uWeOH3OmtG1/W6W19Y3NrfJ2ZWd3b/+genjUVVEiCe2QiEey72NFORO0o5nmtB9LikOf054/vc383iOVikXiQc9i6oV4LFjACNZGcutuiPXED9KneX1YrdkNOwdaJU5BalCgPax+uaOIJCEVmnCs1MCxY+2lWGpGOJ1X3ETRGJMpHtOBoQKHVHlpnnmOzowyQkEkzRMa5ervjRSHSs1C30xmEdWyl4n/eYNEB9deykScaCrI4lCQcKQjlBWARkxSovnMEEwkM1kRmWCJiTY1VUwJzvKXV0m32XAuGxf3zVrrpqijDCdwCufgwBW04A7a0AECMTzDK7xZifVivVsfi9GSVewcwx9Ynz+8bpF/</latexit>x

<latexit sha1_base64="0vwjiR5H/Xdcs0/a7QGyG/9fJSg=">AAACAHicbVC7TsMwFHV4lvIKMDCwWLRIZamSCgFjBQtjkehDaqLKcZ3WqmNHtoNaRV34FRYGEGLlM9j4G5w2A7Qc6UpH59yre+8JYkaVdpxva2V1bX1js7BV3N7Z3du3Dw5bSiQSkyYWTMhOgBRhlJOmppqRTiwJigJG2sHoNvPbj0QqKviDnsTEj9CA05BipI3Us4/LHopjKcYwrHgR0sMgTMfT83LPLjlVZwa4TNyclECORs/+8voCJxHhGjOkVNd1Yu2nSGqKGZkWvUSRGOERGpCuoRxFRPnp7IEpPDNKH4ZCmuIaztTfEymKlJpEgenMblSLXib+53UTHV77KeVxognH80VhwqAWMEsD9qkkWLOJIQhLam6FeIgkwtpkVjQhuIsvL5NWrepeVi/ua6X6TR5HAZyAU1ABLrgCdXAHGqAJMJiCZ/AK3qwn68V6tz7mrStWPnME/sD6/AHTDpXr</latexit>⇡ f(x)

<latexit sha1_base64="FSF0LChdjBk9GRXHMlsMD04EcYA=">AAAB+nicbVDLSsNAFL2pr1pfqS7dBFvBVUmKqMuiG5cV7AOaECbTSTt0MgkzE6XEfoobF4q49Uvc+TdO2iy09cDA4Zx7uWdOkDAqlW1/G6W19Y3NrfJ2ZWd3b//ArB52ZZwKTDo4ZrHoB0gSRjnpKKoY6SeCoChgpBdMbnK/90CEpDG/V9OEeBEacRpSjJSWfLNadyOkxkGYue0xnflO3TdrdsOew1olTkFqUKDtm1/uMMZpRLjCDEk5cOxEeRkSimJGZhU3lSRBeIJGZKApRxGRXjaPPrNOtTK0wljox5U1V39vZCiSchoFejLPKZe9XPzPG6QqvPIyypNUEY4Xh8KUWSq28h6sIRUEKzbVBGFBdVYLj5FAWOm2KroEZ/nLq6TbbDgXjfO7Zq11XdRRhmM4gTNw4BJacAtt6ACGR3iGV3gznowX4934WIyWjGLnCP7A+PwBbZGTdw==</latexit>

�1

<latexit sha1_base64="FT6c29brFbS4500pYKRQSV7Z8vM=">AAAB+nicbVDLSsNAFL2pr1pfqS7dDLaCq5IUUZdFNy4r2Ac0IUymk3bo5MHMRCmxn+LGhSJu/RJ3/o2TNgttPTBwOOde7pnjJ5xJZVnfRmltfWNzq7xd2dnd2z8wq4ddGaeC0A6JeSz6PpaUs4h2FFOc9hNBcehz2vMnN7nfe6BCsji6V9OEuiEeRSxgBCsteWa17oRYjf0gc9pjNvOadc+sWQ1rDrRK7ILUoEDbM7+cYUzSkEaKcCzlwLYS5WZYKEY4nVWcVNIEkwke0YGmEQ6pdLN59Bk61coQBbHQL1Jorv7eyHAo5TT09WSeUy57ufifN0hVcOVmLEpSRSOyOBSkHKkY5T2gIROUKD7VBBPBdFZExlhgonRbFV2CvfzlVdJtNuyLxvlds9a6LuoowzGcwBnYcAktuIU2dIDAIzzDK7wZT8aL8W58LEZLRrFzBH9gfP4AbxaTeA==</latexit>

�2

<latexit sha1_base64="N+4eOWC8oNnDsi3Tk/AXkTevRMA=">AAAB+nicbVDLSsNAFL3xWesr1aWbYCu4KkkVdVl047KCfUATwmQ6aYdOJmFmopTYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98wJEkalsu1vY2V1bX1js7RV3t7Z3ds3KwcdGacCkzaOWSx6AZKEUU7aiipGeokgKAoY6Qbjm9zvPhAhaczv1SQhXoSGnIYUI6Ul36zU3AipURBmbmtEp/5ZzTerdt2ewVomTkGqUKDlm1/uIMZpRLjCDEnZd+xEeRkSimJGpmU3lSRBeIyGpK8pRxGRXjaLPrVOtDKwwljox5U1U39vZCiSchIFejLPKRe9XPzP66cqvPIyypNUEY7nh8KUWSq28h6sARUEKzbRBGFBdVYLj5BAWOm2yroEZ/HLy6TTqDsX9fO7RrV5XdRRgiM4hlNw4BKacAstaAOGR3iGV3gznowX4934mI+uGMXOIfyB8fkDcJuTeQ==</latexit>

�3

<latexit sha1_base64="D8sBXG7MlWtbl5jy/pbi38i0AcE=">AAAB83icbVDLSsNAFL2pr1pfVZduBlvBVUmKqMuiG5cV7AOaUCbTSTt0MgkzE7GE/oYbF4q49Wfc+TdO0iy09cDA4Zx7uWeOH3OmtG1/W6W19Y3NrfJ2ZWd3b/+genjUVVEiCe2QiEey72NFORO0o5nmtB9LikOf054/vc383iOVikXiQc9i6oV4LFjACNZGcutuiPXED9KneX1YrdkNOwdaJU5BalCgPax+uaOIJCEVmnCs1MCxY+2lWGpGOJ1X3ETRGJMpHtOBoQKHVHlpnnmOzowyQkEkzRMa5ervjRSHSs1C30xmEdWyl4n/eYNEB9deykScaCrI4lCQcKQjlBWARkxSovnMEEwkM1kRmWCJiTY1VUwJzvKXV0m32XAuGxf3zVrrpqijDCdwCufgwBW04A7a0AECMTzDK7xZifVivVsfi9GSVewcwx9Ynz+8bpF/</latexit>x

<latexit sha1_base64="Ul+AUuuwnkpyzXBR7+sK5CGSx+o=">AAAB+HicbVDLTgIxFL2DL8QHoy7dNIIJbsgMMeqS6MYlJvJIYEI6pQMNnc6k7Rhxwpe4caExbv0Ud/6NHWCh4EmanJxzb+7p8WPOlHacbyu3tr6xuZXfLuzs7u0X7YPDlooSSWiTRDySHR8rypmgTc00p51YUhz6nLb98U3mtx+oVCwS93oSUy/EQ8ECRrA2Ut8uloNKL8R65Afp4/Ss3LdLTtWZAa0Sd0FKsECjb3/1BhFJQio04VipruvE2kux1IxwOi30EkVjTMZ4SLuGChxS5aWz4FN0apQBCiJpntBopv7eSHGo1CT0zWSWUS17mfif1010cOWlTMSJpoLMDwUJRzpCWQtowCQlmk8MwUQykxWREZaYaNNVwZTgLn95lbRqVfeien5XK9WvF3Xk4RhOoAIuXEIdbqEBTSCQwDO8wpv1ZL1Y79bHfDRnLXaO4A+szx/EcpKF</latexit>

f(x)

<latexit sha1_base64="kogTp3E5Lr6lpI5X+7i4ESQc0uA="></latexit>

f(x) ⇡Pk
i=1 ai�(wix + bi)

<latexit sha1_base64="nQxDJdXvARrGQxI8rbVpmPpBshw="></latexit>

f(x) =
P2m

q=0 �q(
Pm

p=1 �q,p(xp))
<latexit sha1_base64="lWny8PcsgsshfniEdXnOLusImEs="></latexit>

f(x) = h(x), (w)i + ⇡(x)

(d) (e) (f)

Remainder 
Function 

Expansion 
Functions 

learnable 
Reconciliation 

Functions

<latexit sha1_base64="dzkkWSHT7SGbSaKugcaC4RDdgqY=">AAAB9XicbVDLSsNAFL2pr1pfUZduBlvBVUmKqMuiG8FNBfuANpbJdNIOnUzCzEQpof/hxoUibv0Xd/6NkzYLbT0wcDjnXu6Z48ecKe0431ZhZXVtfaO4Wdra3tnds/cPWipKJKFNEvFIdnysKGeCNjXTnHZiSXHoc9r2x9eZ336kUrFI3OtJTL0QDwULGMHaSA+VXoj1yA/S22nfrfTtslN1ZkDLxM1JGXI0+vZXbxCRJKRCE46V6rpOrL0US80Ip9NSL1E0xmSMh7RrqMAhVV46Sz1FJ0YZoCCS5gmNZurvjRSHSk1C30xmIdWil4n/ed1EB5deykScaCrI/FCQcKQjlFWABkxSovnEEEwkM1kRGWGJiTZFlUwJ7uKXl0mrVnXPq2d3tXL9Kq+jCEdwDKfgwgXU4QYa0AQCEp7hFd6sJ+vFerc+5qMFK985hD+wPn8ApX6R9g==</latexit>

K1

<latexit sha1_base64="B+N15Z2Iuoou/jQlE7fD9v/0n+4=">AAAB9XicbVDLSsNAFL2pr1pfUZduBlvBVUmKqMuiG8FNBfuANpbJdNIOnUzCzEQpof/hxoUibv0Xd/6NkzYLbT0wcDjnXu6Z48ecKe0431ZhZXVtfaO4Wdra3tnds/cPWipKJKFNEvFIdnysKGeCNjXTnHZiSXHoc9r2x9eZ336kUrFI3OtJTL0QDwULGMHaSA+VXoj1yA/S22m/VunbZafqzICWiZuTMuRo9O2v3iAiSUiFJhwr1XWdWHsplpoRTqelXqJojMkYD2nXUIFDqrx0lnqKTowyQEEkzRMazdTfGykOlZqEvpnMQqpFLxP/87qJDi69lIk40VSQ+aEg4UhHKKsADZikRPOJIZhIZrIiMsISE22KKpkS3MUvL5NWreqeV8/uauX6VV5HEY7gGE7BhQuoww00oAkEJDzDK7xZT9aL9W59zEcLVr5zCH9gff4ApwOR9w==</latexit>

K2

<latexit sha1_base64="cngKc+7yub256gHZ7Eon1EBPd/Q=">AAAB9XicbVDLSgMxFL1TX7W+qi7dBFvBVZlpRV0W3QhuKtgHtGPJpJk2NJMZkoxShv6HGxeKuPVf3Pk3ZtpZaOuBwOGce7knx4s4U9q2v63cyura+kZ+s7C1vbO7V9w/aKkwloQ2SchD2fGwopwJ2tRMc9qJJMWBx2nbG1+nfvuRSsVCca8nEXUDPBTMZwRrIz2UewHWI89Pbqf9WrlfLNkVewa0TJyMlCBDo1/86g1CEgdUaMKxUl3HjrSbYKkZ4XRa6MWKRpiM8ZB2DRU4oMpNZqmn6MQoA+SH0jyh0Uz9vZHgQKlJ4JnJNKRa9FLxP68ba//STZiIYk0FmR/yY450iNIK0IBJSjSfGIKJZCYrIiMsMdGmqIIpwVn88jJpVSvOeeXsrlqqX2V15OEIjuEUHLiAOtxAA5pAQMIzvMKb9WS9WO/Wx3w0Z2U7h/AH1ucPqIiR+A==</latexit>

K3

<latexit sha1_base64="QNRxNe1VRu+X/Gt0gQIPpYSACpg=">AAACDXicbZDLSsNAFIZP6q3WW9Slm8FWcFWSIuqy6MZlBXuBJoTJdNIOnVyYmQgl9AXc+CpuXCji1r0738ZJG0Fbfxj4+c45zDm/n3AmlWV9GaWV1bX1jfJmZWt7Z3fP3D/oyDgVhLZJzGPR87GknEW0rZjitJcIikOf064/vs7r3XsqJIujOzVJqBviYcQCRrDSyDNrNSfEauQHmdOSbOrZyCFMEPRDuxrVPLNq1a2Z0LKxC1OFQi3P/HQGMUlDGinCsZR920qUm2GhGOF0WnFSSRNMxnhI+9pGOKTSzWbXTNGJJgMUxEK/SKEZ/T2R4VDKSejrznxJuVjL4X+1fqqCSzdjUZIqGpH5R0HKkYpRHg0aMEGJ4hNtMBFM74rICAtMlA6wokOwF09eNp1G3T6vn902qs2rIo4yHMExnIINF9CEG2hBGwg8wBO8wKvxaDwbb8b7vLVkFDOH8EfGxzdyDpsq</latexit>

 1 � W1

<latexit sha1_base64="Ad2Ioz/FI+KYrA/xR+qqVKZGBds=">AAACDXicbZDLSsNAFIZP6q3WW9Slm8FWcFWSIuqy6MZlBXuBJoTJdNIOnVyYmQgl9AXc+CpuXCji1r0738ZJG0Fbfxj4+c45zDm/n3AmlWV9GaWV1bX1jfJmZWt7Z3fP3D/oyDgVhLZJzGPR87GknEW0rZjitJcIikOf064/vs7r3XsqJIujOzVJqBviYcQCRrDSyDNrNSfEauQHmdOSbOo1kEOYIOiHdjWqeWbVqlszoWVjF6YKhVqe+ekMYpKGNFKEYyn7tpUoN8NCMcLptOKkkiaYjPGQ9rWNcEilm82umaITTQYoiIV+kUIz+nsiw6GUk9DXnfmScrGWw/9q/VQFl27GoiRVNCLzj4KUIxWjPBo0YIISxSfaYCKY3hWRERaYKB1gRYdgL568bDqNun1eP7ttVJtXRRxlOIJjOAUbLqAJN9CCNhB4gCd4gVfj0Xg23oz3eWvJKGYO4Y+Mj291K5ss</latexit>

 2 � W2

<latexit sha1_base64="f0genLTyIr0gvdx5zJDuQOqi+/M=">AAACDXicbZDLSsNAFIZPvNZ6i7p0M9gKrkpSRV0W3bisYC/QhDCZTtqhkwszE6GEvoAbX8WNC0Xcunfn2zhpI2jrDwM/3zmHOef3E86ksqwvY2l5ZXVtvbRR3tza3tk19/bbMk4FoS0S81h0fSwpZxFtKaY47SaC4tDntOOPrvN6554KyeLoTo0T6oZ4ELGAEaw08sxq1QmxGvpB5jQlm3inyCFMEPRDOxpVPbNi1ayp0KKxC1OBQk3P/HT6MUlDGinCsZQ920qUm2GhGOF0UnZSSRNMRnhAe9pGOKTSzabXTNCxJn0UxEK/SKEp/T2R4VDKcejrznxJOV/L4X+1XqqCSzdjUZIqGpHZR0HKkYpRHg3qM0GJ4mNtMBFM74rIEAtMlA6wrEOw509eNO16zT6vnd3WK42rIo4SHMIRnIANF9CAG2hCCwg8wBO8wKvxaDwbb8b7rHXJKGYO4I+Mj294SJsu</latexit>
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f(x) = ((K ⇧)3 � (K ⇧)2 � (K ⇧)1)(x)

Figure 2: A comparison of RPN with Bayesian Network, Markov Network, Kernel SVM, MLP and
KAN in terms of mathematical theorem foundation, formula and model architecture. In the plots,
we represent the learnable parameters and functions in the red color, while the unlearnable/fixed
ones are represented in the dark/gray colors instead. The inputs and outputs are represented with the
solid circles, while the expansions are represented as the hollow circles instead.

KAN model proposes to learn the activation functions attached to neuron-neuron connec-
tions, with their outputs being directly summed together. RPN, in contrast, integrates the
strengths of both kernel SVM and KAN: it employs the expansion function from kernel
SVM and adopts learnable functions attached to neuron-to-neuron connections, similar to
KANs. Meanwhile, different from kernel SVM, MLP and KAN, RPN introduces a novel
approach to fabriate a large number of parameters from a small set. This technique helps
address both the “curse of dimension” and the model generalization problems. We have
briefly mentioned the “curse of dimension” problem before already, and will discuss about
the model generalization issue later in Section 8 from the VC-theory perspective.

Here, we briefly compare these base models with RPN. In the following Section 6, after we intro-
duce the RPN model architecture and the component functions, we will further discuss how to unify
these base models into RPN’s canonical representations. More comprehensive information about
these base models and other related work will also be provided in Section 10.
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3 Notations and Background Knowledge on Taylor’s Theorem

This section first introduces the notation system used throughout this paper. Based on the notations,
we then briefly present Taylor’s theorem as the preliminary knowledge of the RPN model, which
will be introduced in the following Section 4.

3.1 Notation System

In the sequel of this paper, we will use the lower case letters (e.g., x) to represent scalars, lower
case bold letters (e.g., x) to denote column vectors, bold-face upper case letters (e.g., X) to denote
matrices and high-order tensors, and upper case calligraphic letters (e.g., X ) to denote sets. Given a
matrix X, we denote X(i, :) and X(:, j) as its ith row and jth column, respectively. The (ith, jth)
entry of matrix X can be denoted as X(i, j). We use X⊤ and x⊤ to represent the transpose of matrix
X and vector x. For vector x, we represent its Lp-norm as ∥x∥p = (

∑
i |x(i)|p)

1
p . The Frobenius-

norm of matrix X is represented as ∥X∥F =
(∑

i,j |X(i, j)|2
) 1

2

. The elementwise product of
vectors x and y of the same dimension is represented as x ⊙ y, their inner product is represented
as ⟨x,y⟩, and their Kronecker product is x ⊗ y. The elementwise product and Kronecker product
operators can also be applied to matrices X and Y as X⊙Y and X⊗Y, respectively.

3.2 Taylor’s Theorem for Univariate Function Approximation

Taylor’s theorem approximates a d-times differentiable function around a given point using poly-
nomials up to degree d, commonly referred to as the dth-order Taylor polynomial. In this section,
we first introduce Taylor’s theorem for univariate functions, which also generalizes to multivariate
and vector valued functions. We will briefly describe its extension to multivariate functions in the
subsequent Subsection 3.3, and then introduce the RPN model designed based on Taylor’s theorem
with vector valued functions in Section 4.

THEOREM 1 (Taylor’s Theorem): Let d ≥ 1 be an integer and let function f : R → R be d times
differentiable at the point a ∈ R. As illustrated in Figure 3, then there exists a function hd : R→ R

such that

f(x) =
f(a)

0!
(x− a)0 +

f ′(a)
1!

(x− a)1 +
f ′′(a)
2!

(x− a)2 + · · ·+ f (d)(a)

d!
(x− a)d +Rd(x),

=

d∑

i=0

f (i)(a)

i!
(x− a)i +Rd(x).

(4)
In the equation, Rd(x) is also normally called the “remainder” term and can be represented as

Rd(x) = hd(x)(x− a)d , where lim
x→a

hd(x) = 0. (5)

According to the above description of the Taylor’s Theorem, the function output f(x) can be repre-
sent as a summation of polynomials of high degrees of the (x− a). What’s more, in this paper, we
propose to further disentangle the variable x from the given constant point a. Terms like (x − a)k

can be decomposed into summations of polynomials in x alone, with a serving as the coefficients:

(x− a)d =

(
d

0

)
(−a)d−0x0 +

(
d

1

)
(−a)d−1x1 + · · ·+

(
d

d

)
(−a)d−dxd. (6)

Based on the decomposition, we can rewrite the above Equation (4) as follows:

f(x|a) = ⟨x, c⟩+Rd(x), (7)
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y = f(x)

Taylor’s Approximation

( )

Figure 3: An illustration of Taylor’s approximation of continuous functions.

where ⟨·, ·⟩ denotes the inner product operator. The expanded data vector x = κ(x) =
[x0, x1, x2, · · · , xd] ∈ Rd+1 contains the high-order polynomials of x, where the created coeffi-
cient vector c = ψ(a) = [c0, c1, c2, · · · , cd] ∈ Rd+1 has the same dimension as x. Each coefficient
term, such as ci (where i ∈ {0, 1, · · · , d}), is fabricated with a as follows:

ci =

d∑

j=i

f (j)(a)

j!

(
j

i

)
(−a)j−i. (8)

The remainder term measure the error in approximating f with Taylor’s polynomials. The
representation illustrated in Equation (5) above is known as the “Peano Remainder”. In addition,
mathematicians have introduced many different forms of remainder representations, some of which
are listed below:

(a) Peano Remainder:

Rd(x) = hd(x)(x− a)d,

where lim
x→a

hd(x) = 0.

(9)

(b) Lagrange Remainder:

Rd(x) =
f (d+1)(ξ)

(d+ 1)!
(x− a)d+1,

for some ξ between a and x.

(10)

(c) Cauchy Remainder:

Rd(x) =
f (d+1)(ξ)

d!
(x− ξ)d(x− a),

for some ξ between a and x.
(11)

(d) Schlömilch Remainder:

Rd(x) =
f (d+1)(ξ)

d!
(x− ξ)d+1−p (x− a)p

p
,

for some p > 0 and ξ between a and x.
(12)

3.3 Taylor’s Theorem for Multivariate Function Approximation

Representing multivariate continuous functions with Taylor’s polynomials is more intricate. In this
part, we use a multivariate function f : Rm → R as an example to illustrate how to disentangle the
input variables and function parameters via Taylor’s formula. Similar as the above single-variable
function, assuming function f is dth-time continuously differentiable at point a ∈ Rm, then for the
inputs near the point can be approximated as

f(x) =
∑

|α|≤d

D|α|f(a)
α!

(x− a)α +Rd(x). (13)
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The notation D|α|f denotes the |α|th partial derivatives of function f and Rd(x) denotes the re-
mainder term:

{
D|α|f = ∂|α|f

∂x
α1
1 ···∂xαm

m

Rd(x) =
∑

|α|=d hα(x)(x− a)α
, where





|α| = α1 + α2 + · · ·+ αm;

α! = α1!α2! · · ·αm!;

(x− a)α = (x1 − a1)
α1 · · · (xm − am)αm ;

limx→a hα(x) = 0.
(14)

Similar to the single-variable case, the variables x = [x1, x2, · · · , xm] involved in the multivari-
ate polynomials can also be decoupled from the data point a = [a1, a2, · · · , am], leading to the
following representation:

f(x|a) = ⟨x̄, c⟩+Rd(x), (15)

where x̄ denotes the data expansion vector, and c represents the created coefficient vector. Their
detailed representations are provided as follows.

• Data Expansion: Function κ : Rm → R
D will expand the input vector x =

[x1, x2, · · · , xm]⊤ to x̄ ∈ RD as follows:

x̄ = κ(x) = [ 1
︸︷︷︸

1 term of order 0

, x1, x2, · · · , xm︸ ︷︷ ︸
m terms of order 1

, x21, x1x2, · · · , x2m︸ ︷︷ ︸
m2 terms of order 2

, · · ·︸︷︷︸
···

, · · · , xdm︸ ︷︷ ︸
md terms of order d

]⊤,

(16)
where the expansion output vector has a dimension of D =

∑d
i=0m

i.

• Parameter Fabrication: Function ψ : Rm → R
D will fabricate the constant a to a coeffi-

cient vector of dimension D as follows:

c = ψ(a) = [ c0︸︷︷︸
coeff. of constant

, c1, c2, · · · , cm︸ ︷︷ ︸
coeff. of terms with order 1

, c1,1, c1,2, · · · , cm,m︸ ︷︷ ︸
coeff. of terms with order 2

, · · ·︸︷︷︸
···
, · · · , cm,m,··· ,m︸ ︷︷ ︸

coeff. of terms with order d

]⊤.

(17)
The coefficient vector c has the same dimension as x̄, and the coefficient ci1,i2,··· ,ik
corresponds to the polynomial term xi1xi2 · · ·xik . As to the specific representation of
ci1,i2,··· ,ik , it can be obtained by decomposing the above Equations (13)-(14).

• Lagrange Remainder: The remainder Rd(x) will include all the terms with order higher
than d, which can reduce the approximation errors.

3.4 Taylor’s Theorem based Machine Learning Models

In real-world problems, the underlying functional mappings are often more intricate, such as f :
R

m → R
n with multiple input variables and multiple outputs. Representing these functions with

Taylor’s polynomials requires more cumbersome derivations, and the coefficient fabrication outputs
should be a two-dimensional matrix, such as ψ(a) ∈ Rn×D. To avoid getting bogged down in
unnecessary mathematical details, we will not repeat those derivations here.

In recent years, there has been a growing interest in designing machine learning and deep learning
models based on Taylor’s theorem. For binary data inputs, Zhang et al. [86] introduce the reconciled
polynomial machine to unify shallow and deep learning models, which is also the prior work that
this paper is based on. Balduzzi et al. [4] investigate the convergence and exploration in rectifier
networks with neural Taylor approximations, while Chrysos et al. [11] propose a new class of func-
tion approximation method based on polynomial expansions. Zhao et al. [89] propose a generic
neural architecture TaylorNet based on tensor decomposition to initialize the models, and Nivron et
al. [56] introduce to incorporate use Taylor’s expansion as a wrapper of transformer for the proba-
bilistic predictions for time series and other random processes. Beyond time series and continuous

13



function approximation, Taylor’s expansion has found applications in reinforcement learning and
computer vision. [72] investigates the application of Taylor’s expansions in reinforcement learning
and introduces the Taylor expansion policy optimization to generalize prior work; and [61] intro-
duces a simple augmentation to standard behavior cloning losses in the context of continuous control
for Taylor series imitation learning. In image processing, [92] proposes to use Taylor’s formula to
construct a novel framework for image restoration, and [81] proposes the Taylor neural net for image
super-resolution.

Different these prior work, since the underlying function f is unknown, we cannot directly employ
the above derivations and Taylor’s expansions to define approximated polynomial representations of
f for practical applications. Drawing inspiration from the approximation architecture delineated in
Equation 7 and Equation 15, we propose a novel approach that defines distinct component functions
to substitute the data vector, coefficient vector, and remainder terms. Additionally, as the input
variable x varies across instances, instead of manually selecting one single fixed constant a, we
propose to define it as multi-channel parameters and learn them instead. These innovations form
the foundation of our proposed Reconciled Polynomial Network (our) model to be introduced in the
following section.

4 RPN: Reconciled Polynomial Network for Deep Function Learning

Based on the preliminary background introduced above and inspired by the work of [86], we will
introduce the Reconciled Polynomial Network (RPN) model for function learning in this section.

4.1 RPN: Reconciled Polynomial Network

Formally, given the underlying data distribution mapping f : Rm → R
n, we represent the RPN

model proposed to approximate function f as follows:

g(x|w) = ⟨κ(x), ψ(w)⟩+ π(x), (18)

where

• κ : Rm → R
D is named as the data expansion function and D is the target expansion

space dimension.

• ψ : Rl → R
n×D is named as the parameter reconciliation function, which is defined

only on the parameters without any input data.

• π : Rm → R
n is named as the remainder function.

The architecture of RPN is also illustrated in Figure 4. The RPN model disentangles input data from
model parameters through the expansion functions κ and reconciliation function ψ. More detailed
information about all these components and modules mentioned in Figure 4 will be introduced in
the following parts of this section.

4.2 RPN Component Functions

The data expansion function κ projects input data into a new space with different basis vectors,
where the target vector space dimensionD is determined when defining κ. In practice, the function κ
can either expand or compress the input to a higher- or lower-dimensional space. The corresponding
function, κ, can also be referred to as the data expansion function (if D > m) and data compression
function (if D < m), respectively. Collectively, these can be unified under the term “data transfor-
mation functions”. In this paper, we focus on expanding the inputs to a higher-dimensional space,
and will use the function names “data transformation” and “data expansion” interchangeably in the
following sections.
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C⇥

Figure 4: An illustration of the RPN framework. The left plot illustrates the multi-layer (K-layer)
architecture of RPN. Each layer involves multi-head for function learning, whose outputs will be
fused together. The right plot illustrates the detailed architecture of the RPN head, involving data
expansion, multi-channel parameter reconciliation, remainder, and their internal operations. The
components with yellow color in dashed lines denote the optional data processing functions (e.g.,
activation functions and norm functions) for the inputs, expansions and outputs.

Meanwhile, the parameter reconciliation function ψ adjusts the available parameter vector of
length l by fabricating a new parameter matrix of size n ×D to accommodate the expansion space
dimension D defined by function κ. In most of the cases studied in this paper, the parameter vector
length l is much smaller than the output matrix size n×D, i.e., l ≪ n×D. Meanwhile, in practice,
we can also define function ψ to fabricate a longer parameter vector into a smaller parameter matrix,
i.e., l > n ×D. To unify these different cases, the data reconciliation function can also be referred
to as the “parameter fabrication function”, and these function names will be used interchangeably
in this paper.

Without specific descriptions, the remainder function π defined here is based solely on the input
data x. However, in practice, we also allow π to include learnable parameters for output dimension
adjustment. In such cases, it should be rewritten as π(x|w′), where w′ is one extra fraction of the
model’s learnable parameters. Together with the parameter vector w (i.e., the input to the parameter
reconciliation function ψ), they will define the complete set of learnable parameters for the model.

4.3 Wide RPN: Multi-Head and Multi-Channel Model Architecture

Similar to the Transformer with multi-head attention [78], as shown in Figure 4, the RPN model
employs a multi-head architecture, where each head can disentangle the input data and model pa-
rameters using different expansion, reconciliation and remainder functions, respectively:

g(x|w, H) =

H−1∑

h=0

〈
κ(h)(x), ψ(h)(w(h))

〉
+ π(h)(x), (19)

where the superscript “h” indicates the head index andH denotes the total head number. By default,
we use summation to combine the results from all these heads.

Moreover, in the RPN model shown in Figure 4, similar to convolutional neural networks (CNNs)
employing multiple filters, we allow each head to have multiple channels of parameters applied to
the same data expansion. For example, for the hth head, we define its multi-channel parameters as
w(h),0,w(h),1, · · · ,w(h),C−1, where C denotes the number of channels. These parameters will be
reconciled using the same parameter reconciliation function, as shown below:
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g(x|w, H,C) =
H−1∑

h=0

C−1∑

c=0

〈
κ(h)(x), ψ(h)(w(h),c)

〉
+ π(h)(x), (20)

The multi-head, multi-channel design of the RPN model allows it to project the same input data into
multiple different high-dimensional spaces simultaneously. Each head and channel combination
may potentially learn unique features from the data. The unique parameters at different heads can
have different initialized lengths, and each of them will be processed in unique ways to accommodate
the expanded data. This multi-channel approach provides our model with more flexibility in model
design. In the following parts of this paper, to simplify the notations, we will illustrate the model’s
functional components using a single-head, single-channel architecture by default. However, readers
should note that these components to be introduced below can be extended to their multi-head, multi-
channel designs in practical implementations.

4.4 Deep RPN: Multi-Layer Model Architecture

The wide model architecture introduced above provides RPN with greater capabilities for approx-
imating functions with diverse expansions concurrently. However, such shallow architectures can
be insufficient for modeling complex functions. In this paper, as illustrated in Figure 4, we propose
to stack RPN layers on top of each other to build a deeper architecture, where the Equation (18)
actually defines one single layer of the model. Formally, we can represent the deep RPN with
multi-layers as follows:





Input: h0 = x,

Layer 1: h1 = ⟨κ1(h0), ψ1(w1)⟩+ π1(h0),

Layer 2: h2 = ⟨κ2(h1), ψ2(w2)⟩+ π2(h1),

· · · · · · · · ·
Layer K: hK = ⟨κK(hK−1), ψK(wK)⟩+ πK(hK−1),

Output: ŷ = hK .

(21)

The subscripts used above denote the layer index. The dimensions of the outputs at each layer can
be represented as a list [d0, d1, · · · , dK−1, dK ], where d0 = m and dK = n denote the input and
the desired output dimensions, respectively. Therefore, if the component functions at each layer of
our model have been predetermined, we can just use the dimension list [d0, d1, · · · , dK−1, dK ] to
represent the architecture of the RPN model.

4.5 Versatile RPN: Nested and Extended Expansion Functions

The data expansion function introduced earlier projects the input data to a higher-dimensional space.
There exist different ways to define the data expansion function, and a list of such basic expansion
functions will be introduced in the following Section 5.1. The multi-head, multi-channel and multi-
layer architecture also provides RPN with more capacity to build wider and deeper architectures
for projecting input data to the desired target space. In addition to these designs, as illustrated in
Figure 5, RPN also provides a more flexible and lightweight mechanism to build models with similar
capacities via the nested and extended data expansion functions.

Nested expansions: Formally, given a list of n data expansion functions κ1 : Rd0 → R
d1 , κ2 :

R
d1 → R

d2 , · · · , κn : Rdn−1 → R
dn , as shown in Plots (a)-(b) of Figure 5, the nested calls of

these functions will project a data vector from the input spaceRd0 to the desired output spaceRdn ,
defining the nested data expansion function κ : Rm → R

D as follows:

κ(x) = κn (κn−1 (· · ·κ2 (κ1 (x)))) ∈ RD. (22)

where the function input and output dimensions should be d0 = m and dn = D.
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Figure 5: An illustration of the RPN layer with nested and extended data expansions. Plot (a): multi-
layer RPN; Plot (b): single-layer RPN with nested data expansions; Plot (c): multi-head RPN; Plot
(d): single-head RPN with extended data expansions.

Extended expansions: In addition to nesting these n expansion functions, as shown in Plots (c)-(d)
of Figure 5, they can also be concatenated and applied concurrently, with their extended outputs
allowing the model to leverage multiple expansion functions simultaneously. Formally, we can
represent the extended data expansion function κ : Rm → R

D defined based on κ1 : Rm → R
d1 ,

κ2 : Rm → R
d2 , · · · , κn : Rm → R

dn as follows:

κ(x) = [κ1 (x) , κ2 (x) , · · · , κn (x)] ∈ RD, (23)

where the extended expansion’s output dimension is equal to the sum of the output dimensions from
all the individual expansion functions, i.e., D =

∑n
i=1 di.

As illustrated in Figure 5, the nested expansion functions can define complex expansions akin to the
multi-layer architecture of RPN mentioned above. Meanwhile, the extended expansion functions
can define expansions similar to the multi-head architecture of RPN. Both nested and extended
expansions allow for faster data expansions, circumventing cumbersome parameter inference and
remainder function calculation, and can reduce the additional learning costs associated with train-
ing deep and wide architectures of our model. This flexibility afforded by nested and extended
expansions provides us with greater versatility in designing the RPN model.

