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“Nothing in the world stands by itself. Every object is a link in an endless chain
and is thus connected with all the other links.”

— DIALECTICAL MATERIALISM (Alexander Spirkin)

Abstract

This paper builds upon our previous work on the Reconciled Polynomial Network
(RPN) [89]. In our prior research, we introduced RPN as a general model archi-
tecture comprising three component functions: data expansion function, param-
eter reconciliation function, and remainder function. By strategically combining
these components functions, we demonstrated RPN’s versatility in constructing
models for addressing a wide range of function learning tasks on multi-modal
data. Furthermore, RPN also unified diverse base models, including PGMs, ker-
nel SVM, MLP, and KAN, into its canonical representation.

The original RPN model was designed under the assumption of input data inde-
pendence, presuming the independence among both individual instances within
data batches and attributes in each data instance. However, this assumption often
proves invalid for function learning tasks involving complex, interdependent data
such as language, images, time series, and graphs. Ignoring such data interdepen-
dence may inevitably lead to significant performance degradation.

To overcome these limitations, we introduce the new Reconciled Polynomial
Network (version 2), namely RPN 2, in this paper. By incorporating data and
structural interdependence functions, RPN 2 explicitly models data interdepen-
dence via new component functions in its architecture.

*© 2024 TFM Lab. All rights reserved. The RPN 2 project and TINYBIG v0.2.0 toolkit are developed and
maintained by IFM Lab.
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This enhancement not only significantly improves RPN 2’s learning performance
but also substantially expands its unifying potential, enabling it to encompass
a broader range of contemporary dominant backbone models within its canon-
ical representation. These backbones include, but are not limited to, convolu-
tional neural networks (CNNs), recurrent neural networks (RNNs), graph neural
networks (GNNs), and Transformers. Our analysis reveals that the fundamen-
tal distinctions among these backbone models primarily stem from their diverse
approaches to defining the interdependence functions. Furthermore, this unified
representation opens up new opportunities for designing innovative architectures
with the potential to surpass the performance of these dominant backbones.

To evaluate the effectiveness of RPN 2, we conducted extensive empirical ex-
periments on a diverse set of benchmark datasets spanning multiple modalities,
including images, language, time series, and graphs. The results demonstrate that
RPN 2, with its enhanced interdependence functions, significantly outperforms
the previous RPN model across all evaluated benchmarks. Furthermore, by strate-
gically selecting component functions, we developed novel RPN 2-based models
that enhance existing backbones in various function learning tasks, such as image
classification, language classification, time series forecasting, and graph learning.
These findings underscore the versatility and potential of RPN 2 in advancing
backbones across diverse domains for addressing different function learning tasks.

The new Reconciled Polynomial Network (version 2), i.e., RPN 2, presents sig-
nificant improvements over its predecessor. The data interdependence component
functions substantially enhance RPN 2’s learning effectiveness in complex func-
tion learning tasks involving interdependent data. Building on RPN’s unification
capabilities, RPN 2 integrates a broader range of backbone models into its canon-
ical framework. Importantly, RPN 2 reveals that the primary distinction between
existing backbone architectures lies in their definitions of data interdependence
functions. This key insight opens avenues for designing new superior backbones,
positioning RPN 2 as a powerful framework for advancing function learning de-
velopment.

To reflect these advancements, we have also upgraded the TINYBIG toolkit into
the new TINYBIG Vv0.2.0. This updated version seamlessly incorporates interde-
pendence functions into RPN 2 model design, substantially enhancing its learning
capabilities. Additionally, TINYBIG Vv0.2.0 also introduces a new family of data
compression and fusion functions and expands the existing repertoire of data ex-
pansion and parameter reconciliation functions. Detailed information about the
updated TINYBIG Vv0.2.0 toolkit is available at the project’s GitHub repository
and dedicated website, with their URLs provided above.

KEY WORDS: Reconciled Polynomial Network; Interdependence Function; Unified Model Archi-
tecture; Multi-modal Learning; Function Learning
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1 Introduction

This paper is a follow-up work of our previous study on the Reconciled Polynomial Network (RPN)
[89]. In our prior work, we introduced RPN as a general model architecture comprising three
component functions: data expansion function, parameter reconciliation function, and remainder
function. Inspired by Taylor’s Theorem, RPN proposes to disentangle the underlying function to be
inferred as the inner product of a data expansion function with a parameter reconciliation function.
Together with the remainder function, RPN can accurately approximate the underlying functions
that govern data distributions. Our previous research demonstrated RPN’s versatility in constructing
models with varying complexities, capacities, and levels of completeness, which can also serve as a
framework for unifying diverse base models, including PGMs, kernel SVM, MLP, and KAN.

Meanwhile, the previous RPN model was built on the assumption that data instances in the training
batches are independent and identically distributed. Moreover, within each data instance, RPN
also presumed the involved attributes to be independent as well, treating them separately in the
expansion functions. However, as illustrated in Figure 1 (a)-(d), these assumptions often prove
invalid for function learning tasks on complex, and interdependent data such as images, language,
time series, and graphs. In such data, strong interdependence relationships typically exist among
both instances and attributes. Ignoring these data interdependencies, as the previous RPN model
does, will significantly degrade learning performance.
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Figure 1: An illustration of data interdependence modeling in RPN 2. Plots (a)-(d) show some
examples of interdependent data examples: (a) a colored image of a hummingbird, (b) a sentence
and its parsing structure, (c) time-series price data of six stocks, and (d) the Myricetin molecular
graph. These data instances in different modalities can all be fed as inputs to the RPN 2 model.
Plots (e)-(g) provide the matrices representations of the input data in RPN 2: (e) input data batch, (f)
calculated (instance) interdependence matrix, and (g) output data batch after transformation. Plots
(h)-(j) indicate the learning space of RPN 2: (h) input data space, (i) interdependence space, and (j)
data transformation space used for defining the interdependence function and data transformation
function.



In this paper, we propose a redesign of the RPN architecture, introducing the new RPN 2 (i.e.,
Reconciled Polynomial Network version 2.0) model. As illustrate by Figure 1, RPN 2 incorporates a
novel component, the interdependence functions, to explicitly model diverse relationships among
both data instances and attributes. While we refer to this component as “interdependence”, this
function actually captures a wide range of relationships within the input data, including structural
interdependence, logical causality, statistical correlation, and numerical similarity or dissimilarity.

Technically, as shown in Plots (e)-(j) of Figure 1, RPN 2 employs interdependence functions to
generate matrices that capture relationships among data instances and attributes. These functions
take data batches as input, and some also incorporate additional structural information, such as un-
derlying topological connections and geometric shapes, to compute comprehensive interdependence
matrices. The resulting matrices are typically sparse and are applied efficiently to input data batches
(both before and after expansion) using sparse matrix multiplication, optimizing computational re-
sources in terms of both space and time.

The introduction of these interdependence functions significantly enhances RPN 2’s ability to model
complex function learning tasks involving interdependent data. Moreover, this advancement greatly
broadens RPN 2’s unifying capacity, enabling it to encompass a wider range of prevalent backbone
architectures within its canonical representation, including but not limited to, convolutional neural
networks (CNNs), recurrent neural networks (RNNs), graph neural networks (GNNs), and Trans-
formers. Notably, their unified representations reveal that existing backbone architectures primarily
differ in their definitions of data interdependence functions. This key insight not only opens new
avenues for designing more advanced models but also positions RPN 2 as a powerful framework for
further innovation in function learning architecture design.

To evaluate the effectiveness of the new RPN 2 model for deep function learning tasks on interde-
pendent data, this paper presents extensive empirical experiments across a diverse set of benchmark
datasets, including image, language, time-series, and graph datasets. Leveraging grid-based geomet-
ric structural interdependence functions, RPN 2 effectively captures local interdependence among
image patches on benchmarks like MNIST and CIFAR-10. These grid-based functions allow im-
age patches to adopt various shapes, such as cuboids and cylinders, each offering distinct modeling
advantages. For language and time-series data, RPN 2 utilizes chain-structured topological interde-
pendence functions, excelling in tasks such as language classification and time-series forecasting.
In the case of graph-structured data, RPN 2 demonstrates superior performance by effectively mod-
eling structural relationships within graphs using its interdependence functions. With these diverse
interdependence functions, RPN 2 achieves performance comparable to leading models like CNNgs,
RNNs, and GCNs across these multimodal benchmarks.

What’s more, to facilitate the adoption, implementation, and experimentation of the new RPN 2,
we have updated the TINYBIG toolkit introduced in our previous paper [89] to the new TINYBIG
v0.2.0. This updated version incorporates interdependence modeling capabilities in the RPN 2
model design and learning, updating the head and layer modules, and the RPN 2 model architec-
ture. Additionally, TINYBIG Vv0.2.0 introduces a new family of data compression and multi-input
function functions for embedding data vectors into lower-dimensional spaces. RPN 2 has also up-
dated the existing repertoire of data expansion and parameter reconciliation functions to facilitate
the implementation of RPN 2-based models. This updated toolkit enables researchers to rapidly de-
sign, customize, and deploy new RPN 2 models across a wide spectrum of function learning tasks
on various interdependent datasets.

We summarize the contributions of this paper as follows:

* RPN 2 for Data Interdependence Modeling: We redesign the reconciled polynomial
network model, introducing RPN 2 with data interdependence modeling capabilities.
Equipped with interdependence functions, RPN 2 can learn interdependence relationships
among both instances and attributes of the data batch, significantly improving its learning
performance for function learning tasks on complex and interdependent data.
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* Data Interdependence Functions: We present a suite of interdependence functions ca-
pable of learning various categories of interdependence relationships among instances and
attributes of the input data batch. These functions utilize the input data batches along with
their necessary geometric and topological structure information to calculate interdepen-
dence matrices comprising scores between pairwise instances and attributes.

* Backbone Model Unification and Advancing: The data interdependence functions sig-
nificantly extend RPN 2’s unifying potential, encompassing a broader range of frequently
utilized backbone architectures (including CNN, RNN, GNN, and Transformer) within its
canonical representation. This unified representation reveals that existing backbone archi-
tectures primarily differ in their data interdependence function definitions, opening new
avenues for designing superior models and positioning RPN 2 as a powerful framework
for advancing future backbone model design.

* Experimental Investigation: To evaluate RPN 2’s learning performance, we present a
series of empirical experiments on numerous real-world benchmark datasets across various
function learning tasks, including image classification, language classification, time-series
forecasting, and graph classification. The results demonstrate the effectiveness and superior
performance of new backbone models designed based on RPN 2 compared to existing
dominant backbone architectures.

» Toolkit Updating: We update the TINYBIG toolkit to the new TINYBIG Vv0.2.0, incor-
porating implementations of all data interdependence functions introduced in this paper.
Additionally, we introduce a new family of data compression and data fusion functions that
can compress and fuse input data into lower-dimensional spaces. The existing repertoire of
data expansion and parameter reconciliation functions has also been expanded to include
several new component function implementations in the TINYBIG Vv0.2.0 toolkit.

Paper Organization: The remaining parts of this paper are organized as follows. Section 2 cov-
ers notations, function learning task formulations, and essential background knowledge of the rec-
onciled polynomial network model introduced in our previous paper [89]. Section 3 introduces
the new data interdependence concept, several data interdependence examples and modeling ap-
proaches. Section 4 provides detailed descriptions of the new RPN 2 model’s architecture and
design mechanisms. Our library of new data interdependence functions, data compression func-
tions, and other newly added component functions will be presented in Sections 5, 6 and 7, respec-
tively. Section 8 demonstrates how RPN 2 unifies and represents existing backbone architectures.
Experimental evaluation of RPN 2’s performance on numerous benchmark datasets is provided in
Section 9. Interpretations of RPN 2 with the interdependence functions are provided in Section 10
from the theoretic machine learning and biological neuroscience perspectives. Section 11 discusses
RPN 2’s intellectual merits, limitations, and potential future opportunities. Finally, we introduce
related works in Section 12 and conclude the paper in Section 13.

2 Notation System and Background Knowledge

To ensure the self-containment of this paper, we preface the technical descriptions of the novel RPN
2 model with a concise overview of both the function learning task and the original Reconciled
Polynomial Network (RPN) introduced in the previous paper [89] in this section. Before introducing
the background knowledge, we will also briefly describe the notations that will be used in this paper.

2.1 Notation System

In the sequel of this paper, unless otherwise specified, we adopt the following notational conven-
tions: lower-case letters (e.g., x) represent scalars, upper-case letters (e.g., X) represent variables,
lower-case bold letters (e.g., x) denote column vectors, boldface upper-case letters (e.g., X) denote
matrices and high-order tensors, and upper-case calligraphic letters (e.g., X') denote sets.
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For a vector x, we denote its i-th element as x(¢) or x;, which will be used interchangeably. We
use x| to represent the transpose of vector x. For vector X, its L,-norm is defined as [[x||, =

>, \x(z)|p)% The elementwise product of vectors x and y of the same dimension is denoted by
X @y, their inner product by (x,y), and their Kronecker product by x ® y.

For a matrix X, we represent its i-th row and j-th column as X(¢,:) and X(:,j), respec-

tively. The (¢,j)-th entry of matrix X is denoted as X(i,5), and its transpose is represented

as X'. The elementwise and Kronecker product operations extend to matrices X and Y as

X ®Y and X ® Y, respectively. The Frobenius-norm of matrix X is represented as ||X||, =
1

(ZZ ;51X ])\2) , and its infinity-norm is defined as its maximum absolute row sums, ie.,

[X]|,, = max; Zj X (3, ])|) The two-to-infinity subordinate vector norm of matrix X is de-
fined as [|X[|,_, . = supjz),—1 [1Xz| .

For two variables X and Y, we denote their independence as X L Y, and their conditional in-
dependence given a condition C' as X Ll Y|C. Conversely, their interdependence and conditional
interdependence are represented as X J{ Y and X [ Y|C, respectively. If X exhibits direct
dependence on Y, we express thisas X <~ Y orY — X.