4.6 Learning Correctness of RPN: Complexity, Capacity and Completeness

The learning correctness of RPN is fundamentally determined by the compositions of its compo-
nent functions, each contributing from different perspectives:

• Model Complexity: The data expansion function κ expands the input data by projecting its
representations using basis vectors in the new space. In other words, function κ determines
the upper bound of the RPN model’s complexity.

• Model Capacity: The reconciliation function ψ processes the parameters to match the di-
mensions of the expanded data vectors. The reconciliation function and parameters jointly
determine the learning capacity and associated training costs of the RPN model.

• Model Completeness: The remainder function π completes the approximation as a resid-
ual term, governing the learning completeness of the RPN model.

In the following Section 5, we will introduce several different representations for the data expan-
sion function κ, parameter reconciliation function ψ, and remainder function π. By strategically
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combining these component functions, we can construct a multi-head, multi-channel, and multi-
layer architecture, enabling RPN to address a wide spectrum of learning challenges across diverse
learning tasks.

4.7 Learning Cost of RPN: Space, Time and Parameter Number

To analyze the learning costs of RPN, we can take a batch input X ∈ RB×m of batch size B as an
example, which will be fed to the RPN model with K layers, each with H heads and each head has
C channels. Each head will project the data instance from a vector of lengthm to an expanded vector
of length D and then further projected to the desired output of length n. Each channel reconciles
parameters from length l to the sizes determined by both the expansion space and output space
dimensions, i.e., n×D.

Based on the above hyper-parameters, assuming the input and output dimensions at each layer are
comparable tom and n, then the space, time costs and the number of involved parameters in learning
the RPN model are calculated as follows:

• Space Cost: The total space cost for data (including the inputs, expansions and out-
puts) and parameter (including raw parameters, fabricated parameters generated by the
reconciliation function and optional remainder function parameters) can be represented as
O(KH(B( m︸︷︷︸

input

+ D︸︷︷︸
expansion

+ n︸︷︷︸
output

)

︸ ︷︷ ︸
space cost for data

+C( l︸︷︷︸
raw param.

+ nD︸︷︷︸
reconciled param.

) + mn︸︷︷︸
(optional) remainder param.︸ ︷︷ ︸

space cost for parameters

)).

• Time Cost: Depending on the expansion and reconciliation functions used
for building RPN, the total time cost of RPN can be represented as
O(KH( texp(m,D)︸ ︷︷ ︸

time cost for data exp.

+ Ctrec(l,D)︸ ︷︷ ︸
time cost for param. rec.

+ CmnD︸ ︷︷ ︸
time cost for inner product

+ mn︸︷︷︸
(optional) time cost for remainder

)),

where notations texp(m,D) and trec(l,D) denote the expected time costs for data expan-
sion and parameter reconciliation functions, respectively.

• Learnable parameters: The total number of parameters in RPN will be O(KHCl +
KHmn), where O(KHmn) denotes the optional parameter number used for defining the
remainder function.

5 List of Expansion, Reconciliation and Remainder Functions for RPN Model

This section introduces the expansion, reconciliation, and remainder functions that can be used to
design the RPN model, all of which have been implemented in the TINYBIG toolkit and are readily
available. Readers seeking a concise overview can refer to Figure 6, which summarizes the lists of
expansion, reconciliation and remainder functions to be introduced in this section.

5.1 Data Expansion Functions

The data expansion function determines the complexity of RPN. We will introduce several differ-
ent data expansion functions below. In real-world practice, these individual data expansions intro-
duced below can also be nested and extended to define more complex expansions, which provides
more flexibility in the design of our RPN model.

5.1.1 Identity and Reciprocal Data Expansion

The simplest data expansion methods are the identity data expansion and reciprocal data expansion,
which project the input data vector x ∈ Rm onto itself and its reciprocal, potentially with minor
transformations via some activation functions, as denoted below:

κ(x) = x ∈ RD, and κ(x) =
1

x
∈ RD, (24)
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Reconciled
Polynomial

Network
(RPN)

Data
Expansion
Functions

1. Identity Expansion
1-(a). κ(x) = x dim: D = m

1-(b). κ(x) = σ(x) dim: D = m

2. Reciprocal Expansion
2-(a). κ(x) = 1

x
dim: D = m

2-(b). κ(x) = σ
(

1
x

)
dim: D = m

3. Linear Expansion

3-(a). κ(x) = cx dim: D = m

3-(b). κ(x) = xCpost dim: D = m

3-(c). κ(x) = Cprex
⊤ dim: D = m

4. Taylor Expansion 4-(a). κ(x|d) = [P1(x), P2(x), · · · , Pd(x)] dim: D =
∑d

i=1m
i

5. Fourier Expansion 5-(a). κ(x|P,N) = [cos(2π i
P

x), sin(2π i
P

x)]Ni=1 dim: D = 2mN

6. B-Spline Expansion 6-(a). κ(x|t, d) = [B0,d−1(x), · · · , Bt−1,d−1(x)] dim: D = m(t + d)

7. Chebyshev Expansion 7-(a). κ(x|d) = [T1(x), T2(x) · · · , Tn(x)] dim: D = md

8. Jacobi Expansion 8-(a). κ(x|d) =
[
P

(α,β)
1 (x), P

(α,β)
2 (x), · · · , P (α,β)

d
(x)

]
dim: D = md

9. Trigonometric Expansion
9-(a). κ(x) = [cos(x), sin(x), tan(x)] dim: D = 3m

9-(b). κ(x) = [arccos(x), arcsin(x), arctan(x)] dim: D = 3m

10. Hyperbolic Expansion
10-(a). κ(x) = [cosh(x), sinh(x), tanh(x)] dim: D = 3m

10-(b). κ(x) = [arccosh(x), arcsinh(x), arctanh(x)] dim: D = 3m

11. RBF Expansion 11-(a). κ(x|d) = [φ(x|c1), φ(x|c2), · · · , φ(x|cd)] dim: D = md

12. Combinatorial Expansion 12-(a). κ(x) =
[(

x
1

)
,
(
x
2

)
, · · · ,

(
x
d

)]
dim: D =

∑d
i=1 i ·

(
m
i

)

13. Probabilistic Expansion
13-(a). κ(x|d, θ) = [logP (x|θ1) , · · · , logP (x|θd)] dim: D = md

13-(b). κ(x|d, θ) =
[
logP

((
x
1

)
|θ1

)
, · · · , logP

((
x
d

)
|θd

)]
dim: D =

∑d
i=1

(
m
i

)

Parameter
Reconciliation

Functions

1. Constant Reconciliation

1-(a). ψ(w) = c l = 0

1-(b). ψ(w) = 0 l = 0

1-(c). ψ(w) = I l = 0

2. Identity Reconciliation 2-(a). ψ(w) = w l = nD

3. Masking Reconciliation 3-(a). ψ(w|p) = M ⊙ W l = p · nD

4. Duplicated Padding Rec. 4-(a). ψ(w|p) = C ⊗ W l = nD
pq

5. Low-Rank Reconciliation 5-(a). ψ(w) = AB⊤ l = nr +Dr

6. HM Reconciliation 6-(a). ψ(w|p) = A ⊗ B l = pq + nD
pq

7. LPHM Reconciliation 7-(a). ψ(w|p) = A ⊗ B = A ⊗ (CD⊤) l = pq + r(n
p

+ D
q
)

8. Dual LPHM Reconciliation 8-(a). ψ(w|p) = A ⊗ B = (PQ⊤) ⊗ (CD⊤) l = r(p + q + n
p

+ D
q
)

9. HyperNet Reconciliation 9-(a). ψ(w) = HyperNet(w) dim: l manual setup

Remainder
Functions

1. Constant Remainder
1-(a). π(x) = c no parameter

1-(b). π(x) = 0 (zero remainder) no parameter

2. Identity Remainder
2-(a). π(x) = x requires parameter

2-(b). π(x) = σ(x) requires parameter

3. Linear Remainder
3-(a). π(x) = xW′ requires parameter

3-(b). π(x) = σ(xW′) requires parameter

4. Expansion Remainder 4-(a). π(x|w′) =
〈
κ′(x), ψ′(w′)

〉
+ π′(x) requires parameter

Figure 6: An overview of data expansion, parameter reconciliation, and remainder functions imple-
mented in the TINYBIG toolkit for constructing the RPN model architecture.

or

κ(x) = σ(x) ∈ RD, and κ(x) = σ

(
1

x

)
∈ RD. (25)

In the above equations, σ denotes an optional activation function (e.g., sigmoid, ReLU, SiLU) or
normalization function (e.g., layer-norm, batch-norm, instance-norm). For both the identity and
reciprocal expansion functions, their output dimension is equal to the input dimension, i.e., D = m.
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For all the other expansion functions introduced hereafter, as mentioned in the previous Figure 4,
we can also apply the (optional) activation and normalization functions both before and after the
expansion by default.

5.1.2 Linear Data Expansion

In certain cases, we may need to adjust the value scales of x linearly without altering the basis
vectors or the dimensions of the space. This can be accomplished through the linear data expansion
function. Formally, the linear data expansion function projects the input data vector x ∈ Rm onto
itself via linear projection, as follows:

κ(x) = cx ∈ RD, (26)

or
κ(x) = xCpost ∈ RD, (27)

or
κ(x) = Cprex

⊤ ∈ RD, (28)

where the activation function or norm function σ is optional, and c ∈ R, Cpost,Cpre ∈ Rm×m

denote the provided constant scalar and linear transformation matrices, respectively. Linear data
expansion will not change the data vector dimensions, and the output data vector dimensionD = m.

5.1.3 Taylor’s Polynomials based Data Expansions

Given a vector x = [x1, x2, · · · , xm] ∈ Rm of dimension m, the multivariate composition of order
d defined based on x can be represented as a list of potential polynomials composed by the product
of the vector elements x1, x2, · · · , xm, where the sum of the degrees equals d, i.e.,

Pd(x) = [xd1
1 x

d2
2 · · ·xdm

m ]d1,d2,··· ,dm∈{0,1,···m}∧∑m
i=1 di=d. (29)

Some examples of the multivariate polynomials are provided as follows:

P0(x) = [1] ∈ R1,

P1(x) = [x1, x2, · · · , xm] ∈ Rm,

P2(x) = [x21, x1x2, x1x3, · · · , x1xm, x2x1, x22, x2x3, · · · , xmxm] ∈ Rm2

.

(30)

We observe that the above representation of P2(x) may contain duplicated elements, e.g., x1x2 and
x2x1. However, this representation simplifies the implementation, and high-order polynomials can
be recursively calculated using the Kronecker product operator based on the lower-order ones.

B 0

Figure 7: An illustration of Kronecker product on matrices A and B.

DEFINITION 2 (Kronecker product): Formally, as illustrated in Figure 7, given two matrices A ∈
R

p×q and B ∈ Rs×t, the Kronecker product of A and B is defined as
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A⊗B =




a1,1B a1,2B · · · a1,qB
a2,1B a2,2B · · · a2,qB

...
...

. . .
...

ap,1B ap,2B · · · ap,qB


 ∈ Rps×qt, (31)

where the output will be a larger matrix with p× s rows and q × t columns.

The Kronecker product can also be applied to vectors, with the base polynomial vectors P0(x) and
P1(x), the other Taylor’s polynomials with higher orders can all be recursively defined as follows:

Pd(x) = P1(x)⊗ Pd−1(x), for ∀d ≥ 2. (32)

With the notation Pd(x), we can define the Taylor’s polynomials based data expansion function
as the list of polynomial terms with orders no greater than d (where d is a hyper-parameter of the
function) as follows:

κ(x|d) = [P1(x), · · · , Pd(x)] ∈ RD. (33)

Since RPN has a deep architecture, the hyper-parameter d is normally set to a small value (e.g.,
d = 2) to avoid excessively large expansions at each layer. Expanding the input data to a Taylor’s
polynomial of order 4 can be achieved either by stacking two layers of RPN layer or by nesting two
Taylor’s expansion functions with d = 2. Additionally, the base term P0(x) containing the constant
value ‘1’ can be subsumed by the bias term in the inner product implementation, and thus need not
be explicitly included in the expansion. The output dimension will then be D =

∑d
i=1m

i.

Taylor’s polynomials are known to approximate functions very well, and an illustrative example of
their approximation correctness on function y = exp(x) is provided below.

Example: In the right plot, we il-
lustrate the approximation of function
f(x) = exp(x) with Taylor’s polyno-
mials of different orders, where the no-
tation Td(x) denotes the Taylor’s poly-
nomials with degrees up to d. Accord-
ing to the plot, increasing the degree
allows the Taylor’s polynomials to ap-
proximate the function f(x) more accu-
rately. Among all these illustrated Tay-
lor’s polynomials in the plot, T4(x) =

1 + x+ x2

2 + x3

6 + x4

24 outperforms the
others. 1.0 0.5 0.0 0.5 1.0 1.5 2.0

x

0
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y

Plot of Functions
y = exp(x)
y = T_0(x) = 1
y = T_1(x) = 1 + x
y = T_2(x) = 1 + x + x^2/2
y = T_3(x) = 1 + x + x^2/2 + x^3/6
y = T_4(x) = 1 + x + x^2/2 + x^3/6 + x^4/24

5.1.4 Fourier Series based Data Expansions

A Fourier series is an expansion of a periodic function into the sum of Fourier series. In mathematics,
the Dirichlet-Jordan test gives sufficient conditions for a real-valued, periodic function to be equal
to the sum of its Fourier series at a point of continuity. Fourier series can be represented in several
forms, and in this paper, we will utilize the sine-cosine representation.

Based on the hyper-parameters P and N , we can represent the Fourier series based data expansion
function κ for the input vector x as follows:

κ(x|P,N) =

[
cos(2π

1

P
x), sin(2π

1

P
x), cos(2π

2

P
x), sin(2π

2

P
x), · · · , cos(2πN

P
x), sin(2π

N

P
x)

]
∈ RD

, (34)

where the output dimension D = 2mN .
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5.1.5 B-Splines based Data Expansion

Formally, a B-spline of degree d + 1 is defined as a collection of piecewise polynomial functions
{Bi,d(x)}i∈{0,2,··· ,t−1} of degree d over the variable x, which takes values from a pre-defined value
range [x0, xt). The value range [x0, xt] is divided into smaller pieces by points x0, x1, x2, · · · , xt
sorted in a non-decreasing order, and these points are also known as the knots. These knots partition
the value range [x0, xt] into t disjoint intervals: [x0, x1), [x1, x2), · · · , [xt−1, xt).

As to the specific representations of B-splines, they can be defined recursively based on the lower-
degree terms according to the following equations:

Base B-splines with degree d = 0:

{B0,0(x), B1,0(x), · · · , Bt−1,0(x)} , (35)

where

Bi,0(x) =

{
1, if xi ≤ x < xi+1;

0, otherwise.
(36)

Higher-degree B-splines with d > 0:

{B0,d(x), B1,d(x), · · · , Bt−1,d(x)} , (37)

where
Bi,d(x) =

x− xi
xi+d − xi

Bi,d−1(x) +
xi+d+1 − x

xi+d+1 − xi+1
Bi+1,d−1(x). (38)

According to the representations, termBi,d(x) recursively defined above will have non-zero outputs
if and only if the inputs lie within the value range xi ≤ x < xi+d+1.

B-splines have been extensively used in curve-fitting and numerical differentiation of experimental
data, including their recent application in the design of KAN [51]. In this paper, we define the
B-spline-based data expansion function with degree d, which can be represented as follows:

κ(x|d) = [B0,d(x), B1,d(x), · · · , Bt−1,d(x)] ∈ RD, (39)

where the output dimension can be calculated as D = m(t+ d).

5.1.6 Chebyshev Polynomials based Data Expansion

In addition to B-splines, we observe several other similar basis functions recursively defined based
on those of lower degrees, including Chebyshev polynomials and Jacobi polynomials.

Chebyshev polynomials have been demonstrated to be important in approximation theory for the
solution of linear systems. They can be represented as two sequences of polynomials related to the
cosine and sine functions (also known as the first-kind and second-kind), with recursive calculation
equations that are quite similar to each other, differing only in scalar coefficients. In this paper, we
will use the Chebyshev polynomials of the first kind (i.e., defined based on the cosine function) and
it can be represented with the following recursive equations.

Base cases d = 0 and d = 1:
T0(x) = 1, and T1(x) = x (40)

High-order cases with degree d ≥ 2:

Td(x) = 2x · Td−1(x)− Td−2(x). (41)

Based on the above representations, in this paper, we define the Chebyshev polynomials based data
expansion function with degree hyper-parameter d ≥ 1 as follows:

κ(x|d) = [T1(x), T2(x) · · · , Td(x)] ∈ RD. (42)
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Similar to the aforementioned Taylor’s polynomial-based data expansions, since the output of T0(x)
is a constant, it will not be included in the expansion function definition by default, and the output
dimension will be D = md.

5.1.7 Jacobi Polynomials based Data Expansion

Different from the Chebyshev polynomial, the Jacobi polynomials have a more complicated recur-
sive representation. Formally, the Jacobi polynomials parameterized by α and β of degree d ≥ 2 on
variable x can be represented as P (α,β)

d (x), which can be recursively defined based on the lower-
order cases:

P
(α,β)
d (x) =

(2d+ α+ β − 1)
[
(2d+ α+ β)(2d+ α+ β − 2)x+ (α2 − β2)

]

2d(d+ α+ β)(2d+ α+ β − 2)
P

(α,β)
d−1 (x)

− 2(d+ α− 1)(d+ β − 1)(2d+ α+ β)

2d(d+ α+ β)(2d+ α+ β − 2)
P

(α,β)
d−2 (x).

(43)

As to the base case, we list some of them as follows:

P
(α,β)
0 (x) = 1,

P
(α,β)
1 (x) = (α+ 1) + (α+ β + 2)

(x− 1)

2
,

P
(α,β)
2 (x) =

(α+ 1)(α+ 2)

2
+ (α+ 2)(α+ β + 3)

x− 1

2
+

(α+ β + 3)(α+ β + 4)

2

(
x− 1

2

)2

.

(44)

In this paper, we define the Jacobi polynomial based data expansion function with degree d as
follows:

κ(x|d) =
[
P

(α,β)
1 (x), P

(α,β)
2 (x), · · · , P (α,β)

d (x)
]
∈ RD, (45)

where the output dimension D = md.

The Jacobi polynomials belong to the family of classic orthogonal polynomials, where two different
polynomials in the sequence are orthogonal to each other under some inner product. Meanwhile,
the Gegenbauer polynomials form the most important class of Jacobi polynomials, and Chebyshev
polynomial is a special case of the Gegenbauer polynomials. In addition to these, we will also
gradually incorporate other classic orthogonal polynomials into our TINYBIG toolkit.

5.1.8 Hyperbolic Function and Trigonometric Function based Data Expansions

The Fourier series introduced above is actually an example of a trigonometric series. In addition to
Fourier series, we also include several other types of trigonometric functions based data expansion
approach in this paper, such as hyperbolic functions, shown as follows:

κ(x) = [cosh(x), sinh(x), tanh(x)] ∈ RD, where D = 3m. (46)

In addition to the hyperbolic functions, we can also define the data expansion function using inverse
hyperbolic functions, trigonometric functions, and inverse trigonometric functions, as follows:

κ(x) = [arccosh(x), sinh(x), tanh(x)] ∈ RD; (47)

κ(x) = [cos(x), sin(x), tan(x)] ∈ RD; (48)

κ(x) = [arccos(x), arcsin(x), arctan(x)] ∈ RD, (49)

where the output dimensions of these expansion functions are all D = 3m.

Unlike hyperbolic functions, trigonometric functions are periodic, and different input values of x
may be projected to identical outputs, rendering them indistinguishable. This can potentially lead to
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degraded performance. Nonetheless, the above trigonometric function-based data expansion func-
tion can be employed as intermediate layers or complementary heads within a layer to compose
more complex functions and construct more powerful models.

5.1.9 Radial Basis Functions based Data Expansion

In mathematics, a radial basis function (RBF) is a real-valued function φ defined based on the
distance between the input x and some fixed point, e.g., c, which can be represented as follows:

φ(x|c) = φ(x− c). (50)

There are different ways to define the function φ in practice, two of which studied in this paper are
shown as follows:
(a) Gaussian RBF:

φ(x|c) = e−(ϵ(x−c))2 ,

where ϵ is a hyperparameter.

(51)

(b) Inverse Quadratic RBF:

φ(x|c) = 1

1 + (ϵ(x− c))2
,

where ϵ is a hyperparameter.

(52)

Given a set of d different fixed points, e.g., c = [c1, c2, · · · , cd], a sequence of d different such RBF
can be defined, which compare the input against these d different fixed points shown as follows:

φ(x|c) = [φ(x|c1), φ(x|c2), · · · , φ(x|cd)] ∈ Rd. (53)

With the above notations, we can represent the Gaussian RBF and Inverse Quadratic RBF based data
expansion functions both with the following equation:

κ(x) = φ(x|c) = [φ(x|c1), φ(x|c2), · · · , φ(x|cd)] ∈ RD, (54)

where the output dimension will be D = md.

5.1.10 Combinatorial Data Expansion

Combinatorial data expansion function expands input data by enumerating the potential combina-
tions of elements from the input vector, with the number of elements to be combined ranging from
1, 2, · · · , d, where d is a hyper-parameter. Formally, given a data instance featured by a variable set
X = {X1, X2, · · · , Xm} (here, we use the upper-case Xi to denote the variable of the ith feature),
we can represent the possible combinations of d terms selected from X with notation:

(X
d

)
= {C|C ⊂ X ∧ |C| = d} , (55)

where C denotes a subset of X containing no duplicated elements and the size of the output set
(X
d

)

will be equal to
(
m
d

)
. Some simple examples with d = 1, d = 2 and d = 3 are illustrated as follows:

d = 1 :

(X
1

)
= {{Xi}|Xi ∈ X} ,

d = 2 :

(X
2

)
= {{Xi, Xj}|Xi, Xj ∈ X ∧Xi ̸= Xj} ,

d = 3 :

(X
3

)
= {{Xi, Xj , Xk}|Xi, Xj , Xk ∈ X ∧Xi ̸= Xj ∧Xi ̸= Xk ∧Xj ̸= Xk} .

(56)

By applying the above notations to concrete data instances, given a data instance with values
x = [x1, x2, · · · , xm] (the lower-case xi denotes the feature value), we can also represent the com-
binations of d selected features from x as

(
x
d

)
, which can be used to define the combinatorial data

expansion function as follows:

κ(x) =

[(
x

1

)
,

(
x

2

)
, · · · ,

(
x

d

)]
. (57)
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Similar as the above Taylor’s expansions, the output dimension of the combinatorial expansion will
increase exponentially. Given an input data vector x ∈ Rm, with hyper-parameter d, its expansion
output of combinations with up to d elements will be κ(x) ∈ RD, where D =

∑d
i=1 i ·

(
m
i

)
.

5.1.11 Probabilistic Data Expansion

An important category of data expansion functions that surprisingly performed very well, even out-
performing many of the extension approaches mentioned above, are probability density function
based data expansions. Formally, in probability theory and statistics, a probability density function
(PDF) is a function that describes the relative likelihood for a random variable to take on a given
value within its sample space. Formally, given a probabilistic distribution parameterized by θ, we
can represent its probability density function as

P (x|θ) ∈ [0, 1], where
∫

x

P (x|θ)dx = 1. (58)

Lots of probabilistic distributions have been proposed by mathematicians and statisticians, such as
Gaussian distribution N (µ, σ), Exponential distribution E(λ), Laplace distribution L(µ, b), Cauchy
distribution C(x0, γ), Chi-squared distribution X 2(k) and Gamma distribution Γ(k, θ), etc. The
PDFs of these distributions are also provided as follows:

(a) Gaussian Distribution:

P (x|µ, σ) = 1

σ
√
2π

exp−
1
2 (

x−µ
σ )2 ,

where µ, σ are the mean and std parameters.
(59)

(b) Exponential Distribution:

P (x|λ) =
{
λ exp−λx for x ≥ 0,

0 otherwise,
,

where λ > 0 is the rate parameter.

(60)

(c) Laplace Distribution:

P (x|µ, b) = 1

2b
exp(−

|x−µ|
b ),

where µ, b > 0 are the location, scale parameters.
(61)

(d) Cauchy Distribution:

P (x|x0, γ) =
1

πγ

[
1 +

(
x−x0

γ

)2] ,

where x0, γ are the location and scale parameters.
(62)

(e) Chi-Squared Distribution:

P (x|k) = 1

2
k
2 Γ(k2 )

x(
k
2−1) exp−

x
2 ,

where k ∈ N+ is the dof parameter.

(63)

(f) Gamma Distribution:

P (x|k, θ) = 1

Γ(k)θk
xk−1 exp−

x
θ ,

where k, θ > 0 are the shape and scale parameters.
(64)

When feeding inputs to a probability density function, its output is typically a very small number,
and the curve of many distribution PDFs can be quite flat (i.e., with a very small slope). In this
paper, we propose using the log-likelihood to expand the input data instead, which makes it possible
to unify the representations of probabilistic graphical models with RPN, more information of which
will be introduced in Section 6.4.

In this paper, we introduce two different expansions based on the probabilistic distributions, i.e.,
naive probabilistic expansion and combinatorial probabilistic expansion introduced as follows.

Naive Probabilistic Data Expansion

The naive probabilistic expansion assumes the input features are independent and directly applies
the distribution PDFs to the input data vector to calculate the corresponding log-likelihood scores as
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the outputs. To expand the inputs, a set of d identical (or different) distribution PDFs with different
hyper-parameters can be used to concurrently calculate the log-likelihood scores. The concatenated
outputs from these PDFs are then returned as the expansions.

Formally, given the input x ∈ Rm, the naive probabilistic function assuming all the elements in
x to be independent will compute the log-likelihood to sample each of the features in the instance
according to certain distributions:

κ(x|θ) = [logP (x|θ1) , logP (x|θ2) , · · · , logP (x|θd)] ∈ RD, (65)

where θ = [θ1, θ2, · · · , θd] denotes d different hyper-parameters used for the PDFs. For the input
data vector of length m, it is easy to obtain its expansion output dimension via the above function
will be D = md.

In addition to using a single distribution PDF (with different hyper-parameters), we also introduce a
hybrid naive probabilistic expansion approach that simultaneously employs PDFs of different distri-
butions. For example, P1(·|θ1) denotes the normal distribution with mean/std denoted by θ1, while
P2(·|θ2) denotes the Cauchy distribution with location/scale denoted by θ2, and so on. The above
expansion function can also be rewritten as follows:

κ(x|θ) = [logP1 (x|θ1) , logP2 (x|θ2) , · · · , logPd (x|θd)] ∈ RD, (66)

where d different distribution PDFs P1, P2, · · · , Pd are concatenated to define the expansion func-
tion here. The output dimension will remain the same as the above, i.e., D = md.

For the PDF of the Gamma, Chi-square and Exponential distributions, they may require non-negative
inputs (some may also require the input to be non-zero). Therefore, prior to feeding the input vector
x to their PDF for expansion, we need to pre-transform x into positive vectors (with either activation
functions or normalization functions).

Combinatorial Probabilistic Data Expansion

Based on the above combinatorial expansions and multivariate distributions, we can introduce the
combinatorial probabilistic expansion function. Distinct from naive probabilistic data expansion
functions, combinatorial probabilistic data expansion function considers the relationships among
variables in the multivariate distribution PDFs, which can model complex data distributions better.

Formally, given the input data vector x ∈ Rm, the combinatorial probabilistic expansion function
defined based on the multivariate distribution PDF can be represented as follows:

κ(x|θ) =
[
logP

((
x

1

)
|θ1
)
, logP

((
x

2

)
|θ2
)
, · · · , logP

((
x

d

)
|θd
)]

∈ RD, (67)

where the output vector containing the log-likelihood has a dimension of D =
∑d

i=1

(
m
i

)
. In real

applications, the hyper-parameter d are usually set with a small number (e.g., d = 2) to avoid
extremely high-dimensional expansions. Different from the probability density functions used for
naive probabilistic expansion, the above function P (·|θd) is a multivariate probability density func-
tion with d variables. Notations θd denotes the hyper-parameters (e.g., encompassing both the mean
vector and covariance matrix if P (·|θd) denotes the PDF of the multivariate normal distribution) of
the distribution PDF for combinatorial terms with d elements.

This combinatorial probabilistic functions enable the unification of current deep learning models
with classic probabilistic models (e.g., Bayesian networks and Markov networks) into a single
framework for data processing and learning. This is because the summation/subtraction of the out-
put terms directly calculates the conditional and joint probabilities of the feature variables. Of
course, the parameters of the distributions used above are pre-defined and frozen constants for the
current expansion functions. In the future, we will investigate to learn the optimal distribution hyper-
parameters instead for better data expansions.
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Figure 8: An illustration of different parameter reconciliation functions introduced in this paper. For
each of the reconciliation function, we also indicate the number of required parameter length l to
generate the desired parameter matrix of size 4× 10 in the plots.

5.2 Parameter Reconciliation Functions

To approximate the underlying mapping f : Rm → R
n, the data expansion functions κ : Rm →

R
D introduced above projects data instances from input dimension m to an intermediate space of

dimension D, where D > m. When learning on such expanded data, directly applying existing
models and learning approaches with similar parameter scales may suffer from the “curse of dimen-
sionality” and overfitting issues, leading to practical failures. Instead of directly defining a parameter
of a scale of D, we propose defining functions ψ : Rl → R

n×D to fabricate a parameter vector
w ∈ Rl of length l to the target dimensions using advanced techniques, where l ≪ n×D.

This process is referred to as parameter reconciliation in this paper. The inner product of the
expanded data vectors and the reconciled parameter matrices will project the data vectors from input
dimension m to an intermediate dimension D and then back to the desired output dimension n. The
parameter reconciliation function determines both the learning capacity and costs of the RPN model,
and we will introduce several practical ways to fabricate the parameters in defining the parameter
reconciliation functions in this section. In addition to the summary provided in Figure 6, we also
illustrate the parameter reconciliation functions to be introduced here in Figure 8 as well.

5.2.1 Constant Parameter Reconciliation

The simplest parameter reconciliation function will be the constant parameter reconciliation, which
projects any input parameters to constants (e.g., zeros or ones) as follows:

ψ(w|c) = c · 1n×D = C ∈ Rn×D, (68)

where the output matrix C of size n×D is filled with the provided constant c.

For constant parameter reconciliation, the input parameter w is not required, which together with
its dimension hyper-parameter l can both be set to none in implementation. If the output constant
C = 0 or C = 1, we can also name the functions as zero reconciliation and one reconciliation,
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respectively. Constant parameter reconciliation functions can accommodate outputs according to
requirements. For example, we can set the output to be an identity matrix I with dimensions D×D,
which can be used if and only if the layer input and output dimensions are identical, i.e., m = n.
We can name such a function as the constant eye reconciliation to differentiate it from the identity
reconciliation defined below.

Constant reconciliation contributes almost nothing to model learning since it involves no parameters,
but it provides our approach with substantial flexibility in representing and designing many models,
such as the probabilistic models introduced later in the following Section 6.

5.2.2 Identity Parameter Reconciliation

Another simple parameter reconciliation function is the identity parameter reconciliation, which
defines the identity reconciliation function ψ : Rl → R

n×D as follows:

ψ(w) = reshape(w) = W, (69)

where the function will resize the parameters from vector w of length l = n ×D to the matrix W
of size n×D.

Identity parameter reconciliation is straightforward and may work well for some expansion func-
tions whose output dimension D is not very large. However, when used with expansion functions
that produce a large output dimension (such as the high-order Taylor’s polynomial expansions), the
identity parameter reconciliation function may fail due to the “curse of dimensionality” issues. In
such cases, the learning cost would also be extremely high.

5.2.3 Masking based Parameter Reconciliation

To mitigate the identified limitation of identity parameter reconciliation function, one prospective
approach entails the initial definition of a parameter matrix denoted as W ∈ Rn×D, with a subse-
quent strategic masking of a substantial proportion of its elements. This strategy is implemented to
curtail the count of learnable parameters in W to a reduced number of l:

ψ(w) = (M⊙ reshape(w)) = (M⊙W) ∈ Rn×D, (70)

where the term M ∈ {0, 1}n×D denotes the binary masking matrix only with l non-zero entries
and ⊙ denotes the element-wise product operator. The notation w is the vector representation of the
parameter matrix W.

This reconciliation operator is equivalent to: (a) first defining a parameter vector w of length l, and
(b) then scatting these l parameters to a larger matrix of size n×D. Moreover, only these scattered
parameters are learnable while all the remaining ones are constant zeros with no gradients. However,
current programming toolkits such as PyTorch lack the capability to selectively assign gradients to
specific entries within a tensor, rendering the above masking based reconciliation a more pragmatic
choice for implementation.

What’s more, to facilitate practical adoption, instead of pre-define the parameter dimension l, we
advocate for the definition of the masking ratio p ∈ [0, 1] as a hyper-parameter of the masking based
reconciliation function instead. This parameter, in conjunction with the output dimensions n ×D,
computes the requisite parameter vector dimension, given by l = p× n×D.

5.2.4 Duplicated Padding based Parameter Reconciliation

In addition to masking, an alternative straightforward approach for fabricating the parameter vector
w from length l to size n × D involves recursively duplicating w and sequentially padding them
to form the larger parameter matrix. Such a reconciliation function can be efficiently implemented
using the matrix Kronecker product operator introduced before in Section 5.1.3.

Specifically, for the parameter vector w ∈ R
l of length l, it can be reshaped into a matrix W

comprising s rows and t columns, where l = s × t. Through the multiplication of W with a
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constant matrix C ∈ Rp×q populated with the constant value of ones, we can define the duplicated
padding based parameter reconciliation function as follows:

ψ(w) = C⊗W =




C1,1W C1,2W · · · C1,qW
C2,1W C2,2W · · · C2,qW

...
...

. . .
...

Cp,1W Cp,2W · · · Cp,qW


 ∈ Rps×qt, (71)

where W = reshape(w) and ⊗ denotes the Kronecker product operator.

The resulting matrix will encompass p× q duplicates of the reshaped parameter matrix W. By ad-
justing the dimensions of the constant matrix C - specifically, p and q - we can ensure that p×s = n,
q × t = D, and l = s × t, aligning with the desired target parameter dimensions. Regarding the
constant matrix C, beyond being filled with all ones, its elements can also adopt a binary form,
comprising zeros and ones. In this scenario, the output will exhibit sparsity, featuring only a few
replicated copies of W. This flexibility in matrix construction augments the versatility of RPN
model design and learning process. Notably, the parameter length l is not predetermined but com-
puted during the function definition as l = st = n×D

pq , where p and q are the hyper-parameters of
this reconciliation function to be set manually.

5.2.5 Low-Rank Parameter Reconciliation (LoRR)

The practice of low-rank adaption, as investigated in [33], is commonly employed in contemporary
parameter-efficient fine-tuning (PEFT) methodologies for language models. Although our paper
does not center on PEFT, and our RPN model doesn’t incorporate adapters, the principles derived
from existing low-rank adaption techniques can be leveraged to define the parameter reconciliation
function, effectively addressing our current challenge. Consequently, we define this reconciliation
method as LoRR (Low-Rank Reconciliation) in this paper.

Formally, given the parameter vector w ∈ Rl and a rank hyper-parameter r, we partition w into
two sub-vectors and subsequently reshape them into two matrices A ∈ Rn×r and B ∈ RD×r, each
possessing a rank of r. These two sub-matrices A and B help define the low-rank reconciliation
function as follows:

ψ(w) = AB⊤ ∈ Rn×D. (72)

In implementation, similar to the aforementioned duplicated padding reconciliation, we will solely
define r as the hyper-parameter, which in turn determines the desired parameter length l in accor-
dance with the stated constraints. This necessitates imposing certain limitations on these dimension
and rank parameters, specifically, l = (n+D)× r.

5.2.6 Hypercomplex Multiplication (HM) based Parameter Reconciliation

The Kronecker product operator described above can also be directly applied to parameter for defin-
ing new reconciliation functions, i.e., the hypercomplex parameter reconciliation function:

ψ(w) = A⊗B ∈ Rn×D. (73)

Similar to the aforementioned low-rank reconciliation, both matrices A and B are derived from the
parameter vector w through partitioning and subsequent reshaping. However, instead of comput-
ing regular matrix multiplication as in low-rank reconciliation, hypercomplex multiplication-based
reconciliation suggests computing the Kronecker product of these two parameter matrices instead.

In implementation, to reduce the number of hyper-parameters and accommodate the parameter di-
mensions, we can maintain the size of matrix A as fixed by two hyper-parameters p and q, i.e.,
A ∈ Rp×q . Subsequently, the desired size of matrix B can be directly calculated as s × t, where
s = n

p and t = D
q . The hyper-parameters p and q need to be divisors of n and D, respectively.

Since both A and B originate from w, the desired parameter length defining w can be obtained as
l = p× q + n

p × D
q .
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5.2.7 Low-Rank Parameterized Hypercomplex Multiplication (LPHM) based Parameter
Reconciliation

In the aforementioned hypercomplex multiplication-based parameter reconciliation, ensuring that
“parameters p and q divide both n and D” results in a limited number of choices for p and q, typi-
cally leading to a small value (e.g., p = 4 and q = 8). Consequently, the size of matrix B and the
parameter length l can exceed expectations. To further diminish the parameter count, inspired by
[14], we can additionally transform matrix B into its low-rank representations during the reconcili-
ation definition. Specifically,

ψ(w) = A⊗B = A⊗ (ST⊤) ∈ Rn×D, (74)

where S ∈ Rn
p ×r and T ∈ RD

q ×r represent the low-rank matrices for composing B. This param-
eter fabrication approach is coined as the Low-Rank Parameterized Hypercomplex Multiplication
(LPHM) based parameter reconciliation, enabling further reduction of the required parameter vector
length to l = p× q + r(np + D

p ).

5.2.8 Dual Low-Rank Parameterized Hypercomplex Multiplication (Dual LPHM) based
Parameter Reconciliation

To provide RPN with more flexibility in defining the parameter reconciliation function, based on
the above LPHM function, we further introduce the dual LPHM parameter reconciliation function
allowing low-rank representations of both sub-matrices A and B, i.e.,

ψ(w) = A⊗B = (PQ⊤)⊗ (ST⊤) ∈ Rn×D, (75)

where P ∈ Rp×r and Q ∈ Rq×r represent the low-rank matrices for composing A, and S ∈ Rn
p ×r

and T ∈ R
D
q ×r represent the low-rank matrices for composing B. This parameter fabrica-

tion approach is named as the Dual Low-Rank Parameterized Hypercomplex Multiplication (Dual
LPHM) based parameter reconciliation, which reduces the required parameter vector length to
l = r(p+ q + n

p + D
q ).

5.2.9 HyperNets based Parameter Reconciliation

Besides these above matrix fabrication based reconciliations defined above, another viable approach
for parameter reconciliation is through the utilization of hypernets [24, 52]. These works employ
a hypernet model, such as a Multi-Layer Perceptron (MLP), to project the input parameter vector
w ∈ Rl from length l to a significantly higher-dimensional output:

ψ(w) = HyperNet(w) = W ∈ Rn×D. (76)

To circumvent the introduction of additional parameters and learning costs, we can initialize a hy-
pernet model randomly and then freeze its parameters. Subsequently, we utilize this frozen hypernet
model to define the aforementioned parameter reconciliation function. In this approach, the param-
eter l is not calculated automatically and needs to be manually set up as a hyper-parameter.

Compared to the aforementioned LoRR and Kronecker product-based reconciliation functions, hy-
pernets offer greater flexibility in function definition but also entail higher computational costs,
since the desired output parameter length n × D can be extremely high. We will delve into their
performance through extensive experimental studies in the following sections.

5.3 Remainder Functions

The remainder function π : Rm → R
n plays a crucial role in ensuring the representation com-

pleteness of RPN. This function provides complementary information that may not be encompassed
by the expansion and reconciliation functions alone. In this subsection, we will introduce several
different remainder functions that can be employed to construct the RPN model. These remainder
functions have also been summarized in Figure 6 as well.
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5.3.1 Constant Remainder

The constant remainder function π : Rm → R
n just projects all inputs to a constant vector, i.e.,

π(x) = c ∈ Rn, (77)

where c is a constant vector.

Specifically, when the output c is 0, it can be referred to as the zero remainder. This function
represents the simplest form of remainder, assuming that the data expansion function and parameter
reconciling function already perform well in capture all necessary information about the underly
function already (a claim supported by forthcoming experimental results). Additionally, all constant
remainder functions require no additional parameters.

5.3.2 Identity Remainder

Similar to residual learning techniques employed in contemporary deep learning models [26], we
can define the remainder function π : Rm → R

n as an identity function based on the input. For
instance, when m = n, we define the identity remainder function as follows:

π(x) = x ∈ Rn, or π(x) = σ(x) ∈ Rn, (78)

where notation σ denotes the (optional) activation function, which can be sigmoid, ReLU and the
recent SiLU [19].

5.3.3 Linear Remainder

Meanwhile, when the dimensions of the input and output spaces differ, i.e., m ̸= n, we must
introduce additional parameters into the remainder function to adjust for this mismatch. Here, we
introduce the linear remainder function as follows:

π(x) = xW′ ∈ Rn, or π(x) = σ(xW′) ∈ Rn. (79)

Similarly, the notation σ denotes the optional activation function. Concurrently, the learnable pa-
rameter matrix W′ ∈ Rm×n is used here for vector dimension adjustment. For the parameter W′,
we add the prime symbol to differentiate it from the parameter used in the reconciliation function.

5.3.4 Complementary Expansion based Remainder

For the majority of scenarios, the aforementioned remainder functions are sufficient for constructing
RPN models that generally fulfill our requirements. However, incorporating learnable parameters
into the remainder function enhances the flexibility and capacity of RPN models. In addition to the
aforementioned simple forms of remainder functions, this paper also allows for the definition of the
remainder function in an augmented manner, as a RPN head coupled with a zero remainder.

Formally, the complementary expansion based remainder function can be defined as follows:

π(x|w′) = ⟨κ′(x), ψ′(w′)⟩+ π′(x)︸ ︷︷ ︸
π′(x)=0 by default

. (80)

To distinguish the notations used in defining the original RPN model, we will add the “prime”
symbol to functions and parameters, indicating that they are defined within the complementary ex-
pansion. All the previously mentioned data expansion functions, parameter reconciliation functions,
and remainder functions can be utilized to define the functions κ′, ψ′, and π′.

Since RPN itself permits multi-head and multi-channel model architecture design within each layer,
the performance of the complementary expansion-based remainder function can be equivalently
represented through a multi-head RPN layer assisted by the zero remainder. Meanwhile, this type
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(a) Equivalent RPN for MLP (b) Equivalent RPN for KAN (c) Equivalent  RPN for SVM
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Figure 9: An illustration of representing MLP, KAN and kernel SVM with RPN.

of remainder function offers greater flexibility in model design, particularly for learning scenarios
necessitating more potent remainders. At the same time, when employing the complementary ex-
pansion remainder function, it’s customary to set the remainder function π′ as the zero remainder by
default. This ensures that it doesn’t introduce unnecessary redundancy in model design by serving
as another complementary expansion-based remainder.

6 Unifying Existing Base Models with RPN Canonical Representation

Building with the component functions outlined in the previous section, the RPN model has versatile
model architecture and attains superior modeling capability. Through strategic combinations of these
component functions, we can establish a multi-head, multi-channel, and multi-layer framework,
providing a unified basis for representing several influential base models such as Bayesian network,
Markov network, kernel SVM, MLP, and KAN.

In the previous Section 2, we have already provided the brief comparisons of RPN with these base
models in terms of mathematical theorem foundation, formula and model architecture. This sec-
tion further illustrates how, by selecting specific component functions, each of these models can be
consolidated into RPN canonical representation, characterized by the inner product of a data expan-
sion function with a parameter reconciliation function, complemented by a remainder function. The
following Figures 9 and 10 also demonstrate the unified representations of these base models with
RPN model.

6.1 Unifying MLP with RPN

In this subsection, we will introduce the Multi-Layer Perceptron (MLP) model designed based on
the Universal Approximation Theorem, and discuss how to represent MLP into the unified represen-
tation with the RPN model.

6.1.1 Universal Approximation Theorem

Before talking about the MLP model and representing MLP with RPN, we will first introduce the
Universal Approximation Theorem as follows.

THEOREM 2 (Universal Approximation Theorem): Given a continuous multivariate f : Rm →
R

n, we can approximate f with a series summation of function σ : R → R. Function σ is not
polynomial if and only if for every m,n ∈ N and ϵ > 0, there exists k ∈ N, A ∈ Rk×m, b ∈ Rk

and C ∈ Rn×k defining function

g(x|w) = C · σ (Ax+ b) , (81)
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that can approximate function f with an error no greater than ϵ, i.e.,

sup
x∈Rm

∥f(x)− g(x|w)∥ < ϵ. (82)

The parameter vector w covers all the aforementioned coefficient matrices A, C and bias vector b.

6.1.2 Multi-Layer Perceptron (MLP)

Built upon the Universal Approximation Theorem, MLP proposes to approximate the function
f : Rm → R

n by stacking neuron layers on top of each other, where each neuron sums up the
accumulated inputs and generates the output through an activation function σ : R→ R as follows:

g(x|w) = W1σ (W2x+ b) , (83)

where w = (W1,W2,b) covers the matrices W1 ∈ Rn×k and W2 ∈ Rk×m as the weights and
b ∈ Rk as the bias. As to the activation function σ, many different types of activation functions
have been proposed already, ranging from the classic binary-step and sigmoid function to the recent
SiLU and dSiLU [19].

6.1.3 Representing MLP with RPN

The MLP model can be easily represented with RPN involving the identity data expansion function,
identity parameter reconciliation function and zero remainder function introduced in the previous
Section 5.

Specifically, as depicted in Plot (a) of Figure 9, we illustrate the representation of a three-layer MLP
model at the top, and its corresponding representation with RPN involving three RPN-layers at the
bottom, with the input and output dimensions indicated on the right-hand side.

• RPN Layer 1: A single-head, single-channel RPN layer consisting of (1) an identity data
expansion function (with sigmoid as the optional output-processing function), (2) an iden-
tity parameter reconciliation function, and (3) a zero remainder function;

• RPN Layer 2: A single-head, single-channel RPN layer consisting of (1) an identity data
expansion function (with sigmoid as the optional output-processing function), (2) an iden-
tity parameter reconciliation function, and (3) a zero remainder function;

• RPN Layer 3: A single-head, single-channel RPN layer consisting of (1) an identity data
expansion function, (2) an identity parameter reconciliation function, and (3) a zero re-
mainder function.

6.2 Unifying KAN with RPN

The Kolmogorov-Arnold Network (KAN) [51] is a new base model introduced recently in 2024,
designed based on the Kolmogorov-Arnold RepresentationTheorem. Diverging from MLP’s fixed
activation functions, KAN suggests learning the activation functions for pairwise neuron connections
using B-spline interpolation. Here, we will briefly introduce the Kolmogorov-Arnold Representation
Theorem and subsequently discuss how to represent the KAN model architecture with RPN.

6.2.1 Kolmogorov-Arnold Representation Theorem

Kolmogorov-Arnold Representation Theorem posits that any multivariate continuous function can
be expressed as a composition of the two-argument addition of continuous univariate functions.

THEOREM 3 (Kolmogorov-Arnold Representation Theorem): Formally, given a continuous multi-
variate function on a bounded domain, e.g., f : [0, 1]m → R, the function f can be written as a
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finite composition of continuous univariate functions and the binary operation of addition:

f(x) = f([x1, x2, · · · , xm]⊤) =
2m∑

q=0

ϕq(

m∑

p=1

ϕq,p(xp)), (84)

where ϕq,p : [0, 1] → R and ϕq : R→ R.

6.2.2 Kolmogorov-Arnold Network (KAN)

Based on the Kolmogorov-Arnold Representation Theorem mentioned above, a recent paper [51]
introduces the KAN model. The theorem imposes a specific constraint on the required function
numbers, namely 2m+1 andm. However, in the practical implementation of KAN, these constraints
are relaxed, allowing the KAN model to employ a deep architecture by stacking multiple layers on
top of each other to approximate the function f : Rm → R

n, as indicated below:

g(x|w) = KAN(x) = ΦK ◦ ΦK−1 ◦ · · · ◦ Φ1(x). (85)

Here, the notation Φk = {ϕki,j}i∈{1,2,··· ,din},j∈{1,2,··· ,dout} represents a matrix of function ϕki,j with
learnable parameters at the kth layer of the model, and din, dout are the corresponding input and
output dimensions. Operator ◦ denotes the function composition of sequential layers in KAN.

In implementation, the function ϕ with learnable parameters is formally defined as

ϕ(x) = b(x) + spline(x), where

{
b(x) = SiLU(x) = x

1+exp−x ,

spline(x) =
∑

i wiBi,d(x).
(86)

In the above equation, the “spline(·)” function is defined as a linear combination of B-splines of de-
gree d, denoted by {Bi,d(x)}i, where {wi}i represents the set of learnable parameters. Meanwhile,
the base function b(·) is defined as the SiLU function based on the inputs.

6.2.3 Representing KAN with RPN

Similar as MLP, the KAN model can also be easily represented with RPN involving the B-spline
data expansion function, identity parameter reconciliation function and linear remainder function
introduced in the previous Section 5.

Specifically, as depicted in Plot (b) of Figure 9, for the three-layer KAN model illustrated at the top,
its corresponding representation with RPN involving three RPN-layers at the bottom:

• RPN Layer 1: A single-head, single-channel layer consisting of (1) a B-spline data expan-
sion function, (2) an identity parameter reconciliation function, and (3) a linear remainder
function (with SiLU as the activation function);

• RPN Layer 2: A single-head, single-channel layer consisting of (1) a B-spline data expan-
sion function, (2) an identity parameter reconciliation function, and (3) a linear remainder
function (with SiLU as the activation function);

• RPN Layer 3: A single-head, single-channel layer consisting of (1) a B-spline data expan-
sion function, (2) an identity parameter reconciliation function, and (3) a linear remainder
function (with SiLU as the activation function).

6.3 Unifying Kernel SVM with RPN

Support vector machine (SVM) is a renowned supervised machine learning model introduced for
data classification and regression analysis. While SVM is adept at linearly separating instances, it
can also perform non-linear classifications through the utilization of kernel tricks.
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6.3.1 Support Vector Machine (SVM)

Support Vector Machine (SVM) is a non-probabilistic binary linear classifier model proposed based
on statistical machine learning. Various extensions enable SVM to operate in multi-class and multi-
label classification scenarios.

Below, we will introduce SVM within the classic binary classification learning settings and employ
it to approximate the underlying mapping, represented as f : Rm → {−1,+1} as follows:

g(x|w, b) = sign(w⊤x+ b), (87)

where sign(·) returns the polarity of the input term w⊤x + b, while w, b denote the learnable
parameters.

6.3.2 Kernel Tricks

The SVM model described above is highly effective for linear classification tasks. However, for
handling nonlinear tasks, techniques such as the kernel trick have been introduced. The kernel trick
is widely used in regression, classification, and PCA. It facilitates the embedding of the problem into
higher-dimensional spaces, often even infinite-dimensional ones, without the need for an infinite
amount of computational effort.

Formally, given a vector x ∈ Rm, the kernel trick introduces a feature mapping ϕ : Rm → R
M

to project the vector into a higher-dimensional space, denoted as ϕ(x) ∈ RM , where M > m. An
illustrative example of such a mapping function used in kernel tricks is presented below.

EXAMPLE 1 For instance, given a vector x = [x1, x2]
⊤ ∈ R2, a very simple mapping shown

below will project x fromR2 to a high-order dimensionR3:

ϕ([x1, x2]
⊤) = [x21,

√
2x1x2, x

2
2]

⊤. (88)

For data instances that are not linearly separable in the original space, projecting them using the
mapping described above renders them linearly separable by the model represented in Equation (87)
within the higher-dimensional space. The process of learning kernel SVM to obtain the parameters
is beyond the scope of this paper, and will not be discussed here.

6.3.3 Representing Kernel SVM with RPN

Unlike MLP and KAN, which employ deep architectures, the SVM model is typically proposed
with a shallow architecture consisting of a single layer. Specifically, for the kernel SVM illustrated
in Plot (c) of Figure 9, it can be represented within RPN with a single layer:

• RPN Layer: A single-head, single-channel RPN layer consisting of (1) a data expansion
function corresponding to the kernel function (e.g., linear or RBF), (2) an identity parameter
reconciliation function, and (3) a zero remainder function.

6.4 Unifying PMs with RPN

Probabilistic model denotes a broad family of statistical machine learning models build on proba-
bility theory. In this subsection, we will provide a brief introduction of the probabilistic models,
followed by a discussion on representing these models using the RPN model.

6.4.1 Probabilistic Models (PMs)

Probabilistic models (PMs) assume the relationships among the variables can be effectively modeled
with probability distributions. In PMs, we use the upper case notations, such as Xi and Yj , to
represent variables and lower case ones, such as xi and yj , to represent their respective values.
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Formally, to infer the underlying mapping f : Rm → R
n, we represent the inputs and out-

puts as random variables X1, X2, · · · , Xm and Y1, Y2, · · · , Yn, respectively. The potential value
spaces of the input and output are denoted as X ⊂ R

m and Y ⊂ R
n. Given an input instance

[x1, x2, · · · , xm]⊤ ∈ X , the underlying model f will project it to the outputs [y1, · · · , yn]⊤ ∈ Y
that maximize the following probability:

maxP (Y1 = y1, · · · , Yn = yn|X1 = x1, · · · , Xm = xm) , (89)

where P (·|·) denotes the conditional probability defined based on certain distributions.

We can calculate the above conditional probability by dividing the joint probabilities of the random
variables. Furthermore, by applying the logarithm operator to the probabilities, we can rewrite the
above conditional probability calculation as follows (simplifying the notations to include only two
variables, X and Y ):

logP (Y = y|X = x) = log

(
P (Y = y ∧X = x)

P (X = x)

)

= logP (Y = y ∧X = x)− logP (X = x).

(90)

The fundamental problem studied in PMs is how to calculate the joint probabilities P (Y = y ∧
X = x) and P (X = x), which involve multiple random variables. In PMs, we treat input and
output random variables (i.e., Y and X) equally. To simplify notations, we will just illustrate how
to calculate joint probabilities with m random variables X1, X2, · · · , Xm below, noting that joint
probabilities involving random variables from both Xs and Y s can be calculated similarly.

6.4.2 Naive Bayes and Probabilistic Graphical Models (PGMs)

Numerous machine learning models fall under the category of PMs. Below, we will list three rep-
resentative PMs: naive Bayes, Bayesian network, and Markov network, with Bayesian network and
Markov network also commonly referred to as probabilistic graphical models. We will also demon-
strate how to represent them using the RPN model.

Naive Bayes: The naive Bayes classifier operates under the assumption that, given the target class,
the features of input data instances are conditionally independent. This assumption allows us to
reformulate the above Equation (89) and Equation (90) as follows:

P (Y = y|X1 = x1, · · · , Xm = xm) ∝ P (Y = y)

m∏

i=1

P (Xi = xi|Y = y), (91)

and

logP (Y = y|X1 = x1, · · · , Xm = xm) ∝ logP (Y = y) +

m∑

i=1

logP (Xi = xi|Y = y). (92)

The stringent independence assumption restricts the applicability of naive Bayes to a narrow range
of scenarios. In contrast, both Bayesian network and Markov network, which will be introduced
below shortly, aim to capture the dependency relationships among the feature variables instead.

Bayesian network: Bayesian network assumes that the relationships between variables can be rep-
resented as a directed acyclic graph, wherein each node (i.e., the variables) possesses directed edges
pointing to its children, indicating a direct influence or causal relationship between them. These net-
works encode conditional dependencies using directed edges, while the joint probability distribution
is factored as a product of conditional probabilities.
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Figure 10: An illustration of representing different probabilistic models with RPN.

Formally, based on Bayesian network, the joint log-probability distribution P (X1, X2, · · · , Xm)
involving these m random variables can be written as:

logP (X1, X2, · · · , Xm) = log

(
m∏

i=1

P (Xi|Γ(Xi))

)
,

=

m∑

i=1

logP (Xi,Γ(Xi))− logP (Γ(Xi)),

(93)

where Γ(Xi) denotes the set of parent nodes of Xi in the probabilistic dependency DAG.

Markov network: Markov network, on the other hand, assumes that the relationships between
variables can be represented as an undirected graph, where edges indicate a mutual dependency
between nodes (i.e., the variables), without implying any directionality or causation.

Formally, given the random variables X1, X2, · · · , Xm, Markov network defines their relations
as an undirected graph G, which can be divided into cliques (fully connected subsets of nodes)
C = {C1, C2, · · · , Ck} and

⋃k
i=1 Ci = {X1, X2, · · · , Xm}. Based on such cliques, the joint log-

probability defined on all the variables can be factored as follows:

logP (X1, X2, · · · , Xm) = log

(
1

Z

k∏

i=1

ϕ(XCi
)

)
,

=

k∑

i=1

log ϕ(XCi)− logZ,

(94)

where logZ can be viewed as a constant. Regarding the factor potential functions in {ϕ(XCi
)}Ci∈C ,

several different methods exist for defining them, such as the appearance count in the training set,
exponential potential function and Gaussian potential function.

6.4.3 Representing PMs with RPN

Similar to SVM, representing naive Bayes, Bayesian network and Markov network with RPN will
also involve one single layer. However, because these probabilistic models are designed based on
different assumptions, the component functions involved will also be distinct. As illustrated in
Figure 10, these probabilistic models can be depicted using RPN as follows:

• Naive Bayes: A single-head, single-channel RPN layer consisting of (1) a naive probabilis-
tic data expansion function, (2) a constant parameter reconciliation function (containing
constant ones), and (3) a zero remainder function.

• Bayesian Network: A single-head, single-channel RPN layer consisting of (1) a com-
binatorial probabilistic data expansion function, (2) an identity parameter reconciliation
function, and (3) a zero remainder function.
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• Markov Network: A single-head, single-channel RPN layer consisting of (1) a nested
data expansion function composed of the combinatorial expansion followed by the “fac-
tor potential function” based expansion function, (2) an identity parameter reconciliation
function, and (3) a zero remainder function.

7 Empirical Evaluations of RPN

This section presents empirical evaluations of RPN across various deep function learning tasks with
extensive experiments on real-world benchmark datasets. We examine several key performance
aspects of RPN and organize our insightful findings as follows. In Section 7.1, we provide ex-
perimental investigations of RPN for continuous function learning on three datasets: elementary
functions, composite functions, and Feynman functions. Section 7.2 evaluates RPN for discrete vi-
sion and language data classification, using image datasets (MNIST and CIFAR-10) and text datasets
(IMDB, AGNews, and SST2). To assess RPN for probabilistic dependency relationship inference,
Section 7.3 presents experiments on three classic tabular datasets: Iris Species, Pima Indians Dia-
betes, and Banknote. Throughout these subsections, we also provide experimental analysis of RPN
in terms of convergence, parameter sensitivity, ablation studies, interpretation, and visualization for
the specific deep function learning tasks.

7.1 Continuous Function Approximation

As previously described, RPN can serve as a base model for effective continuous function approx-
imation. In this section, we investigate the empirical effectiveness of RPN using three continuous
function datasets. We begin by introducing the datasets and experimental setups, followed by a
detailed presentation of the experimental results and performance analysis.

7.1.1 Dataset Descriptions and Experiment Setups

Table 1: Statistics of continuous function datasets used in the experiments. For the Feynman func-
tion dataset, the input variable numbers can be different for different functions, which are not pro-
vided in the table. For each function in the dataset, we randomly generate 2, 000 input-output pairs
according to the input variable value ranges, which are partitioned into the training and testing sets
according to the 50 : 50 ratio.

Continuous Function Datasets
Elementary Functions Composite Functions Feynman Functions

Equ. # 17 17 100
Train # 1,000 1,000 1,000
Test # 1,000 1,000 1,000

Input Dim. 2 2 –
Output Dim. 1 1 1

Dataset Descriptions: Three continuous function datasets are used in our experiments to evaluate
the performance of RPN against comparison methods MLP and KAN. The datasets are described
below, with basic statistical information provided in Table 1.

• Elementary Function Dataset: We compose an elementary function dataset in this paper.
The elementary function dataset comprises 17 elementary functions, each representing the
simplest form of a multivariate function defined by two variables, x and y, with specific
value ranges. These function ids, formulas and their corresponding input value ranges are
provided in the first three columns of Table 2.

• Composite Function Dataset: Building upon these elementary functions, we created the
composite function dataset by combining them through addition, multiplication, and nest-
ing to form more complex functions. The 17 created composite functions and their input
variable value ranges are presented in the first three columns of Table 3.
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Table 2: Experimental results of continuous function approximation on the elementary function
dataset. All these models are trained with 2, 000 epochs, which guarantee their convergence, and
the best testing scores achieved by all these methods within these 2, 000 epochs are cherry-picked,
aiming to eliminate the impacts of epoch selection on the result evaluation. All these models are all
trained with 5 different random seeds, and the average scores together with the standard deviations
are reported in the table. For the method names, RPN-Ext denotes RPN with extended expansion
function (involving Taylor’s expansion and Bspline expansion), low-rank reconciliation function and
Zero remainder function; while RPN-Nstd denotes RPN with nested expansion function (involving
Taylor’s expansion and Bspline expansion), low-rank reconciliation function and Zero remainder
function.

Eq. Formula Variables
MLP

Architecture
MLP
MSE

KAN
Architecture

KAN
MSE

RPN-Ext
Architecture

RPN-Ext
MSE

RPN-Nstd
Architecture

RPN-Nstd
MSE

E.0 x + y
x, y ∈
(0, 1)

[2, 5, 5, 1]
param #: 51

6.25 × 10−7

±8.08 × 10−7
[2, 2, 1, 1]

param #: 63
4.23 × 10−7

± 5.78 × 10−7
[2, 2, 1, 1]

param #: 47
8.40 × 10−8

± 1.12 × 10−7
[2, 2, 1, 1]

param #: 547
1.93 × 10−8

± 1.15 × 10−8

E.1 1
(x+y)

x, y ∈
(0, 1)

[2, 5, 5, 1]
param #: 51

7.64 × 10−1

±6.05 × 10−1
[2, 2, 1, 1]

param #: 63
3.32 × 10−2

± 5.47 × 10−2
[2, 2, 1, 1]

param #: 47
8.67 × 10−2

± 8.22 × 10−2
[2, 2, 1, 1]

param #: 547
1.03 × 10−1

± 1.40 × 10−1

E.2 (x + y)2
x, y ∈
(0, 1)

[2, 5, 5, 1]
param #: 51

1.89 × 10−3

±1.81 × 10−3
[2, 2, 1, 1]

param #: 63
1.32 × 10−6

± 5.29 × 10−7
[2, 2, 1, 1]

param #: 47
2.56 × 10−7

± 1.48 × 10−7
[2, 2, 1, 1]

param #: 547
5.06 × 10−8

± 3.53 × 10−8

E.3 exp(x + y)
x, y ∈
(0, 1)

[2, 5, 5, 1]
param #: 51

9.33 × 10−3

±1.14 × 10−2
[2, 2, 1, 1]

param #: 63
1.22 × 10−5

± 1.10 × 10−5
[2, 2, 1, 1]

param #: 47
3.81 × 10−6

± 6.56 × 10−6
[2, 2, 1, 1]

param #: 547
1.26 × 10−6

± 1.37 × 10−6

E.4 ln(x + y)
x, y ∈
(0, 1)

[2, 5, 5, 1]
param #: 51

1.26 × 10−3

±8.24 × 10−4
[2, 2, 1, 1]

param #: 63
3.95 × 10−5

± 3.86 × 10−5
[2, 2, 1, 1]

param #: 47
7.05 × 10−5

± 3.12 × 10−5
[2, 2, 1, 1]

param #: 547
1.80 × 10−5

± 2.37 × 10−5

E.5 sin(x + y)
x, y ∈
(0, 1)

[2, 5, 5, 1]
param #: 51

1.49 × 10−3

±2.50 × 10−3
[2, 2, 1, 1]

param #: 63
2.14 × 10−8

± 9.06 × 10−9
[2, 2, 1, 1]

param #: 47
4.95 × 10−8

± 4.39 × 10−8
[2, 2, 1, 1]

param #: 547
5.67 × 10−9

± 3.20 × 10−9

E.6 cos(x + y)
x, y ∈
(0, 1)

[2, 5, 5, 1]
param #: 51

2.12 × 10−2

±4.23 × 10−2
[2, 2, 1, 1]

param #: 63
2.20 × 10−7

± 2.47 × 10−7
[2, 2, 1, 1]

param #: 47
1.25 × 10−7

± 1.34 × 10−7
[2, 2, 1, 1]

param #: 547
5.93 × 10−9

± 3.98 × 10−9

E.7 tan(x + y)
x, y ∈
(0, 1)

[2, 5, 5, 1]
param #: 51

2.87 × 10−4

± 2.97 × 10−4
[2, 2, 1, 1]

param #: 63
3.26 × 10−7

± 3.27 × 10−7
[2, 2, 1, 1]

param #: 47
6.02 × 10−8

± 4.46 × 10−8
[2, 2, 1, 1]

param #: 547
1.67 × 10−8

± 2.32 × 10−8

E.8 arcsin(x + y)
x, y ∈
(0, 0.5)

[2, 5, 5, 1]
param #: 51

3.84 × 10−4

±2.92 × 10−4
[2, 2, 1, 1]

param #: 63
2.61 × 10−7

± 1.08 × 10−7
[2, 2, 1, 1]

param #: 47
1.65 × 10−6

± 2.06 × 10−6
[2, 2, 1, 1]

param #: 547
5.16 × 10−7

± 2.97 × 10−7

E.9 arccos(x + y)
x, y ∈
(0, 0.5)

[2, 5, 5, 1]
param #: 51

1.26 × 10−2

±2.51 × 10−2
[2, 2, 1, 1]

param #: 63
2.35 × 10−6

± 3.50 × 10−6
[2, 2, 1, 1]

param #: 47
4.49 × 10−5

± 5.15 × 10−5
[2, 2, 1, 1]

param #: 547
3.73 × 10−7

± 2.32 × 10−7

E.10 arctan(x + y)
x, y ∈
(0, 0.5)

[2, 5, 5, 1]
param #: 51

3.09 × 10−5

±4.88 × 10−5
[2, 2, 1, 1]

param #: 63
6.09 × 10−8

± 7.80 × 10−8
[2, 2, 1, 1]

param #: 47
4.86 × 10−9

± 2.17 × 10−9
[2, 2, 1, 1]

param #: 547
3.02 × 10−9

± 1.65 × 10−9

E.11 sinh(x + y)
x, y ∈
(0, 1)

[2, 5, 5, 1]
param #: 51

2.42 × 10−3

±3.15 × 10−3
[2, 2, 1, 1]

param #: 63
8.96 × 10−7

± 7.13 × 10−7
[2, 2, 1, 1]

param #: 47
1.99 × 10−7

± 1.65 × 10−7
[2, 2, 1, 1]

param #: 547
5.43 × 10−8

± 5.25 × 10−8

E.12 cosh(x + y)
x, y ∈
(0, 1)

[2, 5, 5, 1]
param #: 51

1.62 × 10−3

±8.37 × 10−4
[2, 2, 1, 1]

param #: 63
8.77 × 10−7

± 1.39 × 10−7
[2, 2, 1, 1]

param #: 47
7.00 × 10−7

± 4.65 × 10−7
[2, 2, 1, 1]

param #: 547
4.47 × 10−8

± 3.42 × 10−8

E.13 tanh(x + y)
x, y ∈
(0, 1)

[2, 5, 5, 1]
param #: 51

8.35 × 10−4

±1.39 × 10−3
[2, 2, 1, 1]

param #: 63
3.10 × 10−8

± 3.24 × 10−8
[2, 2, 1, 1]

param #: 47
5.73 × 10−8

± 6.20 × 10−8
[2, 2, 1, 1]

param #: 547
4.55 × 10−9

± 2.73 × 10−9

E.14 arcsinh(x + y)
x, y ∈
(0, 0.5)

[2, 5, 5, 1]
param #: 51

1.47 × 10−5

±2.21 × 10−5
[2, 2, 1, 1]

param #: 63
1.98 × 10−7

± 2.27 × 10−7
[2, 2, 1, 1]

param #: 47
5.13 × 10−9

± 3.94 × 10−9
[2, 2, 1, 1]

param #: 547
4.34 × 10−9

± 2.82 × 10−9

E.15 arccosh(x + y)
x, y ∈
(0.5, 1)

[2, 5, 5, 1]
param #: 51

8.28 × 10−3

±1.57 × 10−2
[2, 2, 1, 1]

param #: 63
2.32 × 10−7

± 7.08 × 10−8
[2, 2, 1, 1]

param #: 47
8.94 × 10−6

± 4.55 × 10−6
[2, 2, 1, 1]

param #: 547
5.38 × 10−7

± 5.62 × 10−7

E.16 arctanh(x + y)
x, y ∈
(0, 0.5)

[2, 5, 5, 1]
param #: 51

7.52 × 10−4

±2.55 × 10−4
[2, 2, 1, 1]

param #: 63
1.30 × 10−5

± 1.64 × 10−5
[2, 2, 1, 1]

param #: 47
3.00 × 10−5

± 3.47 × 10−5
[2, 2, 1, 1]

param #: 547
2.51 × 10−5

± 3.04 × 10−5

• Feynman Function Dataset: To evaluate RPN’s effectiveness on real-world complex
functions relevant to scientific research, we utilize the Feynman function dataset from [73].
Unlike [51], which simplifies the functions to dimensionless forms, we use the original
Feynman functions2 with their provided value ranges. The 27 functions used in our experi-
ments, along with their input variable value ranges, are shown in the first three columns of
Table 4.