2.2 Function Learning Task

As outlined in the previous RPN paper [89], function learning, as the most fundamental task in
machine learning, aims to construct a general model comprising a sequence of component functions
that infer relationships between inputs and outputs. The term “function” in this context refers to
not only the mathematical function components constituting the RPN model but also the cognitive
function of RPN as an intelligent system generating the desired output responses from input signals.

In function learning, without prior assumptions about data modalities, the corresponding input and
output data can manifest in various forms, including but not limited to continuous numerical val-
ues (e.g., continuous functions and time series), discrete categorical features (e.g., images, point
clouds and language), probabilistic variables (defining dependency relationships between inputs and
outputs), interconnected structures (e.g., grids, graphs and chains) and other forms.

DEFINITION 1 (Function Learning): Formally, given input and output spaces R™ and R", re-
spectively, the underlying mapping governing the data projection between these spaces can be de-
noted as:

f:R™—=R" (1)

Function learning aims to construct a model g as a composition of mathematical function sequences
g1, 92, -+ , K to project data across different vector spaces, which can be represented as:

g:R™—>R" andg=g10g20--0gkg, (2)

where the o notation denotes component function integration and composition operators. The com-
ponent functions g; can be defined on either the input data or the model parameters.

For input vector x € R™, if the output generated by the model approximates the desired output, i.e.,
g(x|w,8) = f(x), 3)

then model g can serve as an approximated of the underlying mapping f for the provided input X.

Notations w € R' and 0 € R denote the learnable parameters and hyper-parameters of the
Sfunction learning model, respectively. By convention, the hyper-parameter vector @ may be omitted
from the model representation, which simplifies the model notation to be g(-|w).



2.3 Reconciled Polynomial Network (RPN) Model

To address the function learning tasks, our previous paper [89] introduced the Reconciled Polyno-
mial Network (RPN) model as a general framework with versatile architectures. The RPN model
comprises three component functions, including data expansion function, parameter reconciliation
function, and remainder function. This architecture disentangles input data from model parameters
and approximates the target functions as the inner product of the data expansion function with the
parameter reconciliation function, subsequently summed with the remainder function.

Formally, given the underlying data distribution mapping f : R™ — IR", we represent the RPN
model proposed to approximate function f as follows:

g(x[w) = (k(x), Y (w)) + 7(x), )

where

* £ : R™ — RP is named as the data expansion function and D is the target expansion
space dimension.

+ ¢ : RY = R™ P is named as the parameter reconciliation function, which is defined
only on the parameters without any input data.

e 7 :R™ — R™ is named as the remainder function.

This tripartite set of compositional functions, i.e., data expansion, parameter reconciliation, and
remainder functions, serves as the foundation for the RPN model. By strategically selecting and
combining these component functions, we will be able to construct a RPN model to address a wide
spectrum of learning challenges across diverse function learning tasks. To enhance RPN’s modeling
capabilities, in the previous RPN paper [89], we introduced both a wide architecture featuring multi-
heads and multi-channels (within each layer), and a deep architecture comprising multiple layers.
Furthermore, we equipped RPN with a more adaptable and lightweight mechanism for constructing
models with comparable capabilities through nested and extended data expansion functions.

Furthermore, as outlined earlier, the RPN model was based on the assumption that data instances in
training batches are independent and identically distributed (i.i.d.). It also assumed that the attributes
within each instance were independent, treating them separately within its expansion functions.
These restrictive assumptions significantly limit RPN’s effectiveness in real-world learning tasks
involving complex, interdependent data, such as language, images, time series, and graphs. In
the following section, we will delve into the concept of data interdependence, which is explicitly
modeled in the newly redesigned RPN 2 model, building upon the foundations of RPN.

3 Data Interdependence

This section explores the concept of data interdependence in function learning tasks. In practice,
interdependence relationships within a data batch can be classified into various granularities, such
as attribute interdependence and instance interdependence, among others. By drawing on real-
world data, we will illustrate concrete examples of these relationships. Furthermore, we will explore
various metrics and methods for quantifying and modeling interdependence, which will serve as the
foundation for developing the robust and effective RPN 2 model to address function learning tasks
in complex and interdependent datasets.

3.1 What is Data Interdependence?

Conceptually, the “Principle of Universal Connection and Development” discussed in DIALECTI-
CAL MATERIALISM asserts that “Nothing in the world stands by itself. Every object is a link in an
endless chain and is thus connected with all the other links.” Data collected from the real-world



should inherently reflect such universal and extensive connections. Technically, understanding the
data interdependence is also critical for conducting accurate analyses, developing robust models,
and making correct decisions in the construction of intelligent function learning systems.

DEFINITION 2 (Data Interdependence): Formally, data interdependence refers to the relation-
ships and interactions between different individual attributes or the entire data instances within a
system. In this context, the state or behavior of one element (either an attribute or an instance) can
influence or be influenced by others, creating a network of interdependent relationships.

Instance Interdependence vs. Attribute Interdependence: Data interdependence may manifest
in input data at various granularities, such as attribute interdependence among the attributes within
each data instance and instance interdependence among the instances within the data batch. From
the perspective of function learning tasks, the distinction between attribute and instance interde-
pendence often becomes blurred, as certain data elements can be regarded as either attributes or
instances—or even both. For example, image frames may be considered as individual instances in
image classification tasks but can serve as attributes in video content understanding tasks. Similar
ambiguities arise in various modalities, such as point clouds, languages, graphs, and time series data.

From a technical implementation perspective, the differences between attribute and instance inter-
dependence are primarily a matter of measuring interdependence across different dimensions of the
input data batch (e.g., rows for instance interdependence and columns for attribute interdependence).
By leveraging data batch transposition and reshaping techniques, a unified implementation can ef-
fectively calculate interdependence across various dimensions of the data batch, enabling consistent
modeling of both attribute and instance interdependence.

To maintain generality, we will illustrate interdependence using examples of general vectors sampled
from a vector space below and explore methods to measure these dependencies. In specific applica-
tions, these vector variables can represent either attributes or instances within their respective vector
spaces, offering a versatile approach to interdependence analysis.

3.2 Data Interdependence Quantitative Measurements

Data interdependence among vector variables representing attribute or instance vectors (i.e., the
columns and rows of the input data batch) can be quantified using various methods, including statis-
tical and numerical approaches. Statistical interdependence measurements, grounded in probability
theory and statistics, explicitly model and quantify uncertainty in the interdependence calculation.
Conversely, numerical interdependence measurements, based on linear algebra and computational
theory, often assume the data interdependence relationships to be deterministic instead. In addi-
tion to statistical and numerical approaches, many other quantitative methods also exist, such as
topological and geometric measurements, which assess data interdependence relationships from the
perspective of topological and geometric structures. These distinct approaches give rise to different
categories of quantitative metrics for defining data interdependence functions, all of which will be
introduced in detail in the following Section 5.

3.2.1 Statistical Data Interdependence Metrics

Formally, given variables X1, X5, -+ , X}, representing vectors X;,Xz,--- ,X; € R? from a d-
dimensional vector space (each representing either an attribute or an instance), statistical interde-
pendence measurements assume each follows certain distributions, such as the multivariate Gaussian
distribution:

XlNN(lJ’mEz)?VZE{1727 ?k}v (5)

where the notation N (p;, 3;) denotes a multivariate Gaussian distribution with mean vector p; €
R and variance matrix X; € R4*4,

The joint distribution of these k variables also follows the multivariate Gaussian distribution, i.e.,

10
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where X; ; = Cov(X;, X;) denotes the covariance matrix of variables X; and X; (for i,j €

{1,2,--- ,k} and i # j), and 3;;, = Cov(X;,X;) = EL. The diagonal variance matrix 3; of
variable X; (for Vi € {1,2,--- ,k}) can also be calculated in a similar way as 3; = Cov(X;, X;),
which is symmetric by default.

Statistically, two variables X; and X; are independent if and only if their corresponding covariance
matrix is zero, i.e., 3; ; = 0 (or equivalently 3; ; = 0). If variables X1, X, ..., X}, are statistically
jointly independent, all the off-diagonal block matrices of the joint covariance matrix in Equation (6)
will be zeros, rendering the joint covariance matrix to be diagonal.

Based on these above descriptions, various statistical metrics can measure interdependence among
the vector variables, such as correlation coefficients and mutual information metrics.

RV Coefficient based Interdependence Metric: In statistics, the RV coefficient, a multivariate gen-
eralization of the squared Pearson correlation coefficient, measures the linear dependence between
two variables. It ranges from O to 1, with 1 indicating perfect linear dependence (or similarity) and O
indicating no linear dependence. The RV coefficient for pairs of variables can be directly calculated
based on their covariance matrices, as introduced above.

Given variables X; and X;, as well as their variance and covariance matrices X;, 3;, 3; ; and 3 ;,
their RV-coefficient is defined as:

tr (Ei,j 2]'7@')

tr (E?) tr (23)

RV(X;, X;) = €R, )

where the notation ¢r(-) denotes the trace of the input matrix.

Mutual Information (Gaussian) based Interdependence Metric: In addition to the RV coeffi-
cient, mutual information measures the amount of information one random variable contains about
another, defining the non-linear interdependence relationships of variables.

For random variables X; and X; following a multivariate Gaussian distribution, based on their
variance and covariance matrices, their mutual information metric is calculated as:

1 det (X;) det (33;)
MI(X;,X;)= -1 —— ") eR, 8
X X5) =5 °g< det (%) ®)
where X = 5 /| is the covariance matrix of the joint variables X, and det(-) denotes
dyi J j

the determinant of the input matrix.

3.2.2 Numerical Data Interdependence Metrics

Unlike statistical metrics, numerical metrics measure deterministic interdependence relationships
among variables without prior assumptions about their distributions. For variables X1, Xo, ..., X
representing vectors sampled from a vector space (either attribute or instance vector spaces), numer-
ical methods can quantify interdependence using vector similarity or distance metrics. The simplest
form of numerical interdependence in vector space is linear interdependence.

Assuming these vector variables take values X, X, ...,X, € R?, respectively, they are linearly
interdependent if there exist scalar coefficients a1, s, . .., a € R, not all zero, such that:

11



a1X1 + opXo + - -+ agpx = 0, )

where O denotes the zero vector of the corresponding vector space. These coefficients
a1, 9, . ..,qp can be calculated using the Gaussian elimination method, which illustrates the lin-
ear interdependence relationships among the vectors. Gaussian elimination, also known as row
reduction, is a method for solving systems of linear equations. It involves a sequence of row-wise
reduction operations performed on the corresponding matrix of coefficients.

To demonstrate how Gaussian elimination reveals interdependence among vectors, consider an ex-
ample with x; = [2,—1,—-1]T, xo = [3,—4,—2]" and x3 = [5, —10, —8] . Equation (9) defined
on these three vectors can be rewritten as:

0 2 3 5 2 3 571 [
0 =y |=1| +ag |-4| +a3 |-10] = |-1 -4 —10] |az]|. (10)
0 1 ) -8 -1 -2 -8/ |a3

This homogeneous system of linear equations can be transformed into its row-reduced form using
Gaussian elimination as follows:

2 3 5 |0 [2 3 5]0
1 —4 —10|0 | V=S 9 1 3]0 |. (11)
-1 -2 -8 |0 0000

From this reduction, we observe that: (1) the first and second columns have pivots, indicating that
vectors x; and xs are linearly independent, and (2) the third column has no pivot, indicating that
vector x3 can be linearly represented by x; and x5. Furthermore, we can deduce that 201 + 3o +

Saz = 0 and ag + 3az = 0, implying o = —3a3 and a3 = 2cv3. Thus:
0= a1X1 + eXo + (i3X3 = 2043X1 - 3@3)(2 + a3Xs, (12)
or
X3 = —2x1 + 3x2. (13)

However, the row-reduced matrix indicates relationships between coefficients and cannot directly
define interdependence relationships of data vectors. The row-reduction operation typically has a
time complexity of O(d?), which can be computationally expensive for high-dimensional data vec-
tors. Moreover, such linear interdependence among instances or attributes is rare in real-world data
batches. Instead of directly using linear relationship analysis, we propose to compute interdepen-
dence metrics based on other operators, such as inner product and bilinear form.

Inner Product based Interdependence Metric: The inner product, a generalization of the dot
product, multiplies vectors to produce a scalar. It quantifies the relationship between two vectors
(or variables) by calculating the angle between them in the vector space, capturing both vector
magnitudes and relative orientation. Formally, for two variables X; = x; and X; = x; taking
vectors of the same dimension, their inner product is calculated as:

I(X“X]) = XinT € R. (14)

Bilinear Form based Interdependence Metric: A bilinear form is a function linear in both argu-
ments that maps two vectors to a scalar. It measures interdependence by quantifying vector interac-
tions or correlations, with properties like symmetry and orthogonality providing additional insights.
The inner product metric can also be viewed as a special case of bilinear forms.

Formally, for variables X; and X taking value vectors x; and x;, their bilinear form-based interde-
pendence metric can be calculated as follows:
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B(X;, X;) =x;Wx] €R. (15)

The square matrix W € R?*9 is normally a constant, with elements defined by W(p,q) =
B(ep, e,), is called the matrix of the bilinear form on the d basis vectors ej,es,...,e; € R?
of the vector space. Additionally, there exist other ways of defining the matrix. Specifically, when
matrix W is the identity matrix, this bilinear form reduces to the inner product. In practice, matrix
‘W can also be defined as a learnable parameter, and its low-rank representation helps define the
interdependence matrix for the Transformer model, which will be introduced later in Section 5.1.6.