All datasets used in these experiments have been made available in the TINYBIG toolkit, allowing
readers to conduct follow-up experimental testing and result replication.

2https://space.mit.edu/home/tegmark/aifeynman.html
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Table 3: Experimental results of continuous function approximation on the composite function
dataset. The results are obtained in the same way and reported in the same format as the previ-
ous table on elementary functions.

Eq. Formula Variables
MLP

Architecture
MLP
MSE

KAN
Architecture

KAN
MSE

RPN-Ext
Architecture

RPN-Ext
MSE

RPN-Nstd
Architecture

RPN-Nstd
MSE

C.0 (x + y)
+1/(x + y)

x, y ∈
(0, 1)

[2, 10, 10, 1]
param #: 151

2.18 × 10−1

± 2.85 × 10−1
[2, 2, 2, 1]

param #: 150
2.95 × 10−1

± 4.85 × 10−1
[2, 2, 2, 1]

param #: 71
3.25 × 10−2

± 3.34 × 10−2
[2, 2, 2, 1]

param #: 821
2.73 × 10−3

± 3.32 × 10−3

C.1
(x + y)

+(x + y)2
x, y ∈
(0, 1)

[2, 10, 10, 1]
param #: 151

3.86 × 10−4

± 2.40 × 10−4
[2, 2, 2, 1]

param #: 150
5.04 × 10−7

± 2.07 × 10−7
[2, 2, 2, 1]

param #: 71
6.73 × 10−7

± 3.04 × 10−7
[2, 2, 2, 1]

param #: 821
1.84 × 10−7

± 1.19 × 10−7

C.2 (x + y)2

+exp(x + y)
x, y ∈
(0, 1)

[2, 10, 10, 1]
param #: 151

2.99 × 10−3

± 1.62 × 10−3
[2, 2, 2, 1]

param #: 150
1.61 × 10−6

± 7.77 × 10−7
[2, 2, 2, 1]

param #: 71
1.33 × 10−6

± 1.29 × 10−6
[2, 2, 2, 1]

param #: 821
1.54 × 10−6

± 9.85 × 10−7

C.3 exp(x + y)
+ ln(x + y)

x, y ∈
(0, 1)

[2, 10, 10, 1]
param #: 151

2.97 × 10−2

± 3.03 × 10−3
[2, 2, 2, 1]

param #: 150
4.53 × 10−5

± 6.66 × 10−5
[2, 2, 2, 1]

param #: 71
1.17 × 10−4

± 1.18 × 10−4
[2, 2, 2, 1]

param #: 821
3.86 × 10−6

± 2.99 × 10−6

C.4 (x + y)2

+sin(x + y)
x, y ∈
(0, 1)

[2, 10, 10, 1]
param #: 151

1.35 × 10−4

± 6.03 × 10−5
[2, 2, 2, 1]

param #: 150
4.80 × 10−7

± 6.21 × 10−7
[2, 2, 2, 1]

param #: 71
4.40 × 10−7

± 4.59 × 10−7
[2, 2, 2, 1]

param #: 821
1.09 × 10−7

± 6.68 × 10−8

C.5 cos(x + y)
+ arccos(x + y)

x, y ∈
(0, 0.5)

[2, 10, 10, 1]
param #: 151

5.69 × 10−4

± 7.87 × 10−4
[2, 2, 2, 1]

param #: 150
2.28 × 10−7

± 1.46 × 10−7
[2, 2, 2, 1]

param #: 71
1.48 × 10−6

± 1.69 × 10−6
[2, 2, 2, 1]

param #: 821
7.24 × 10−8

± 4.28 × 10−8

C.6 exp(x + y)
×1/(x + y)

x, y ∈
(0, 1)

[2, 10, 10, 1]
param #: 151

2.25 × 10−1

± 2.86 × 10−1
[2, 2, 2, 1]

param #: 150
8.19 × 10−2

± 1.46 × 10−1
[2, 2, 2, 1]

param #: 71
3.72 × 10−2

± 3.95 × 10−2
[2, 2, 2, 1]

param #: 821
2.25 × 10−3

± 2.49 × 10−3

C.7 (x + y)2

× ln(x + y)
x, y ∈
(0, 1)

[2, 10, 10, 1]
param #: 151

9.74 × 10−4

± 1.24 × 10−3
[2, 2, 2, 1]

param #: 150
7.00 × 10−8

± 3.38 × 10−8
[2, 2, 2, 1]

param #: 71
4.97 × 10−7

± 5.01 × 10−7
[2, 2, 2, 1]

param #: 821
2.94 × 10−8

± 1.37 × 10−8

C.8 (x + y)
× sin(x + y)

x, y ∈
(0, 1)

[2, 10, 10, 1]
param #: 151

3.80 × 10−5

± 3.60 × 10−5
[2, 2, 2, 1]

param #: 150
3.03 × 10−8

± 1.79 × 10−8
[2, 2, 2, 1]

param #: 71
5.70 × 10−8

± 1.98 × 10−8
[2, 2, 2, 1]

param #: 821
1.64 × 10−8

± 9.49 × 10−9

C.9 exp(x + y)
× ln(x + y)

x, y ∈
(0, 1)

[2, 10, 10, 1]
param #: 151

4.78 × 10−3

± 2.58 × 10−3
[2, 2, 2, 1]

param #: 150
3.10 × 10−5

± 2.39 × 10−5
[2, 2, 2, 1]

param #: 71
1.88 × 10−4

± 2.20 × 10−4
[2, 2, 2, 1]

param #: 821
4.55 × 10−6

± 3.99 × 10−6

C.10 sin(x + y)
× sinh(x + y)

x, y ∈
(0, 1)

[2, 10, 10, 1]
param #: 151

1.82 × 10−4

± 6.47 × 10−5
[2, 2, 2, 1]

param #: 150
1.19 × 10−7

± 9.75 × 10−8
[2, 2, 2, 1]

param #: 71
3.40 × 10−7

± 4.77 × 10−7
[2, 2, 2, 1]

param #: 821
3.58 × 10−8

± 1.18 × 10−8

C.11 arccos(x + y)
×arctanh(x + y)

x, y ∈
(0, 0.5)

[2, 10, 10, 1]
param #: 151

1.08 × 10−4

± 9.94 × 10−5
[2, 2, 2, 1]

param #: 150
2.75 × 10−7

± 2.34 × 10−7
[2, 2, 2, 1]

param #: 71
3.57 × 10−7

± 2.56 × 10−7
[2, 2, 2, 1]

param #: 821
4.87 × 10−7

± 8.71 × 10−7

C.12
exp( 1

(x+y)
+exp(x + y))

x, y ∈
(0, 0.5)

[2, 10, 10, 1]
param #: 151

1.07 × 10−1

± 1.52 × 10−1
[2, 2, 2, 1]

param #: 150
3.81 × 10−4

± 4.55 × 10−4
[2, 2, 2, 1]

param #: 71
3.74 × 10−5

± 1.88 × 10−5
[2, 2, 2, 1]

param #: 821
7.17 × 10−5

± 8.87 × 10−5

C.13 exp(sin(x + y)
+ cos(x + y))

x, y ∈
(0, 1)

[2, 10, 10, 1]
param #: 151

2.35 × 10−3

± 2.65 × 10−3
[2, 2, 2, 1]

param #: 150
3.62 × 10−7

± 1.65 × 10−7
[2, 2, 2, 1]

param #: 71
6.97 × 10−7

± 2.29 × 10−7
[2, 2, 2, 1]

param #: 821
8.56 × 10−8

± 3.81 × 10−8

C.14 ln((x + y)2

+exp(x + y))
x, y ∈
(0.5, 1)

[2, 10, 10, 1]
param #: 151

1.26 × 10−5

± 1.72 × 10−5
[2, 2, 2, 1]

param #: 150
6.30 × 10−8

± 7.82 × 10−8
[2, 2, 2, 1]

param #: 71
3.50 × 10−7

± 3.89 × 10−7
[2, 2, 2, 1]

param #: 821
1.69 × 10−8

± 2.42 × 10−8

C.15 tan(exp(x + y)
+ ln(x + y))

x, y ∈
(0, 1)

[2, 10, 10, 1]
param #: 151

6.48 × 102

± 4.50 × 102
[2, 2, 2, 1]

param #: 150
1.74 × 103

± 1.72 × 103
[2, 2, 2, 1]

param #: 71
2.47 × 103

± 4.39 × 103
[2, 2, 2, 1]

param #: 821
1.17 × 104

± 2.11 × 104

C.16 1
1+exp(−x−y)

x, y ∈
(0, 1)

[2, 10, 10, 1]
param #: 151

1.48 × 10−6

± 1.69 × 10−6
[2, 2, 2, 1]

param #: 150
2.86 × 10−9

± 1.75 × 10−9
[2, 2, 2, 1]

param #: 71
1.74 × 10−9

± 1.09 × 10−9
[2, 2, 2, 1]

param #: 821
1.48 × 10−9

± 1.32 × 10−9

Experiment Setups: For the continuous function approximation task, we randomly generate 2000
input-output pairs for each function in the dataset. These pairs are divided into training and testing
sets, with a 50 : 50 ratio. To ensure fair comparisons, each model is trained with five different
random seeds over 2000 epochs. The best results encountered during training are selected to mitigate
biases from epoch hyper-parameter selection. We use Mean Squared Error (MSE) as the evaluation
metric. To account for variability due to random seed selection, we report the final evaluation results
as “mean ± std” of MSE scores obtained from the five random seeds. It allows us to provide a
comprehensive and unbiased assessment of model performance across multiple runs.

7.1.2 The Main Results of RPN on Continuous Function Approximation

Tables 2, 3, and 4 present the main results of RPN compared to MLP and KAN on the elementary,
composite, and Feynman function datasets, respectively. Each table shows MSE (mean ± std) scores
for each method, obtained using five random seeds. For the elementary and composite function
datasets, we also provide the architecture and parameter counts of the compared methods.

For elementary functions, MLP uses a [2, 5, 5, 1] architecture with 51 parameters (including bias),
while KAN uses [2, 2, 1, 1] with 5 input intervals divided by the knots, b-splines of order 3, and 63
parameters. For composite and Feynman functions, MLP uses [2, 10, 10, 1] with 151 parameters,
and KAN uses [2, 2, 2, 1] with 150 parameters, 10 intervals and order 4. We compare two variants of
RPN: (1) RPN-Ext using extended expansions (B-spline and Taylor’s), LoRR reconciliation (rank
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Table 4: Experimental results of continuous function approximation on the Feynman function
dataset. Method RPN-Ext uses extended expansion, low-rank reconciliation and linear remainder.

Eq. Formula Variables
MLP
MSE

KAN
MSE

RPN-Ext
MSE

I.6.2 exp
(
− θ2

2σ2

)
/
√
2πσ θ, σ ∈ [1, 3]

7.17 × 10−5

± 8.37 × 10−5
3.20 × 10−7

± 2.02 × 10−7
1.63 × 10−6

± 1.31 × 10−6

I.6.2b exp

(
− (θ−θ1)2

2σ2

)
/
√
2πσ σ, θ, θ1 ∈ [1, 3]

4.52 × 10−5

± 1.90 × 10−5
8.97 × 10−5

± 1.77 × 10−4
1.60 × 10−5

± 1.25 × 10−5

I.9.18 G·m1·m2
(x2−x1)2+(y2−y1)2+(z2−z1)2

G, m1, m2, x2, y2, z2 ∈ [1, 2]
x1, y1, z1 ∈ [3, 4]

2.17 × 10−4

± 7.42 × 10−5
1.60 × 10−4

± 9.60 × 10−5
6.92 × 10−5

± 2.42 × 10−5

I.12.11 q · (Ef + B · v · sin(θ)) q, Ef , B, v, θ ∈ [1, 5]
9.81 × 100

± 2.36 × 100
4.78 × 101

± 2.05 × 101
1.36 × 101

± 8.35 × 100

I.13.12 G · m1 · m2

(
1
r2

− 1
r1

)
G, m1, m2, r1, r2 ∈ [1, 5]

1.24 × 100

± 2.83 × 10−1
7.07 × 100

± 3.25 × 100
8.47 × 10−1

± 1.21 × 10−1

I.15.3x (x−u·t)√
1−u2/c2

x ∈ [5, 10], u ∈ [1, 2]
c ∈ [3, 20], t ∈ [1, 2]

1.07 × 10−2

± 9.00 × 10−3
1.49 × 10−2

± 4.94 × 10−3
4.94 × 10−3

± 1.57 × 10−3

I.16.6 (u+v)

(1+u·v/c2)
c, v, u ∈ [1, 5]

3.39 × 10−3

± 3.31 × 10−3
8.47 × 10−3

± 2.67 × 10−3
8.68 × 10−4

± 3.84 × 10−4

I.18.4 (m1 · r1 + m2 · r2)/(m1 + m2) m1, m2, r1, r2 ∈ [1, 5]
1.16 × 10−2

± 1.13 × 10−2
2.00 × 10−2

± 5.02 × 10−3
9.92 × 10−4

± 4.82 × 10−4

I.26.2 arcsin(n · sin(θ2)) n ∈ [0, 1], θ2 ∈ [1, 5]
9.59 × 10−4

± 3.33 × 10−4
7.64 × 10−5

± 1.12 × 10−4
6.59 × 10−5

± 5.13 × 10−5

I.27.6 1
1
d1

+ n
d2

d1, d2, n ∈ [1, 5]
5.40 × 10−4

± 3.52 × 10−4
8.22 × 10−4

± 1.24 × 10−4
4.98 × 10−4

± 6.95 × 10−4

I.29.16
√

x2
1 + x2

2 − 2x1x2 cos(θ1 − θ2) x1, x2, θ1, θ2 ∈ [1, 5]
1.16 × 10−1

± 1.41 × 10−1
1.40 × 100

± 6.16 × 10−1
7.27 × 10−2

± 7.00 × 10−2

I.30.3 Int0 · sin
(
n θ

2

)2
/ sin

(
θ
2

)2
Int0, θ, n ∈ [1, 5]

2.17 × 100

± 2.42 × 10−1
2.13 × 100

± 6.78 × 10−1
1.58 × 100

± 8.47 × 10−1

I.30.5 arcsin( λ
n·d )

λ ∈ [1, 2]
d ∈ [2, 5], n ∈ [1, 5]

2.45 × 10−4

± 2.14 × 10−4
6.26 × 10−5

± 5.11 × 10−5
6.83 × 10−6

± 2.53 × 10−6

I.37.4 I1 + I2 + 2
√
I1 · I2 · cos(δ) I1, I2, δ ∈ [1, 5]

9.14 × 10−2

± 5.89 × 10−2
1.74 × 10−1

± 1.43 × 10−1
3.89 × 10−2

± 3.06 × 10−2

I.40.1 n0 exp
(
− m·g·x

(kb·T )

)
n0, m, g, x, kb, T ∈ [1, 5]

8.90 × 10−3

± 6.01 × 10−3
1.09 × 10−2

± 6.98 × 10−3
2.13 × 10−3

± 4.51 × 10−4

I.44.4 n · kb · T · ln
(

V2
V1

)
n, kb, T , V1, V2 ∈ [1, 5]

5.69 × 100

± 1.06 × 100
2.58 × 101

± 1.76 × 101
2.99 × 100

± 5.68 × 10−1

I.50.26 x1 · (cos(ωt) + α · cos(ωt)2) x1, ω, t, α 1.42 × 100

± 1.07 × 100
7.10 × 10−1

± 2.03 × 10−1
1.03 × 100

± 7.47 × 10−1

II.2.42 κ·(T2−T1)·A
d κ, T1, T2, A, d ∈ [1, 3]

8.73 × 10−1

± 3.55 × 10−1
1.09 × 100

± 7.20 × 10−1
6.98 × 10−1

± 3.27 × 10−1

II.6.15a 3zpd
(4πϵ)r5

√
x2 + y2 ϵ, pd, r, x, y, z ∈ [1, 3]

2.07 × 10−3

± 1.61 × 10−3
6.36 × 10−4

± 3.78 × 10−4
9.29 × 10−5

± 3.06 × 10−5

II.11.17 n0

(
1 +

pd·Ef cos θ

kb·T

)
n0, kb, T , θ,pd, Ef ∈ [1, 3]

1.10 × 10−1

± 1.35 × 10−1
1.01 × 10−1

± 7.75 × 10−2
2.85 × 10−2

± 3.35 × 10−3

II.11.27 n·α
1−n·α

3
ϵEf

n, α ∈ [0, 1],
ϵ, Ef ∈ [1, 2]

2.23 × 10−2

± 2.30 × 10−2
8.43 × 10−5

± 6.55 × 10−5
9.93 × 10−5

± 2.70 × 10−5

II.35.18 n0

exp

(
µm·B
kb·T

)
+exp

(
−µm·B

kb·T

) n0, kb, T , µm, B ∈ [1, 3]
7.56 × 10−4

± 2.87 × 10−4
1.39 × 10−3

± 2.38 × 10−3
1.59 × 10−4

± 1.08 × 10−4

II.36.38 µm·H
kb·T

+ µm·α·M
ϵ·c2·kb·T

µm, H , kb, T , α,
ϵ, c, M ∈ [1, 3]

5.44 × 10−2

± 3.07 × 10−2
3.49 × 10−2

± 9.15 × 10−3
4.89 × 10−3

± 2.59 × 10−3

II.38.3 Y ·A·x
d Y , A, d, x ∈ [1, 5]

5.44 × 100

± 8.81 × 100
1.38 × 100

± 4.98 × 10−1
1.24 × 10−1

± 1.02 × 10−1

III.9.52
pd·Ef ·t

h
2π

sin

(
(ω−ω0)t

2

)2

(
(ω−ω0)t

2

)2
pd, Ef , t, h ∈ [1, 3]

ω, ω0 ∈ [1, 5]
9.20 × 100

± 1.59 × 100
1.88 × 101

± 3.65 × 100
7.10 × 100

± 2.92 × 100

III.10.19 µm ·
√

B2
x + B2

y + B2
z µm, Bx, By , Bz ∈ [1, 5]

4.17 × 10−1

± 2.59 × 10−1
2.69 × 10−1

± 8.30 × 10−2
3.08 × 10−2

± 9.13 × 10−3

III.17.37 β · (1 + α · cos(θ)) β, α, θ ∈ [1, 5]
8.06 × 10−1

± 5.30 × 10−1
1.62 × 100

± 1.12 × 100
2.66 × 10−1

± 1.64 × 10−1

1), and zero remainder; and (2) RPN-Nstd using nested expansions (B-spline and Taylor’s), LoRR
reconciliation (rank 1), and zero remainder. Both variants create higher-dimensional intermediate
expanded vectors. RPN-Ext has fewer learnable parameters than MLP and KAN for elementary
functions and less than half for composite and Feynman functions.

The results in Tables 2-4 show that RPN-Ext outperforms MLP, reducing MSE by at least ×10−1

across almost all these functions, with improvements up to ×10−5 for some elementary functions
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(a) Training MSE on Feynman Eq. I.9.18
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(b) Testing MSE on Feynman Eq. I.9.18
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(c) Training MSE on Feynman II.35.18
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(d) Testing MSE on Feynman Eq. II.35.18

Figure 11: Training and testing MSE curves of MLP, KAN and RPN on fitting Feynman functions
Eq. I.9.18 and Eq. II.35.18. The x axis denotes the training epochs and the y axes denote the training
and testing MSE of RPN on these two functions, respectively.

(E.5, E.6) and ×10−4 for some composite functions (C.7, C.13). RPN-Ext with fewer parameters
still achieves comparable or slightly better performance than KAN. Meanwhile, RPN-Nstd, with
more parameters, significantly outperforms KAN, reducing MSE by at least ×10−1 and even ×10−2

for most elementary and composite functions. On the Feynman dataset, RPN-Ext with a linear
remainder and half the parameters of MLP and KAN consistently performs well. It outperforms the
other methods on 23 out of 27 functions, with improvements of at least ×10−1 and up to ×10−2

in some cases (e.g., Eq. I.18.4). MLP only performs best on Eq. I.12.11, while KAN excels with
slightly more advantages on Eq. I.6.2, I.50.26, and II.11.27.

These results demonstrate RPN’s effectiveness in approximating both simple and complex con-
tinuous functions used in real-world scientific research discoveries. Additional experiments with
different extension and remainder functions of RPN are also available in Tables 10, 11, and 12 in
the Appendix Section A.1.

7.1.3 Model Learning Analysis

To further illustrate the training process of MLP, KAN, and RPN in approximating continuous
functions, we randomly selected two Feynman functions: Eq. I.9.18 and Eq. II.35.18 (formulas
available in Table 4). Figure 11 presents the model training and testing curves for each epoch. The
RPN method shown in the plots uses extended expansion, low-rank reconciliation (rank=1), and a
linear remainder function. Notably, this configuration of RPN has only half the learnable parameters
of MLP and KAN.

The plots reveal that both MLP and KAN can approximate these functions with MSE on the scale
of 10−4. However, RPN, only using less than half of the learnable parameters, significantly outper-
forms MLP and KAN, achieving MSE on the scale of 10−5. Moreover, RPN’s training and testing
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Figure 12: Analysis of rank parameter r for low-rank reconciliation function used in RPN on Feyn-
man function Eq. I.9.18. The x axis: rank parameter r value; left y axis: testing MSE loss; and right
y axis: learnable parameter number.

curves consistently descend with increasing epochs, in contrast to MLP and KAN. Remarkably, even
without explicit parameter regularization, RPN does not exhibit overfitting problems. These results
further demonstrate RPN’s superior performance and stability in continuous function approximation
tasks.

7.1.4 Low-Rank Reconciliation Function Rank Parameter Selection

The RPN model analyzed previously used a low-rank reconciliation function with rank r = 1 by
default, which reduced the number of parameters to half that of MLP and KAN for both composite
and Feynman function datasets. However, in real-world applications where parameter constraints are
less stringent, the rank parameter in the LoRR reconciliation function can be fine-tuned to further
enhance RPN’s learning performance beyond what was reported in the previous tables.

Figure 12 illustrates the learning performance and parameter count of RPN when approximating
Feynman Eq. I.9.18 with varying rank values. The testing loss curve shows that as the rank pa-
rameter r increases, the model’s testing loss initially decreases steadily, then increases, reaching its
lowest point of 7.81 × 10−6 at rank r = 6. Concurrently, the number of parameters in RPN grows
consistently from 235 at r = 1 to 2, 134 at r = 10.

The following subsection on discrete data classifications will provide more detailed information on
ablation studies of RPN with different expansion, reconciliation, and remainder functions.

7.2 Discrete Image and Text Classification

In addition to continuous function approximation tasks, this subsection examines the effectiveness
of RPN for discrete data classification, encompassing both image and text classification. We orga-
nize this subsection as follows: First, we introduce the dataset descriptions and experimental setups.
Next, we investigate the effectiveness of different data expansion techniques, parameter reconcili-
ation methods, and remainder functions, as well as conduct detailed analyses of RPN in terms of
model and reconciliation function hyper-parameters. Based on these insights, we apply RPN to
classification tasks on benchmark datasets for both images and text. Finally, we visualize the data
expansions and parameter reconciliation process to help interpret the learning process and results of
RPN.
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7.2.1 Dataset Descriptions and Experiment Setups

Table 5: Statistics of discrete image and text datasets. For the text datasets, we convert the each text
data instance to a bag-of-word vector rescaled by TF-IDF, whose dimensions are also provided in
the table.

Image Datasets Text Datasets
MNIST CIFAR-10 IMDB AGNews SST2

Train # 60,000 50,000 25,000 120,000 67,349
Test # 10,000 10,000 25,000 7,600 872

Input Dim. 28 × 28 32 × 32 × 3 26,964 25,985 10,325
Output Dim. 10 10 2 4 2

Dataset Descriptions: To demonstrate the generalizability and effectiveness of RPN, in this part,
we will provide the experimental investigations of RPN for discrete data classification. Specifically,
this subsection will focus on the experimental investigations on two categories of discrete datasets
described below, whose basic statistical information is also provided in Table 5.

• Image Datasets: We use two benchmark datasets, MNIST and CIFAR-10, to investigate
the performance of RPN for image classification. Images in MNIST are all in the grayscale,
while those in CIFAR-10 are colored instead.

• Text Datasets: To examine the performance of RPN for text classification, we employ
three text benchmark datasets: IMDB, AGNews, and SST2. The AGNews is a multi-class
dataset, while IMDB and SST2 are both binary-class datasets.

Experiment Setups: These image and text benchmark datasets have been pre-partitioned into train-
ing and testing sets, which will be used for all methods in our experiments. We preprocess the
images by flattening and normalizing them before model training. For the text datasets, we use
the sklearn TF-IDF vectorizer to preprocess the text inputs. The performance of all comparison
methods, including RPN, on these datasets are evaluated by using Accuracy as the default metric.

7.2.2 Component Function Composition Analysis

Before presenting the performance of RPN and other comparison baselines, we will first analyze
the component functions involved in RPN to inform the design of an architecture that can achieve
better performance. Figure 13 illustrates various combinations of the expansion, reconciliation, and
remainder functions, as well as their performance on the MNIST dataset for image classification.
Plot (a) corresponds to the zero remainder function, while Plot (b) corresponds to the linear remain-
der function. For both plots, the x axis denotes the expansion functions, and the bars in different
colors denote different reconciliation functions, whose names are indicated in the plot legends.

The plots reveal several interesting observations for RPN’s performance. First of all, for RPN with
the zero remainder function as illustrated in Plot (a), its performance will solely depend on the ex-
pansion and reconciliation functions. Meanwhile, among all these reconciliation functions, identity
and masking reconciliation outperform others, while hypernet and duplicated padding-based recon-
ciliation underperform expectations. For expansion functions, Taylor’s expansion, Gaussian RBF
expansion, and naive Laplace distribution-based expansion slightly outperform the others. Notably,
by comparing Plot (a) with Plot (b), we can observe that the linear remainder function dramatically
improves performance for most expansion-reconciliation function pairs.

These observations provide valuable insights about the effectiveness of different component function
combinations in RPN. They will also help guid the selection of optimal functions for improved
performance of RPN to address the discrete data classification tasks studied in this paper.
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(a) Ablation Studies on Expansion and Reconciliation Functions of RPN with Zero Remainder
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(b) Ablation Studies on Expansion and Reconciliation Functions of RPN with Linear Remainder

Figure 13: An illustration of the learning performance of RPN with different expansion, reconcili-
ation and remainder functions based on the MNIST dataset. The x axis denotes different expansion
functions, and the y axis denotes the testing accuracy obtained by these methods. The bars with
different colors denote different reconciliation functions with their names indicated in the legend.
Plot (a): RPN with zero remainder function; and Plot (b): RPN with linear remainder function. For
all the reconciliation functions, we just use their default hyper-parameters in the TINYBIG toolkit
without any tuning.

7.2.3 Individual Component Function Analysis

Furthermore, to investigate the effectiveness of individual component functions, we also enumerate
all potential combinations of these functions to build the RPN model and apply it to the MNIST
dataset. For each individual function, we extract all these potential combinations involving them
and obtain their testing accuracy scores. The median, mean, and max performance are provided in
Figure 14. To exclude the performance boost created by the linear remainder, we use zero remain-
der by default for Plots (a)-(f), which will illustrate their expansion and reconciliation functions’
effectiveness without remainders.

In Figure 14, we sort these component functions according to their max, median, and mean accuracy
scores, respectively. Among the 21 expansion functions investigated, those obtaining the highest ac-
curacy scores in Plot (a) are Taylor’s expansion, Inverse Quadratic RBF-based expansion, Gaussian
RBF-based expansion, Naive Laplace-based expansion, and B-spline-based expansion. In addition
to the maximum accuracy scores, the median and mean accuracy-based ranking of the expansion
functions in Plots (b)-(c) illustrates the robustness of their performance when combined with vari-
ous reconciliation functions.

Regarding reconciliation functions, as illustrated in Plot (d), those achieving the highest ac-
curacy scores include Identity reconciliation, Masking-based reconciliation, and Hypercomplex
Multiplication-based reconciliation. As shown in Plots (d)-(f), consistent with Figure 13, the per-
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Figure 14: An illustration of the effectiveness of individual component functions in RPN based on
the MNIST dataset. Plots (a)-(c): performance of expansion functions; Plots (d)-(f): performance of
reconciliation functions; and Plots (g)-(i): performance of remainder functions. For each individual
function, we calculate the max, median, and mean accuracy scores obtained by the compositions
involving them in the plots.

formance of the hypernet and duplicated padding-based reconciliation is slightly below the expecta-
tions, especially compared with the other reconciliation functions. It’s important to note that we use
default hyper-parameters for all these reconciliation functions, and the lower scores for these func-
tions reported here don’t necessarily indicate their ineffectiveness. Below, we will also provide a
tuning of the hyper-parameters for some of the reconciliation functions to demonstrate that they can
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achieve comparable performance to the identity reconciliation functions with minor hyper-parameter
tuning, while having far fewer learnable parameters.

For the remainder functions, according to Plots (g)-(i), linear remainder consistently outperforms
zero remainder, demonstrating that remainder functions can provide complementary information
to the learning results. In addition to these plots, more comprehensive results of the performance
scores, time cost, and parameter number of these different component function compositions are
provided in Tables 13-33 in the Appendix Section A.2. Readers may also refer to those tables for
more detailed investigation results of RPN composed with different component functions.

7.2.4 Model Depth and Width Analysis

Table 6: An investigation of model depth and width on the performance of RPN.
Model Layer Number (based on RPN with 1 head per layer)

1 2 3 4 5 6 7 8 9 10
Accuracy 0.9791 0.9849 0.9853 0.9855 0.9852 0.9849 0.9848 0.9842 0.9833 0.9830
Param. # 6.15M 39.43M 39.7M 39.96M 40.23M 40.49M 40.76M 41.03M 41.29M 41.56M

Model Head Number (based on RPN with 4 layer)
1 2 3 4 5 6 7 8 9 10

Accuracy 0.9855 0.9853 0.9846 0.9867 0.9847 0.9852 0.9851 0.9862 0.9852 0.9856
Param. # 39.96M 79.92M 119.89M 159.85M 199.81M 239.77M 279.74M 319.7M 359.66M 399.62M

Beyond the shallow and narrow models analyzed previously, we also investigate the impacts of
model depth and width on the performance of RPN. The results are illustrated in Table 6. For this
analysis, we use RPN with Taylor’s expansion (order 2), identity reconciliation, and zero remainder
as the default model architecture on the MNIST dataset.

The top part of Table 6 shows results for models with 1 head per layer, while increasing the number
of layers from 1 to 10. Besides the input and output dimensions, for the hidden dimensions of the
middle layers, we all use the default dimension 64 in this experiment. Except for RPN with depth
1, which achieves a best recorded testing accuracy of 0.979, all other depths obtain testing accuracy
scores above 0.980. The highest recorded testing accuracy of 0.986 is achieved at depth 4.

Furthermore, for the RPN model with 4 layers, we investigate the impact of head number on model
performance, as shown in the bottom part of the table. The performance of RPN with different
numbers of heads is notably consistent and stable, achieving the highest scores with 4, 8, and 10
heads, respectively.

7.2.5 Reconciliation Function Hyper-Parameter Tuning Analysis

Prior to illustrating the main results of RPN and other comparison methods, we further investigate
the effectiveness of the low-rank reconciliation (LoRR) function, whose initial performance was
not as good as expected in the previous Plots (d)-(f) of Figure 14. Using the RPN model with
Taylor’s expansion function (order 2) and zero remainder, we will tune the rank hyler-parameter in
LoRR from 1 to 15. Figure 15 presents both the obtained testing accuracy and the introduced model
parameter numbers. For comparison, we also include the performance of the identity reconciliation
function in the plot, which are represented by a gray dashed horizontal line for testing score and a
gray bar for parameter number.

The curve and bar plot reveal that LoRR with ranks 1, 2, and 3 yields lower performance than the
identity reconciliation function. However, for ranks 4 and above, LoRR’s performance gradually
approaches that of the identity reconciliation function while using significantly fewer parameters.
This analysis demonstrates that with proper tuning, LoRR can achieve comparable accuracy to iden-
tity reconciliation. Similar performance have been observed for the other reconciliation functions
as well. These insights will help in designing parameter-efficient RPN models especially for the
discrete data classification tasks presented below.
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Figure 15: Analysis of rank parameter r for LoRR reconciliation function for RPN on MNIST
dataset. Left y axis: Testing Accuracy; Right y axis: Learnable Parameter Number. For the dashed
line and bar in gray color, they denote the testing accuracy (0.983) and parameter number (3.94 ×
107) of the identity reconciliation function when applied to identical Taylor’s expansions in RPN.

7.2.6 The Main Results of RPN on Discrete Data Classification

Based on our above investigations and analyses, we present the main results of RPN on image and
text benchmark datasets in Table 7. We compare RPN’s performance with several baseline models,
including naive Bayes (based on the Gaussian and multinomial distributions), SVM (with Linear and
RBF kernels), MLP, and KAN. Besides the accuracy scores obtained on the benchmark datasets, the
table also specifies model configurations and architecture dimensions of these methods on different
benchmark datasets.

In Table 7, the aforementioned Bayesian network and Markov network are excluded from this com-
parison due to their extremely time-consuming training process on larger-scale datasets. These
models will be discussed and compared with RPN on smaller-sized tabular datasets for probabilis-
tic relationship inference in the following subsection. For MLP, KAN, and RPN, we report “mean
± std” accuracy obtained with 5 randomly picked random seeds. With their implementation via
sklearn, the performance scores of naive Bayes and SVM are reported directly without standard
deviations due to their stability across random states. RPN’s configurations vary by dataset: on
MNIST, RPN uses Taylor’s expansion (order 2), identity reconciliation, zero remainder; on CIFAR-
10, RPN uses identity expansion, masking-based reconciliation (p=0.6), zero remainder; and on
IMDB, AGNews, SST, RPN uses Taylor’s expansion (order 2), low-rank reconciliation (r=2), zero
remainder.

Except for MNIST, RPN uses much fewer learnable parameters than SVM, MLP, and KAN on these
benchmark datasets due to masking and low-rank reconciliation functions. RPN outperforms base-
line methods on most discrete benchmark datasets. On MNIST, it achieves 0.986 accuracy, signifi-
cantly higher than naive Bayes, SVM, MLP, and KAN, demonstrating the effectiveness of Taylor’s
expansions in feature extraction from image data. On CIFAR-10 and AGNews, RPN achieves com-
parable performance to the best baseline methods using fewer learnable parameters. And on IMDB
and SST2, the performance of RPN slightly exceeds the other comparison methods. These obtained
experimental results all showcase the superiority of RPN on discrete data classification tasks.

In addition to evaluating the performance of RPN, our experiments yielded several insightful obser-
vations about the comparison methods. Among all approaches, naive Bayes stands out as the fastest,
generating results within seconds, while other methods may require hours for training. SVM (with
RBF kernel) and MLP demonstrate more consistent performance across diverse datasets, showcas-
ing their robustness. Notably, the recently proposed KAN exhibits significant limitations in the
experiments. Not surprisingly, KAN uses substantially more parameters than other methods and

48



Table 7: Classification results of discrete data classification on the image and text benchmark
datasets. Both naive Bayes and SVM are implemented with sklearn, whose performance is very
stable. For MLP, KAN and RPN, we train them with 5 randomly selected random seeds. For each
random seed, they are trained with 50 epochs, and the best testing scores achieved by all these meth-
ods within these 50 epochs are cherry-picked. For MLP, KAN and RPN, we report their average
accuracy score together with the standard deviations in the table.

Models Image Datasets Text Datasets
MNIST CIFAR10 IMDB AGNews SST2

Naive
Bayes

5.56× 10−1

- - - - - - - - - - - -
(Gaussian)

2.98× 10−1

- - - - - - - - - - - -
(Gaussian)

6.30× 10−1

- - - - - - - - - - - -
(Gaussian)

8.14× 10−1

- - - - - - - - - - - -
(Gaussian)

7.31× 10−1

- - - - - - - - - - - -
(Gaussian)

8.36× 10−1

- - - - - - - - - - - -
(Multinomial)

2.98× 10−1

- - - - - - - - - - - -
(Multinomial)

8.37× 10−1

- - - - - - - - - - - -
(Multinomial)

9.03× 10−1

- - - - - - - - - - - -
(Multinomial)

7.86× 10−1

- - - - - - - - - - - -
(Multinomial)

SVM

9.31× 10−1

- - - - - - - - - - - -
(Linear kernel)

3.50× 10−1

- - - - - - - - - - - -
(Linear kernel)

8.77× 10−1

- - - - - - - - - - - -
(Linear kernel)

9.18× 10−1

- - - - - - - - - - - -
(Linear kernel)

8.01× 10−1

- - - - - - - - - - - -
(Linear kernel)

9.79× 10−1

- - - - - - - - - - - -
(RBF kernel)

5.44× 10−1

- - - - - - - - - - - -
(RBF kernel)

8.84× 10−1

- - - - - - - - - - - -
(RBF kernel)

9.25 × 10−1

- - - - - - - - - - - -
(RBF kernel)

8.01× 10−1

- - - - - - - - - - - -
(RBF kernel)

MLP

9.82× 10−1

± 6.79× 10−4

- - - - - - - - - - - -
[784, 512, 256, 10]

5.63 × 10−1

± 1.67 × 10−3

- - - - - - - - - - - -
[784, 512, 256, 10]

8.85× 10−1

± 5.54× 10−3

- - - - - - - - - - - -
[26964, 128, 32, 2]

9.21× 10−1

± 8.22× 10−4

- - - - - - - - - - - -
[25985, 128, 32, 4]

8.05× 10−1

± 2.12× 10−3

- - - - - - - - - - - -
[10325, 128, 32, 2]

KAN

9.75× 10−1

± 1.47× 10−3

- - - - - - - - - - - -
[784, 64, 10]

5.27× 10−1

± 7.10× 10−4

- - - - - - - - - - - -
[784, 64, 10]

5.00 ×10−1

± 0.00× 100

- - - - - - - - - - - -
[26964, 128, 32, 2]

2.50 ×10−1

± 0.00× 100

- - - - - - - - - - - -
[25985, 128, 32, 4]

4.91 ×10−1

± 0.00× 100

- - - - - - - - - - - -
[10325, 128, 32, 2]

RPN

9.86 × 10−1

± 8.70 × 10−4

- - - - - - - - - - - -
[784, 64, 64, 10]

5.61× 10−1

± 1.66× 10−3

- - - - - - - - - - - -
[3072, 512, 256, 10]

8.86 × 10−1

± 4.59 × 10−4

- - - - - - - - - - - -
[26964, 128, 32, 2]

9.19× 10−1

± 2.55× 10−3

- - - - - - - - - - - -
[25985, 128, 4]

8.07 × 10−1

± 1.72 × 10−3

- - - - - - - - - - - -
[10325, 128, 32, 2]

requires much longer training time. More critically, KAN fails to train effectively on text datasets
using sparse vectorized data instances rescaled via bag-of-words and TF-IDF. These observations
reveal major deficiencies in KAN’s model design not discovered nor reported in the previous paper
[51], which may pose challenges for it in replacing MLP as a new base model for more complex
learning scenarios.

All implementations of RPN in the above experiments have been included in the TINYBIG tutorials,
allowing readers to rapidly reproduce the reported experimental scores.

7.2.7 Data Expansion and Reconciled Parameter Visualization

To interpret the learning process and obtained results, we illustrate the data expansion results along
with the learned parameters of an image from MNIST in Figure 16. For this visualization, we build
a 1-layered RPN with Taylor’s expansion (order 2), identity reconciliation, and zero remainder
functions. From the testing set, we randomly pick one image with label 0. Prior to expansion, RPN
flattens and normalizes the input image into a vector of length 784, using mean-std normalization
(with mean: 0.1307 and std: 0.3081).
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Figure 16: An illustration of image with label 0 from MNIST dataset. Plat (a): Taylor’s order 1
expansion; Plot (b): Taylor’s order 2 expansion; Plot (c): parameter corresponding to output neuron
of label 0 for order 1 expansion; and Plot (d): parameter corresponding to output of label 0 for order
2 expansion.

The Taylor’s expansion function extends the input image vector from length 784 to a much longer
vector of length 784 + 784 × 784, representing Taylor’s order 1 and order 2 expansions as shown
in Plots (a) and (b), respectively. The RPN model correctly classifies this expanded vector. Plots
(c) and (d) display the extracted parameters that project the expanded vector (including both order 1
and 2 expansions) to the output neuron corresponding to label 0.

Plots (a) and (b) demonstrate that the expansion output contains multiple copies of the input image,
re-scaled by each pixel value. After mean-std normalization, pixels in the images may have both
positive and negative values. As illustrated in Plot (b), pixels with large positive values will increase
the image grayscale values, while negative values will invert the image grayscales from light to
dark and vice versa. The parameters indicate that both order 1 and order 2 expansions contribute
effectively to generating the correct output predictions.
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Typically, we expect pixels denoting object location and shapes to be more important and assigned
larger weights, which aligns with the parameters observed in Plot (c). However, Plot (d) reveals an
unexpected observations: for pixel values in the order 2 expansions, particularly for image copies
re-scaled by pixels in the central dark regions, they are assigned much larger weights. This suggests
that, after expansions, the model can capture and utilize high-order signals from seemingly less
important pixels which may deliver the correct classification results.

In addition to the images with label 0 illustrated in Figure 16, we also randomly selected images
with labels 1 through 9 and visualized their expansions and learned parameters. These visualizations
are presented in Figures 23-31 in Appendix Section A.3. Consistent patterns are observed across
images with different labels. Readers may refer to these visualizations in the Appendix for more
comprehensive information.

7.3 Probabilistic Dependency Inference

According to the descriptions introduced in the previous sections, equipped with the probabilistic
expansion functions, RPN is capable to learn the probabilistic dependency relationships among
the input variables (of both input features and output labels). In addition to the above continuous
function approximation and discrete data classification tasks, in this part, we will investigate the
effectiveness of RPN for the probabilistic dependency relationship inference task.

7.3.1 Datasets Description and Experiment Setups

Table 8: Statistics of classic machine learning tabular datasets. The datasets are partitioned into
training and testing sets with 10-fold cross validation. The training and testing instance numbers for
each fold are also reported in the table.

Classic Machine Learning Tabular Datasets
Iris Species Pima Indians Diabetes Banknote

Instance # 150 768 1,372
Train # 135 691 1,234
Test # 15 77 137

Feature # 4 8 4
Class # 3 2 2

In this subsection, we will investigate the effectiveness of RPN in inferring probabilistic depen-
dency relationships using three canonical tabular datasets. The basic statistical information of these
datasets are summarized in Table 8. The Iris Species is a multi-class dataset, while the other two
involve binary class instead. For all three datasets, we employ 10-fold cross-validation, allocating
90% of the instances to the training set and the remaining 10% to the testing set. To assess the classi-
fication performance of all comparative methods, we utilize Accuracy as our quantitative evaluation
metric.

In the following sections, we will first present the quantitative results of RPN and other benchmark
methods in classifying these tabular datasets. Subsequently, we will elucidate the learned probabilis-
tic dependency relationships among feature and label variables, as inferred by these comparative
methods, focusing on the Iris Species dataset as an illustrative example.

7.3.2 The Main Results of RPN on Classic Tabular Data Classification

Table 9 presents a comparative analysis of RPN against several established probabilistic methods,
including naive Bayes (utilizing both Multinomial and Gaussian distributions), Bayesian networks,
and Markov networks. We evaluate RPN using two distinct architectures: (1) RPN with a naive
Laplace probabilistic expansion function, identity reconciliation function, and linear remainder func-
tion; and (2) RPN with a combinatorial Gaussian probabilistic expansion function, identity recon-
ciliation function, and linear remainder function. The dataset is partitioned using the 10-fold cross-
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Table 9: Classification results of classic tabular data classification with probabilistic models. For
each method, we run them with 10 iterations based on the training and testing set partitioned via
the 10-fold cross validation. The average and standard deviation of the obtained accuracy scores are
reported in the table.

Classic Machine Learning Tabular Datasets
Iris Species Pima Indians Diabetes Banknote

Naive Bayes
(Multinomial)

9.00× 10−1

± 1.12× 10−1
6.51× 10−1

± 4.17× 10−2
6.36× 10−1

± 4.61× 10−2

Naive Bayes
(Gaussian)

9.53× 10−1

± 4.26× 10−2
7.56× 10−1

± 4.22× 10−2
8.39× 10−1

± 4.72× 10−2

Bayesian
Network

9.53× 10−1

± 7.91× 10−2
6.64× 10−1

± 5.47× 10−2
9.24× 10−1

± 2.42× 10−2

Markov
Network

9.20× 10−1

± 7.18× 10−2
7.09× 10−1

± 4.17× 10−2
9.02× 10−1

± 4.07× 10−2

RPN
(Naive Prob. Exp.)

9.73 × 10−1

± 3.26 × 10−2
7.74× 10−1

± 3.91× 10−2
9.77× 10−1

± 2.27× 10−2

RPN
(Comb. Prob. Exp)

9.67× 10−1

± 4.47× 10−2
7.80 × 10−1

± 3.36 × 10−2
9.79 × 10−1

± 2.18 × 10−2

validation, and the Accuracy scores for each method across these 10 iterations are reported as “mean
± std” in the table.

The results indicate that RPN, employing both naive and combinatorial probabilistic expansion
functions, consistently outperforms the other methods. Specifically, RPN with naive Laplace expan-
sion and identity reconciliation functions demonstrates superior parameter learning and performance
compared to naive Bayes methods. Furthermore, RPN with combinatorial Gaussian expansion and
identity reconciliation functions exhibits enhanced capability in learning dependency relationships
among feature and label variables, consistently surpassing the performance of Bayesian and Markov
networks. These findings substantiate the efficacy of RPN in inferring the probabilistic dependency
relationships of the feature variables and classifying the data instances.

7.3.3 Probabilistic Dependency Relationship Visualization

In addition to the quantitative effectiveness evaluations, we also visualize the relationships learned
by the these different probabilistic methods on the Iris Species dataset, as illustrated in Figure 17.
For the Bayesian network, we employ Hill Climb Search to learn the network structure from the
training data, utilizing the Bayesian Information Criterion as the scoring function. For the Markov
network, we need to manually define the variable clique and the factorization approach. In this
experiment, all feature variables in the dataset are designated as the clique, with the factorization
function based on data instance appearance counts. To facilitate this approach, float features are pre-
partitioned and categorized into discrete bins. For RPN, we extract the elements with the k largest
positive coefficients and k smallest negative coefficients to define the dependency graphs.

As shown in Plots (a) and (c) of Figure 17, the manually crafted variable relationships indicate that
“Iris Species” (the label) is determined by all feature variables (“Sepal Length”, “Sepal Width”,
“Petal Length”, and “Petal Width”) for both naive Bayes and Markov network models. The Markov
network additionally considers relationships among the feature variables. In contrast, Bayesian net-
work and RPN method, based on learned results from training data, extract different dependency
relationships. In the Bayesian network, the “Iris Species” label is determined by “Petal Length |
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(a) naive Bayes (b) Bayesian Network

(c) Markov Network (d) Reconciled Polynomial Network
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Figure 17: An illustration of dependency relationships infered by different methods on the Iris
Species dataset. In the plots, Sepal Length, Sepal Width, Petal Length and Petal Width denote the
feature variables, and Iris Species denotes the label variable of the Iris dataset.

Sepal Length” and “Petal Width | Sepal Width”. For RPN method, the label is determined by “Petal
Length | (Petal Width, Sepal Width)” and “Sepal Length | (Petal Width, Sepal Width)”. We use the
notation “A | B” to represent the dependency of variable A on B, borrowing from conditional prob-
ability notation. The probabilistic dependency relationships learned by RPN method align more
closely with the feature variable correlations for different label instances in the Iris dataset, as illus-
trated in Figure 18.

The visualized plots in Figure 17 reveal that RPN can learn more complex probabilistic depen-
dency relationships among variables, effectively elucidating its learning process and classification
results. However, we also observe certain limitations in the current RPN model. The static nature
of the current probabilistic expansion functions, which rely on manually defined distributions and
pre-provided distribution hyper-parameters, may present challenges when applied to more intricate
probabilistic dependency relationships. Addressing this limitation will be a key focus in future work
of RPN.

8 Interpretations of the RPN Model Design

In addition to the above empirical evaluations, in this section, we will discuss the interpretations of
our model design from various perspectives, encompassing technical machine learning, and biolog-
ical neuroscience. Through these discussions, we aim to illustrate the motivations and advantages
inherent in RPN model design.

8.1 Theoretic Machine Learning Interpretations

As introduced in the previous section, the RPN model is composed of the data expansion function,
parameter reconciliation function and the remainder function. Each of these components functions
plays a crucial role in shaping the RPN model, striking a balance among model capacity, learning
feasibility and performance robustness.

8.1.1 Understanding RPN from VC-Dimension

According to the Vapnik-Chervonenkis theory [75, 7], to evaluate the quality of the RPN model
g(x|w), we compute the introduced errors by comparing g(x|w) against the underlying function
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Figure 18: An illustration about the correlations of the pairwise features in the Iris dataset. The
scatter dots in different colors denote the data instances of different classes.

f(x) with the input data space D ⊂ R
m. This space encompasses all data instances, including

those seen in the training set T and unseen instances in D \ T :

∫
x∈D

p(x) ∥g(x|w) − f(x)∥ dx︸ ︷︷ ︸
overall error L

=
∫
x∈T

p(x) ∥g(x|w) − f(x)∥ dx︸ ︷︷ ︸
empirical error Lem

+
∫
x∈D\T

p(x) ∥g(x|w) − f(x)∥ dx︸ ︷︷ ︸
expected error Lexp

, (95)

where p(x) denotes the probability density function for drawing instance from the input data space
D and ∥·∥ denotes a norm measuring the difference between the outputs of f(x) and g(x|w). As
indicated by the equation, the overall error L measuring the difference between the model g(x|w)
and the underlying unknown mapping f(x) consists of two parts: (1) the empirical error Lem

calculated on the training set T , and (2) the expected error Lexp calculated on unseen data instances
from D \ T , both of which are closely related to the VC-dimension of the model.

As illustrated by the curves in Figure 19, as the VC-dimension of a model increases, the model will
have a greater capacity (and complexity) and the training error will gradually decrease. Meanwhile,
for complex models in higher VC-dimensions, the testing errors of the model on unseen data will
first decrease, reaching the harmonious “sweet spot”, and then increase in a U-shape. In addition to
the curves we borrowed from the VC-theory, we also add a red curve denoting the learning cost. As
the VC-dimension increases and the model becomes more complex, without necessary regulations
on the parameters, the learning cost of the model (in terms of time, space, data consumptions in
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Figure 19: An illustration of VC dimension and model learning: the x-axis represents the VC-
dimension, where the blue curve denotes the model training errors, the black curve represents the
model capacity, and the green dashed curve signifies the lower bound of test error. The red curve,
not previously present in VC theory, represents the added aspect of model learning and operating
costs (e.g., required computational hardwares, time and space costs, and energy consumptions).

the training phase, as well as subsequent manual tuning for alignment and safety) will increase
dramatically.

For RPN model, the VC-dimension is determined by both the data expansion function and pa-
rameter reconciliation function, and potentially the remainder function if it is non-zero. All these
component functions collectively influence the model’s complexity and learning capacity. By pro-
jecting data instances through the expansion function into higher-dimensional space, we augment the
model’s representational complexity. However, instead of directly training the model in this high-
dimensional space, the parameter reconciliation function acts as a regulator of model complexity,
enabling effective operation on data instances reduced from high-dimensional spaces while mitigat-
ing learning costs and guiding testing errors toward an optimal range. Of course, in real practice, the
perfect balance between the expansion and reconciliation functions is hard to achieve, which may
unnecessarily lead to learning errors and performance degradation, but the remainder function can
compensate for potential deficiencies and improve the robustness of RPN.

8.1.2 Understanding RPN from Vector Space Projection

The layers in RPN model form a sequence of data projections across spaces. Initially, data is ex-
panded from the input space to an intermediate higher-dimensional space via the expansion function,
and subsequently, it is projected back to a lower-dimensional output space through the inner prod-
uct with the reconciled parameters. This process enables the RPN model to effectively handle data
instances that pose classification challenges in the original input space. By undergoing these pro-
jections, separation of the data instances in the output space can be much easier compared to the
original input space.

As illustrated in Figure 20, we present a simplified example comprising data instances from two
classes: blue circles represent the negative class, while red squares represent the positive class.
The data expansion function projects these instances from the two-dimensional input space to an
intermediate space, such as a three-dimensional space. Here, positive and negative instances are
projected to the top and bottom regions of the newly created x3 dimension, respectively. Rather
than performing classification directly in this intermediate space, which would incur unnecessary
high learning costs, our RPN model further projects the data instances back to the output space by
excluding the x2 dimension. This is accomplished through an inner product with the reconciled
parameters. Separation of such instances in the output space is considerably easier than in the
original input space.

55



Data 
Expansion

Reconciled 
Parameters

Inner-product

<latexit sha1_base64="rL3Da/d7neIDXLRNrGwzijzqlMM=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsKtCTaWGLiAQlcyN6yBxt29y67e0Zy4TfYWGiMrT/Izn/jAlco+JJJXt6bycy8MOFMG9f9dgobm1vbO8Xd0t7+weFR+fikreNUEeqTmMeqG2JNOZPUN8xw2k0UxSLktBNObud+55EqzWL5YKYJDQQeSRYxgo2V/OrTwKsOyhW35i6A1omXkwrkaA3KX/1hTFJBpSEca93z3MQEGVaGEU5npX6qaYLJBI9oz1KJBdVBtjh2hi6sMkRRrGxJgxbq74kMC62nIrSdApuxXvXm4n9eLzXRdZAxmaSGSrJcFKUcmRjNP0dDpigxfGoJJorZWxEZY4WJsfmUbAje6svrpF2veY1a475ead7kcRThDM7hEjy4gibcQQt8IMDgGV7hzZHOi/PufCxbC04+cwp/4Hz+AMcsjgU=</latexit>x1

<latexit sha1_base64="CuS6/RAUym5RbSCHTBgIfpNln+k=">AAAB7HicbVA9TwJBEJ3FL8Qv1NJmI5hYkTsKtCTaWGLiAQlcyN6yBxv29i67e0Zy4TfYWGiMrT/Izn/jAlco+JJJXt6bycy8IBFcG8f5RoWNza3tneJuaW//4PCofHzS1nGqKPNoLGLVDYhmgkvmGW4E6yaKkSgQrBNMbud+55EpzWP5YKYJ8yMykjzklBgredWnQb06KFecmrMAXiduTiqQozUof/WHMU0jJg0VROue6yTGz4gynAo2K/VTzRJCJ2TEepZKEjHtZ4tjZ/jCKkMcxsqWNHih/p7ISKT1NApsZ0TMWK96c/E/r5ea8NrPuExSwyRdLgpTgU2M55/jIVeMGjG1hFDF7a2Yjoki1Nh8SjYEd/XlddKu19xGrXFfrzRv8jiKcAbncAkuXEET7qAFHlDg8Ayv8IYkekHv6GPZWkD5zCn8Afr8AcixjgY=</latexit>x2

<latexit sha1_base64="rL3Da/d7neIDXLRNrGwzijzqlMM=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsKtCTaWGLiAQlcyN6yBxt29y67e0Zy4TfYWGiMrT/Izn/jAlco+JJJXt6bycy8MOFMG9f9dgobm1vbO8Xd0t7+weFR+fikreNUEeqTmMeqG2JNOZPUN8xw2k0UxSLktBNObud+55EqzWL5YKYJDQQeSRYxgo2V/OrTwKsOyhW35i6A1omXkwrkaA3KX/1hTFJBpSEca93z3MQEGVaGEU5npX6qaYLJBI9oz1KJBdVBtjh2hi6sMkRRrGxJgxbq74kMC62nIrSdApuxXvXm4n9eLzXRdZAxmaSGSrJcFKUcmRjNP0dDpigxfGoJJorZWxEZY4WJsfmUbAje6svrpF2veY1a475ead7kcRThDM7hEjy4gibcQQt8IMDgGV7hzZHOi/PufCxbC04+cwp/4Hz+AMcsjgU=</latexit>x1

<latexit sha1_base64="CuS6/RAUym5RbSCHTBgIfpNln+k=">AAAB7HicbVA9TwJBEJ3FL8Qv1NJmI5hYkTsKtCTaWGLiAQlcyN6yBxv29i67e0Zy4TfYWGiMrT/Izn/jAlco+JJJXt6bycy8IBFcG8f5RoWNza3tneJuaW//4PCofHzS1nGqKPNoLGLVDYhmgkvmGW4E6yaKkSgQrBNMbud+55EpzWP5YKYJ8yMykjzklBgredWnQb06KFecmrMAXiduTiqQozUof/WHMU0jJg0VROue6yTGz4gynAo2K/VTzRJCJ2TEepZKEjHtZ4tjZ/jCKkMcxsqWNHih/p7ISKT1NApsZ0TMWK96c/E/r5ea8NrPuExSwyRdLgpTgU2M55/jIVeMGjG1hFDF7a2Yjoki1Nh8SjYEd/XlddKu19xGrXFfrzRv8jiKcAbncAkuXEET7qAFHlDg8Ayv8IYkekHv6GPZWkD5zCn8Afr8AcixjgY=</latexit>x2

<latexit sha1_base64="/qaSqTMwlvPbTR6sT3vIffmZyjc=">AAAB7HicbVBNTwIxEJ3FL8Qv1KOXRjDxRHYxQY9ELx4xcZEENqRbutDQbTdt10g2/AYvHjTGqz/Im//GAntQ8CWTvLw3k5l5YcKZNq777RTW1jc2t4rbpZ3dvf2D8uFRW8tUEeoTyaXqhFhTzgT1DTOcdhJFcRxy+hCOb2b+wyNVmklxbyYJDWI8FCxiBBsr+dWn/kW1X664NXcOtEq8nFQgR6tf/uoNJEljKgzhWOuu5yYmyLAyjHA6LfVSTRNMxnhIu5YKHFMdZPNjp+jMKgMUSWVLGDRXf09kONZ6Eoe2M8ZmpJe9mfif101NdBVkTCSpoYIsFkUpR0ai2edowBQlhk8swUQxeysiI6wwMTafkg3BW355lbTrNa9Ra9zVK83rPI4inMApnIMHl9CEW2iBDwQYPMMrvDnCeXHenY9Fa8HJZ47hD5zPH8o2jgc=</latexit>x3

<latexit sha1_base64="rL3Da/d7neIDXLRNrGwzijzqlMM=">AAAB7HicbVA9TwJBEJ3DL8Qv1NJmI5hYkTsKtCTaWGLiAQlcyN6yBxt29y67e0Zy4TfYWGiMrT/Izn/jAlco+JJJXt6bycy8MOFMG9f9dgobm1vbO8Xd0t7+weFR+fikreNUEeqTmMeqG2JNOZPUN8xw2k0UxSLktBNObud+55EqzWL5YKYJDQQeSRYxgo2V/OrTwKsOyhW35i6A1omXkwrkaA3KX/1hTFJBpSEca93z3MQEGVaGEU5npX6qaYLJBI9oz1KJBdVBtjh2hi6sMkRRrGxJgxbq74kMC62nIrSdApuxXvXm4n9eLzXRdZAxmaSGSrJcFKUcmRjNP0dDpigxfGoJJorZWxEZY4WJsfmUbAje6svrpF2veY1a475ead7kcRThDM7hEjy4gibcQQt8IMDgGV7hzZHOi/PufCxbC04+cwp/4Hz+AMcsjgU=</latexit>x1

<latexit sha1_base64="/qaSqTMwlvPbTR6sT3vIffmZyjc=">AAAB7HicbVBNTwIxEJ3FL8Qv1KOXRjDxRHYxQY9ELx4xcZEENqRbutDQbTdt10g2/AYvHjTGqz/Im//GAntQ8CWTvLw3k5l5YcKZNq777RTW1jc2t4rbpZ3dvf2D8uFRW8tUEeoTyaXqhFhTzgT1DTOcdhJFcRxy+hCOb2b+wyNVmklxbyYJDWI8FCxiBBsr+dWn/kW1X664NXcOtEq8nFQgR6tf/uoNJEljKgzhWOuu5yYmyLAyjHA6LfVSTRNMxnhIu5YKHFMdZPNjp+jMKgMUSWVLGDRXf09kONZ6Eoe2M8ZmpJe9mfif101NdBVkTCSpoYIsFkUpR0ai2edowBQlhk8swUQxeysiI6wwMTafkg3BW355lbTrNa9Ra9zVK83rPI4inMApnIMHl9CEW2iBDwQYPMMrvDnCeXHenY9Fa8HJZ47hD5zPH8o2jgc=</latexit>x3

Figure 20: An Interpretations of RPN from vector space projection perspective.

Compared to MLP, the expansion function provides RPN with greater learning capacity to handle
more complex tasks. Meanwhile, compared to KAN, the parameter reconciliation function allows
RPN to fit the dataset with fewer parameters, thus making it more robust to overfitting and feasi-
ble for handling complex learning tasks. RPN and kernel SVM both operate within the expanded
space. However, unlike kernel SVM, which directly trains the model with data instances in the
expanded space, the reduction back to the output space for learning helps address the “curse-of-
dimensionality” and high learning cost issues.

8.2 Biological Neuroscience Interpretations

Compared to the other existing base models mentioned in this paper, the RPN model introduced in
this paper provides a closer approximation to current biological nervous systems. The expansion,
reconciliation and remainder functions used in the design of the RPN model correspond to the
functioning mechanisms of biological neurons.

8.2.1 Biological Neuron Structure and Membrane Potential

Unlike other existing neural models (including MLP and KAN, as well as their derivatives), RPN
provides a more accurate modeling of the real-world biological neurons from the neuroscience per-
spective. Most readers interested in this paper may possess the basic background knowledge about
neuroscience that supports the design of artificial neurons and neural network models. However, to
help readers understand the RPN model better, we will briefly describe the structure and working
mechanisms of biological neurons in this section.

Figure 21: Different neuron structures.

As illustrated in Figure 21, the biological ner-
vous systems for animal creatures (e.g., mam-
mals, birds, fishes, insects and even worms)
consists of a large number of inter-connected
biological neurons, which are highly special-
ized for the processing and transmitting cellular
signals. These neurons’ cell body includes sev-
eral important parts as shown in Figure 22 (a),
including the soma, nucleus, dendrite, axon,
myelin sheath, Schwann cell, node of Ranvier
and axon terminal. The neuron’s axon can
branch out and connect to a large number of
downstream neurons’ dendrites at sites called
synapses, whose zoomed-in structure is illus-
trated in Figure 22 (c). The neuron structure we show in the plot is called the “multiploar neuron”,
which possesses a single axon and many dendrites. Besides this, as illustrated in Figure 21, there
also exist many other neuron structures, such as “bipolar neuron”, “pseudo-unipolar neuron” and
“unipolar neurons”, which will form neurons with different functions. Also neurons in real nervous
systems are not arranged layer by layer in an orderly manner; their connections can be somewhat
“chaotic”, with many “skip-layer” connections for faster signal transmission.
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Figure 22: An illustration of connected neuron cells and the neuron cell membrane potential. For the
neuron cell, we also provide a zoomed-in view to depict both the neuron membrane with its various
channels allowing the ion propagation and the synapse connections releasing neurotransmitters that
enable neurotransmissions.

These structures of biological neurons all contribute to the complex functioning of the creatures’
nervous systems. Like all other animals’ cells, the neuron cells are also enclosed in a plasma mem-
brane, which has the structure of a lipid bilayer with many types of large protein molecules (e.g.,
the ion channels and ion pumps) embedded in it as shown in Plot (b). Biological neurons are just
like a “salty banana”, with more sodium ions (purple circles in Plot (b)) outside the cell and more
potassium ions (green triangles in Plot (b)) inside. The membrane serves as both an insulator and a
diffusion barrier to the movement of ions. Ion pump proteins break down ATP for energy to actively
push ions across the membrane and establish concentration gradients across the membrane; while
the ion channels allow ions to move across the membrane down those concentration gradients. Ion
pumps and ion channels are electrically equivalent to a set of batteries and resistors inserted in the
membrane, creating a voltage between the two sides of the membrane, which is called the membrane
potential. As illustrated in Plot (e), at the resting state, a neuron’s membrane potential is sitting in
millivolts, ranging from −40mV to −80mV.

The ion channels embedded in the neuron membrane are integral membrane proteins with a pore,
which can be either open or closed for ion passage. Ion channels can be classified by how they
respond to their environment: (a) ligand-gated channels open once receiving some certain types of
chemical neurotransmitters, (b) voltage-dependent channels change their permeability according to
the membrane potential, and (c) mechanically gated channels open due to physical distortion of the
cell membrane (e.g., sense of touch). When a channel is open, ions permeate through the channel
pore down the transmembrane concentration gradient for that particular ion, such as sodium moves
in and potassium moves out, causing the neuron membrane to change.

We all know that the “neurons receiving inputs greater than their inherent thresholds will be acti-
vated to transmit signals to surround neurons connected to them”, but the details of such a process
can be more complicated than readers may imagine. As illustrated in Plots (c) and (d), through
the synapses, the neuron’s axon terminal will releases synaptic vesicles, each containing numerous
chemical neurotransmitters that act on different connected dendrite branches to open ligand-gated
channels. There exist various categories of neurotransmitters, e.g., amino acids, gasotransmitters,
monoamines, trace amines, peptides, purines, catecholamines and many others. Each category of
neurotransmitter delivers different types of cellular signals to other connected neurons. If a neuron’s
dendrite receives sufficient chemical neurotransmitters from the connected axon terminals via the
synapses, it will gradually open more ligand-gated channels, causing the nearby membrane poten-
tial to change.
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Furthermore, once the membrane potential near the dendrites exceeds a certain threshold, e.g.,
−55mV, the voltage-dependent sodium channels in the membrane will be abruptly triggered to
open, allowing a large influx of sodium ions that rapidly increases the membrane potential near the
dendrites from −55mV to +30mV, i.e., phase 1 as shown in Plot (e). This triggers more sequential
channels to open, producing a greater electric current across the cell membrane from dendrites to the
axon, thereby activating the neuron to transmit signals to other neurons. As the membrane potential
reaches its peak, voltage-sensitive potassium channels will open, which will dramatically increase
the membrane’s potassium permeability and drive the membrane voltage back down to −70mV, i.e.,
phase 2 in Plot (e). Afterwards, these voltage-dependent sodium/potassium channels shut down, and
ion pumps will take the control to gradually restore neurons to their resting potential, as shown in
phase 3 of Plot (e).

8.2.2 Understanding RPN from Biological Neuroscience

We provide the detailed descriptions of biological neurons and their working mechanisms above to
highlight the following key points to our readers:

• Membrane Potentials of Neuron: Biological neurons’ membrane potential defines the
neuron cell state, which is much more complex than the simple 0/1 (active/inactive) states
previously understood. Neurons maintain their membrane potential states through a sophis-
ticated biological mechanism (see Plot (b) in Figure 22). Neurons’ membrane potentials
typically form a periodic spiking curve (see Plot (e) in Figure 22).

• Synapses of Neuron: Biological neuron synapses transmit signals through physical media,
with axon terminals releasing neurotransmitters of various categories (see Plots (c) and (d)
in Figure 22), which act only on specific ion gates located on the dendrite branches. The
combination of neurotransmitters and ligand-gated ion channels determines the effective-
ness of signal transmission between neurons.

• Connections of Neuron: Biological neurons’ structure are vey complex and diverse, and
each of them may have specific functions depending on their positions in the nervous
system (see Figure 21). Biological neuron connections are extensive and often appear
“chaotic”. Besides being arranged in an orderly layer-by-layer manner, “skip-layer” neu-
ron connections are common in nervous systems for faster and robust signal transmission.

The working mechanisms of biological neurons summarized above actually inspire the design of the
RPN model in its current representation form. The data expansion function models the neuron’s
cell states by projecting them into a high-dimensional space rather than the original space. This
approach allows us to model the complex state, including the spiking curve of neurons, moving
beyond the simple binary 0/1 state or an integer in the range [0, 1]. The parameter expansion function
adapts the parameters to accommodate the high-dimensional states of neurons, facilitating signal
transmission to connected neurons. This models the fabrication of neurotransmitter-ligand-gated ion
channels in forming synapses for signal transmission. Furthermore, the remainder function allows
skip-layer data projection, mirroring the extensive connections of biological neurons for faster signal
transmission.

9 Intellectual Merits, Limitations and Future Work of RPN

In this section, we will briefly discuss the merits and limitations of the RPN model in various
aspects, which may also illustrate some potential future research opportunities on the RPN model.

9.1 Intellectual Merits of RPN

In this paper, we introduce the RPN model that can unify several machine learning and deep learning
base models with a canonical representation. The RPN model has transformative impacts on the
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current and future academic research and industrial development of machine learning, deep learning
and artificial intelligence. We summarize the intellectual merits of RPN from several different
perspectives as follows:

Theoretical Merits: The RPN model disentangles data from parameters and formalizes several
machine learning and deep learning base model architectures as the inner product of expanded data
instances with the reconciled parameters, derived according to the Taylor’s theorem. From the ma-
chine learning theory perspective, the data expansion functions are responsible for input data vector
projection from one base space to another; and the parameter reconciliation functions will accommo-
date the parameters dimensions and regularize them to avoid overfitting according to the VC-theory.
Meanwhile, from the biological neuroscience perspective, the data expansion functions models the
complex states of neurons before, during and after the activations; and the parameter reconcilia-
tion functions fabricate the neurotransmitters and their ligand-gated ion channels to compose the
synapses. The RPN model architecture makes it much easier to interpret the physical meanings
of both the results and the learning process from both theoretic machine learning and biological
neuroscience perspectives.