3.3 Data Interdependence Examples

In this section, we present examples of real-world data to illustrate the interdependence present in
data collected from various sources. These examples span different modalities, including images,
language, graphs, and time series. As previously discussed, interdependence relationships can exist
at both instance and attribute granularities, with the categorization largely dependent on the data rep-
resentation format and specific function learning tasks. It is important to note that for the examples
discussed below, we present just one potential approach to defining data interdependence relation-
ships. Depending on the specific problem and learning settings, other valid methods for defining
interdependence relationships within the data batch may exist. Readers are encouraged to select the
most appropriate approach for modeling such dependence relationships in their particular contexts.

3.3.1 Image Data Interdependence

Images can be viewed as a sequence of pixels organized
into a square or rectangular shape with specific height and
width. In the right plot, we illustrate a colored image of
a hummingbird in a square shape with 20 x 20 pixels,
i.e., both the image height and width are 20. For colored
images, depending on the encoding method used (such
as RGB, YCbCr, and CMYK), each pixel is represented
by multiple integers. We show the RGB codes of three
randomly picked pixels on the left-hand side of the plot.
As demonstrated, it is difficult to interpret the physical meanings of these individual pixel RGB
values or their potential contribution to identifying objects in the image.

Figure 2: Interdependence in Images.

The significance of individual image pixels in addressing the target learning task is profoundly influ-
enced by their surrounding context, which are normally their nearby pixels. The collective variation
patterns of these adjacent pixels provide crucial information about the objects present within the
images. On the right-hand side of the illustration, we present a 3 x 3 pixel segment along with its
corresponding RGB color codes. This small-scale representation, when juxtaposed with individual
pixels shown on the left, offers a more nuanced perspective. The significant fluctuations in the cen-
tral pixel’s values compared to its surrounding pixels within this segment indicate its position at the
boundary, conveying substantially more information than isolated pixels.

3.3.2 Language Data Interdependence

Language data, as an important carrier of informa-
tion, typically appears in an ordered sequence struc- rouel
ture, which may include natural language, program-
ming language, and mathematical language. People oop coni_and

read and write language data sequentially, which can /\ [\ /_\

ROOT

convey rich semantic information. In the right plot, This section is long and boring .
we illustrate an example sentence “This section is
long and boring.”, and provide its dependency pars-  Figure 3: Interdependence in Language.

ing tree. In natural language processing, sentences
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can typically be decomposed into a sequential list of tokens via a tokenizer based on a pre-defined
vocabulary set. For this discussion, we will consider tokens as the smallest units to introduce the
interdependence of language data.

In language data, extensive dependence relationships exist among tokens within the same sentence
or paragraph (and even across documents). For instance, “this section” in the above example de-
termines the use of “is” rather than “are”, and the word “is” constrains the following words to be
adjectives, e.g., “long”. Furthermore, the conjunction “and” indicates that the two adjectives should
have close semantic meanings, i.e., “long” and “boring”. The semantic meaning of each word de-
pends on its sentence context, which is a crucial factor that should be incorporated into model design

and learning.

3.3.3 Time-Series Data Interdependence

|
)
e
;

Time series data, such as daily temperature read-
ings, stock market prices, and annual GDP growth,
provide another representative example of interde-
pendence in data. In the right plot, we show the
stock price curves of six biotechnology companies
- AMGN, BIIB, CERN, ILMN, LULU, and MNST
- over a four-year period. In time series data, data
points at later timestamps typically depend on those
at previous timestamps. Moreover, for some time se-
ries data exhibiting long-term periodic patterns, this
interdependence may span a much longer time period, e.g., a month or even several years.

il
—~—

21X

MNST LULU ILMN CERN BIIB AMGN

Figure 4: Interdependency in Time-Series.

For the stock price data illustrated in the right plot, these selected stocks belong to the same sector,
and the price of one stock may also depend on other correlated stocks. In such stock price time
series data, individual data points alone can hardly reveal any information about the underlying
price changing patterns. To extract useful features and signals, it may be necessary to include other
data points spanning both temporal and sector dimensions.

3.3.4 Graph Data Interdependence

In addition to images, language and time-series data,
graphs are another representative example of data struc-
tures with extensive dependence relationships among
nodes. Graphs can be represented as a set of nodes con-
nected by links. In the right plot, we illustrate an example
of the Myricetin molecule (i.e., C15H190s), a member
of the flavonoid class of polyphenolic compounds with
antioxidant properties. By treating atoms as nodes and
atomic bonds as links, the Myricetin molecule can be rep-
resented as a molecular graph structure. Single and double bonds can be represented as different
types of links in the graph, rendering it heterogeneous. (Note: The distinction between homoge-
neous and heterogeneous graphs is slightly out of the scope of this paper and will not be discussed
further.)

Figure 5: Interdependence in Graph.

In the molecular graph, it is difficult to infer the roles or functions of individual nodes, such as the
central carbon atom in the red dashed circle, based solely on the node itself. We must consider its
surrounding nodes on which it depends. Unlike images, nodes’ dependence relationships in graphs
can span across the entire structure to distant nodes, and local neighbors may not provide sufficient
information for inferring their functions in the molecule. For instance, in the plot, we highlight
several other carbon nodes with identical surrounding neighbors connected by the same types of
links. To infer the functions of the central carbon node, we may also need to consider the functional
groups it is involved in, e.g., the one highlighted in the orange background color in the plot.
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3.4 Data Interdependence Handling

The diverse data interdependence relationships illustrated in the above examples play a critical role
in the function learning tasks studied in this paper. In this section, we introduce two different ap-
proaches for handling such data interdependence relationships: interdependence padding and inter-
dependence aggregation. Furthermore, we demonstrate that these two approaches can be unified
under a shared representation, expressed as the multiplication of the data batch with an interdepen-
dence matrix defined based on the input data.

3.4.1 Interdependence Padding

Formally, given two variables Z and Y representing the input
and output of a data instance in a function learning task, and a
set of attribute variables A;, As, ..., Ay that Z depends on, we e
can represent the dependence relationships among these variables
with the top plot shown on the right, with notations borrowed
from Bayesian networks. The notation Z — Y denotes the di-
rect dependence relationship of variable Y on variable Z; and
(A1, As,...,Ay) — Z denotes the direct dependence of Z on
variables A1, As, ..., Aqg.

The interdependence padding approach proposes to introduce one
extra new variable Z’ to model the information from variables
A1, Ao, ..., Ag that Z depends on. The new variable Z’ acts as
an intermediate bridge between A1, Ao, ..., Ag and Z. Also, ac-
cording to the Bayesian network, the newly created variable Z’ Figure 6: An Illustration of
renders Z and Aj, As, ..., Ay to be conditionally independent Variable Dependence Padding.
given 7', i.e., ZU (A1, As, ..., Ay)|Z .

There may exist different ways to define the new variable Z’. In this paper, we will define Z’ as
a concatenation of the dependent variables Ay, As, ..., Ag, i.e, Z' = [A1, Aa,. .., Ag]. This new
variable Z’ and the input variable Z together will define the interdependence padding operator as

padding(Z| Ay, As, -+, Ag) = [Z,Z]. (16)

For a single variable, the above interdependence padding-
based approach may work well, as it includes all the depen-
dent information into the padded new variable, which will be
used for inferring the desired variable Y. However, in practice,
there may exist multiple variables, such as 7, Zs,..., Z,
which may all depend on Aq, As,..., Ay, as illustrated in
the right plot. To make the variables 7, Zs, ..., Z} condi-
tionally independent from those in A, Ag, ..., A4, redundant Figure 7: Redundancy in the Vari-
interdependence padding can be applied to all the variables able Interdependence Paddings.
Z1, 4o, ..., as follows:

padding(Z,| Ay, Ay, - -, Ag) = [Z1, Z}),
padding(Z2| A1, Az, -+, Ag) = [Z2, Z3),

17)

padding(Zk|A1, AQ, s ,Ad) = [Zk7 Z;g],
where the newly created padding variables Z7, Z3, - - - , Z are all concatenations of the dependent
variables A1, Ao, - - - , A4. In other words, multiple duplicated copies of data vectors represented by
variables Aj, As, - -, Ay will be concatenated to those of Z1, Zs, - - - , Zy, which is actually how

the existing models, like convolutional neural networks, handle the data interdependence.
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Discussions: By default, we will only use the above interdependence padding for handling attribute
interdependence relationships. Such duplicated and interdependence padding should not be a sig-
nificant problem when the size or dimension of data that A;, As,--- , Ay represent is small. For
example, if each variable represents a feature (such as a single pixel in images), duplicating these
redundant features—similar to the approach in convolutional neural networks—does not pose sig-
nificant learning challenges for small-sized input data. Additionally, the parameters used to handle
these features can be shared across the newly created padding variables, thereby reducing the learn-
ing cost in terms of the number of parameters.

However, in real-world practice, such variables may also represent vectors of feature segments or
data instances with high dimensions. Applying the above redundant interdependence padding-based
approach will not only introduce much higher storage consumption but also require more learnable
parameters to handle the longer variable list after padding. To address the problem, below, we will
introduce an alternative data interdependence modeling method via the aggregation operator instead.

3.4.2 Interdependence Aggregation

Besides interdependence padding, another alternative approach to modeling such data interdepen-
dence relationships is via the interdependence aggregation operator, which incorporates information
from all the variables via aggregation operators, such as weighted summation.

Formally, given the variable Z and other variables A;, As, ..., A, that it depends on, as illustrated
by the upper plot of Figure 6, the interdependence aggregation approach proposes to integrate those
variables as follows:

aggregation(Z| Ay, As, - JAg) =ao-Z+a1- A1 +as-As+ -+ aq - Aqg, (18)

where the scalar weights a1, ..., a4 € R denote the interdependence strength of Z on the corre-
sponding variables in Ay, Ao, ..., Ag. Specifically, oy denotes the interdependence of Z on itself,
which can also be referred to as self-dependence.

When it comes to the multi-variate cases as shown in Figure 7, similar operators can also be applied
for the other variables 7, Zs, . . ., Zj which also depend on A1, As, ..., Ay as follows:

aggregation(Z Ay, Ag, -, Ag) = a5 - Zy +aj - Ay +ad - Ay + -+ af - Ag,

aggregation(Zs| Ay, Ao, -+, Ag) = a3 - Zo+ a3 - A1+ a3 Ay + -+ k- Ay, (19)

aggregation(Zy| Ay, Ag, -+, Ag) = af - Zr +af - Ay + ok - Ay +~~~+a§~Ad.

There exist different ways to define the above scalars ag, a1, . .., aq (with different superscripts).
The simplest way is to assign them equal constants of 1 (or ﬁ), which renders the above aggrega-
tion operator to a summation (or averaging) operator. To further distinguish and model the different
roles of variables A1, Ag, ..., Ay on different variables 71, Z>, ..., Z;, we will introduce several
different approaches to define the dependence strength weight parameters.

Discussions: Furthermore, besides weighted aggregation, some extra transformation operators (such
as linear transformation, expansion, compression, and other more complex ones with learnable pa-
rameters) can also be applied to the variables prior to or after the aggregation. This provides the
interdependence aggregation with greater modeling capacities for complex function learning prob-
lems. Some of these will be briefly discussed in the following part in this section, and more will be
introduced in detail in Section 5.

Compared with the above interdependence padding method, the interdependence aggregation will
consume less computational space and time, and provide greater learning capacities for modeling
the interdependent data. However, there is no free lunch; interdependence aggregation also creates
extra parameters (or hyper-parameters) which may need to be learned (or manually defined). Below,
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Padding of Z; Padding of Z2 Padding of Zx Z1 Z> e Z Ay Az Az e Ad

Zi|1|o|ofo|ofo]jofo|ofo|o|o]..lojo|o|of0]O Z1 1 0 0 0 0 0 0 0 0
Zx|o|o|o|o|o|oft|o|lofo|o|O]..lojo|o|0]|O]O Z» 0 1 0 0 0 0 0 0 0
|{ojofojofo|O|JO|OfOfO|O|O)...JO|OfO|O|O]|O 0 o 1 0 0 0 0 0 0
Z
kl[0OfOfOfO[OfO|JO|O|O|O|O|O 1]0|0|0|0]|0 Zx 0 o 0 1 0 0 0 0 0
Ai|o|1|o|o|ofo]JO|1|0|O|O]|O 0|1({0|0|0]|O As 1 1 1 1 1 0 0 0 0
Az|o|o|1|ofo|ofofo|1|0|O]|O ofof1jojfofo A2 1 1 1 1 0 1 0 0 0
Asz|o|o|o|1|ofofo|o|O|1|0]|0O o|jofo|1|0]|0 As 1 1 1 1 0 0 1 0 0
o|jofo|o|t|ofofo|OfO|1|O o|ofoj0|1]|oO 4 1 1 1 o 0 0 1 0
Ad|o|o|o0j0|0f1]Oo|0|0|O|Of1|.../lofo|o|0O]|Of1 Ad 1 1 1 1 0 0 0 0 1
(a) Matrix A, for Interdependence Padding. (b) Matrix A/, for Interdependence Aggregation.

Figure 8: An Illustration of Interdependence Matrix for Interdependence Padding and Interdepen-
dence Aggregation.

we will illustrate that these two different interdependence modeling approaches can be unified with
the interdependence matrix.

3.4.3 Data Interdependence Matrix

Based on the above discussion, we introduce the concept of the interdependence matrix in this
paper, which can model both the attribute and instance interdependence relationships of the input
data batch. Moreover, as mentioned above, the interdependence matrix can also unify the previously
discussed interdependence padding and interdependence aggregation-based modeling approaches
into one shared representation, which will be discussed as follows.

Attribute Interdependence Matrix: Formally, given the variables Z;, Zs, ..., Z; shown in Fig-
ure 7, which depend on the attribute variables A;, As,..., Ay, we can group these variables and
represent them as the data instance variable X = [Z7, Z, ..., Zy, A1, Aa, ..., Ag]. To simplify the
descriptions, we introduce a data instance vector x € IR"™, where the dimension m = k + d and the
vector elements denote the values of variables Z1, Zs, ..., Z and Ay, Ao, ..., Ay, respectively.