Technical Merits: The RPN model provides a unified representation for both classic machine learn-
ing models and the family of deep models under one framework. We use non-deep machine learn-
ing models, such as SVM and probabilistic models (including naive Bayes, Bayesian network and
Markov network), and deep models, such as MLP and KAN, as examples to illustrate how they
can be represented with RPN. Additionally, the multi-layer, multi-head, and multi-channel design
of RPN provides significant flexibility for future model design and deployment in various applica-
tions. The unified representations in RPN greatly simplify the design and development of future
machine learning, deep learning, and artificial intelligence models and systems.

Computational Merits: The disentanglement of data from parameters at each layer in RPN allows
their computations to be separately routed to different chips, machines, and cloud platforms, protect-
ing both data privacy and model parameter security. Additionally, RPN’s reliance on inner product
computations facilitates easy parallelization across various computational platforms, systems, and
hardware. The RPN model can be effectively trained using the conventional error backpropaga-
tion. Gradient computation and parameter updates can be performed locally with minimal message
passing across different computational facilities, enabling the deployment of RPN in real-world
large-scale systems and models with significantly reduced computational resources and energy con-
sumption.

9.2 Limitations and Future Work of RPN

We have observed several limitations with the current RPN model based on our experiences in both
framework development and experimental testing. These limitations can also highlight potential
future research opportunities and suggest development directions for readers. We summarize these
limitations from various perspectives as follows:

Modeling Limitations: While we aim to unify existing machine and deep learning base models
with RPN, it’s important to note that there still exist a large number of models we haven’t covered
or investigated regarding how to represent them with RPN. Examples include tree family models
(e.g., decision tree, gradient boosted trees, and random forest), ensemble learning models (e.g., bag-
ging, boosting, and stacking-based models), unsupervised learning models (e.g., k-means, principal
component analysis), and reinforcement learning models (e.g., q-learning, policy gradient methods).
Many of these models can potentially be represented with RPN; for instance, decision trees can be
interpreted with conditional probabilities, and ensemble learning models can be modeled in RPN
with the multi-head multi-channel mechanism. However, we leave the exploration of these models
for future research endeavors.

Efficiency Limitations: The data expansion functions in RPN expand data instances to a higher
dimension to better approximate the desired target function. Although we can utilize deep ar-
chitectures to constrain the dimensionality of the expansion space at each layer, the intermediate
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representations of data instances may still consume significant computational resources, and deep
architectures can introduce higher calculation time overhead. For instance, if we plan to use RPN to
build language models with longer context widths, certain expansion functions (e.g., combinatorial
expansion and those defined with the Kronecker product) may not be applicable. Furthermore, in the
design of data expansion functions, parameter reconciliation functions, and remainder functions, we
did not consider any techniques for optimizing performance on high-performance computing (HPC)
systems, which could potentially address efficiency issues. We intend to investigate these areas in
future work.

Learning Limitations: The training of the RPN model in this paper still relies on the error back-
propagation algorithm, which has faced criticism in recent years due to its high computational costs,
slow convergence, and sensitivity to hyperparameters and initializations. Additionally, the higher-
dimensional expansions may lead to wider outputs for input data instances, potentially causing learn-
ing problems such as overfitting and performance robustness issues. However, the disentanglement
of parameters from data into different functions at each layer presents an opportunity to explore
new model training algorithms, a discussion which is not included in this paper. We consider to
explore and design new learning algorithms for RPN as one of the most important directions for
future research.

10 Related Work

This section briefly discusses the other existing work related to the RPN model introduced in this
paper, including the existing machine learning and deep learning base models, and the techniques
utilized for designing the component functions in RPN.

10.1 Machine Learning and Deep Learning Base Models

In this paper, we compare RPN with two main types of machine learning base models, i.e., prob-
abilistic models and support vector machine, and two main types of deep learning base models,
i.e., multi-layer perceptron and Kolmogorov-Arnold network. We will briefly introduce their devel-
opment history and some important papers that made critical technical breakthroughs about them
below.

10.1.1 Probabilistic Models

In classic machine learning, lots of models have been proposed based on probability theory. Among
them, naive Bayes [36], based on the assumption that the features are conditionally independent
given the target class, is one of the most well-known linear probabilistic classifiers designed based
on the Bayes’ theorem. Different from naivey Bayes, Markov network [6] and Bayesian network
[59] models the dependency relationships among the variables as an inter-connected variable net-
work. A random field can be said to be a Markov random field if it satisfy the Markov property
[67]. Markov network, also known as Markov random field and Markov model, was proposed by
Besag [6] to represent the spatial interactions of lattice systems based on the Hammersley-Clifford
Theorem. As one of the pioneers of Bayesian networks and probabilistic models, in his book [59],
Pearl introduced the networks for plausible inference for probabilistic reasoning in intelligent sys-
tems. For calculating and updating the likelihood in the Bayesian network, Pearl proposed the Belief
Propagation algorithm in [58]. Expectation-maximization algorithm initially introduced in [15] was
used for probabilistic graphical model training afterwards as proposed in [29]. All these afore-
mentioned probabilistic models have comprehensively introduced in the book written by Koller and
Friedman [39].

10.1.2 Support Vector Machines

Support vector machine (SVM), as a supervised max-margin model, was mainly developed by
Vladimir Vapnik and his colleagues. In [12, 77], Cortes and Vapnik introduced support-vector net-

60



work as a binary classification model. With the kernel tricks [8], Boser, Guyon and Vapnik proposed
to project input vectors that are non-linearly separable into a high-dimensional space, within which
the data instances can be separated with a linear decision surface. For the training of SVM with
kernel tricks, [8] addressed the optimization problem within the dual space instead to identify the
support vectors closet to the decision boundary. Meanwhile, as the training data size increases, the
costs of training SVM will increase dramatically. Platt [62] proposed the Sequential Minimal Opti-
mization (SMO) algorithm which breaks the quadratic programming (QP) problem in SVM training
into a series of smallest possible QP problems, which made fast SVM training possible. Besides
classification tasks, Vapnik, Golowich and Smola also reported the performance of SVM for func-
tion approximation, regression estimation and signal processing in [76]. Another follow-up work [5]
used support vector machine for the clustering task. All these model and training algorithms related
to SVM were implemented by Chang and Lin in the LIBSVM package [10].

10.1.3 Multi-layer Perceptron

Multi-layer perceptron (MLP) denotes the perceptron model [63] with a multi-layered architecture
built based on the MP-neurons [53]. To address the non-linear XOR problem proposed by Minsky
[54], hidden layers were added to the single-layered perceptron to compose a multi-layered network
with the feedforward architecture by Rosenblatt [34]. The deep MLP learned with stochastic gra-
dient descent was proposed by Amari in [1], which introduced a five-layered feedforward network
with two learning layers. As to the theoretic foundation, Cybenko introduced the universal approx-
imation theorem in [13] and the multilayer perceptron with hidden layers was demonstrated to be
a universal approximator [31]. For the training of deep MLP models, the modern version of back-
propagation algorithm designed based on the chain-rule was published by Linnainmaa in his master
thesis [49], and was later evaluated with experimental analysis by Rumelhart, Hinton and Williams
in [65]. Nowadays, MLP still serves as the base model for most of the current deep learning models.

10.1.4 Kolmogorov-Arnold Network

Unlike MLPs with predefined, static activation functions, the recent Kolmogorov-Arnold network
(KAN) model [51] proposes to learn the activation functions attached to neuron-neuron connections.
KAN was designed based on the Kolmogorov-Arnold superposition theorem [40, 22] and models
multivariate continuous functions as a superposition of the two-argument addition of continuous
functions of one variable. Prior to the KAN mode, many other prior works [47, 69, 41] have pro-
posed to build neural networks based on the Kolmogorov-Arnold theorem already. Based on the
Kolmogorov-Arnold superposition theorem, [55] investigates the error bounds of deep ReLU net-
works; [25] studies the expressive power of ReLU deep neural networks in function approximation;
and [20] investigates the interpretability of spline-based neural networks. Besides the continuous
function approximation, [3] studied the Kolmogorov spline network for image processing. In ad-
dition, the Kolmogorov-Arnold superposition theorem has also been demonstrated to be capable to
address the curse of dimension when approximating high-dimensional functions [43].

10.2 Component Function Design

In this paper, we introduce a tripartite set of compositional component functions - data expansion,
parameter reconciliation, and remainder functions - that serve as the building blocks for the RPN
model. These component functions’ designing and definitions are closely related to the techniques
used for data augmentation, parameter-efficient learning and residual learning. We will briefly in-
troduce the related work of these topics below.

10.2.1 Data Augmentation

In addition to the kernel tricks [8] and Taylor’s expansion based machine learning preliminary work
introduced in the previous Section 3.4, some data expansion functions introduced in this paper are
also inspired by the data augmentation techniques proposed for deep learning model training. Data
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augmentation [93] is a frequently used approach for model learning with incomplete or imbalanced
data, which creates new data instances via minor modifications on existing data. Some frequently
used data augmentation techniques used in current deep models include geometric transformation
[42, 84], space transformation [17, 50], noise injection [17] and adversarial instance creation [21].
Frequently used geometric transformation techniques include flipping, rotation, scaling, translation
and reflection in the input space, which may improve the models in combating against the overfit-
ting issues [42]. The space transformation and noise injection techniques introduced in [17] per-
formances the data augmentation not in the input space but in a learned feature space instead [50].
Specifically, via adding noise, interpolation and extrapolation, the data augmentation can improve
model learning performance. In addition, in [21] and other follow-up works [68, 80, 90], adversarial
data augmentation was utilized to improve the model generalization and robustness. A comprehen-
sive survey of related data augmentation techniques used for image and language data and models
is has also been provided in [84, 93].

10.2.2 Parameter-Efficient Learning

Many of the parameter reconciliation functions introduced in this paper are actually defined based
on the current parameter-efficient fine-tuning (PEFT) techniques proposed for language models.
PEFT offers an effective solution by reducing the number of fine-tuning parameters and memory
usage while achieving comparable performance to full fine-tuning. Current PEFT methods can be
roughly categorized into several types, such as adapter-based methods [32, 48], parameter masking
based methods [91, 71], low-rank matrix decomposition based methods [33, 74]. Adapter based
fine-tuning methods propose to freeze pre-trained model parameters and introduce new extra train-
able parameters for task-specific fine-tuning [32, 48, 60, 64]. Besides adding these new parameters
as adapters, researchers also propose to pre-pend these new parameters to the input data as prompts
instead, such as [45, 44]. The masking based fine-tuning methods reduce the number of fine-tuned
parameters by selecting a subset of pre-trained parameters critical to downstream tasks while dis-
carding unimportant ones. The parameter masking can be applied to either the pre-trained parame-
ters [91, 71] or the delta parameters [2, 83]. Based on the adapters, LoRA (Low-Rank Adaptation)
[33] and its derivatives [74, 88, 94] propose to decompose the parameter matrix into the product of
low-rank sub-matrices instead. Instead of composing the parameters into low-rank matrix products,
[85] proposes to further reduce the parameters with the hypercomplex multiplication of small-sized
sub-matrices instead; [28] integrates both LoRA with the hypercomplex multiplication for parame-
ter matrix decomposition. A recent survey [82] provides a more comprehensive introduction about
the latest parameter-efficient model learning methods for pre-trained language models.

10.2.3 Residual Learning

The remainder function derived from Taylor’s expansions plays a very similar role in the RPN model
as the skip-layer connections used in residual learning. Cross-layer residual connections [70, 26]
have been extensively in building current deep learning models, which greatly improves the model
stability, robustness and trainability. Prior to the ResNet, Schmidhuber et al. proposed the Highway
networks [70] that allow unimpeded information flow across several layers for building deep models
with gradient based training algorithms. Inspired by Highway network, He et al. introduced the
ResNet [26] for building deep CNN models to achieve about 28% improvement on the CoCo dataset.
Several follow-up work [27, 79, 46, 35] investigate the interpretation and theoretic analysis of the
ResNet and residual learning. In [27], He et al. analyze the propagation formulation behind the
residual building block in both forward and backward propagations; [79] interprets residual networks
as a collection of many paths of differing length, where the shortest paths are leveraged during
training; [46] interprets ResNet layers as iterative refinement of learned representations; and [35]
investigates that residual connections naturally encourage features of residual blocks to move along
the negative gradient of loss. In addition to CNN, residual learning and the skip-layer highway
connections have become a standard paradigm in deep learning. It has been extensively used in the
follow-up deep models, including Transformer [78], BERT [16], Graph-BERT [87], ViT [18], Stable
Diffusion [30] and almost all the recent large language models.

62



11 Conclusion

In this paper, we introduce the Reconciled Polynomial Network (RPN) as a novel base model for
deep function learning tasks. By incorporating multi-layers, multi-heads and multi-channels, RPN
has a versatile model architecture and attains superior modeling capability for diverse deep function
learning tasks on various multi-modality data. What’s more, through specific selections of compo-
nent functions - including data expansion, parameter reconciliation and remainder functions - RPN
provides a unifying framework for several influential base models into a canonical representation.
To demonstrate the effectiveness of RPN, this paper presents the extensive empirical experiments
conducted across numerous benchmark datasets for various deep function learning tasks. The results
consistently demonstrate RPN’s superior performance compared to other base models.

Compared with other existing machine learning and deep learning base models, RPN presents sig-
nificant advantages across several critical dimensions, including generalizability, interpretability,
and reusability. Without any prior assumptions on data modalities, RPN serves as a general model
applicable to multi-modal data from the outset. Furthermore, through the disentanglement of data
from parameters using the expansion, reconciliation, and remainder functions, RPN achieves greater
interpretability compared to existing base models. Moreover, the component functions designed and
learned in RPN is inherently well-suited for reusability and continual learning. In addition to the
empirical evaluations via experiments on benchmark datasets, this paper also discusses the interpre-
tations of the RPN model design from both technical machine learning and biological neuroscience
perspectives.

To facilitate the adoption, implementation and experimentation of RPN, we have released a com-
prehensive toolkit named TINYBIG in this paper. The TINYBIG toolkit provides a rich library of
pre-implemented component functions introduced in this paper, which allows researchers to rapidly
design, customize, and effectively deploy RPN models across various learning tasks.
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A Appendix

A.1 Performance of RPN Variants for Continuous Function Fitting and Approximation

Descriptions: In the following Tables 10-12, we provide the experimental results of RPN on the ele-
mentary function, composite function and Feynman function datasets, respectively. Several different
variants of RPN are compared:

• RPN-Exd-LoRR-Linear: The RPN model with extended expansion function, involving
Taylor’s expansion function and Bspline expansion function, low-rank reconciliation func-
tion and linear remainder function.

• RPN-Exd-LoRR-Zero: The RPN model with similar component function as RPN-Exd-
LoRR-Linear, but replace the remainder with zero remainder function instead.

• RPN-Nstd-LoRR-Linear: The RPN model with nested expansion function, involving
Taylor’s expansion function and Bspline expansion function, low-rank reconciliation func-
tion and linear remainder function. The nested expansion will dramatically increase the
intermediate expansion space dimensions, it may involve more learnable parameters in the
model.

• RPN-Nstd-LoRR-Zero: The RPN model with similar component function as RPN-Nstd-
LoRR-Linear, but replace the remainder with zero remainder function instead.

Table 10: Elementary Function Fitting with RPN Variants.

Eq.
RPN

(Extended Expansion-LoRR-Linear)
RPN

(Extended Expansion-LoRR-Zero)
RPN

(Nested Expansion-LoRR-Linear)
RPN

(Nested Expansion-LoRR-Zero)

E.0 1.92 × 10−8 ± 1.30 × 10−8 8.40 × 10−8 ± 1.12 × 10−7 1.35 × 10−8 ± 6.69 × 10−9 1.93 × 10−8 ± 1.15 × 10−8

E.1 6.42 × 10−2 ± 3.08 × 10−2 8.67 × 10−2 ± 8.22 × 10−2 1.00 × 10−1 ± 1.22 × 10−1 1.03 × 10−1 ± 1.40 × 10−1

E.2 4.08 × 10−7 ± 4.65 × 10−7 2.56 × 10−7 ± 1.48 × 10−7 9.90 × 10−8 ± 5.91 × 10−8 5.06 × 10−8 ± 3.53 × 10−8

E.3 5.51 × 10−7 ± 4.69 × 10−7 3.81 × 10−6 ± 6.56 × 10−6 1.08 × 10−6 ± 1.53 × 10−6 1.26 × 10−6 ± 1.37 × 10−6

E.4 4.64 × 10−5 ± 4.69 × 10−5 7.05 × 10−5 ± 3.12 × 10−5 1.87 × 10−5 ± 2.34 × 10−5 1.80 × 10−5 ± 2.37 × 10−5

E.5 7.28 × 10−8 ± 6.79 × 10−8 4.95 × 10−8 ± 4.39 × 10−8 3.99 × 10−9 ± 1.85 × 10−9 5.67 × 10−9 ± 3.20 × 10−9

E.6 4.32 × 10−8 ± 2.43 × 10−8 1.25 × 10−7 ± 1.34 × 10−7 1.41 × 10−8 ± 8.39 × 10−9 5.93 × 10−9 ± 3.98 × 10−9

E.7 9.25 × 10−8 ± 5.53 × 10−8 6.02 × 10−8 ± 4.46 × 10−8 6.88 × 10−9 ± 4.46 × 10−9 1.67 × 10−8 ± 2.32 × 10−8

E.8 2.05 × 10−6 ± 2.22 × 10−6 1.65 × 10−6 ± 2.06 × 10−6 1.26 × 10−6 ± 6.89 × 10−7 5.16 × 10−7 ± 2.97 × 10−7

E.9 3.57 × 10−6 ± 3.84 × 10−6 4.49 × 10−5 ± 5.15 × 10−5 1.48 × 10−6 ± 8.78 × 10−7 3.73 × 10−7 ± 2.32 × 10−7

E.10 8.42 × 10−9 ± 7.09 × 10−9 4.86 × 10−9 ± 2.17 × 10−9 1.13 × 10−9 ± 2.69 × 10−10 3.02 × 10−9 ± 1.65 × 10−9

E.11 1.56 × 10−7 ± 9.03 × 10−8 1.99 × 10−7 ± 1.65 × 10−7 8.83 × 10−8 ± 7.14 × 10−8 5.43 × 10−8 ± 5.25 × 10−8

E.12 5.28 × 10−7 ± 6.84 × 10−7 7.00 × 10−7 ± 4.65 × 10−7 1.11 × 10−7 ± 9.78 × 10−8 4.47 × 10−8 ± 3.42 × 10−8

E.13 2.61 × 10−8 ± 1.79 × 10−8 5.73 × 10−8 ± 6.20 × 10−8 4.23 × 10−9 ± 2.15 × 10−9 4.55 × 10−9 ± 2.73 × 10−9

E.14 4.94 × 10−9 ± 5.74 × 10−9 5.13 × 10−9 ± 3.94 × 10−9 1.32 × 10−9 ± 3.41 × 10−10 4.34 × 10−9 ± 2.82 × 10−9

E.15 4.85 × 10−6 ± 2.36 × 10−6 8.94 × 10−6 ± 4.55 × 10−6 4.75 × 10−7 ± 2.04 × 10−7 5.38 × 10−7 ± 5.62 × 10−7

E.16 2.61 × 10−5 ± 2.20 × 10−5 3.00 × 10−5 ± 3.47 × 10−5 4.21 × 10−5 ± 4.52 × 10−5 2.51 × 10−5 ± 3.04 × 10−5
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Table 11: Composite Function Fitting with RPN Variants.

Eq.
RPN

(Extended Expansion-LoRR-Linear)
RPN

(Extended Expansion-LoRR-Zero)
RPN

(Nested Expansion-LoRR-Linear)
RPN

(Nested Expansion-LoRR-Zero)

C.0 1.18 × 10−1 ± 1.20 × 10−1 3.25 × 10−2 ± 3.34 × 10−2 6.45 × 10−3 ± 3.49 × 10−3 2.73 × 10−3 ± 3.32 × 10−3

C.1 3.71 × 10−7 ± 3.64 × 10−7 6.73 × 10−7 ± 3.04 × 10−7 1.76 × 10−7 ± 1.20 × 10−7 1.84 × 10−7 ± 1.19 × 10−7

C.2 1.23 × 10−6 ± 8.21 × 10−7 1.33 × 10−6 ± 1.29 × 10−6 2.40 × 10−6 ± 3.59 × 10−6 1.54 × 10−6 ± 9.85 × 10−7

C.3 9.36 × 10−5 ± 7.99 × 10−5 1.17 × 10−4 ± 1.18 × 10−4 1.03 × 10−5 ± 1.57 × 10−5 3.86 × 10−6 ± 2.99 × 10−6

C.4 4.40 × 10−7 ± 3.09 × 10−7 4.40 × 10−7 ± 4.59 × 10−7 1.56 × 10−7 ± 1.02 × 10−7 1.09 × 10−7 ± 6.68 × 10−8

C.5 4.95 × 10−6 ± 5.14 × 10−6 1.48 × 10−6 ± 1.69 × 10−6 3.70 × 10−7 ± 3.73 × 10−7 7.24 × 10−8 ± 4.28 × 10−8

C.6 6.53 × 10−2 ± 5.58 × 10−2 3.72 × 10−2 ± 3.95 × 10−2 6.25 × 10−3 ± 5.42 × 10−3 2.25 × 10−3 ± 2.49 × 10−3

C.7 6.67 × 10−7 ± 3.73 × 10−7 4.97 × 10−7 ± 5.01 × 10−7 7.72 × 10−8 ± 7.22 × 10−8 2.94 × 10−8 ± 1.37 × 10−8

C.8 3.78 × 10−7 ± 2.98 × 10−7 5.70 × 10−8 ± 1.98 × 10−8 1.40 × 10−8 ± 6.12 × 10−9 1.64 × 10−8 ± 9.49 × 10−9

C.9 8.77 × 10−5 ± 5.73 × 10−5 1.88 × 10−4 ± 2.20 × 10−4 5.59 × 10−6 ± 3.63 × 10−6 4.55 × 10−6 ± 3.99 × 10−6

C.10 4.68 × 10−7 ± 3.11 × 10−7 3.40 × 10−7 ± 4.77 × 10−7 5.30 × 10−8 ± 3.02 × 10−8 3.58 × 10−8 ± 1.18 × 10−8

C.11 9.17 × 10−7 ± 9.75 × 10−7 3.57 × 10−7 ± 2.56 × 10−7 2.02 × 10−7 ± 1.09 × 10−7 4.87 × 10−7 ± 8.71 × 10−7

C.12 3.63 × 10−5 ± 2.25 × 10−5 3.74 × 10−5 ± 1.88 × 10−5 4.11 × 10−5 ± 4.54 × 10−5 7.17 × 10−5 ± 8.87 × 10−5

C.13 2.83 × 10−6 ± 2.03 × 10−6 6.97 × 10−7 ± 2.29 × 10−7 2.45 × 10−7 ± 1.35 × 10−7 8.56 × 10−8 ± 3.81 × 10−8

C.14 3.45 × 10−7 ± 4.58 × 10−7 3.50 × 10−7 ± 3.89 × 10−7 2.22 × 10−8 ± 1.04 × 10−8 1.69 × 10−8 ± 2.42 × 10−8

C.15 2.56 × 103 ± 4.35 × 103 2.47 × 103 ± 4.39 × 103 1.20 × 104 ± 2.18 × 104 1.17 × 104 ± 2.11 × 104

C.16 3.42 × 10−8 ± 2.79 × 10−8 1.74 × 10−9 ± 1.09 × 10−9 2.10 × 10−9 ± 1.58 × 10−9 1.48 × 10−9 ± 1.32 × 10−9

72



Table 12: Feynman Function Fitting with RPN Variants.

Eq.
RPN

(Extended Expansion-LoRR-Linear)
RPN

(Extended Expansion-LoRR-Zero)
RPN

(Nested Expansion-LoRR-Linear)
RPN

(Nested Expansion-LoRR-Zero)

F.0 1.63 × 10−6 ± 1.31 × 10−6 8.48 × 10−5 ± 6.93 × 10−5 5.45 × 10−7 ± 5.88 × 10−7 1.41 × 10−4 ± 4.19 × 10−6

F.1 1.60 × 10−5 ± 1.25 × 10−5 5.02 × 10−5 ± 4.33 × 10−6 3.97 × 10−5 ± 4.80 × 10−5 7.01 × 10−4 ± 2.40 × 10−5

F.2 6.92 × 10−5 ± 2.42 × 10−5 6.59 × 10−5 ± 1.01 × 10−5 9.99 × 10−5 ± 1.32 × 10−5 3.29 × 10−3 ± 1.69 × 10−4

F.3 1.36 × 101 ± 8.35 × 100 5.02 × 101 ± 1.31 × 101 1.20 × 102 ± 9.14 × 101 4.76 × 102 ± 4.21 × 101

F.4 8.47 × 10−1 ± 1.21 × 10−1 5.66 × 100 ± 9.33 × 10−1 2.00 × 101 ± 7.81 × 100 3.67 × 101 ± 5.25 × 100

F.5 4.94 × 10−3 ± 1.57 × 10−3 7.72 × 10−2 ± 1.29 × 10−1 1.28 × 10−2 ± 6.23 × 10−3 2.20 × 100 ± 2.36 × 10−2

F.6 8.68 × 10−4 ± 3.84 × 10−4 3.34 × 10−3 ± 3.00 × 10−4 2.37 × 10−2 ± 2.07 × 10−2 4.16 × 10−1 ± 1.81 × 10−2

F.7 9.92 × 10−4 ± 4.82 × 10−4 2.47 × 10−3 ± 2.05 × 10−4 2.62 × 10−2 ± 1.95 × 10−2 3.32 × 10−1 ± 9.83 × 10−3

F.8 6.59 × 10−5 ± 5.13 × 10−5 2.75 × 10−2 ± 1.90 × 10−2 4.91 × 10−5 ± 7.83 × 10−5 1.42 × 10−1 ± 2.49 × 10−3

F.9 4.98 × 10−4 ± 6.95 × 10−4 1.27 × 10−2 ± 2.49 × 10−2 4.83 × 10−4 ± 1.78 × 10−4 3.92 × 10−2 ± 1.99 × 10−3

F.10 7.27 × 10−2 ± 7.00 × 10−2 7.13 × 10−1 ± 2.95 × 10−2 1.23 × 100 ± 5.38 × 10−1 2.95 × 100 ± 2.31 × 10−1

F.11 1.58 × 100 ± 8.47 × 10−1 2.61 × 100 ± 9.01 × 10−1 2.88 × 100 ± 4.33 × 10−1 4.33 × 100 ± 3.73 × 10−1

F.12 6.83 × 10−6 ± 2.53 × 10−6 1.08 × 10−5 ± 6.83 × 10−6 7.39 × 10−6 ± 6.04 × 10−6 5.45 × 10−3 ± 6.94 × 10−4

F.13 3.89 × 10−2 ± 3.06 × 10−2 4.56 × 10−1 ± 3.37 × 10−1 6.00 × 10−1 ± 4.57 × 10−1 4.12 × 100 ± 2.04 × 10−2

F.14 2.13 × 10−3 ± 4.51 × 10−4 3.08 × 10−3 ± 6.18 × 10−4 4.08 × 10−2 ± 2.46 × 10−2 1.95 × 10−1 ± 1.57 × 10−2

F.15 2.99 × 100 ± 5.68 × 10−1 1.80 × 101 ± 1.06 × 100 9.47 × 101 ± 4.85 × 101 2.25 × 102 ± 1.42 × 101

F.16 1.03 × 100 ± 7.47 × 10−1 1.66 × 100 ± 5.41 × 10−1 9.40 × 10−1 ± 6.44 × 10−1 2.33 × 100 ± 2.13 × 10−1

F.17 6.98 × 10−1 ± 3.27 × 10−1 3.71 × 100 ± 8.11 × 10−1 1.39 × 101 ± 9.53 × 100 4.18 × 101 ± 6.45 × 100

F.18 9.29 × 10−5 ± 3.06 × 10−5 3.20 × 10−4 ± 1.19 × 10−4 4.08 × 10−3 ± 4.96 × 10−3 1.20 × 10−2 ± 2.10 × 10−3

F.19 2.85 × 10−2 ± 3.35 × 10−3 1.42 × 10−1 ± 5.50 × 10−3 4.10 × 10−2 ± 6.58 × 10−3 5.06 × 10−1 ± 9.98 × 10−2

F.20 9.93 × 10−5 ± 2.70 × 10−5 1.18 × 10−4 ± 2.03 × 10−5 6.98 × 10−5 ± 3.37 × 10−5 8.50 × 10−5 ± 8.81 × 10−6

F.21 1.59 × 10−4 ± 1.08 × 10−4 3.90 × 10−4 ± 5.99 × 10−5 2.43 × 10−4 ± 2.52 × 10−4 1.37 × 10−2 ± 7.85 × 10−4

F.22 4.89 × 10−3 ± 2.59 × 10−3 6.61 × 10−3 ± 1.97 × 10−3 2.18 × 10−2 ± 1.05 × 10−2 1.89 × 10−1 ± 1.87 × 10−2

F.23 1.24 × 10−1 ± 1.02 × 10−1 3.98 × 10−1 ± 7.39 × 10−2 1.11 × 100 ± 7.73 × 10−1 4.58 × 101 ± 2.09 × 100

F.24 7.10 × 100 ± 2.92 × 100 1.17 × 101 ± 7.65 × 10−1 1.02 × 102 ± 4.24 × 101 1.31 × 102 ± 3.35 × 100

F.25 3.08 × 10−2 ± 9.13 × 10−3 5.17 × 10−2 ± 1.40 × 10−3 4.99 × 100 ± 6.20 × 100 2.45 × 101 ± 1.98 × 100

F.26 2.66 × 10−1 ± 1.64 × 10−1 6.78 × 100 ± 2.06 × 100 8.10 × 10−1 ± 3.09 × 10−1 1.33 × 101 ± 5.73 × 10−1
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A.2 Ablation Studies of RPN on MNIST Dataset

Descriptions: In this section, we provide the performance of RPN with different component func-
tion combinations on the MNIST dataset. We enumerate different combinations of the expansion,
reconciliation and remainder functions studied in the previous Figures 13-14 in Section 7.2. For
each of these combinations, we provide the testing accuracy, model parameter number and time cost
of training RPN. In addition, since RPN allows the optional pre-processing and post-processing
functions to the expansion function, we also investigate the impacts of such optional functions in the
table, where the layer-norm is analyzed as the default function.

Specifically, the following Tables 13-33 will be organized according to the data expansion functions
used in composing RPN. Each table presents the results learned for each individual expansion func-
tion combined with different reconciliation and remainder functions. The reported results in these
tables have also been summarized in the previous Figures 13-14 already.
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Table 13: Performance analysis of RPN with the identity expansion function and different reconcil-
iation and remainder functions on the MNIST dataset.

Expansion Reconciliation Remainder Parameter# Pre-Layer-Norm Post-Layer-Norm Time Cost Accuracy

identity

identity

zero 50816

False False 1.44 × 103 9.27 × 10−1

True False 1.37 × 103 9.30 × 10−1

False True 1.39 × 103 9.30 × 10−1

True True 9.19 × 102 9.30 × 10−1

linear 101632

False False 7.66 × 102 9.77 × 10−1

True False 7.72 × 102 9.76 × 10−1

False True 7.76 × 102 9.76 × 10−1

True True 8.14 × 102 9.77 × 10−1

masking

zero 50816

False False 1.04 × 103 9.27 × 10−1

True False 1.03 × 103 9.30 × 10−1

False True 1.05 × 103 9.30 × 10−1

True True 1.04 × 103 9.30 × 10−1

linear 101632

False False 9.21 × 102 9.79 × 10−1

True False 9.25 × 102 9.78 × 10−1

False True 9.28 × 102 9.78 × 10−1

True True 9.14 × 102 9.78 × 10−1

duplicated-padding

zero 12704

False False 1.04 × 103 4.77 × 10−1

True False 1.04 × 103 4.78 × 10−1

False True 1.04 × 103 4.78 × 10−1

True True 8.92 × 102 4.78 × 10−1

linear 63520

False False 9.12 × 102 9.73 × 10−1

True False 9.14 × 102 9.73 × 10−1

False True 9.16 × 102 9.73 × 10−1

True True 8.57 × 102 9.74 × 10−1

lorr

zero 1844

False False 8.85 × 102 6.63 × 10−1

True False 8.89 × 102 6.45 × 10−1

False True 8.94 × 102 6.45 × 10−1

True True 8.98 × 102 6.41 × 10−1

linear 52660

False False 8.07 × 102 9.78 × 10−1

True False 8.13 × 102 9.77 × 10−1

False True 8.18 × 102 9.77 × 10−1

True True 8.16 × 102 9.78 × 10−1

hypercomplex

zero 12712

False False 8.85 × 102 8.61 × 10−1

True False 8.90 × 102 8.60 × 10−1

False True 8.92 × 102 8.60 × 10−1

True True 8.96 × 102 8.61 × 10−1

linear 63528

False False 8.06 × 102 9.78 × 10−1

True False 8.13 × 102 9.78 × 10−1

False True 8.16 × 102 9.78 × 10−1

True True 8.17 × 102 9.78 × 10−1

lphm

zero 930

False False 8.96 × 102 6.37 × 10−1

True False 9.02 × 102 6.68 × 10−1

False True 9.05 × 102 6.68 × 10−1

True True 9.03 × 102 6.67 × 10−1

linear 51746

False False 8.26 × 102 9.77 × 10−1

True False 8.36 × 102 9.77 × 10−1

False True 8.32 × 102 9.77 × 10−1

True True 8.44 × 102 9.78 × 10−1

hypernet

zero 512

False False 9.05 × 102 8.26 × 10−1

True False 1.10 × 103 7.24 × 10−1

False True 1.10 × 103 7.24 × 10−1

True True 1.11 × 103 6.97 × 10−1

linear 51328

False False 9.01 × 102 8.94 × 10−1

True False 1.08 × 103 8.68 × 10−1

False True 1.08 × 103 8.68 × 10−1

True True 1.08 × 103 8.67 × 10−1
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Table 14: Performance analysis of RPN with the reciprocal expansion function and different recon-
ciliation and remainder functions on the MNIST dataset.