Based on the above notations, we can rewrite Equation (17) for interdependence padding by
multiplying the input data instance vector x € IR™ with the attribute interdependence matrix
A, € Rm*(x(d+1) shown in Figure 8a as follows:

x = xA, € RF*@+1), (20)
The output vector is composed of the values corresponding to the variables 77, Zs, . .., Zj with the

paddings sequentially attached to them, whose length will be k& X (d + 1).

For the interdependence aggregation approach, with the interdependence matrix A/ € R™*™
shown in Figure 8b, we can also update the involved attributes data instance vector x by aggre-
gating all the dependent conditions as follows:

x = xA!l e R™. 21
The output vector has a length of m. For the entries corresponding to variables Z1, Zs, . .., Z in the
vector, they will be summed with their conditions; while for the entries corresponding to variables
Ay, As, ..., Ay, they will remain unchanged in the output vector.

The above matrix A, € R™*™ (and A) describes the interdependence relationships among the
attributes, which is named the attribute interdependence matrix. Depending on the choice of the
interdependence matrix, the dimension term m’ denoting the output dimension of the data instance
can take different values, which will be specified in the matrix definition.
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Instance Interdependence Matrix: Similarly, for describing the data instance interdependence
relationships within the data batch, we can also define the instance interdependence matrix A; €
RY*?, where b denotes the batch size and ' is the output batch size after considering the instance
interdependence relationships. For most cases, the term & will be equal to b, but we also provide
flexibility and allow b’ to be a parameter determined by the matrix definition. Unlike A, for attribute
interdependence modeling (i.e., the columns of data batch), the matrix A; will operate on the data
instances instead (i.e., the rows).

Formally, given the input data batch X € IR®*™ involving b data instances, based on the data
interdependence matrix A; € R” *?, we can represent the updated data batch that incorporates the
data instance interdependence as follows:

X = A;X € RV'*m™. (22)

To consider both the attribute interdependence and instance interdependence relationships, we can
transform the data batch X with both matrices A; € RY *? and A, € R™*™ as follows:

X = A; XA, € RV (23)

How to Define Data Interdependence Matrix: In this section, we have demonstrated the use of
data interdependence matrices for modeling attribute and instance dependence relationships within
input data batches. The examples presented in Figure 8 and the quantitative metrics discussed in
Section 3.2 have illustrated various approaches to defining these interdependence matrices, which
are applicable to a wide range of function learning tasks.

Meanwhile, it is important to note that these examples and metrics represent only specific instances
of interdependence matrices. To enhance model flexibility and learning capacity in real-world ap-
plications, instead of manually pre-defining interdependence matrices, we introduce a new family
of component functions called data interdependence functions to define and learn such matrices
instead. These functions can automatically compute and fine-tune data interdependence matrices
based on the input data batch, additional contextual information, and optional learnable parameters.

Furthermore, the data interdependence functions in our newly developed TINYBIG v0.2.0 are de-
signed to compute both attribute and instance interdependence matrices. These computations are
guided by specified target dimension hyper-parameters (i.e., “attribute” or “instance”), allowing a
single implementation to calculate interdependence matrices along any dimension of the data batch.
The following sections will delve into these data interdependence functions and their integration
into the redesigned RPN 2 model.

4 RPN 2: Enhanced RPN with Data Interdependence Functions

Building upon the previously discussed background knowledge of function learning tasks and the
RPN model, as well as the elucidated concepts of data interdependence, this section introduces the
new RPN 2 (Reconciled Polynomial Network, version 2) model.

This enhanced RPN 2 model incorporates data interdependence modeling capabilities through a
suite of innovative component functions, collectively termed data interdependence functions.
These incorporated functions enable RPN 2 to effectively address function learning tasks on di-
verse multi-modal data characterized by complex interdependence relationships.

4.1 RPN 2: Reconciled Polynomial Network 2

Formally, given the underlying data distribution function f : R™ — IR"™ to be inferred, we can
represent the new RPN 2 model with data interdependence modeling capabilities to approximate
the underlying function f as follows:

18


https://www.tinybig.org

g(x|w) = (ke(x), ¥(W)) + 7(x), (24)
where

* ke : R™ — RP is named as the data interdependent transformation function. It is
a composite function of the data transformation function « and the data interdependence
Sfunction &. Notation D denotes the target space dimension.

o ¢ : RY — R™ P is named as the parameter reconciliation function defined on the
parameters only. Notation [ denotes the learnable parameter vector space dimension.

e 7 :R™ — R™ is named as the remainder function.

Moreover, the data transformation function serves as a general term, encompassing both data ex-
pansion functions where D > m, and data compression functions where D < m (which will be
introduced in the following Section 6.1). The data interdependence functions can model the rela-
tionships among both attributes and instances of the input data batch, whose detailed representation
will be provided in the following subsection. The parameter reconciliation function fabricates a
low-dimensional parameter vector of length [ to a high-dimensional parameter matrix of dimensions
n X D, where [l < n x D. It may also be referred to by its general name, the parameter fabrication
function; these terms will be used interchangeably throughout this paper. The remainder function
potentially provides complementary information and helps reduce the approximation errors. Figure
9 illustrates the RPN 2 model architecture, with its modules and components to be introduced in the
following section.

4.2 Data Interdependent Transformation Function

The data interdependence transformation function ¢, as introduced above, is a composition of the
data transformation function x and the data interdependence functions £. As proposed in the pre-
vious RPN paper [89], the data transformation function x efficiently projects input data into an
intermediate vector space characterized by novel basis vectors, which is subsequently mapped to the
output space through inner products with reconciled parameters. Meanwhile, the data interdepen-
dence functions &, newly introduced in this paper, capture the intricate interdependence relationships
among data instances and attributes. These functions will extract nuanced information from the input
data batch, operating both prior to and following the data projection facilitated by function k.

DEFINITION 3 (Data Interdependence Function): Formally, given an input data batch X €
RY*™ (with b instances and each instance with m attributes), the attribute and instance data inter-
dependence functions are defined as:

ga . bem N Rme/’ and gi . Rme — ]beb'7 (25)

where m’' and b’ denote the output dimensions of their respective interdependence functions, respec-
tively.

To elucidate the mechanisms of attribute and instance interdependence functions in defining the data
interdependence transformation function x¢, we shall consider a multi-instance input data batch X €
R®*™ as an exemplar. Here, b and m denote the number of instances and attributes, respectively.
Given this input data batch X, as shown in the right plot of Figure 9, we can formulate the data
interdependence transformation function k¢ as follows:

ke(X) = Al K(XAg,) € RY*P. (26)

These attribute and instance interdependence matrices A¢, € R™ ™ and A, € R are com-
puted with the corresponding interdependence functions defined above, i.e.,
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A, = £,(X) e R™™ and Ag, = &(X) € R 27)

The dimension of the target transformation space, denoted as D, is determined by the codomain
dimension m’ of the attribute interdependence function. In most cases, the domain and codomain
dimensions of the attribute and instance dependence functions analyzed in this paper are identi-
cal, i.e., m’ = m and Y = b. However, for certain interdependence functions, adjustments to the
codomain dimension are permitted, such as those incorporating padding modes discussed in Sec-
tion 3.4. Tt is critical to note that the codomain dimensions m' and b’ must are explicitly specified in
the definitions of the functions £, and &;, respectively.

4.3 Versatile Data Interdependence Function

The RPN 2 model features a versatile architecture. For the RPN 2 model implemented within the
TINYBIG v0.2.0 toolkit, the default architecture adheres to the structure defined by Equation 26.
However, the TINYBIG Vv0.2.0 toolkit also provides users with the flexibility to modify the archi-
tecture to meet specific project requirements.

In addition to the current interdependence matrices involved in Equation 26, as depicted by the
dashed lines connecting the attribute and instance interdependence matrices to the inputs and out-
puts of the data transformation function, the RPN 2 model enables the definition of attribute and in-
stance interdependence matrices both prior and posterior to the data transformation operator. These
configurations can be achieved with minor updates to the RPN 2 model architecture, as detailed
below:

T T b xD
Re(X) = Al H( Al X Agn ) Ags  €RVXP, (28)
i 3 a a
N N Lo . .
posterior instance prior instance prior attribute posterior attribute
interdependence interdependence interdependence  interdependence

Furthermore, in practical implementations, all interdependence functions currently incorporated in
the TINYBIG Vv0.2.0 toolkit establish interdependence relationships along the column dimension.
With minor reshaping of inputs, these implementations can be applied across any dimension of the
input data batch. In some implementations of interdependence functions, we allow for the inclusion
of optional learnable parameters, denoted as we, € R'¢a and we, € R’s:, which slightly alter the
function representations as follows:

A, =& (X|we,) € R™™ and Ag, = &(X | |we,) € RV (29)

By using X T as input to &;, the column-based interdependence function implementation can also be
leveraged to model interdependence relationships along the row dimension of the input data batch
X. By default, the interdependence matrix outputs incorporate optional pre- and post-processing
operations, including but not limited to input data batch normalization, as well as the row and column
normalizations of the output matrix.

4.4 Wide and Deep Model Architectures

Analogous to the previous RPN model introduced in [89], the new RPN 2 model, enhanced with
data interdependence functions, can also adopt a wide and deep architecture incorporating multi-
head, multi-channel and multi-layer structures. These expansive architectures endow RPN 2 with
greater model capacities for addressing function learning tasks on complex interdependent data.

Wide Architecture: As illustrated in the left plot of Figure 9, RPN 2 concurrently feeds the input
batch to multiple heads, with each head possessing unique component functions. Simultaneously,
as depicted in the right plot, each head within RPN 2 employs a multi-channel architecture. This
architecture fabricates multiple copies of reconciled parameters and interdependence matrices to
compute the desired output, specifically:
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Figure 9: An illustration of the RPN 2 framework. The left plot illustrates the multi-layer (K -layer)
architecture of RPN 2. Each layer involves multi-head for function learning, whose outputs will
be fused together. The right plot illustrates the detailed architecture of the RPN 2 head, involving
data transformation, multi-channel parameter reconciliation, remainder functions, and their inter-
nal operations. The attribute and instance interdependence functions calculate the interdependence
matrices, which will be applied to the input data batch either prior or posterior to the data transfor-
mation function. The components in the rounded rectangle with yellow color in dashed lines denote
the optional data processing functions (e.g., activation functions and norm functions) for the inputs,
expansions and outputs.

9(X|w, H,C) = Fusion ({@é’jﬁ)‘c (X), ™ (wi) ) + 7 ® (X)}hH’;) . (0)

where “Fusion(-)” denotes the multi-head and multi-channel fusion functions (we will discuss it in
the following subsection). Specifically, the data independent transformation function /12?2)76 (X) at
the h;p-head and ¢y, -channel can be represented as

W (X) = (ML) w00 (XAL). (31)

The terms Aé )¢ and Aé e represent the attribute and instance interdependence matrices for the
hip, head and ¢, channel of the model, respectively. Furthermore, in the above model notation
g(X|w, H, C), the learnable parameter vector w encompasses both the input parameters to the rec-

onciliation functions, i.e., {Wfph)’c} , and the (optional) parameters of the data interdependence
h,c

functions, i.e., {Wéh) , éh)c} . For simplicity, we can represent the dimensions of these learn-

able parameter vectors w( h), ©, w(h) “and w at different heads and channels to be [, l¢, and

l¢,, respectively, without 1nd1cat1ng their head and channel indices.

(h),c

The parameters of the data interdependence functions are, in fact, optional and not required for many
of the interdependence functions to be introduced in the subsequent section. Throughout this paper,
when discussing learnable parameters, we primarily refer to the parameters of the reconciliation
functions, unless otherwise specified.

Deep Architecture: Similarly, by stacking multiple RPN 2 layers on top of each other, we may
build a deep RPN 2 involving a deeper interdependence relationships among the features and data
instances spanning across multiple layers:
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Input: hy =X,

Layer I:  hy = (k¢,1 (X),¢h1(Wy 1)) + m1(X),
Layer2:  hy = (kg2 (X),12(Wy,2)) + m2(X),
Layer K:  hg = (ke k (X), Vx(Wy k) + 7 (X),
Output: y =hg.

(32)

In the aforementioned equations, we intentionally omitted the head and channel indices, as well as
the fusion function, to streamline the notations. By default, each layer of RPN 2 may incorporate
interdependence functions with multi-head and multi-channel architectures. Furthermore, each layer
in the RPN 2 architecture can possess unique data interdependence functions, affording greater
flexibility in model architecture design.

4.5 Output Fusion Strategies

To aggregate outputs from the wide architecture introduced above, RPN 2 introduces the “Fusion(-)”
function as indicated in the above Equation (30), which combines the learning results across multiple
heads and channels. The TINYBIG Vv0.2.0 toolkit implements several different fusion strategies,
which can be used within the RPN 2 model to consolidate outputs learned by this multi-head and
multi-channel wide architecture.

Some of the fusion strategies implemented in the TINYBIG v0.2.0 toolkit are briefly described as
follows:

* Summation: This strategy directly aggregates the outputs learned by the multi-head and
multi-channel model architecture via summation. It significantly enhances RPN 2’s learn-
ing capacity without introducing substantial computational overhead.

» Average: A variant of the summation fusion strategy, this approach calculates the average
of outputs learned across different heads and channels of the RPN 2 model. Similar as the
summation strategy, it treats those heads and channels with equal importance.

* Parameterized Fusion: The parameterized fusion function strategy computes a weighted
fusion (e.g., summation, average) of the outputs from different heads and channels. The
outputs from different heads and channels are assigned with different weights, which are
defined as learnable parameters to be learned together with the model.

* Metric-based Fusion: The metric-based fusion strategy aggregates outputs from different
heads and channels using predefined numeric and statistical metrics, applied to elements
at corresponding positions of the outputs across heads and channels. Examples of such
metrics include, but are not limited to, maximum, minimum, product, median, and vector
norms.

* Concatenation: This method concatenates the learning results from the multi-head and
multi-channel architecture for each instance along the column dimension, yielding an ex-
tended vector output for each data instance.

* Parameterized Concatenation: To address potential space constraints arising from in-
creased data batch sizes due to the concatenation fusion method, the parameterized con-
catenation fusion strategy incorporates a linear transformation function with learnable pa-
rameters. This function projects the concatenated outputs of the wide architecture into a
dense vector for each data instance. To minimize the number of learnable parameters in
the transformation, parameter reconciliation techniques from the previous study [89], such
as low-rank approximations and dual low-rank hypercomplex multiplication, can be inte-
grated into the fusion function.
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4.6 Computational Costs

We previously have introduced the learning costs of the old RPN without interdependence modeling
capabilities in [89] already. Here, we focus on analyzing the additional costs introduced by the data
interdependence functions incorporated into the new RPN 2 model architecture. We assume the
RPN 2 model has K layers, H heads, where each head involves C channels. Each channel learns
the attribute and instance interdependence matrices of dimensions m x m/ and b x b’ based on the
input data batch of size b x m and (optional) learnable parameters of length l¢, and l¢,. The learning
cost of the attribute and instance interdependence functions are denoted as t,(m,m’) and t;(b, b’),
respectively.

» Space Cost: The newly introduced storage requirements for the attribute and instance in-
terdependence matrices, along with the (optional) extra learnable parameters, can be rep-
resented as O(KH( mm' + b0’ + C(lg, +1e;) ). Inreal practice, the interdepen-

S~ ——

space for matrices  (optional) space for param.
dence matrices are typically sparse, resulting in substantially lower storage costs than the
above notations b’b and m’m denoted above actually.

* Time Cost: The additional computational cost for learning the attribute and
instance interdependence matrices with the corresponding interdependence
functions and multiplying them with the data batch can be represented as
O(KH(to(m,m') + t;(b,d) + bmm' + VDb )).

attribute matrix  instance matrix
multiplication multiplication

attribute matrix  instance matrix
computing computing
* Learnable Parameters: Depending on the specific definitions of attribute and instance
interdependence functions, some may involve additional learnable parameters. The num-
ber of involved learnable parameters can be represented as O(K HC(lg, + l¢,)), which is
optional in real practice.

5 Data Interdependence Functions

This section introduces a set of novel component functions for constructing the RPN 2 model, de-
signed to address function learning tasks involving complex and interdependent data. We assume
readers are familiar with the previous RPN paper [89] and the expansion, reconciliation, and re-
mainder functions that have been already implemented in the TINYBIG toolkit, which will not be
reiterated here. Readers seeking a concise overview of this section can also refer to Figure 10, which
summarize the lists of interdependence functions to be introduced in this section.

Specifically, we introduce a new family of interdependence functions capable of modeling a wide
range of interdependence relationships among both attributes and instances. These functions can be
defined using input data batches, underlying geometric and topological structures, optional learnable
parameters, or a hybrid combination of these elements.

5.1 Data Interdependence Functions

The data interdependence functions are designed to model the complex relationships among at-
tributes and data instances, corresponding to the columns and rows of the input data batch, respec-
tively. This section presents several categories of interdependence functions, each firmly grounded
in robust theoretical foundations, including linear algebra and statistical theory. The interdepen-
dence functions defined using computational geometry and topology approaches, which are based
on input data batch side information such as shapes, structures, and spatial interconnections, will be
introduced in the subsequent subsection instead.

Many of the interdependence functions presented herein are versatile, capable of computing inter-
dependence matrices for both columns and rows of the input data batch, which correspond to the
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—{1. Constant Interdependence Hl—(a). &(X) = A, where A is a constant matrix.
{2 Identity Interdependence HZ-(a)A &(X) = I, where I is an identity matrix. dim: m’ =m
{3 Statistical Interdependence 3-(a). £&(X) = A, dim: m’ =m
where A (7, j) = statistical-kernel (X (:, 2), X(:, 7))
{44 Numerical Interdependence 4-(a). £(X) = A, dim: m’ =m
where A (%, j) = numerical-kernel (X (:, %), X(:, 7))
5. Parameterized Interdepen- 5-(a). £&(w) = reshape(w) = W, where w is a
dence learnable parameter vector
6. Parameterized Bilinear In- 6-(a). £(X|w) = XTWX = A, where W = dim: m’ =m
terdependence reshape(x)
7. Parameter Efficient Bilinear | [ 7-(a). £(X|w) = X | (wpw;r) X=A dim: m/ = m
Interdependence
8. RPN based General Inter- 8-(a). £(X|w) = (r'(x), ¥’ (W')) + 7’ (x) Hdim: m' =m
dependence
9-(a). = A dim: m/ =
@ 609 = [A630] 5y eoriattn, )
{9. Grid based Structural Inter- P X Pcount
e 9b). £6) = A where
A (idx (i, 5, k'), idz (i, 5, k)) =
1, if (¢, 4, k) € patch(i, j, k)
0, otherwise
ro 1 0 01
0 0 1 0
0 0o O 0
Reconciled Data f10-(a). £(x) = A = |. . . X .
Polynomial Interdependence . : : : :
Network Functions 0 0 0 1
version 2 Lo 0 O 0
(RPN 2)
o 1 0 -.- 0
1 0 1 oo 0
0 1 0 oo 0
H10-(b). €(x)=A=|. . . . . dim: m’ =m
10. Chain based Structural 0O 0 O 1
Interdependence Lo 0 1 0-
{IOf(c). E(x) =A+1 dim: m’ =m
{1o-<d>. £(x|h) = Sh_, Ak din g =
{10-(e). E(x|0: h) = X h_, AF dim: m’ = m
{10-(& E(x)=(1—A)"1! Fdim: m’ = m
(" e =
11-(a). £(x|G) = A, where A is the adjacency matrix
of graph G
11-(b). h) =Yk | AF F{dim: m/ =
{11. Graph based Structural ®. EGxlh) = g1 S e
Interdependence 11-(©). £(x[0 : h) = ZLL:D Ak dim: m’ = m
11-d). ¢(x) =a-(I—(1—a) A)~! F{dim: m’ = m
{12. Hybrid Interdependence }—{12-(3). &(X) = fusion (£1(X), - -+ , £x (X)) dim: m’ =m

Figure 10: An overview of data interdependence, fusion, and data compression functions imple-
mented in the TINYBIG Vv0.2.0 toolkit for constructing the RPN 2 model architecture.

attribute and instances, respectively. However, to simplify the presentations below, we will focus on
computing the interdependence matrices for the columns of the input data batch, i.e., the attribute
interdependence. It is worth noting that, as briefly discussed in the previous section, these function
implementations can also be readily adapted to the alternative mode (e.g., row-based analysis or
instance interdependence) through the simple transposition of the input data batch.

5.1.1 Constant Interdependence Function

Among the array of interdependence functions to be introduced in this section, as one of the most
basic function, the constant interdependence function generates an output interdependence matrix in
the form of a constant matrix with a specified shape.
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Formally, based on the (optional) input data batch X € R**™, we define the constant interdepen-
dence function as:

£X)=AeR™™, (33)

This function facilitates the definition of customized constant interdependence matrices, allowing
for a manually defined matrix A to be provided as a hyper-parameter during function initialization.
Two special cases warrant particular attention: when A consists entirely of zeros, it is designated
as the zero interdependence matrix, whereas a matrix of all ones is termed the one interdependence
matrix. Moreover, it is noteworthy that the constant interdependence function exclusively utilizes
the shape information of the input data batch, specifically the dimension m. It does not incorporate
any additional information from the data batch matrix X in constructing the output interdependence
matrices. The second dimension, m/, can be manually specified when defining the interdependence
matrix A. In the absence of an explicit specification, by default, we will assign m’ = m. More
importantly, this function operates without learnable parameters, thereby incurring no additional
learning costs during the model’s training process.

As a standard feature shared with subsequent interdependence functions, this function accommo-
dates the integration of pre- and post-processing operations, such as input batch normalization and
activation, and the output matrix row and column normalizations. For brevity, this default capability
will not be reiterated in the descriptions of subsequent functions.

5.1.2 Identity Interdependence Function

A notable special case of the aforementioned constant interdependence functions is the identity
interdependence function. This function outputs the interdependence matrix as a diagonal constant
identity (or eye) matrix, formally represented as:

¢(X)=IeR™™, (34)

where the output interdependence matrix is, by default, a square matrix with m’ = m.

The identity interdependence function proves particularly useful for modeling the independence of
attributes and data instances within the input data batch. Notably, all models developed based on the
previous version of RPN, as introduced in [89], can be precisely reduced to a special case of RPN 2
with identity interdependence functions for both attributes and instances, i.e., both the instances and
attributes are independent.

In practical applications, leveraging sparse matrix representation and multiplication techniques re-
sults in minimal additional storage and time costs introduced by the identity interdependence func-
tion, rendering these costs nearly negligible. For scenarios where even these minor costs are unde-
sirable in modeling independence relationships, an alternative approach is to define the interdepen-
dence functions as “None” in the implementation, which will be properly handled by the TINYBIG
v0.2.0 toolkit without incurring any extra space or time costs.

5.1.3 Statistical Kernel Based Interdependence Function

The previous Section 3.2.1 has introduced several statistical kernels for quantifying interdependence
relationships among vectors. Building upon this foundation, we now present an expansive family of
interdependence functions derived from these kernels. Rooted in probability theory and statistical
inference, these kernels offer the advantage of explicitly modeling and quantifying uncertainty in
the interdependence calculations derived from the input data batch.

Formally, given a data batch X € IR®*™, we can define the statistical kernel-based interdependence
function as:

£(X) = A € R™™, where A(i, j) = kernel (X(:,), X(:, 1)), (35)
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We now present a concise overview of several frequently employed statistical kernels that can be
utilized to define the aforementioned interdependence function:

(a) KL Divergence: (b) Pearson Correlation:
_ x(7) S0 (Rt (Y —ny)
k 1 = 1 —_— i=1 O oy
ernel(x, y) Z x(i) log ( y(i)) © 30 kemel(x, y) = : PR )
where x and y have been normalized. where fiz, piy, 04, 0y are the mean and std.
(c) RV Coefficient: (d) Mutual Information:
tr(Ba,yXyx) (38) det(E,)det(S (39)
kemel(x,y) = —-owBye) cermel(x v — L1og ((dEUEL)del(E,)
tr(Z2)tr(22) ernel(x,y) = 5 log det (Z)

We have previously provided detailed descriptions of the RV coefficient and mutual information
kernels in Section 3.2.1. To further elucidate these concepts, let us consider an input data batch
X € RP*™. We can compute the column-wise mean values as vector g € IR™, which allows us to
define the centered data batch X’ as follows:

72
X =X- | P erm, (40)
17

Subsequently, we can define the column-wise covariance matrix ¥ based on this centered data ma-
trix:
1

B= 1 (X)X eRM @1

This covariance matrix serves as a crucial component in calculating the aforementioned RV coeffi-
cient and mutual information kernels for computing the corresponding interdependence matrices.

5.1.4 Numerical Kernel Based Interdependence Function

In addition to the statistical metrics discussed above, we can also the define interdependence func-
tions based on numerical metrics, some of which have been briefly introduced in Section 3.2.2.
Similar as the above statistical kernel-based functions, these numerical kernel-based interdepen-
dence functions compute the pairwise numerical scores for column vectors within the input data
batch, thereby constructing a comprehensive interdependence matrix.

Formally, given a data batch X € RR?*™, we define the numerical metric-based interdependence
function as:

£(X) = A € R™™, where A(i, ) = kernel (X(:,4), X(:, 1)) - (42)

By convention, the resulting matrix A is square, with dimensions m’ = m. This section offers a
diverse array of approaches for defining numerical metrics on vectors from the input data batch. We
elucidate below a curated selection of these methods, encompassing those previously introduced in
Section 3.2.2, as well as additional noteworthy new kernels:

(a) Linear (Inner-Product) Kernel: (b) Polynomial Kernel:
ki 1 ) = ) ’ = d
ernel(x,y) = (X,y) 43) kernel(x,ylc,d) = ((x,y) +¢)°, (44)
where x and y are the column vectors where ¢ and d are the hyper-parameters
from the input data batch. of the kernel function.
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(c) Hyperbolic Tangent Kernel:

kernel(x, y|a, ¢) = tanh (o {x,y) + ¢) . )
(e) Cosine Similarity based Kernel:
(xy) 47)
kernel(x,y) = m,
(g) Gaussian RBF Kernel:
(49)

||X*yH§
kernel = = Jl2
ernel(x,y|o) = exp ( 952 ,

(i) Anisotropic RBF Kernel:

kernel(x,y) = exp (—(X —y)A(x — Y)T) )

where A = diag(a) is a diagonal matrix
modeling vector element-specific scaling factors.
(5D

(d) Exponential Kernel:

(46)
kernel(x, y|y) = exp (= [Ix = yll;) -
(f) Minkowski Distance based Kernel:
kernel(x,y) =1 —[[x -yl (48)
where p € {1,2,--- ,00}.
(h) Laplacian Distance:
kernel(x, y|o) = exp (—M) ) 0

(j) Custom Hybrid Kernels:

kernel(x,y|a, B) = aki(x,y) + Bka(x,¥),

where k1 and ko are custom designed kernel

functions and «, 3 are their weights.
(52)

The aforementioned Minkowski distance-based kernel metric serves as a generalized representation
of several frequently employed distance metrics. Its versatility is evident in its ability to reduce
to specific, well-known distances depending on the value of the parameter p in the vector norm.
Notable special cases include the Manhattan distance (p = 1), Euclidean distance (p = 2), and
Chebyshev distance (p = co), which can be expressed as follows:

d

kernel(x,y) =1—|x—y|, =1—- Z 1x(7) =y ()|,
i=1

« 53
kernel(x,y) =1—||x—y|, =1— Z (x(i) —y(@)),
i=1

Kemel(x,y) = 1~ lx — [l = 1 = max ({Ix(i) - y(0)I}_, ) .