Expansion Reconciliation Remainder Parameter# Pre-Layer-Norm Post-Layer-Norm Time Cost Accuracy

reciprocal

identity

zero 50816

False False 1.51 × 103 2.51 × 10−1

True False 1.62 × 103 1.73 × 10−1

False True 1.56 × 103 1.24 × 10−1

True True 1.65 × 103 1.30 × 10−1

linear 101632

False False 1.58 × 103 6.59 × 10−1

True False 1.59 × 103 3.09 × 10−1

False True 1.61 × 103 9.63 × 10−1

True True 1.62 × 103 9.61 × 10−1

masking

zero 50816

False False 1.69 × 103 2.07 × 10−1

True False 1.69 × 103 1.51 × 10−1

False True 1.70 × 103 1.11 × 10−1

True True 1.71 × 103 1.19 × 10−1

linear 101632

False False 1.66 × 103 3.74 × 10−1

True False 1.67 × 103 3.86 × 10−1

False True 1.68 × 103 9.65 × 10−1

True True 1.70 × 103 9.70 × 10−1

duplicated-padding

zero 12704

False False 1.68 × 103 2.11 × 10−1

True False 1.72 × 103 1.51 × 10−1

False True 1.70 × 103 1.28 × 10−1

True True 1.68 × 103 1.35 × 10−1

linear 63520

False False 1.65 × 103 3.37 × 10−1

True False 1.70 × 103 1.50 × 10−1

False True 1.68 × 103 7.26 × 10−1

True True 1.68 × 103 9.68 × 10−1

lorr

zero 1844

False False 1.64 × 103 1.56 × 10−1

True False 1.65 × 103 1.34 × 10−1

False True 1.66 × 103 1.26 × 10−1

True True 1.67 × 103 1.24 × 10−1

linear 52660

False False 1.61 × 103 9.28 × 10−1

True False 1.64 × 103 6.13 × 10−1

False True 1.64 × 103 9.75 × 10−1

True True 1.65 × 103 9.76 × 10−1

hypercomplex

zero 12712

False False 1.64 × 103 1.60 × 10−1

True False 1.66 × 103 1.52 × 10−1

False True 1.67 × 103 1.36 × 10−1

True True 1.67 × 103 1.40 × 10−1

linear 63528

False False 1.64 × 103 7.17 × 10−1

True False 1.62 × 103 6.08 × 10−1

False True 1.65 × 103 7.79 × 10−1

True True 1.67 × 103 8.49 × 10−1

lphm

zero 930

False False 1.70 × 103 1.25 × 10−1

True False 1.72 × 103 1.34 × 10−1

False True 1.71 × 103 1.34 × 10−1

True True 1.72 × 103 1.33 × 10−1

linear 51746

False False 1.67 × 103 8.63 × 10−1

True False 1.67 × 103 8.37 × 10−1

False True 1.70 × 103 9.28 × 10−1

True True 1.73 × 103 9.76 × 10−1

hypernet

zero 512

False False 1.20 × 103 1.12 × 10−1

True False 1.36 × 103 1.65 × 10−1

False True 1.36 × 103 9.40 × 10−2

True True 1.38 × 103 2.30 × 10−1

linear 51328

False False 1.16 × 103 1.05 × 10−1

True False 1.38 × 103 1.61 × 10−1

False True 1.37 × 103 7.64 × 10−1

True True 1.44 × 103 7.98 × 10−1
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Table 15: Performance analysis of RPN with the taylor expansion function and different reconcili-
ation and remainder functions on the MNIST dataset.

Expansion Reconciliation Remainder Parameter# Pre-Layer-Norm Post-Layer-Norm Time Cost Accuracy

taylor

identity

zero 39429760

False False 2.28 × 103 9.83 × 10−1

True False 2.35 × 103 9.85 × 10−1

False True 2.54 × 103 9.85 × 10−1

True True 2.57 × 103 9.85 × 10−1

linear 39480576

False False 2.26 × 103 9.81 × 10−1

True False 2.26 × 103 9.81 × 10−1

False True 2.47 × 103 9.82 × 10−1

True True 2.47 × 103 9.82 × 10−1

masking

zero 39429760

False False 3.10 × 103 9.83 × 10−1

True False 3.11 × 103 9.85 × 10−1

False True 3.21 × 103 9.85 × 10−1

True True 3.10 × 103 9.85 × 10−1

linear 39480576

False False 3.02 × 103 9.82 × 10−1

True False 3.01 × 103 9.82 × 10−1

False True 3.07 × 103 9.83 × 10−1

True True 3.02 × 103 9.82 × 10−1

duplicated-padding

zero 9857440

False False 2.28 × 103 5.08 × 10−1

True False 2.25 × 103 5.09 × 10−1

False True 2.44 × 103 5.10 × 10−1

True True 2.50 × 103 5.09 × 10−1

linear 9908256

False False 2.17 × 103 7.28 × 10−1

True False 2.17 × 103 5.27 × 10−1

False True 2.33 × 103 5.24 × 10−1

True True 2.39 × 103 5.22 × 10−1

lorr

zero 1239348

False False 2.11 × 103 8.65 × 10−1

True False 2.09 × 103 8.69 × 10−1

False True 2.27 × 103 8.30 × 10−1

True True 2.31 × 103 8.75 × 10−1

linear 1290164

False False 1.99 × 103 9.79 × 10−1

True False 2.01 × 103 9.78 × 10−1

False True 2.23 × 103 9.79 × 10−1

True True 2.23 × 103 9.78 × 10−1

hypercomplex

zero 9857448

False False 2.21 × 103 9.78 × 10−1

True False 2.24 × 103 9.79 × 10−1

False True 2.41 × 103 9.78 × 10−1

True True 2.42 × 103 9.79 × 10−1

linear 9908264

False False 2.16 × 103 9.82 × 10−1

True False 2.11 × 103 9.81 × 10−1

False True 2.29 × 103 9.81 × 10−1

True True 2.29 × 103 9.81 × 10−1

lphm

zero 619682

False False 2.18 × 103 7.74 × 10−1

True False 2.21 × 103 7.72 × 10−1

False True 2.33 × 103 7.72 × 10−1

True True 2.34 × 103 7.76 × 10−1

linear 670498

False False 2.06 × 103 9.80 × 10−1

True False 2.05 × 103 9.79 × 10−1

False True 2.18 × 103 9.80 × 10−1

True True 2.17 × 103 9.80 × 10−1

hypernet

zero 512

False False 5.12 × 103 1.92 × 10−1

True False 5.13 × 103 1.93 × 10−1

False True 3.84 × 103 1.54 × 10−1

True True 3.83 × 103 2.28 × 10−1

linear 51328

False False 4.95 × 103 6.31 × 10−1

True False 4.95 × 103 7.72 × 10−1

False True 5.07 × 103 7.62 × 10−1

True True 5.07 × 103 7.83 × 10−1
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Table 16: Performance analysis of RPN with the fourier expansion function and different reconcili-
ation and remainder functions on the MNIST dataset.

Expansion Reconciliation Remainder Parameter# Pre-Layer-Norm Post-Layer-Norm Time Cost Accuracy

fourier

identity

zero 508160

False False 1.85 × 103 1.06 × 10−1

True False 1.85 × 103 8.95 × 10−1

False True 1.74 × 103 1.07 × 10−1

True True 1.76 × 103 8.97 × 10−1

linear 558976

False False 1.71 × 103 1.05 × 10−1

True False 1.72 × 103 9.47 × 10−1

False True 1.72 × 103 1.07 × 10−1

True True 1.73 × 103 9.45 × 10−1

masking

zero 508160

False False 1.80 × 103 1.09 × 10−1

True False 1.79 × 103 8.87 × 10−1

False True 1.81 × 103 1.06 × 10−1

True True 1.82 × 103 8.75 × 10−1

linear 558976

False False 1.77 × 103 5.21 × 10−1

True False 1.77 × 103 9.57 × 10−1

False True 1.81 × 103 3.58 × 10−1

True True 1.80 × 103 9.48 × 10−1

duplicated-padding

zero 127040

False False 1.80 × 103 1.11 × 10−1

True False 1.81 × 103 4.53 × 10−1

False True 1.85 × 103 1.07 × 10−1

True True 1.82 × 103 4.46 × 10−1

linear 177856

False False 1.78 × 103 2.49 × 10−1

True False 1.77 × 103 9.59 × 10−1

False True 1.80 × 103 1.94 × 10−1

True True 1.82 × 103 8.72 × 10−1

lorr

zero 17108

False False 1.76 × 103 6.17 × 10−1

True False 1.75 × 103 4.26 × 10−1

False True 1.77 × 103 6.11 × 10−1

True True 1.78 × 103 5.12 × 10−1

linear 67924

False False 1.72 × 103 9.64 × 10−1

True False 1.75 × 103 9.79 × 10−1

False True 1.73 × 103 9.36 × 10−1

True True 1.73 × 103 9.77 × 10−1

hypercomplex

zero 127048

False False 1.76 × 103 7.62 × 10−1

True False 1.76 × 103 7.05 × 10−1

False True 1.74 × 103 7.61 × 10−1

True True 1.75 × 103 7.18 × 10−1

linear 177864

False False 1.70 × 103 9.77 × 10−1

True False 1.70 × 103 9.77 × 10−1

False True 1.72 × 103 9.77 × 10−1

True True 1.73 × 103 9.78 × 10−1

lphm

zero 8562

False False 1.75 × 103 7.00 × 10−1

True False 1.73 × 103 5.52 × 10−1

False True 1.75 × 103 8.06 × 10−1

True True 1.75 × 103 5.73 × 10−1

linear 59378

False False 1.72 × 103 9.76 × 10−1

True False 1.72 × 103 9.77 × 10−1

False True 1.71 × 103 9.77 × 10−1

True True 1.73 × 103 9.77 × 10−1

hypernet

zero 512

False False 8.85 × 102 1.07 × 10−1

True False 1.24 × 103 1.19 × 10−1

False True 1.24 × 103 1.07 × 10−1

True True 1.28 × 103 1.17 × 10−1

linear 51328

False False 8.64 × 102 2.81 × 10−1

True False 1.14 × 103 1.90 × 10−1

False True 1.19 × 103 2.90 × 10−1

True True 1.17 × 103 2.01 × 10−1
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Table 17: Performance analysis of RPN with the hyperbolic expansion function and different rec-
onciliation and remainder functions on the MNIST dataset.

Expansion Reconciliation Remainder Parameter# Pre-Layer-Norm Post-Layer-Norm Time Cost Accuracy

hyperbolic

identity

zero 152448

False False 1.86 × 103 2.55 × 10−1

True False 1.88 × 103 9.72 × 10−1

False True 1.85 × 103 9.39 × 10−1

True True 1.86 × 103 9.75 × 10−1

linear 203264

False False 1.74 × 103 3.11 × 10−1

True False 1.74 × 103 9.73 × 10−1

False True 1.72 × 103 9.26 × 10−1

True True 1.75 × 103 9.75 × 10−1

masking

zero 152448

False False 1.90 × 103 8.95 × 10−1

True False 1.89 × 103 9.69 × 10−1

False True 1.87 × 103 9.58 × 10−1

True True 1.89 × 103 9.71 × 10−1

linear 203264

False False 1.76 × 103 8.29 × 10−1

True False 1.77 × 103 9.74 × 10−1

False True 1.74 × 103 9.44 × 10−1

True True 1.76 × 103 9.76 × 10−1

duplicated-padding

zero 38112

False False 1.72 × 103 2.68 × 10−1

True False 1.68 × 103 5.02 × 10−1

False True 1.71 × 103 4.93 × 10−1

True True 1.70 × 103 5.02 × 10−1

linear 88928

False False 1.66 × 103 4.08 × 10−1

True False 1.71 × 103 9.68 × 10−1

False True 1.68 × 103 9.53 × 10−1

True True 1.68 × 103 9.76 × 10−1

lorr

zero 5236

False False 1.64 × 103 6.66 × 10−1

True False 1.67 × 103 6.55 × 10−1

False True 1.64 × 103 6.63 × 10−1

True True 1.67 × 103 6.51 × 10−1

linear 56052

False False 1.62 × 103 9.71 × 10−1

True False 1.66 × 103 9.77 × 10−1

False True 1.64 × 103 9.75 × 10−1

True True 1.64 × 103 9.77 × 10−1

hypercomplex

zero 38120

False False 1.65 × 103 7.43 × 10−1

True False 1.68 × 103 7.44 × 10−1

False True 1.67 × 103 7.75 × 10−1

True True 1.68 × 103 7.75 × 10−1

linear 88936

False False 1.64 × 103 9.74 × 10−1

True False 1.65 × 103 9.79 × 10−1

False True 1.63 × 103 9.77 × 10−1

True True 1.68 × 103 9.78 × 10−1

lphm

zero 2626

False False 1.70 × 103 7.25 × 10−1

True False 1.72 × 103 7.16 × 10−1

False True 1.70 × 103 7.27 × 10−1

True True 1.70 × 103 7.09 × 10−1

linear 53442

False False 1.66 × 103 9.71 × 10−1

True False 1.68 × 103 9.75 × 10−1

False True 1.66 × 103 9.71 × 10−1

True True 1.67 × 103 9.75 × 10−1

hypernet

zero 512

False False 7.44 × 102 9.80 × 10−2

True False 9.16 × 102 6.11 × 10−1

False True 9.04 × 102 9.80 × 10−2

True True 9.09 × 102 5.36 × 10−1

linear 51328

False False 7.38 × 102 9.80 × 10−2

True False 9.11 × 102 6.25 × 10−1

False True 8.93 × 102 9.80 × 10−2

True True 8.67 × 102 6.73 × 10−1
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Table 18: Performance analysis of RPN with the arc-hyperbolic expansion function and different
reconciliation and remainder functions on the MNIST dataset.

Expansion Reconciliation Remainder Parameter# Pre-Layer-Norm Post-Layer-Norm Time Cost Accuracy

arc-hyperbolic

identity

zero 152448

False False 1.44 × 103 9.72 × 10−1

True False 1.59 × 103 9.61 × 10−1

False True 1.51 × 103 9.74 × 10−1

True True 1.63 × 103 9.76 × 10−1

linear 203264

False False 1.59 × 103 9.70 × 10−1

True False 1.61 × 103 9.79 × 10−1

False True 1.59 × 103 9.75 × 10−1

True True 1.63 × 103 9.79 × 10−1

masking

zero 152448

False False 1.68 × 103 9.73 × 10−1

True False 1.71 × 103 9.59 × 10−1

False True 1.70 × 103 9.73 × 10−1

True True 1.70 × 103 9.73 × 10−1

linear 203264

False False 1.67 × 103 9.75 × 10−1

True False 1.68 × 103 9.77 × 10−1

False True 1.65 × 103 9.74 × 10−1

True True 1.68 × 103 9.78 × 10−1

duplicated-padding

zero 38112

False False 1.68 × 103 5.01 × 10−1

True False 1.70 × 103 4.99 × 10−1

False True 1.70 × 103 4.99 × 10−1

True True 1.71 × 103 5.03 × 10−1

linear 88928

False False 1.64 × 103 9.69 × 10−1

True False 1.71 × 103 9.74 × 10−1

False True 1.66 × 103 9.73 × 10−1

True True 1.68 × 103 9.72 × 10−1

lorr

zero 5236

False False 1.66 × 103 6.57 × 10−1

True False 1.66 × 103 6.25 × 10−1

False True 1.67 × 103 6.61 × 10−1

True True 1.67 × 103 6.34 × 10−1

linear 56052

False False 1.62 × 103 9.76 × 10−1

True False 1.65 × 103 9.76 × 10−1

False True 1.64 × 103 9.77 × 10−1

True True 1.66 × 103 9.78 × 10−1

hypercomplex

zero 38120

False False 1.66 × 103 7.76 × 10−1

True False 1.68 × 103 7.74 × 10−1

False True 1.70 × 103 7.81 × 10−1

True True 1.69 × 103 7.77 × 10−1

linear 88936

False False 1.65 × 103 9.77 × 10−1

True False 1.66 × 103 9.78 × 10−1

False True 1.68 × 103 9.78 × 10−1

True True 1.67 × 103 9.77 × 10−1

lphm

zero 2626

False False 1.69 × 103 8.33 × 10−1

True False 1.71 × 103 7.19 × 10−1

False True 1.69 × 103 8.57 × 10−1

True True 1.71 × 103 7.19 × 10−1

linear 53442

False False 1.66 × 103 9.75 × 10−1

True False 1.71 × 103 9.75 × 10−1

False True 1.69 × 103 9.75 × 10−1

True True 1.69 × 103 9.75 × 10−1

hypernet

zero 512

False False 7.51 × 102 1.34 × 10−1

True False 9.26 × 102 2.70 × 10−1

False True 9.11 × 102 5.64 × 10−1

True True 8.95 × 102 5.87 × 10−1

linear 51328

False False 7.42 × 102 3.90 × 10−1

True False 8.61 × 102 3.39 × 10−1

False True 8.82 × 102 7.27 × 10−1

True True 8.78 × 102 7.41 × 10−1
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Table 19: Performance analysis of RPN with the trigonometric expansion function and different
reconciliation and remainder functions on the MNIST dataset.

Expansion Reconciliation Remainder Parameter# Pre-Layer-Norm Post-Layer-Norm Time Cost Accuracy

trigonometric

identity

zero 152448

False False 1.80 × 103 2.42 × 10−1

True False 1.86 × 103 4.87 × 10−1

False True 1.84 × 103 1.08 × 10−1

True True 1.89 × 103 8.89 × 10−1

linear 203264

False False 1.78 × 103 1.85 × 10−1

True False 1.80 × 103 5.95 × 10−1

False True 1.78 × 103 4.27 × 10−1

True True 1.78 × 103 9.09 × 10−1

masking

zero 152448

False False 2.00 × 103 3.07 × 10−1

True False 2.04 × 103 3.98 × 10−1

False True 2.01 × 103 1.26 × 10−1

True True 2.04 × 103 8.71 × 10−1

linear 203264

False False 1.92 × 103 2.83 × 10−1

True False 1.92 × 103 5.66 × 10−1

False True 1.92 × 103 7.25 × 10−1

True True 1.91 × 103 9.48 × 10−1

duplicated-padding

zero 38112

False False 2.00 × 103 1.52 × 10−1

True False 2.04 × 103 2.78 × 10−1

False True 2.04 × 103 1.13 × 10−1

True True 2.06 × 103 4.81 × 10−1

linear 88928

False False 1.89 × 103 1.49 × 10−1

True False 1.89 × 103 3.29 × 10−1

False True 1.90 × 103 4.40 × 10−1

True True 1.92 × 103 9.70 × 10−1

lorr

zero 5236

False False 1.82 × 103 2.17 × 10−1

True False 1.84 × 103 1.64 × 10−1

False True 1.86 × 103 1.41 × 10−1

True True 1.85 × 103 3.80 × 10−1

linear 56052

False False 1.76 × 103 8.57 × 10−1

True False 1.79 × 103 7.39 × 10−1

False True 1.78 × 103 9.75 × 10−1

True True 1.77 × 103 9.75 × 10−1

hypercomplex

zero 38120

False False 1.86 × 103 2.31 × 10−1

True False 1.88 × 103 2.36 × 10−1

False True 1.85 × 103 1.25 × 10−1

True True 1.86 × 103 6.21 × 10−1

linear 88936

False False 1.74 × 103 8.58 × 10−1

True False 1.78 × 103 4.98 × 10−1

False True 1.77 × 103 9.73 × 10−1

True True 1.75 × 103 9.74 × 10−1

lphm

zero 2626

False False 1.89 × 103 1.88 × 10−1

True False 1.93 × 103 2.02 × 10−1

False True 1.91 × 103 1.29 × 10−1

True True 1.92 × 103 4.40 × 10−1

linear 53442

False False 1.78 × 103 8.72 × 10−1

True False 1.86 × 103 7.87 × 10−1

False True 1.84 × 103 5.97 × 10−1

True True 1.86 × 103 9.75 × 10−1

hypernet

zero 512

False False 7.50 × 102 1.06 × 10−1

True False 8.92 × 102 1.56 × 10−1

False True 8.93 × 102 1.08 × 10−1

True True 9.19 × 102 3.75 × 10−1

linear 51328

False False 7.31 × 102 1.40 × 10−1

True False 8.78 × 102 2.05 × 10−1

False True 8.68 × 102 3.67 × 10−1

True True 8.52 × 102 4.35 × 10−1
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Table 20: Performance analysis of RPN with the arc-trigonometric expansion function and different
reconciliation and remainder functions on the MNIST dataset.

Expansion Reconciliation Remainder Parameter# Pre-Layer-Norm Post-Layer-Norm Time Cost Accuracy

arc-trigonometric

identity

zero 152448

False False 8.83 × 102 9.66 × 10−1

True False 1.45 × 103 9.52 × 10−1

False True 1.45 × 103 9.68 × 10−1

True True 1.42 × 103 9.72 × 10−1

linear 203264

False False 8.00 × 102 9.66 × 10−1

True False 8.02 × 102 9.78 × 10−1

False True 8.02 × 102 9.67 × 10−1

True True 8.06 × 102 9.79 × 10−1

masking

zero 152448

False False 1.07 × 103 9.73 × 10−1

True False 1.07 × 103 9.52 × 10−1

False True 1.07 × 103 9.73 × 10−1

True True 1.06 × 103 9.68 × 10−1

linear 203264

False False 9.49 × 102 9.73 × 10−1

True False 9.51 × 102 9.77 × 10−1

False True 9.50 × 102 9.76 × 10−1

True True 9.52 × 102 9.77 × 10−1

duplicated-padding

zero 38112

False False 1.05 × 103 5.02 × 10−1

True False 1.06 × 103 4.96 × 10−1

False True 1.06 × 103 4.96 × 10−1

True True 1.06 × 103 5.01 × 10−1

linear 88928

False False 9.27 × 102 9.69 × 10−1

True False 9.35 × 102 9.71 × 10−1

False True 9.34 × 102 9.73 × 10−1

True True 9.34 × 102 9.75 × 10−1

lorr

zero 5236

False False 9.11 × 102 6.31 × 10−1

True False 9.16 × 102 6.02 × 10−1

False True 9.14 × 102 6.55 × 10−1

True True 9.16 × 102 6.46 × 10−1

linear 56052

False False 8.39 × 102 9.76 × 10−1

True False 8.44 × 102 9.76 × 10−1

False True 8.43 × 102 9.77 × 10−1

True True 8.46 × 102 9.78 × 10−1

hypercomplex

zero 38120

False False 9.08 × 102 7.75 × 10−1

True False 9.13 × 102 7.65 × 10−1

False True 9.09 × 102 7.76 × 10−1

True True 9.14 × 102 7.79 × 10−1

linear 88936

False False 8.35 × 102 9.77 × 10−1

True False 8.43 × 102 9.77 × 10−1

False True 8.39 × 102 9.77 × 10−1

True True 8.45 × 102 9.77 × 10−1

lphm

zero 2626

False False 9.28 × 102 7.28 × 10−1

True False 9.29 × 102 6.89 × 10−1

False True 9.32 × 102 7.30 × 10−1

True True 9.31 × 102 7.29 × 10−1

linear 53442

False False 7.97 × 102 9.74 × 10−1

True False 8.15 × 102 9.75 × 10−1

False True 8.08 × 102 9.76 × 10−1

True True 8.29 × 102 9.74 × 10−1

hypernet

zero 512

False False 7.56 × 102 1.26 × 10−1

True False 9.33 × 102 1.15 × 10−1

False True 9.35 × 102 5.01 × 10−1

True True 9.51 × 102 5.29 × 10−1

linear 51328

False False 7.51 × 102 7.23 × 10−1

True False 8.73 × 102 6.92 × 10−1

False True 9.01 × 102 6.32 × 10−1

True True 8.70 × 102 6.11 × 10−1
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Table 21: Performance analysis of RPN with the bspline expansion function and different reconcil-
iation and remainder functions on the MNIST dataset.

Expansion Reconciliation Remainder Parameter# Pre-Layer-Norm Post-Layer-Norm Time Cost Accuracy

bspline

identity

zero 406528

False False 2.01 × 103 9.28 × 10−1

True False 2.05 × 103 9.72 × 10−1

False True 2.02 × 103 9.80 × 10−2

True True 2.07 × 103 9.78 × 10−1

linear 457344

False False 1.95 × 103 9.64 × 10−1

True False 1.94 × 103 9.76 × 10−1

False True 1.96 × 103 9.80 × 10−2

True True 1.98 × 103 9.80 × 10−1

masking

zero 406528

False False 2.20 × 103 9.39 × 10−1

True False 2.20 × 103 9.63 × 10−1

False True 2.23 × 103 9.80 × 10−2

True True 2.24 × 103 9.72 × 10−1

linear 457344

False False 2.08 × 103 9.70 × 10−1

True False 2.09 × 103 9.78 × 10−1

False True 2.12 × 103 8.22 × 10−1

True True 2.12 × 103 9.79 × 10−1

duplicated-padding

zero 101632

False False 2.23 × 103 4.86 × 10−1

True False 2.21 × 103 4.99 × 10−1

False True 2.22 × 103 9.80 × 10−2

True True 2.23 × 103 5.02 × 10−1

linear 152448

False False 2.06 × 103 9.74 × 10−1

True False 2.04 × 103 9.71 × 10−1

False True 2.03 × 103 2.72 × 10−1

True True 2.06 × 103 7.65 × 10−1

lorr

zero 13716

False False 2.02 × 103 6.72 × 10−1

True False 2.05 × 103 6.22 × 10−1

False True 2.04 × 103 6.87 × 10−1

True True 2.05 × 103 6.39 × 10−1

linear 64532

False False 1.95 × 103 9.77 × 10−1

True False 1.94 × 103 9.77 × 10−1

False True 1.92 × 103 9.76 × 10−1

True True 1.93 × 103 9.77 × 10−1

hypercomplex

zero 101640

False False 2.03 × 103 7.64 × 10−1

True False 2.03 × 103 9.24 × 10−1

False True 2.02 × 103 7.73 × 10−1

True True 2.04 × 103 7.74 × 10−1

linear 152456

False False 1.94 × 103 9.77 × 10−1

True False 1.98 × 103 9.77 × 10−1

False True 1.94 × 103 9.77 × 10−1

True True 1.95 × 103 9.77 × 10−1

lphm

zero 6866

False False 2.11 × 103 8.12 × 10−1

True False 2.10 × 103 8.12 × 10−1

False True 2.09 × 103 8.27 × 10−1

True True 2.13 × 103 7.00 × 10−1

linear 57682

False False 1.99 × 103 9.78 × 10−1

True False 2.00 × 103 9.78 × 10−1

False True 1.99 × 103 9.78 × 10−1

True True 1.97 × 103 9.78 × 10−1

hypernet

zero 512

False False 9.19 × 102 1.00 × 10−1

True False 1.23 × 103 2.89 × 10−1

False True 1.23 × 103 1.00 × 10−1

True True 1.27 × 103 3.44 × 10−1

linear 51328

False False 8.88 × 102 1.00 × 10−1

True False 1.09 × 103 4.51 × 10−1

False True 1.16 × 103 1.00 × 10−1

True True 1.11 × 103 4.48 × 10−1
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Table 22: Performance analysis of RPN with the chebyshev expansion function and different rec-
onciliation and remainder functions on the MNIST dataset.

Expansion Reconciliation Remainder Parameter# Pre-Layer-Norm Post-Layer-Norm Time Cost Accuracy

chebyshev

identity

zero 254080

False False 3.68 × 103 8.45 × 10−1

True False 3.70 × 103 9.68 × 10−1

False True 3.69 × 103 9.65 × 10−1

True True 3.71 × 103 9.68 × 10−1

linear 304896

False False 3.50 × 103 8.47 × 10−1

True False 3.51 × 103 9.67 × 10−1

False True 3.51 × 103 9.74 × 10−1

True True 3.51 × 103 9.75 × 10−1

masking

zero 254080

False False 3.55 × 103 8.30 × 10−1

True False 3.56 × 103 9.61 × 10−1

False True 3.55 × 103 9.55 × 10−1

True True 3.57 × 103 9.64 × 10−1

linear 304896

False False 3.50 × 103 8.43 × 10−1

True False 3.53 × 103 9.62 × 10−1

False True 3.53 × 103 9.71 × 10−1

True True 3.52 × 103 9.71 × 10−1

duplicated-padding

zero 63520

False False 3.57 × 103 3.81 × 10−1

True False 3.57 × 103 4.99 × 10−1

False True 3.56 × 103 4.99 × 10−1

True True 3.57 × 103 4.98 × 10−1

linear 114336

False False 3.33 × 103 4.65 × 10−1

True False 3.31 × 103 4.99 × 10−1

False True 3.31 × 103 9.03 × 10−1

True True 3.29 × 103 9.18 × 10−1

lorr

zero 8628

False False 3.26 × 103 4.93 × 10−1

True False 3.23 × 103 6.06 × 10−1

False True 3.25 × 103 6.37 × 10−1

True True 3.23 × 103 6.10 × 10−1

linear 59444

False False 3.08 × 103 9.34 × 10−1

True False 3.07 × 103 9.62 × 10−1

False True 3.07 × 103 9.78 × 10−1

True True 3.07 × 103 9.78 × 10−1

hypercomplex

zero 63528

False False 3.01 × 103 7.97 × 10−1

True False 3.01 × 103 9.37 × 10−1

False True 3.01 × 103 9.24 × 10−1

True True 3.01 × 103 9.37 × 10−1

linear 114344

False False 3.01 × 103 9.44 × 10−1

True False 3.01 × 103 9.60 × 10−1

False True 3.01 × 103 9.78 × 10−1

True True 3.02 × 103 9.79 × 10−1

lphm

zero 4322

False False 3.03 × 103 6.63 × 10−1

True False 3.02 × 103 6.79 × 10−1

False True 3.02 × 103 6.80 × 10−1

True True 3.04 × 103 6.75 × 10−1

linear 55138

False False 3.03 × 103 9.76 × 10−1

True False 3.03 × 103 9.77 × 10−1

False True 3.03 × 103 9.76 × 10−1

True True 3.04 × 103 9.77 × 10−1

hypernet

zero 512

False False 1.97 × 103 5.92 × 10−2

True False 3.02 × 103 3.48 × 10−1

False True 3.02 × 103 5.04 × 10−1

True True 3.06 × 103 5.01 × 10−1

linear 51328

False False 1.95 × 103 7.34 × 10−2

True False 2.90 × 103 3.38 × 10−1

False True 2.99 × 103 7.38 × 10−1

True True 2.94 × 103 7.71 × 10−1
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Table 23: Performance analysis of RPN with the jacobi expansion function and different reconcili-
ation and remainder functions on the MNIST dataset.

Expansion Reconciliation Remainder Parameter# Pre-Layer-Norm Post-Layer-Norm Time Cost Accuracy

jacobi

identity

zero 254080

False False 2.00 × 103 8.67 × 10−1

True False 1.71 × 103 9.70 × 10−1

False True 1.87 × 103 9.66 × 10−1

True True 1.57 × 103 9.70 × 10−1

linear 304896

False False 1.40 × 103 8.69 × 10−1

True False 1.40 × 103 9.67 × 10−1

False True 1.40 × 103 9.76 × 10−1

True True 1.40 × 103 9.74 × 10−1

masking

zero 254080

False False 1.41 × 103 8.28 × 10−1

True False 1.41 × 103 9.62 × 10−1

False True 1.41 × 103 9.58 × 10−1

True True 1.42 × 103 9.65 × 10−1

linear 304896

False False 1.40 × 103 8.30 × 10−1

True False 1.41 × 103 9.62 × 10−1

False True 1.41 × 103 9.71 × 10−1

True True 1.41 × 103 9.72 × 10−1

duplicated-padding

zero 63520

False False 1.41 × 103 3.97 × 10−1

True False 1.41 × 103 4.99 × 10−1

False True 1.41 × 103 4.98 × 10−1

True True 1.42 × 103 4.99 × 10−1

linear 114336

False False 1.41 × 103 4.39 × 10−1

True False 1.41 × 103 4.96 × 10−1

False True 1.41 × 103 9.22 × 10−1

True True 1.42 × 103 8.81 × 10−1

lorr

zero 8628

False False 1.40 × 103 3.18 × 10−1

True False 1.41 × 103 5.45 × 10−1

False True 1.40 × 103 6.40 × 10−1

True True 1.41 × 103 6.09 × 10−1

linear 59444

False False 1.40 × 103 9.29 × 10−1

True False 1.40 × 103 9.22 × 10−1

False True 1.40 × 103 9.78 × 10−1

True True 1.41 × 103 9.77 × 10−1

hypercomplex

zero 63528

False False 1.41 × 103 7.11 × 10−1

True False 1.41 × 103 9.38 × 10−1

False True 1.41 × 103 9.30 × 10−1

True True 1.42 × 103 9.34 × 10−1

linear 114344

False False 1.41 × 103 9.46 × 10−1

True False 1.41 × 103 9.56 × 10−1

False True 1.41 × 103 9.78 × 10−1

True True 1.41 × 103 9.78 × 10−1

lphm

zero 4322

False False 1.42 × 103 6.62 × 10−1

True False 1.42 × 103 6.77 × 10−1

False True 1.41 × 103 6.69 × 10−1

True True 1.42 × 103 6.83 × 10−1

linear 55138

False False 1.41 × 103 9.75 × 10−1

True False 1.35 × 103 9.76 × 10−1

False True 1.40 × 103 9.76 × 10−1

True True 1.27 × 103 9.76 × 10−1

hypernet

zero 512

False False 1.99 × 103 5.86 × 10−2

True False 3.03 × 103 3.75 × 10−1

False True 3.02 × 103 4.97 × 10−1

True True 3.00 × 103 5.56 × 10−1

linear 51328

False False 2.00 × 103 7.28 × 10−2

True False 3.02 × 103 4.15 × 10−1

False True 3.03 × 103 7.81 × 10−1

True True 3.03 × 103 7.75 × 10−1
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Table 24: Performance analysis of RPN with the gaussian-rbf expansion function and different
reconciliation and remainder functions on the MNIST dataset.

Expansion Reconciliation Remainder Parameter# Pre-Layer-Norm Post-Layer-Norm Time Cost Accuracy

gaussian-rbf

identity

zero 508160

False False 8.74 × 102 9.82 × 10−2

True False 1.43 × 103 9.79 × 10−1

False True 1.45 × 103 1.07 × 10−1

True True 1.37 × 103 9.81 × 10−1

linear 558976

False False 7.90 × 102 7.95 × 10−1

True False 7.92 × 102 9.82 × 10−1

False True 7.97 × 102 4.52 × 10−1

True True 7.96 × 102 9.82 × 10−1

masking

zero 508160

False False 1.06 × 103 8.75 × 10−1

True False 1.06 × 103 9.78 × 10−1

False True 1.06 × 103 8.03 × 10−1

True True 1.05 × 103 9.81 × 10−1

linear 558976

False False 9.36 × 102 9.25 × 10−1

True False 9.39 × 102 9.79 × 10−1

False True 9.38 × 102 7.27 × 10−1

True True 9.44 × 102 9.81 × 10−1

duplicated-padding

zero 127040

False False 1.05 × 103 9.80 × 10−2

True False 1.05 × 103 5.04 × 10−1

False True 1.06 × 103 9.80 × 10−2

True True 1.05 × 103 5.03 × 10−1

linear 177856

False False 9.22 × 102 6.56 × 10−1

True False 9.26 × 102 9.21 × 10−1

False True 9.29 × 102 7.21 × 10−1

True True 9.28 × 102 8.33 × 10−1

lorr

zero 17108

False False 8.99 × 102 6.49 × 10−1

True False 9.00 × 102 6.17 × 10−1

False True 9.03 × 102 6.57 × 10−1

True True 9.06 × 102 6.43 × 10−1

linear 67924

False False 8.27 × 102 9.79 × 10−1

True False 8.31 × 102 9.78 × 10−1

False True 8.35 × 102 9.79 × 10−1

True True 8.33 × 102 9.78 × 10−1

hypercomplex

zero 127048

False False 9.00 × 102 7.74 × 10−1

True False 9.03 × 102 7.78 × 10−1

False True 9.04 × 102 7.71 × 10−1

True True 9.06 × 102 7.78 × 10−1

linear 177864

False False 8.28 × 102 9.78 × 10−1

True False 8.31 × 102 9.77 × 10−1

False True 8.34 × 102 9.79 × 10−1

True True 8.34 × 102 9.77 × 10−1

lphm

zero 8562

False False 9.18 × 102 7.06 × 10−1

True False 9.16 × 102 8.15 × 10−1

False True 9.23 × 102 7.12 × 10−1

True True 9.19 × 102 8.15 × 10−1

linear 59378

False False 8.18 × 102 9.77 × 10−1

True False 8.33 × 102 9.78 × 10−1

False True 8.22 × 102 9.79 × 10−1

True True 8.41 × 102 9.77 × 10−1

hypernet

zero 512

False False 8.33 × 102 1.03 × 10−1

True False 1.20 × 103 2.83 × 10−1

False True 1.21 × 103 1.03 × 10−1

True True 1.21 × 103 5.06 × 10−1

linear 51328

False False 8.27 × 102 1.02 × 10−1

True False 1.18 × 103 3.35 × 10−1

False True 1.17 × 103 1.15 × 10−1

True True 1.12 × 103 7.36 × 10−1
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Table 25: Performance analysis of RPN with the inverse-quadratic-rbf expansion function and dif-
ferent reconciliation and remainder functions on the MNIST dataset.