5.1.5 Parameterized Interdependence Function

In addition to the above interdependence function solely defined based on the input data batch,
another category of fundamental interdependence functions is the parameterized interdependence
function, which constructs the interdependence matrix exclusively from learnable parameters.

Formally, given a learnable parameter vector w € IR'¢, the parameterized interdependence function
transforms it into a matrix of desired dimensions m x m’ as follows:

&(w) = reshape(w) = W € R™ ™ (54)
This parameterized interdependence function operates independently of any data batch, deriving the

output interdependence matrix solely from the learnable parameter vector w, whose requisite length
of vector wis [e = m x m/.

In addition to the above function, several parameter reconciliation techniques, as introduced in the
preceding RPN paper [89], can also be utilized to generate the interdependence matrix W of the
desired shape from the input parameter vector w. These methods, including low-rank parameter rec-
onciliation (LoRR), hypercomplex multiplication (HM), low-rank parameterized HM (LPHM), and
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dual LPHM, also offer the advantages of reducing the number of required learnable parameters. For
a comprehensive exposition of these techniques, readers are recommended to refer to the previous
RPN paper [89]; we shall not revisit them in detail here.

5.1.6 Parameterized Bilinear Interdependence Function

In addition to the numerical metrics discussed above, we have previously introduced another quan-
titative measure, namely the bilinear form, in Section 3.2.2. This measure enumerates all potential
interactions between vector elements to compute interdependence scores. In this section, we pro-
pose defining the interdependence function based on the bilinear form with learnable parameters to
model these element interactions.

Formally, given a data batch X € R®*™, we can represent the parameterized bilinear form-based
interdependence function as follows:

EX|w) =XTWX = A e R™*™, (55)

where W = reshape(w) € IR"*? denotes the parameter matrix reshaped from the learnable param-
eter vector w € R'¢ with length [ = b2,

5.1.7 Parameter Efficient Bilinear Interdependence Function

For input data batches with a large number of instances (i.e., when b is very large), the introduced
parameter matrix W for the above parameterized bilinear interdependence function will also have
a large dimension. To avoid introducing a large number of parameters for the interdependence
function definition, we can employ parameter reconciliation techniques similar to those introduced
in [89]. These techniques, such as low-rank approximation, HM, LPHM, and Dual LPHM, can all be
used to reduce the number of required learnable parameters. These methods have been implemented
in the TINYBIG v0.2.0 toolkit and are all ready for use.

Low-Rank Parameterized Bilinear Interdependence Function: To illustrate, we present the bi-
linear interdependence function with low-rank parameter reconciliation, which will also be used to
construct the Transformer model with the RPN 2 model architecture. More discussions on that will
be provided in the following Section 8.

Similar to the low-rank parameter reconciliation function, the parameter matrix W € R”*? used
in Equation (55) can be represented as the product of two low-rank sub-matrices W,, € R”*" and
W, ¢ RY*" both of rank r (where r < b). This will transform the equation to:

(Xw)=XT (W,W, )X =(X"W,)(X W) " =AecR™™. (56)

In the implementation, the parameter vector w is first partitioned into two sub-vectors and subse-
quently reshaped into two matrices W,, W, € IR"*". This approach will reduce the number of the
required learnable parameter vector w to [¢ = 2br.

5.1.8 RPN based General Data Interdependence Function

While it is beyond the scope of this paper to enumerate all the parameter-efficient reconciliation tech-
niques introduced in previous work, it is worth noting that many of the data expansion techniques
previously discussed in [89] can also be potentially utilized in defining interdependence functions.
For example, the inner-product and bilinear form based interdependence functions defined above
can both be implemented based on Taylor’s expansion of the input data batch.

To illustrate, consider the output interdependence matrix A generated by the bilinear interdepen-
dence function in Equation (55), its (7, %), element models the interactions of the i, column with
itself:
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b b
Aiyi) = X (1) TWX(,0) = Y X(p, i) X(q, )W (p, 9),

p=1g=1

= (X(:,1) ® X(:,14), flatten(W)) ,

(57)

where ® denotes the Kronecker product of the vectors and the flatten(-) operator will flatten the
matrix to a vector for computing the inner product. In essence, the calculated A (7,%) contains the
weighted summation of the second-order Taylor’s expansion of the input data batch column vector
X(:, 7). Similar representations also hold for other entries of the interdependence matrix.

To generalize this function definition, we propose to disentangle the interdependence function as a
RPN-head proposed in the previous paper [89] composed of three components: the data expansion
function, parameter reconciliation function, and remainder function (without further considering any
interdependence relationships to avoid nested modeling). Formally, the interdependence function
€ R>™ R™ ™ can be viewed as a mapping between the input vector space of dimension
(b x m) and the output vector space of dimension (m x m’). We propose to represent it as follows:

EX|w) = (' (x),9 (W) + 7' (x), (58)

where x = flatten(X) is the flattened vector of length (b x m) from the input data batch matrix
X € RP*™. This is viewed as a single (independent) pseudo “data instance” for the above RPN-
layer. The notations are defined as:

K// . R(bX’m) N RD, w/ . Rl N R(TYLX?TLI)XD, and e R(bxnl) — R(”Lxm/)7 (59)

which denote the data expansion function, parameter reconciliation function, and remainder func-
tion, respectively, as specifically defined for the interdependence function. The prime symbols at-
tached to the function name notations are added to differentiate them from the component functions
used for building the RPN 2 architecture.

By default, the component functions for data expansion, parameter reconciliation, and remainder
introduced in previous work, as well as those to be introduced in this paper, can all be used to define
the interdependence function illustrated above. To avoid over-complicating the interdependence
function definition, we will only use the single-layer, single-head, and single-channel RPN-layer
here. Additionally, to prevent infinitely nested interdependence function definitions, we assume all
attributes in this vector “x = flatten(X)” to be independent.

The RPN-layer based interdependence function described above provides readers with considerable
flexibility in defining customized interdependence functions for diverse input data. These functions
have been implemented in the TINYBIG Vv0.2.0 toolkit and are now ready for use.

5.2 Structural Interdependence Functions

This section delves into the definition of data interdependence functions based on the geometric and
topological structural information inherent in the data batch. We examine diverse structural interde-
pendence relationships among attributes and instances from computational geometry and topology
perspectives, taking into account structural factors, such as spatial configurations, sequential orders,
and interconnections, about the input data batch.

Note: This subsection contains numerous technical details accompanied by complex notations de-
noting grids, patches, and matrices. Despite its challenging nature, we strongly encourage readers
to thoroughly engage with this material. The interdependence functions defined herein are crucial
and will be instrumental in unifying Convolutional Neural Networks (CNNs), Recurrent Neural
Networks (RNNs), and Graph Neural Networks (GNNs) into RPN 2’s canonical representation.
Omitting this subsection may impede readers’ comprehension of the subsequent model unification
and new technique designs.
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Figure 11: An illustration of the underlying structures of multi-modal data. (a) Images and point
clouds represented as grid-structured data, with nodes depicting pixels and voxels, and links rep-
resenting spatial relationships; (b) Language and time series data represented as chain-structured
data, with nodes depicting tokens and numerical values, and links representing sequential orders; (c)
Molecule compounds and online social networks represented as graph-structured data, with nodes
depicting atoms and users, and links representing atomic bonds and social connections.

5.2.1 Modality Specific Structural Interdependence Relationships

Computational geometry and topology are fields within computer science that focus on the study of
algorithms expressible in terms of data geometry and topology structures. These disciplines involve
the design, analysis, and implementation of algorithms to solve geometric and topological problems,
often dealing with objects such as points, lines, and polygons, as well as concepts of connectedness,
compactness, and continuity. Both computational geometry and topology play fundamental roles in
numerous areas of computer science and machine learning, with their algorithms being crucial for
processing, analyzing, and interpreting data in geometric and topological forms.

Figure 11 illustrates examples of real-world data and their corresponding topological structures. Im-
ages and point clouds can be represented as grids in 2D and 3D space; language and time series data
exhibit chain structures with sequential connections; and molecule compounds and social networks
can be represented as graphs. These diverse data types demonstrate various structural interdepen-
dence relationships among instances and attributes in terms of spatial distributions, sequential orders,
and extensive interconnections, respectively.

Such geometric and topological structure information of input data plays a crucial role in elucidat-
ing underlying data distribution patterns. However, when converting these data into mathematical
representations (e.g., vectors or matrices) and building models to fit them, much of this geometric
and topological structure information is either lost or not fully utilized. In the following subsec-
tions, we will define diverse data interdependence functions to explicitly model these varied data
interdependence relationships.

Note: In addition to the grid, chain, and graph structures discussed here, there exist other data types
(such as graphics mesh, hierarchical ontology, climate and space satellite sensor data) that can be
represented with alternative or more complex structures. We plan to study these in future papers
addressing concrete real-world application problems and will incorporate their corresponding data
interdependence functions into the TINYBIG v0.2.0 toolkit as well.
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Figure 12: An illustration of data grid structure and diverse patch shapes. (a) Left: Representation
of an input data instance vector and its corresponding 3D grid structure. (b) Right: Illustration of
three patch types defined on the grid: cuboid, cylinder, and sphere.

5.2.2 Topological Grid Structure and Geometric Patch Shapes

This section introduces several structural interdependence functions based on geometric patches
present in input data batches with grid structures. These geometric patch-based data structural in-
terdependence functions are primarily applied to model the interdependence relationships among
attributes, such as pixels and voxels in images and point clouds. Additionally, in practical applica-
tions, they can also be utilized to model relationships among data instances with fixed grid-structured
interdependence relationships.

Geometric Grid: Formally, given a data instance vector x € IR™, as illustrated in Figure 12, we can
represent its underlying 3D grid structure as an ordered list of coordinates denoting the attributes’
locations in the grid:

grid(x|h, w,d) = [(4, j, k)]ie{o,l,m,h—l},je{o,l,m,w—l},ke{o,l,w d—1}° (60)

This paper focuses on cuboid-structured grids, which are prevalent as underlying structures of data
instances in real-world applications, such as the aforementioned images and point clouds. The grid
size is represented as |grid(x|h, w,d)| = h x w X d, where h,w, d denote the height, width, and
depth dimensions of the grid, respectively. The grid size should equal the length of the data vector,
i.e, m = h x w x d, where x € R™. By default, we can also use the input data instance vector
dimension m to represent the grid size.

Attribute Index - Grid Coordinate Bijection: A bijective mapping exists between the coordinates
of the data instance vector x and its corresponding grid structure grid(x|h, w, d). For each attribute
in vector x, we can identify its corresponding coordinates in its underlying grid; conversely, for each
coordinate tuple from the grid, we can precisely locate the attribute from vector x by its index.

Formally, given the coordinate index tuple (¢, j, k) from grid(x|h, w, d), its corresponding attribute
index in vector x can be represented as:

ida(i, j, k) = i-w-d+j-d+k, Vi€ {0,1,---  h—1},5€{0,1,--- ,w—1},k € {0,1,--- ,d—1}.
(61)
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Conversely, given an attribute with index ¢dx from vector x, we can calculate its corresponding
coordinate tuples (4, j, k) in grid(x|h, w, d) as follows:

ivda:J ’j{m%(dw.d)J k= ida%d, (62)

w-d

where notation % denotes the modulus operator and | -] is the floor operator.

These bijection mappings enable direct access to the attributes in the data instance x and the coor-
dinate tuples in its underlying grid structure grid(x|h,w, d). For simplicity, in subsequent descrip-
tions, we may treat these attributes and grid coordinates equivalently without distinguishing their
differences.

Geometric Cuboid Patch: A geometric patch denotes a small-sized, localized region in the input
data instance’s underlying grid structure, facilitating the analysis of local data structures and details
by breaking down complex data into manageable local parts. As illustrated in Figure 12, the RPN
2 model allows patches of different shapes, such as cuboid, cylinder, and sphere, each capturing
distinct types of local structural interdependence relationships.

As shown in Figure 12, these geometric patches of different shapes can be described with a set of
hyper-parameters denoting the sizes, such as (pp, p},; Pw, Ply; Pd, ) for cuboid patch, (7;pq, p;)
for cylinder patch, and (r) for sphere patch. For cases where cuboid and cylinder patches have
symmetric shapes along dimensions (i.e., p}, = px, P}, = Pw, Py = pa for cuboid patch and p/, = pq
for cylinder patch), these shape hyper-parameters can be simplified to (py; pu; pa) for cuboid patch
and (r; pq) for cylinder patch.

Given a coordinate tuple (7, j, k) in the grid, we can represent the patch, e.g., a cuboid with shape
(PR, P Pws Piyi Pd, PYy), centered at (i, j, k) as an ordered list of coordinate tuples:

patch(i, j7 k) - [(Z + V’L,j + Vj, k + Vk)]ViG[fph,p;L],VjG[ (63)

—Pw,Py ], VEE[—pa,p}]

Its size is represented as |patch(i, j, k)| = (pn +pj, +1) X (pw + Py +1) X (pa +p}; + 1), denoting
the number of coordinate tuples covered by the patch. For simplicity, we introduce the term p to
represent the patch size, i.e.,

p = |patch(i, j, k)|, (64)

which is determined by the hyper-parameters and will be used frequently in the follow descriptions.

Cylinder and Sphere Patches: Similarly, we can represent cylinder patches of shape (r; pq, p/;)
and sphere patches of shape () centered at coordinates (4, j, k) as follows:

patch(i,j, k) = [(Z + VZ,] + vj, k + Vk)}Vi,Vje[—v",T]/\ViQ-‘erQS?"Z,Vke[—pd,pji] 5

. . . . (65)
patch(i, j, k) = [(i + Vi, j + Vi, k + Vk)}Vi,Vj,Vke[—r,r]/\Vi2+Vj2+Vk2§r2 )

whose size is also represented by the term p = |patch(i, j, k)| by default.

The main motivation for proposing the cylinder and sphere patch shapes in this paper is due to
their advantages in maintaining their rotational invariances. Rotational transformations frequently
occur in various types of input data during data sensing, collection, storage, clean and processing,
particularly in images and point clouds. When considering cuboid patch shapes, although the data
instance itself remains unaltered under rotation (e.g., about an axis parallel to the depth), the grid
nodes encompassed by these patches can undergo significant variations.

In contrast, cylinder and sphere patches exhibit superior rotational invariance characteristics:
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Figure 13: An illustration of cuboid patch based structural interdependence matrices. (a) Underlying
grid of input data instance and cuboid patch centered as (1, 1,0) with pre-defined sizes. (b) Block
interdependence matrix A (q 1 o) in the padding mode of center coordinate (1,1,0). (c) Interdepen-
dence matrix A in the aggregation mode and the column corresponding to coordinate (1,1, 0).

* Cylinder patches: These maintain consistent attribute coverage when the data undergoes
rotation around an axis parallel to the depth dimension.

* Sphere patches: These demonstrate even greater invariance properties. The grid nodes en-
compassed by a sphere patch remain constant irrespective of the orientation of the rotation
axis in three-dimensional space.

These inherent properties of cylinder and sphere patches provide robust alternatives to cuboid
shapes, especially in scenarios where rotational invariance is crucial for data analysis and processing.

5.2.3 Geometric Patch based Structural Interdependence Function

Based on the preceding descriptions, we introduce the geometric patch-based structural interdepen-
dence function defined for input data instance x € IR™ as follows:

£(x) = A e R™™. (66)

As depicted in Plot (a) of Figure 13, the composition of the interdependence matrix A can be con-
ceptualized as the systematic placement and translation of pre-defined patches along the dimensions
of the data grid structure. In this representation, the surrounding nodes within each patch define
the dependent conditions for the central node (highlighted in red) in the grid. This structural ar-
rangement aligns with the two distinct operational modes of the interdependence function, namely
the interdependence padding and interdependence aggregation modes, as elaborated in Section 3.4.
These modes, while utilizing the same underlying patch structure, result in different compositions
of the interdependence matrices A, each capturing unique aspects of the data’s structural interde-
pendencies and leading to different learning performance.

Padding Mode: In the interdependence padding mode, the function composes matrix A as the
concatenation of a sequence of block matrices:

g(x) =A= [A(ivjxk’)](i,j,k)egrid(x|h,w,d) € R™7™ (67)

For each coordinate tuple (i,j,k) € grid(x|h,w,d) in the underlying grid structure of instance
vector x, a block sub-matrix A(; ;) € R™*? is defined. Specifically, the block sub-matrix A ; ; 1
has p columns, each corresponding to one of the coordinate tuples in the patch(i, j, k) centered at
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coordinate (i, j, k). Moreover, for the column of coordinate (i, j', k") € patch(i, j, k), all entries
are filled with zeros except the entry with index idxz(¢', j', k"), which is filled with value 1.

Plot (b) in Figure 13 provides a visual representation of this structure. It illustrates the sparse block
sub-matrix A (q 1,0y, corresponding to the patch centered at coordinate tuple (1, 1,0). In this visu-
alization, entries with value 1 are prominently highlighted, while the remaining entries, all zeros,
form the background of the matrix.

The concatenation of these sub-matrices along the column dimension composes the sparse matrix
A € R™*™ . The matrix dimension m’ can be represented as m’ = (h X w X d) X p = m X p,
which is proportional to the sizes of both the grid and patches.

Aggregation Mode: In contrast, the interdependence matrix defined in the aggregation mode is
considerably denser:

£(x) = A e R™™. (68)

In the underlying grid structure of instance vector x, each coordinate tuple (4, j, k) € grid(x|h,w, d)
corresponds to a specific column in matrix A. This column is uniquely identified by the index
idx(i, j, k). Plot (c) of Figure 13 provides a visual representation of how the entries in this col-
umn are populated. The filling pattern is determined by the coordinates encompassed by the patch
centered at (i, 7, k), as follows:

1, if (¢, ', k") € patch(i, j, k)

: ) (69)
0, otherwise

A (ida(i', ', k), ida(i, j, k) = {

for all (i, j, k) € grid(x|h,w,d). Furthermore, in this mode, the matrix dimension m’ equals the
size of the grid, i.e., m’ = m, and is independent of the patch size.

The interdependence function exhibits remarkable versatility, accommodating patches of diverse ge-
ometric shapes through its two distinct compositional modes for interdependence matrices. When
applied to a given input data instance, variations in patch shape yield different manifestations of
the patch(i, j, k) notation, as formally expressed in Equations (63) and (65). These shape-induced
variations subsequently engender distinct interdependence matrices, each capturing unique struc-
tural relationships within the data. The efficacy of different patch shapes, as well as the comparative
performance of the function’s two operational modes, will be rigorously assessed through empirical
evaluation in the following Section 9.

5.2.4 Cuboid Geometric Patch Packing based Structural Interdependence Function

In geometry, packing and covering problems constitute a specialized category of optimization chal-
lenges pertaining to geometric objects within a defined space. These problems typically involve
the arrangement of identical geometric objects to maximize density without overlap, while ensuring
the largest possible spatial coverage. The structural interdependence functions introduced in this
study, however, deviate from conventional packing problems. Our approach permits the overlapping
of patches when positioning them within the data’s underlying grid structure, while simultaneously
aiming to achieve the largest possible comprehensive grid coverage to minimize information loss.

The geometric patch-based structural interdependence functions defined earlier enumerate all nodes
in the grid as patch centers for composing the interdependence matrices, resulting in the densest
possible packing. This configuration is illustrated in Plot (d) of Figure 14, which demonstrates
the concept in a 2D grid. From a computational cost perspective, such dense packing significantly
impacts the output dimension m’ of these matrices, particularly in the padding mode where m’ =
m X p, leading to considerably high dimensionality.

In this study, we introduce the concept of patch center distance hyper-parameters as a means to
control the packing of patches that cover the grid structure. For cuboid patches, these parameters are
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Figure 14: An illustration of cuboid geometric patch with shape parameters pj, = pp, pl, = Puw
(and p/, = pg) packing with varying patch center distance parameters dj, d,, (and dg4) in a 2D
grid plane. (a) d, = 3pp, dyw = 3p: sparse packing with gaps between patches; (b) dp, = 2pp,
dy = 2p,,: complete grid full coverage without patch overlaps; (¢) dp, = pp, dy = pw: complete
grid coverage with full patch overlap between adjacent patches; and (d) d;, = 1, d,, = 1: densest
packing configuration, where each grid node serves as the center of a patch. For the depth dimension
that is not shown, the patch packing can be analyzed in a similar way.

denoted as dj,, d,,, and dg, corresponding to the height, width, and depth dimensions, respectively.
Figure 14, specifically Plots (a)-(c), provides a visual representation of cuboid patch packing in a
two-dimensional example grid plane. These illustrations demonstrate the effect of varying center
distance hyper-parameters on patches of identical shape, defined by patch sizes p;, and p,,. By
modulating these center distance parameters, we can precisely control two critical aspects of patch
arrangement: the extent of grid coverage and the degree of overlap between adjacent patches, which
also determine the information coverage and redundancy of the packing results.

Formally, given a grid of shape (h, w, d) and patch center hyper-parameters dp,, d.,, and dg4, we can
select the coordinates (i, j, k) as patch centers from the following set, initializing from the coordinate

(0,0,0):
. h
(S {O7dha2'dh7"' 3 \‘J 'dh}7
dh
je{o,dmzdww-,{wJ-dw}, (70)

d
ke{O,dd,2~dd,-~-,{dJ dd}
d

This selection method facilitates the packing of a set of patches within the grid, whose size can be

represented as
h w d
re= (1)) (e [22]) (o [22]) o

For patches that extend beyond the grid boundaries, a default value padding approach is employed.
Specifically, dummy attribute values (such as 0) are used to pad these boundary-exceeding patches,
ensuring uniformity in patch sizes across the entire grid structure.
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Figure 15: An illustration of of cylinder geometric patch packing with patch shape parameters r
(and p!, = pq) and varying patch center distance parameters dy,, d,, (and dg) in a 2D grid plane. The
depth dimension is omitted for clarity. (a) d;, = 2r, d,, = 2r: sparse square packing with inter-
patch gaps; (b) d, = V/2r, dy, = v/2r: complete square packing; (c) d, = v/3r, d,, = 2r: sparse
hexagonal packing with inter-patch gaps; (d) d, = %7‘, dw = V/3r: complete hexagonal packing
with minimal overlap; (e) dp, = @r, dy = V2r: complete hexagonal packing with increased

overlap; (f) dj, = gr, d,, = r: complete hexagonal packing with full overlap.

Using these selected patch centers, we can define the interdependence function as follows:
£(x) = A e R™*™ (72)
Depending on the working modes, the output dimension m’ will be

’ D X Peount,  for the padding mode,
me= : (73)
Peounts for the aggregation mode.

The structural interdependence function defined above is adaptable to patches of various shapes,
including cylinder and sphere patches. In the following sections, we will examine the packing
strategies for cylinder and sphere patches, with a focus on determining feasible patch center distance
hyper-parameters dy, d,,, and dg. Both the packing strategy and the selected hyper-parameters
play crucial roles in determining the patch center coordinates, the definition of the interdependence
function, and the output dimension, as indicated by Equations (70)-(73).

5.2.5 Cylinder Geometric Patch Packing based Structural Interdependence Function

The packing of cylinder-shaped geometric patches within a cuboid grid presents greater challenges
compared to the cuboid patches discussed previously. While the packing along the depth dimension
remains relatively straightforward, adhering to the principles established for cuboid patches, the
arrangement of the circular surface on the plane composed of the height and width dimensions
proves more complex.

Figure 15 illustrates various packing strategies for these circular surfaces. These strategies can be
categorized based on two primary criteria: the organization of patch centers and the coverage of the
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grid. Regarding the organization of patch centers, we observe square packings, depicted in Plots
(a)-(b) in light green color, and hexagonal packings, shown in Plots (c¢)-(f) in light orange color. In
terms of grid coverage, the strategies can be classified as sparse packings, exemplified in Plots (a)
and (c), and complete packings, illustrated in Plots (b), (d)-(f). Each of these packing strategies
offers unique characteristics and trade-offs between information coverage and redundancy.

Sparse Packing Strategies: The sparse packing strategies aim to maximize the coverage of the grid
with packed patches, treating the patches as rigid bodies with no overlapping.

* Square packing: This strategy positions patch centers in rows and columns parallel to the
height and width dimensions of the grid structure. As illustrated in Plot (a) of Figure 15, a
square packing configuration with center distance hyper-parameters d;, = 2r and d,, = 2r
(where r is the circular surface radius of the cylinder patch) results in adjacent circular sur-
faces of the patches. However, this arrangement cannot achieve complete surface coverage,
with a packing coverage rate of approximately 7 = 0.785. This indicates that a significant
number of data elements are neither used as central nor dependent attributes.

* Hexagonal packing: This approach employs a “zig-zag” arrangement of patch centers to
minimize uncovered gaps and reduce information loss. Plot (c) of Figure 15 demonstrates
a hexagonal packing configuration with stride parameters dj, = v/3r and d,, = 2r, which
also results in adjacent patch placement. Notably, this method increases the packing cov-
erage rate to 2L\/§ = 0.907, offering a substantial improvement over the square packing

strategy and more effectively mitigating information loss during the packing process.

Complete Packing Strategies: The complete packing strategies aim to entirely cover the grid with
packed patches, allowing for overlap among patches.

* Square packing: As illustrated in Plot (b) of Figure 15, reducing the patch center hyper-
parameters to d;, = \/2r and d,, = +/2r results in overlapping circular surfaces that
completely cover the grid surface. For each circle, the overlapping ratio with other circles
is approximately % = 0.726, indicating that 72.6% of the attributes covered by each
cylinder patch are also involved in adjacent patches.

* Hexagonal packing: Plot (d) of Figure 15 demonstrates that reducing the center distance
hyper-parameters to d;, = %r and d,, = v/3r also achieves complete grid coverage. Com-
pared to square packing, this configuration yields a lower overlapping ratio of approxi-

27r—3v3

mately ==—-= = (.345 per circle. Plots (¢) and (f) illustrate further reductions in param-

eters to dj, = @r, dy = V2r and dj, = %r, dy = T, respectively, both resulting in
substantially higher overlapping ratios among patches.

All the cylinder patch packing strategies discussed above have been implemented in the TINYBIG
v0.2.0 toolkit. Given the shape hyper-parameters r and py of the cylinder patch, the TINYBIG
v0.2.0 toolkit can automatically compute the feasible patch center coordinates from the data grid
structure for composing the interdependence matrices.

5.2.6 Sphere Geometric Patch Packing based Structural Interdependence Function

Sphere patches offer superior rotational invariance compared to cylinder patches, maintaining this
property for rotation axes in three-dimensional space. This characteristic is crucial for defining inter-
dependence functions for data that require preservation of rotational invariance properties. However,
the packing of sphere-shaped patches within a cuboid grid presents significantly greater challenges
than cylinder patch packing. As illustrated in Figure 16, sphere patch packing strategies can be cate-
gorized into sparse and complete packing configurations, differentiated by their grid space coverage
and patch overlapping ratios. These distinctions parallel those observed in cylinder patch packing,
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Figure 16: An illustration of sphere geometric patch packing with radius r in both 2D and 3D grid
spaces, demonstrating varying patch center distance parameters dy,, d,, and dg. (a) dp, = 2r,d,, =
2r,dy = 2r: Simple cubic sphere packing. (b) dj, = V/3r,d,, = 2r,dg = %r: Face-centered
cubic sphere packing. (c) dj, = 2r,d,, = 2r,dq = \/3r: Hexagonal sphere packing.

yet the three-dimensional nature of spheres introduces additional complexities in achieving optimal
spatial arrangements.