Expansion Reconciliation Remainder Parameter# Pre-Layer-Norm Post-Layer-Norm Time Cost Accuracy

inverse-quadratic-rbf

identity

zero 508160

False False 1.46 × 103 3.18 × 10−1

True False 1.61 × 103 9.81 × 10−1

False True 1.55 × 103 9.48 × 10−1

True True 1.63 × 103 9.80 × 10−1

linear 558976

False False 1.60 × 103 8.79 × 10−1

True False 1.62 × 103 9.80 × 10−1

False True 1.58 × 103 9.53 × 10−1

True True 1.61 × 103 9.81 × 10−1

masking

zero 508160

False False 1.68 × 103 9.14 × 10−1

True False 1.70 × 103 9.80 × 10−1

False True 1.71 × 103 9.63 × 10−1

True True 1.73 × 103 9.82 × 10−1

linear 558976

False False 1.67 × 103 9.30 × 10−1

True False 1.67 × 103 9.79 × 10−1

False True 1.69 × 103 9.68 × 10−1

True True 1.69 × 103 9.82 × 10−1

duplicated-padding

zero 127040

False False 1.70 × 103 2.99 × 10−1

True False 1.69 × 103 5.04 × 10−1

False True 1.69 × 103 5.00 × 10−1

True True 1.72 × 103 5.03 × 10−1

linear 177856

False False 1.66 × 103 4.78 × 10−1

True False 1.69 × 103 7.92 × 10−1

False True 1.67 × 103 6.93 × 10−1

True True 1.69 × 103 8.60 × 10−1

lorr

zero 17108

False False 1.66 × 103 6.45 × 10−1

True False 1.66 × 103 6.61 × 10−1

False True 1.65 × 103 6.63 × 10−1

True True 1.66 × 103 6.46 × 10−1

linear 67924

False False 1.64 × 103 9.78 × 10−1

True False 1.64 × 103 9.78 × 10−1

False True 1.63 × 103 9.78 × 10−1

True True 1.65 × 103 9.78 × 10−1

hypercomplex

zero 127048

False False 1.67 × 103 7.77 × 10−1

True False 1.68 × 103 7.75 × 10−1

False True 1.67 × 103 7.76 × 10−1

True True 1.67 × 103 7.76 × 10−1

linear 177864

False False 1.62 × 103 9.78 × 10−1

True False 1.66 × 103 9.77 × 10−1

False True 1.65 × 103 9.79 × 10−1

True True 1.67 × 103 9.78 × 10−1

lphm

zero 8562

False False 1.70 × 103 6.98 × 10−1

True False 1.70 × 103 7.64 × 10−1

False True 1.71 × 103 7.15 × 10−1

True True 1.70 × 103 8.25 × 10−1

linear 59378

False False 1.66 × 103 9.78 × 10−1

True False 1.70 × 103 9.78 × 10−1

False True 1.69 × 103 9.78 × 10−1

True True 1.72 × 103 9.76 × 10−1

hypernet

zero 512

False False 8.44 × 102 1.83 × 10−1

True False 1.08 × 103 2.54 × 10−1

False True 1.10 × 103 1.39 × 10−1

True True 1.04 × 103 5.52 × 10−1

linear 51328

False False 8.26 × 102 2.16 × 10−1

True False 1.12 × 103 2.40 × 10−1

False True 1.08 × 103 3.15 × 10−1

True True 1.11 × 103 7.73 × 10−1
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Table 26: Performance analysis of RPN with the normal expansion function and different reconcil-
iation and remainder functions on the MNIST dataset.

Expansion Reconciliation Remainder Parameter# Pre-Layer-Norm Post-Layer-Norm Time Cost Accuracy

normal

identity

zero 304896

False False 1.17 × 103 9.66 × 10−1

True False 1.37 × 103 1.14 × 10−1

False True 1.40 × 103 1.31 × 10−1

True True 1.42 × 103 8.73 × 10−1

linear 355712

False False 1.12 × 103 9.69 × 10−1

True False 1.37 × 103 3.42 × 10−1

False True 1.40 × 103 1.00 × 10−1

True True 1.43 × 103 9.30 × 10−1

masking

zero 304896

False False 1.32 × 103 9.66 × 10−1

True False 1.34 × 103 2.12 × 10−1

False True 1.35 × 103 6.67 × 10−1

True True 1.41 × 103 9.20 × 10−1

linear 355712

False False 1.18 × 103 9.65 × 10−1

True False 1.48 × 103 6.70 × 10−1

False True 1.51 × 103 7.35 × 10−1

True True 1.57 × 103 9.53 × 10−1

duplicated-padding

zero 76224

False False 1.32 × 103 4.88 × 10−1

True False 1.46 × 103 1.14 × 10−1

False True 1.47 × 103 1.28 × 10−1

True True 1.53 × 103 4.30 × 10−1

linear 127040

False False 1.23 × 103 7.01 × 10−1

True False 1.53 × 103 1.55 × 10−1

False True 1.56 × 103 1.68 × 10−1

True True 1.60 × 103 4.97 × 10−1

lorr

zero 10324

False False 1.19 × 103 6.38 × 10−1

True False 1.50 × 103 6.09 × 10−1

False True 1.51 × 103 6.57 × 10−1

True True 1.58 × 103 6.89 × 10−1

linear 61140

False False 1.14 × 103 9.77 × 10−1

True False 1.57 × 103 9.69 × 10−1

False True 1.59 × 103 9.77 × 10−1

True True 1.61 × 103 9.76 × 10−1

hypercomplex

zero 76232

False False 1.12 × 103 9.36 × 10−1

True False 1.55 × 103 9.44 × 10−1

False True 1.55 × 103 9.30 × 10−1

True True 1.57 × 103 9.26 × 10−1

linear 127048

False False 7.62 × 102 9.77 × 10−1

True False 1.59 × 103 9.73 × 10−1

False True 1.62 × 103 9.77 × 10−1

True True 1.64 × 103 9.76 × 10−1

lphm

zero 5170

False False 7.68 × 102 5.28 × 10−1

True False 1.59 × 103 6.50 × 10−1

False True 1.60 × 103 7.49 × 10−1

True True 1.62 × 103 7.49 × 10−1

linear 55986

False False 7.70 × 102 9.78 × 10−1

True False 1.64 × 103 9.76 × 10−1

False True 1.68 × 103 9.77 × 10−1

True True 1.78 × 103 9.77 × 10−1

hypernet

zero 512

False False 1.64 × 103 3.51 × 10−1

True False 1.84 × 103 2.64 × 10−1

False True 1.82 × 103 1.03 × 10−1

True True 1.84 × 103 1.89 × 10−1

linear 51328

False False 1.65 × 103 4.43 × 10−1

True False 1.91 × 103 5.96 × 10−1

False True 1.85 × 103 1.73 × 10−1

True True 1.94 × 103 6.23 × 10−1

88



Table 27: Performance analysis of RPN with the cauchy expansion function and different reconcil-
iation and remainder functions on the MNIST dataset.

Expansion Reconciliation Remainder Parameter# Pre-Layer-Norm Post-Layer-Norm Time Cost Accuracy

cauchy

identity

zero 304896

False False 8.42 × 104 9.26 × 10−1

True False 1.98 × 103 1.14 × 10−1

False True 1.91 × 103 9.33 × 10−1

True True 1.83 × 103 9.45 × 10−1

linear 355712

False False 6.79 × 103 9.48 × 10−1

True False 1.99 × 103 9.16 × 10−1

False True 1.98 × 103 9.46 × 10−1

True True 1.83 × 103 9.50 × 10−1

masking

zero 304896

False False 6.83 × 103 9.48 × 10−1

True False 1.77 × 103 2.13 × 10−1

False True 1.76 × 103 9.53 × 10−1

True True 1.80 × 103 9.50 × 10−1

linear 355712

False False 2.47 × 103 9.59 × 10−1

True False 1.78 × 103 9.21 × 10−1

False True 1.81 × 103 9.55 × 10−1

True True 1.82 × 103 9.66 × 10−1

duplicated-padding

zero 76224

False False 1.43 × 103 4.93 × 10−1

True False 1.76 × 103 1.14 × 10−1

False True 1.77 × 103 4.94 × 10−1

True True 1.82 × 103 4.86 × 10−1

linear 127040

False False 1.51 × 103 6.59 × 10−1

True False 1.79 × 103 4.96 × 10−1

False True 1.82 × 103 7.28 × 10−1

True True 1.85 × 103 7.87 × 10−1

lorr

zero 10324

False False 1.47 × 103 6.59 × 10−1

True False 1.75 × 103 6.60 × 10−1

False True 1.75 × 103 6.58 × 10−1

True True 1.83 × 103 6.59 × 10−1

linear 61140

False False 1.54 × 103 9.76 × 10−1

True False 1.78 × 103 9.76 × 10−1

False True 1.81 × 103 9.77 × 10−1

True True 1.91 × 103 9.75 × 10−1

hypercomplex

zero 76232

False False 1.52 × 103 9.42 × 10−1

True False 1.86 × 103 9.41 × 10−1

False True 1.82 × 103 9.33 × 10−1

True True 1.92 × 103 9.41 × 10−1

linear 127048

False False 1.57 × 103 9.78 × 10−1

True False 1.98 × 103 9.77 × 10−1

False True 1.94 × 103 9.79 × 10−1

True True 1.85 × 103 9.78 × 10−1

lphm

zero 5170

False False 1.58 × 103 8.53 × 10−1

True False 1.82 × 103 8.75 × 10−1

False True 1.83 × 103 8.76 × 10−1

True True 1.85 × 103 8.66 × 10−1

linear 55986

False False 1.60 × 103 9.77 × 10−1

True False 1.81 × 103 9.78 × 10−1

False True 1.85 × 103 9.77 × 10−1

True True 1.94 × 103 9.77 × 10−1

hypernet

zero 512

False False 1.81 × 103 3.54 × 10−1

True False 2.00 × 103 1.32 × 10−1

False True 2.04 × 103 1.14 × 10−1

True True 2.29 × 103 2.93 × 10−1

linear 51328

False False 1.82 × 103 8.62 × 10−1

True False 2.18 × 103 5.80 × 10−1

False True 2.17 × 103 4.32 × 10−1

True True 2.15 × 103 7.06 × 10−1
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Table 28: Performance analysis of RPN with the chi2 expansion function and different reconcilia-
tion and remainder functions on the MNIST dataset.

Expansion Reconciliation Remainder Parameter# Pre-Layer-Norm Post-Layer-Norm Time Cost Accuracy

chi2

identity

zero 101632

False False 1.36 × 103 9.72 × 10−1

True False 1.32 × 103 9.57 × 10−1

False True 1.31 × 103 9.75 × 10−1

True True 1.28 × 103 9.75 × 10−1

linear 152448

False False 1.26 × 103 9.74 × 10−1

True False 1.30 × 103 9.72 × 10−1

False True 1.30 × 103 9.76 × 10−1

True True 1.33 × 103 9.76 × 10−1

masking

zero 101632

False False 1.14 × 103 9.68 × 10−1

True False 1.31 × 103 9.54 × 10−1

False True 1.29 × 103 9.74 × 10−1

True True 1.33 × 103 9.72 × 10−1

linear 152448

False False 1.22 × 103 9.74 × 10−1

True False 1.32 × 103 9.71 × 10−1

False True 1.33 × 103 9.78 × 10−1

True True 1.37 × 103 9.77 × 10−1

duplicated-padding

zero 25408

False False 1.17 × 103 5.02 × 10−1

True False 1.31 × 103 4.93 × 10−1

False True 1.30 × 103 5.00 × 10−1

True True 1.37 × 103 4.99 × 10−1

linear 76224

False False 1.23 × 103 9.64 × 10−1

True False 1.34 × 103 9.63 × 10−1

False True 1.35 × 103 9.75 × 10−1

True True 1.45 × 103 9.70 × 10−1

lorr

zero 3540

False False 1.15 × 103 6.33 × 10−1

True False 1.31 × 103 6.19 × 10−1

False True 1.29 × 103 6.44 × 10−1

True True 1.49 × 103 6.42 × 10−1

linear 54356

False False 1.21 × 103 9.78 × 10−1

True False 1.43 × 103 9.77 × 10−1

False True 1.43 × 103 9.76 × 10−1

True True 1.47 × 103 9.75 × 10−1

hypercomplex

zero 25416

False False 1.18 × 103 9.33 × 10−1

True False 1.45 × 103 9.22 × 10−1

False True 1.40 × 103 9.46 × 10−1

True True 1.34 × 103 9.46 × 10−1

linear 76232

False False 1.23 × 103 9.78 × 10−1

True False 1.43 × 103 9.77 × 10−1

False True 1.41 × 103 9.77 × 10−1

True True 1.35 × 103 9.78 × 10−1

lphm

zero 1778

False False 1.23 × 103 6.29 × 10−1

True False 1.29 × 103 6.29 × 10−1

False True 1.31 × 103 6.31 × 10−1

True True 1.48 × 103 6.93 × 10−1

linear 52594

False False 1.26 × 103 9.77 × 10−1

True False 1.32 × 103 9.77 × 10−1

False True 1.35 × 103 9.76 × 10−1

True True 1.59 × 103 9.76 × 10−1

hypernet

zero 512

False False 1.28 × 103 1.59 × 10−1

True False 1.50 × 103 2.06 × 10−1

False True 1.46 × 103 3.95 × 10−1

True True 1.55 × 103 3.53 × 10−1

linear 51328

False False 1.40 × 103 7.39 × 10−1

True False 1.49 × 103 9.01 × 10−1

False True 1.46 × 103 8.25 × 10−1

True True 1.45 × 103 8.41 × 10−1
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Table 29: Performance analysis of RPN with the gamma expansion function and different reconcil-
iation and remainder functions on the MNIST dataset.

Expansion Reconciliation Remainder Parameter# Pre-Layer-Norm Post-Layer-Norm Time Cost Accuracy

gamma

identity

zero 304896

False False 1.58 × 103 9.55 × 10−1

True False 1.65 × 103 9.32 × 10−1

False True 1.73 × 103 9.47 × 10−1

True True 1.59 × 103 9.14 × 10−1

linear 355712

False False 1.71 × 103 9.61 × 10−1

True False 1.67 × 103 9.45 × 10−1

False True 1.75 × 103 9.59 × 10−1

True True 1.64 × 103 9.53 × 10−1

masking

zero 304896

False False 1.89 × 103 9.73 × 10−1

True False 1.56 × 103 9.62 × 10−1

False True 1.62 × 103 9.70 × 10−1

True True 1.62 × 103 9.69 × 10−1

linear 355712

False False 1.89 × 103 9.72 × 10−1

True False 1.62 × 103 9.62 × 10−1

False True 1.68 × 103 9.71 × 10−1

True True 1.68 × 103 9.68 × 10−1

duplicated-padding

zero 76224

False False 1.70 × 103 4.91 × 10−1

True False 1.59 × 103 1.14 × 10−1

False True 1.63 × 103 4.86 × 10−1

True True 1.65 × 103 4.82 × 10−1

linear 127040

False False 1.69 × 103 7.77 × 10−1

True False 1.63 × 103 8.20 × 10−1

False True 1.69 × 103 8.45 × 10−1

True True 1.69 × 103 9.69 × 10−1

lorr

zero 10324

False False 1.64 × 103 6.62 × 10−1

True False 1.58 × 103 6.35 × 10−1

False True 1.62 × 103 6.45 × 10−1

True True 1.93 × 103 6.40 × 10−1

linear 61140

False False 1.68 × 103 9.77 × 10−1

True False 1.63 × 103 9.76 × 10−1

False True 1.66 × 103 9.77 × 10−1

True True 1.75 × 103 9.76 × 10−1

hypercomplex

zero 76232

False False 1.65 × 103 9.44 × 10−1

True False 2.00 × 103 9.39 × 10−1

False True 2.05 × 103 9.52 × 10−1

True True 1.42 × 103 9.49 × 10−1

linear 127048

False False 1.71 × 103 9.79 × 10−1

True False 1.59 × 103 9.79 × 10−1

False True 1.53 × 103 9.78 × 10−1

True True 1.46 × 103 9.78 × 10−1

lphm

zero 5170

False False 1.70 × 103 8.67 × 10−1

True False 1.40 × 103 8.66 × 10−1

False True 1.43 × 103 7.69 × 10−1

True True 1.60 × 103 7.40 × 10−1

linear 55986

False False 1.73 × 103 9.76 × 10−1

True False 1.44 × 103 9.78 × 10−1

False True 1.50 × 103 9.78 × 10−1

True True 1.73 × 103 9.78 × 10−1

hypernet

zero 512

False False 1.81 × 103 1.96 × 10−1

True False 1.87 × 103 2.11 × 10−1

False True 1.83 × 103 3.31 × 10−1

True True 2.03 × 103 3.30 × 10−1

linear 51328

False False 1.80 × 103 8.51 × 10−1

True False 1.93 × 103 7.62 × 10−1

False True 1.95 × 103 7.49 × 10−1

True True 1.93 × 103 7.64 × 10−1
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Table 30: Performance analysis of RPN with the laplace expansion function and different reconcil-
iation and remainder functions on the MNIST dataset.

Expansion Reconciliation Remainder Parameter# Pre-Layer-Norm Post-Layer-Norm Time Cost Accuracy

laplace

identity

zero 304896

False False 1.15 × 103 9.65 × 10−1

True False 7.45 × 104 9.77 × 10−1

False True 7.91 × 104 9.77 × 10−1

True True 7.94 × 104 9.80 × 10−1

linear 355712

False False 1.10 × 103 9.68 × 10−1

True False 1.51 × 103 8.88 × 10−1

False True 1.54 × 103 9.40 × 10−1

True True 1.53 × 103 9.57 × 10−1

masking

zero 304896

False False 1.30 × 103 9.71 × 10−1

True False 1.47 × 103 1.14 × 10−1

False True 1.48 × 103 9.49 × 10−1

True True 1.52 × 103 9.61 × 10−1

linear 355712

False False 1.17 × 103 9.74 × 10−1

True False 1.52 × 103 9.26 × 10−1

False True 1.54 × 103 9.54 × 10−1

True True 1.56 × 103 9.66 × 10−1

duplicated-padding

zero 76224

False False 1.31 × 103 4.98 × 10−1

True False 1.50 × 103 1.14 × 10−1

False True 1.51 × 103 4.87 × 10−1

True True 1.55 × 103 4.75 × 10−1

linear 127040

False False 1.21 × 103 6.98 × 10−1

True False 1.54 × 103 5.58 × 10−1

False True 1.57 × 103 9.48 × 10−1

True True 1.59 × 103 9.76 × 10−1

lorr

zero 10324

False False 1.19 × 103 6.76 × 10−1

True False 1.50 × 103 6.78 × 10−1

False True 1.50 × 103 6.59 × 10−1

True True 1.53 × 103 6.49 × 10−1

linear 61140

False False 1.11 × 103 9.77 × 10−1

True False 1.52 × 103 9.77 × 10−1

False True 1.54 × 103 9.77 × 10−1

True True 1.60 × 103 9.77 × 10−1

hypercomplex

zero 76232

False False 1.14 × 103 9.31 × 10−1

True False 1.56 × 103 9.33 × 10−1

False True 1.57 × 103 9.37 × 10−1

True True 1.65 × 103 9.43 × 10−1

linear 127048

False False 7.30 × 102 9.80 × 10−1

True False 1.67 × 103 9.78 × 10−1

False True 1.71 × 103 9.78 × 10−1

True True 1.77 × 103 9.80 × 10−1

lphm

zero 5170

False False 7.34 × 102 8.71 × 10−1

True False 1.75 × 103 8.65 × 10−1

False True 1.75 × 103 8.69 × 10−1

True True 1.72 × 103 8.76 × 10−1

linear 55986

False False 7.46 × 102 9.77 × 10−1

True False 1.74 × 103 9.77 × 10−1

False True 1.76 × 103 9.78 × 10−1

True True 1.87 × 103 9.77 × 10−1

hypernet

zero 512

False False 1.63 × 103 4.64 × 10−1

True False 1.89 × 103 1.16 × 10−1

False True 1.86 × 103 1.07 × 10−1

True True 1.95 × 103 3.07 × 10−1

linear 51328

False False 1.63 × 103 9.08 × 10−1

True False 1.88 × 103 4.78 × 10−1

False True 1.86 × 103 3.58 × 10−1

True True 1.88 × 103 7.86 × 10−1
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Table 31: Performance analysis of RPN with the exponential expansion function and different rec-
onciliation and remainder functions on the MNIST dataset.

Expansion Reconciliation Remainder Parameter# Pre-Layer-Norm Post-Layer-Norm Time Cost Accuracy

exponential

identity

zero 304896

False False 5.36 × 104 9.53 × 10−1

True False 1.36 × 103 9.54 × 10−1

False True 1.30 × 103 9.61 × 10−1

True True 1.16 × 103 9.54 × 10−1

linear 355712

False False 3.28 × 104 9.57 × 10−1

True False 1.37 × 103 9.56 × 10−1

False True 1.42 × 103 9.61 × 10−1

True True 1.21 × 103 9.60 × 10−1

masking

zero 304896

False False 5.48 × 103 9.71 × 10−1

True False 1.23 × 103 9.67 × 10−1

False True 1.19 × 103 9.69 × 10−1

True True 1.19 × 103 9.70 × 10−1

linear 355712

False False 5.53 × 103 9.65 × 10−1

True False 1.21 × 103 9.71 × 10−1

False True 1.26 × 103 9.72 × 10−1

True True 1.25 × 103 9.70 × 10−1

duplicated-padding

zero 76224

False False 2.61 × 103 4.92 × 10−1

True False 1.18 × 103 4.63 × 10−1

False True 1.21 × 103 4.88 × 10−1

True True 1.21 × 103 4.89 × 10−1

linear 127040

False False 7.05 × 102 9.66 × 10−1

True False 1.23 × 103 9.72 × 10−1

False True 1.27 × 103 9.64 × 10−1

True True 1.26 × 103 9.76 × 10−1

lorr

zero 10324

False False 1.43 × 103 6.52 × 10−1

True False 1.17 × 103 6.27 × 10−1

False True 1.21 × 103 6.47 × 10−1

True True 1.19 × 103 6.51 × 10−1

linear 61140

False False 1.46 × 103 9.78 × 10−1

True False 1.22 × 103 9.75 × 10−1

False True 1.24 × 103 9.77 × 10−1

True True 1.24 × 103 9.76 × 10−1

hypercomplex

zero 76232

False False 1.40 × 103 9.38 × 10−1

True False 1.17 × 103 9.35 × 10−1

False True 1.20 × 103 9.36 × 10−1

True True 1.21 × 103 9.42 × 10−1

linear 127048

False False 1.45 × 103 9.77 × 10−1

True False 1.22 × 103 9.78 × 10−1

False True 1.26 × 103 9.78 × 10−1

True True 1.31 × 103 9.77 × 10−1

lphm

zero 5170

False False 1.45 × 103 6.33 × 10−1

True False 1.21 × 103 6.43 × 10−1

False True 1.23 × 103 8.19 × 10−1

True True 1.05 × 103 8.00 × 10−1

linear 55986

False False 1.49 × 103 9.78 × 10−1

True False 1.24 × 103 9.78 × 10−1

False True 1.27 × 103 9.77 × 10−1

True True 1.05 × 103 9.78 × 10−1

hypernet

zero 512

False False 1.58 × 103 3.44 × 10−1

True False 1.57 × 103 3.09 × 10−1

False True 1.57 × 103 3.20 × 10−1

True True 1.63 × 103 3.43 × 10−1

linear 51328

False False 1.62 × 103 8.37 × 10−1

True False 1.60 × 103 7.84 × 10−1

False True 1.66 × 103 7.57 × 10−1

True True 1.54 × 103 7.75 × 10−1
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Table 32: Performance analysis of RPN with the hybrid-probabilistic expansion function and dif-
ferent reconciliation and remainder functions on the MNIST dataset.

Expansion Reconciliation Remainder Parameter# Pre-Layer-Norm Post-Layer-Norm Time Cost Accuracy

hybrid-probabilistic

identity

zero 304896

False False 1.47 × 103 9.67 × 10−1

True False 2.26 × 103 8.08 × 10−1

False True 2.17 × 103 9.53 × 10−1

True True 2.39 × 103 9.42 × 10−1

linear 355712

False False 1.61 × 103 9.74 × 10−1

True False 3.51 × 103 9.29 × 10−1

False True 3.01 × 103 9.56 × 10−1

True True 3.58 × 103 9.43 × 10−1

masking

zero 304896

False False 1.77 × 103 9.70 × 10−1

True False 2.20 × 103 9.37 × 10−1

False True 2.12 × 103 9.67 × 10−1

True True 2.34 × 103 9.61 × 10−1

linear 355712

False False 1.92 × 103 9.74 × 10−1

True False 2.38 × 103 9.60 × 10−1

False True 2.52 × 103 9.67 × 10−1

True True 3.23 × 103 9.67 × 10−1

duplicated-padding

zero 76224

False False 1.81 × 103 4.96 × 10−1

True False 1.93 × 103 1.14 × 10−1

False True 3.46 × 103 4.90 × 10−1

True True 4.76 × 103 4.71 × 10−1

linear 127040

False False 1.77 × 103 9.61 × 10−1

True False 4.40 × 103 6.23 × 10−1

False True 3.84 × 103 8.93 × 10−1

True True 3.78 × 103 6.92 × 10−1

lorr

zero 10324

False False 1.62 × 103 6.69 × 10−1

True False 3.87 × 103 6.58 × 10−1

False True 3.54 × 103 6.55 × 10−1

True True 3.91 × 103 7.03 × 10−1

linear 61140

False False 1.67 × 103 9.78 × 10−1

True False 3.64 × 103 9.77 × 10−1

False True 3.03 × 103 9.75 × 10−1

True True 3.38 × 103 9.76 × 10−1

hypercomplex

zero 76232

False False 1.62 × 103 9.39 × 10−1

True False 3.46 × 103 9.42 × 10−1

False True 2.50 × 103 9.47 × 10−1

True True 3.62 × 103 9.48 × 10−1

linear 127048

False False 1.68 × 103 9.80 × 10−1

True False 5.08 × 103 9.78 × 10−1

False True 3.19 × 103 9.78 × 10−1

True True 5.16 × 103 9.77 × 10−1

lphm

zero 5170

False False 1.66 × 103 8.11 × 10−1

True False 3.38 × 103 8.47 × 10−1

False True 2.40 × 103 8.43 × 10−1

True True 9.21 × 103 8.20 × 10−1

linear 55986

False False 1.67 × 103 9.77 × 10−1

True False 9.92 × 103 9.77 × 10−1

False True 7.77 × 103 9.76 × 10−1

True True 1.06 × 104 9.78 × 10−1

hypernet

zero 512

False False 1.98 × 103 3.66 × 10−1

True False 2.22 × 103 2.81 × 10−1

False True 2.33 × 103 3.38 × 10−1

True True 2.29 × 103 2.91 × 10−1

linear 51328

False False 1.83 × 103 9.16 × 10−1

True False 3.47 × 103 4.84 × 10−1

False True 3.50 × 103 5.74 × 10−1

True True 3.64 × 103 4.82 × 10−1
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Table 33: Performance analysis of RPN with the normal-combinatorial expansion function and
different reconciliation and remainder functions on the MNIST dataset.

Expansion Reconciliation Remainder Parameter# Pre-Layer-Norm Post-Layer-Norm Time Cost Accuracy

normal-combinatorial

identity

zero 19714880

False False 4.31 × 104 9.49 × 10−1

True False 4.30 × 104 1.14 × 10−1

False True 7.14 × 104 1.00 × 10−1

True True 7.13 × 104 6.96 × 10−1

linear 19765696

False False 4.30 × 104 9.54 × 10−1

True False 4.30 × 104 1.14 × 10−1

False True 7.12 × 104 1.14 × 10−1

True True 7.15 × 104 8.35 × 10−1

masking

zero 19714880

False False 4.36 × 104 9.53 × 10−1

True False 4.39 × 104 1.14 × 10−1

False True 4.30 × 104 1.02 × 10−1

True True 4.30 × 104 7.94 × 10−1

linear 19765696

False False 4.33 × 104 9.53 × 10−1

True False 4.26 × 104 1.14 × 10−1

False True 4.29 × 104 1.14 × 10−1

True True 4.31 × 104 8.56 × 10−1

duplicated-padding

zero 4928720

False False 4.86 × 104 4.88 × 10−1

True False 4.87 × 104 1.14 × 10−1

False True 4.75 × 104 9.91 × 10−2

True True 4.76 × 104 4.14 × 10−1

linear 4979536

False False 4.86 × 104 7.53 × 10−1

True False 4.86 × 104 1.14 × 10−1

False True 4.75 × 104 1.07 × 10−1

True True 4.76 × 104 4.67 × 10−1

lorr

zero 619748

False False 4.26 × 104 6.05 × 10−1

True False 4.26 × 104 5.15 × 10−1

False True 5.79 × 104 7.41 × 10−1

True True 5.80 × 104 7.82 × 10−1

linear 670564

False False 4.25 × 104 9.75 × 10−1

True False 4.24 × 104 5.88 × 10−1

False True 5.78 × 104 9.71 × 10−1

True True 5.80 × 104 9.75 × 10−1

hypercomplex

zero 4928728

False False 3.23 × 104 1.14 × 10−1

True False 2.90 × 104 1.14 × 10−1

False True 6.04 × 104 9.20 × 10−1

True True 6.04 × 104 7.88 × 10−1

linear 4979544

False False 2.49 × 104 9.81 × 10−1

True False 3.37 × 104 9.60 × 10−1

False True 6.03 × 104 9.78 × 10−1

True True 6.03 × 104 9.77 × 10−1

lphm

zero 309882

False False 2.49 × 104 1.14 × 10−1

True False 3.34 × 104 7.39 × 10−1

False True 6.18 × 104 7.76 × 10−1

True True 6.18 × 104 7.75 × 10−1

linear 360698

False False 3.01 × 104 9.78 × 10−1

True False 2.81 × 104 9.63 × 10−1

False True 6.20 × 104 9.76 × 10−1

True True 6.18 × 104 9.74 × 10−1

hypernet

zero 512

False False 3.58 × 104 9.29 × 10−2

True False 4.27 × 104 1.13 × 10−1

False True 6.53 × 104 1.03 × 10−1

True True 6.53 × 104 1.44 × 10−1

linear 51328

False False 3.60 × 104 9.14 × 10−2

True False 4.30 × 104 8.27 × 10−1

False True 6.54 × 104 1.43 × 10−1

True True 6.53 × 104 4.33 × 10−1
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A.3 Visualization of RPN Data Expansion and Parameter Reconciliation on MNIST Dataset

Descriptions: The following Figures 23-31 present the visualizations of the expanded images with
labels 1 through 9. Besides the image data, we also illustrate the learned parameters of RPN corre-
sponding to these expansions as well.
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Figure 23: An illustration of an image with label 1 randomly selected from the MNIST dataset. Plat
(a): raw image data; Plot (b): expanded data; Plot (c): parameter corresponding to output neuron of
label 1 for raw image data; and Plot (d): parameter corresponding to output neuron of label 1 for
expanded image data.
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Figure 24: An illustration of an image with label 2 randomly selected from the MNIST dataset. Plat
(a): raw image data; Plot (b): expanded data; Plot (c): parameter corresponding to output neuron of
label 2 for raw image data; and Plot (d): parameter corresponding to output neuron of label 2 for
expanded image data.
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Figure 25: An illustration of an image with label 3 randomly selected from the MNIST dataset. Plat
(a): raw image data; Plot (b): expanded data; Plot (c): parameter corresponding to output neuron of
label 3 for raw image data; and Plot (d): parameter corresponding to output neuron of label 3 for
expanded image data.
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Figure 26: An illustration of an image with label 4 randomly selected from the MNIST dataset. Plat
(a): raw image data; Plot (b): expanded data; Plot (c): parameter corresponding to output neuron of
label 4 for raw image data; and Plot (d): parameter corresponding to output neuron of label 4 for
expanded image data.
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Figure 27: An illustration of an image with label 5 randomly selected from the MNIST dataset. Plat
(a): raw image data; Plot (b): expanded data; Plot (c): parameter corresponding to output neuron of
label 5 for raw image data; and Plot (d): parameter corresponding to output neuron of label 5 for
expanded image data.
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Figure 28: An illustration of an image with label 6 randomly selected from the MNIST dataset. Plat
(a): raw image data; Plot (b): expanded data; Plot (c): parameter corresponding to output neuron of
label 6 for raw image data; and Plot (d): parameter corresponding to output neuron of label 6 for
expanded image data.
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Figure 29: An illustration of an image with label 7 randomly selected from the MNIST dataset. Plat
(a): raw image data; Plot (b): expanded data; Plot (c): parameter corresponding to output neuron of
label 7 for raw image data; and Plot (d): parameter corresponding to output neuron of label 7 for
expanded image data.
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Figure 30: An illustration of an image with label 8 randomly selected from the MNIST dataset. Plat
(a): raw image data; Plot (b): expanded data; Plot (c): parameter corresponding to output neuron of
label 8 for raw image data; and Plot (d): parameter corresponding to output neuron of label 8 for
expanded image data.
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Figure 31: An illustration of an image with label 9 randomly selected from the MNIST dataset. Plat
(a): raw image data; Plot (b): expanded data; Plot (c): parameter corresponding to output neuron of
label 9 for raw image data; and Plot (d): parameter corresponding to output neuron of label 9 for
expanded image data.
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A.4 Licensing Rights of Using BioRender Created Contents in This Paper

Descriptions: For the bio-medical image contents used in the previous Figures 21-22 in Section 8,
we have obtained the permissions to use them in publications. The licensing rights granting con-
firmation letters from BioRender for using these generated contents are attached in the following
pages.
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