Sparse packing: Formally, given a sphere patch with radius r, the sparse patch packing strategy
positions sphere patches adjacent to each other without overlapping, inevitably resulting in gaps
between patches. Figure 16 illustrates three distinct sphere patch packing strategies examined in
this paper:

* Simple cubic packing: This straightforward approach to packing sphere patches within
a cuboid grid is illustrated in Plot (a) of Figure 16. With patch center distance hyper-
parameters dy, = 2r,d,, = 2r,dq = 2r, each sphere is stacked directly atop another,
touching 6 other patches. The grid space coverage ratio for this simple cubic packing is
approximately § = 0.523.

» Face-centered cubic packing: As shown in Plot (b) of Figure 16, this strategy places
spheres diagonally adjacent to each other within each layer. Subsequent layers of spheres
are positioned in the interstices between spheres of the underlying layer, with every third
layer directly overlying its counterpart. This configuration, utilizing patch center distance

hyper-parameters d;, = \/3r,d, = 2r,dy = %r, enables each patch to contact 12
adjacent patches, yielding a coverage ratio of 7= =~ 0.7405.

3v2

» Hexagonal packing: Plot (c) of Figure 16 depicts this packing strategy, where the bottom
layer consists of spheres in direct contact. Spheres in subsequent layers are situated in the
interstices of the underlying layer. With hyper-parameters d;, = 2r,d,, = 2r,dq = /3r,
alternate layers directly overlie each other. Each patch contacts 12 neighboring patches,
achieving a coverage ratio of approximately BWW ~ 0.7405, identical to that of face-
centered cubic packing.

Complete packing: The sphere patch packing strategies introduced earlier can be adapted to achieve
complete grid space coverage by reducing the patch center distance hyper-parameters dj, d,,, dq
and allowing patch overlap. This approach gradually eliminates gaps between patches, ensuring
comprehensive coverage of the grid space. Based on the sphere patch organizations illustrated in
Figure 16, we propose the following potential stride parameters dj,, d,,, dq to eliminate gaps and
avoid information loss:
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Figure 17: An illustration of uni- and bi-directional chain-structured topological interdependence
relationships. (a) Uni-directional chain-structured interdependence relationship. (b) Bi-directional
chain-structured interdependence relationship. (c) Interdependence matrix of the uni-directional
chain. (d) Interdependence matrix of the bi-directional chain.

» Simple cubic packing: Complete coverage is achieved by setting the patch center distance
hyper-parameters to d, = d,, = dq = %r. This configuration ensures that all attributes
are encompassed within sphere patches.

» Face-centered cubic packing: For this packing strategy, setting patch center distance pa-
rameters to dj, = v/2r, d,, = 207, and dy = r effectively eliminates space gaps between

spheres.

» Hexagonal packing: Complete coverage in hexagonal packing is attained with patch center

distance parameters d, = d,, = #r and dg = r. This configuration ensures that every
attribute in the data instance is included within at least one sphere patch.

All these sphere packing strategies have been implemented within the new TINYBIG v0.2.0 toolkit,
enabling direct application with the sphere patch packing-based structural interdependence function.
This implementation facilitates the practical use of these advanced packing strategies in various data
analysis tasks.

5.2.7 Chain based Structural Interdependence Function

In addition to the grid structures discussed earlier, as shown in Figure 11, many real-world datasets
can be represented as chains, reflecting their underlying topological structure and sequential in-
terdependence relationships. Chain-structured interdependence refers to a series of interconnected
dependencies where each element in the chain relies on the previous one (or the later one), creating
a linear sequence of relationships. Examples of data with chain-structured interdependence relation-
ships include, but are not limited to natural languages, gene sequences, audio recordings and stock
prices. The chain interdependence function can define the interdependence matrix for both features
and data instances. We will use data attribute interdependence relationships to illustrate this concept.

Formally, given a data batch x € IR with sequential chain-structured interdependence relation-
ships among the attributes as illustrated in Plot (a) of Figure 17, we can define the corresponding
unidirectional chain interdependence function as follows:

£(x) = A e R™™, (74)

where A is the composed attribute interdependence matrix illustrated in Plot (c) of Figure 17. By
default, the output dimension m’ equals the input instance dimension, i.e., m’ = m.
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In many cases, we sum this interdependence matrix with an identity matrix to denote self-
dependency:

£(x) = A+IeR™™. (75)

Here, I € R™*™ is a square diagonal identity matrix of size m x m, allowing the function to model
both interdependence and self-dependence with a single dependency function. This self-dependence
can also be defined using the linear remainder term in RPN 2, both of which contribute to defining
sequential interdependence relationships.

For some input data batches, bidirectional chain-structured interdependence relationships may exist
among the inputs. In this case, as illustrated in Plot (b) of Figure 17, each element in the chain relies
on both the previous and subsequent elements. We can define a bidirectional chain interdependence
function to compose the interdependence matrix A € R™*™.

As with the unidirectional case, this interdependence matrix can be summed with an identity matrix
to represent self-dependency. The bidirectional interdependence matrix is particularly useful for
modeling dependency relationships in sequence inputs, such as language data with complete context
both before and after each token. This contextual information provides more comprehensive data
for learning useful features of each token in the input language, potentially leading to more accurate
learning results.

5.2.8 Multi-Hop Chain based Structural Interdependence Function

According to the interdependence matrix (both unidirectional and bidirectional), for the last attribute
in the input data instance x to access information from the beginning ones it depends on, it may
require the multiplication with the data instance vector x with the interdependence matrix A at least
m — 1 times:

xI , xA, xAA, ---  xA™ ! (76)
0-hop 1-hop  2-hop (m-1)-hop

Such a step-wise information propagation along the chains denotes how current sequential models
operate. However, this approach can be computationally expensive, especially for input data with
extremely long chain-structured interdependence relationships. To reduce computational time and
space costs, we introduce the multi-hop chain-based structural interdependence function:

£(x|h) = AP e R™*™ forh € {0,1,2,--- ,m — 1}, (77)

where h is the hop parameter for modeling multi-hop interdependence relationships of the input data
instance along the chain.

With this interdependence matrix, each attribute in the data instance can directly access informa-
tion from those h-hops away along the chain structure. To accumulate all data instances within
h-hops, we introduce the accumulative multi-hop chain-based structural interdependence function
as follows:

h
Ex[0:h)=T+A+A?+ A%+ . 4 A" =Y AT e R™". (78)
=0

To further optimize the computations, we propose approximating the accumulative interdependence
function using Taylor’s polynomial expansion series. Considering the Taylor’s expansions of the
reciprocal function ﬁ and the exponential function exp(x):
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Figure 18: An illustration of interdependence relationships in the graph topological structure and its
corresponding structural interdependence matrix.
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Based on them, we define the reciprocal structural interdependence function and exponential struc-
tural interdependence function for approximating the above multi-hop chain-structured topological
interdependence relationships as:

£x)=T—-A)"' € R™™, and £(x) = exp(A) € R™*"™. (80)

The matrix A, as defined above, is a nilpotent matrix, with its power becoming zero for exponents
greater than m — 1 (i.e, A" = 0,Yh > m — 1). Consequently, the functions described do not
introduce interdependence relationships beyond m hops. These calculations offer superior time and
space efficiency compared to multi-hop based matrix power computations. The resulting interde-
pendence matrix from these functions incorporates information from data instances within the input
data batch. Notably, in the exponential function, data instances separated by h hops are subject to a

penalization factor of %, effectively weighting the influence of more distant relationships.

Meanwhile, for the reciprocal interdependence function, the matrix “I — A” will be singular when
the chain is bi-directional, which can be calculated with the above accumulative interdependence
Equation (78) with A = m — 1 instead. In the implementation of these interdependence functions in
the toolkit, the chain interdependence matrix can be optionally normalized in the columns (or row
for instance interdependence) to avoid dramatically high values for matrix entries in computation.

5.2.9 Graph based Structural Interdependence Function

In addition to chain based structural interdependence functions, some data structures exhibit more
extensive interdependence relationships, such as graphs. Graph-structured interdependence relation-
ships model complex dependencies between different features or data instances, where each element
may depend on multiple other elements.

Given a data batch x € R"™ with extensively interdependent attributes, we can represent the inter-
dependence relationships as a graph G = (V, £), where V = {0, 1,--- ,m — 1} is the node set and
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&= {(ivj)}i,je{o,l,m ,m—1} 18 the link set. For simplicity, we use the data instance’s row index
i € {0,1,--- ,m — 1} to represent its corresponding node in the graph structure. The Plot (a) of
Figure 18 illustrates an example of such graph-structured interdependence relationships among the
attributes. In this example, these attributes are represented by the graph nodes, while their interde-
pendence relationships are represented by the links connecting them.

Based on the graph structure, we define the graph interdependence function as:
¢(x|G) = A e R™™, (81)

where the output dimension m’ = m by default.

In the output binary interdependence matrix A, the entry A (%, j) is filled with value 1 if and only
if the node pair (i,j) € &£ is a link in the graph. In other words, the interdependence matrix A
represents the adjacency matrix of the graph G. For the graph example discussed above, we illustrate
its interdependence matrix at Plot (b) of Figure 18.

5.2.10 Graph PageRank based Structural Interdependence Function

Similar to chain-structured interdependence relationships, multiplying the graph interdependence
matrix with the data batch allows each instance to access information from its immediate neighbors
(1-hop away). To retrieve information from neighbors that are h-hops away, we may need to multiply
the interdependence matrix h times with the data batch:

xI | XA, xAA, - xA". (82)
N~ S~ <~
0-hop 1-hop  2-hop h-hop

To model multi-hop dependency relationships among data instances, we introduce the multi-hop
graph interdependence function and the accumulative multi-hop graph interdependence function as
follows:

h
E(x[h) = A" € ™™, and {(x[0: h) = > A’ € R™*™, (83)
=0

In addition to these formulas that calculate powers of matrix A, existing graph studies also offer
other approaches to calculate long-distance dependency relationships among data instances, such
as the PageRank algorithm. Without delving into the step-wise derivation of PageRank updating
equations, we define the PageRank multi-hop graph interdependence function using the convergence
matrix representation from [91].

fx)=a-I-(1—-a)-A)" " e R™™. (84)

Here, « € [0, 1] is a hyper-parameter of the function, typically set to 0.15 by default. Usually, matrix
A is normalized before being used in this formula. Several frequently used matrix normalization
approaches (e.g., degree-based normalization, mean-std-based normalization, and softmax-based
normalization) have been implemented in the TINYBIG Vv0.2.0 toolkit, which can be directly ap-
plied in the above interdependence function definition for input graph structures.

5.3 Hybrid Interdependence Functions

For the interdependence functions defined above, we also allow users to fuse them together to define
more complex interdependence functions, which may be required for some special learning needs.
For instance, for some input data, both the instance attributes and the underlying modality specific
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structures play a critical role in defining the interdependence relationships among the attributes (or
instances), a fusion of the interdependence functions defined based on them will become necessary.

In this part, we will discuss the hybrid interdependence functions that can integrate the above in-
terdependence functions defined based on different information of the input data batch together for
modeling the diverse interdependence relationships. Moreover, compared with the multi-channel
and multi-head architecture discussed before in Section 4.4, the hybrid interdependence function
fusion provides a lightweight and more flexible implementation to achieve similar purposes. Also,
even within the RPN 2 model with one single head and channel, the hybrid interdependence function
still allows the model to define and model complex interdependence relationships.

5.3.1 Hybrid Interdependence Function Representation

Formally, given the input data batch X € IR”*™, we can define a set of data and structural interde-
pendence functions &1, &, - -+, &, : RP*™ — R™>™ to measure the interdependence relationships
among the attributes. These functions can be effectively fused together as follows:

g(X) = fusion (gl (X)a &2 (X)v w8k (X))

= fusion (A1, Ag, -+, Ag) (85)
=AeR™™,
where A; = £;(X) denotes the interdependence matrix obtained by function &;,Vi € {1,2,--- ,k}.

Different fusion strategies can be used to define the fusion(-) operator used above, which will be
introduced in the following subsection specifically.

The hybrid interdependence function defined above is particularly valuable for modeling complex
relationships that incorporate information from multiple sources, such as data batches and underly-
ing topological structures. To demonstrate the application of hybrid interdependence functions, we
will use graph data as an example below, explaining how to define an interdependence function for
data batches with underlying graph structures. Similar hybrid functions can also be applied to data
batches with underlying chain and grid structures.

5.3.2 An Example: Hybrid Graph Interdependence Function

Formally, given an input data batch X € IR”?*™ and its corresponding graph structure G, we define a
hybrid interdependence function by combining the parameterized bilinear interdependence function
with a one-hop graph interdependence function, as follows:

¢(X,G) = fusion(A,, Ap) = A 0 Ay € R™™, (86)
where the notations

Graph Interdependence: A, = £,(X|G) € R™*™,

87)
Bilinear Interdependence: A, = & (X|w) = XWX e R™*™, (

denote the attribute interdependence matrices derived from the graph structure and data batch, re-
spectively. If we use the one-hop graph interdependence function described in Section 5.2.9, the
resulting graph interdependence matrix A, serves as a binary mask, preserving the bilinear interde-
pendence scores between nodes with direct connections. Assisted with the optional post-processing
functions (such as softmax based interdependence matrix column normalizations), this hybrid inter-
dependence function endows the RPN 2 model with capabilities akin to those of the Graph Attention
Network (GAT) [76], which uses a linear attention mechanism, and Graph-BERT [91], which uti-
lizes a transformer-based attention mechanism.
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The hybrid interdependence function offers significant flexibility in defining interdependence rela-
tionships between attributes and instances, using either identical or distinct input information. For
complex datasets with diverse interdependence patterns, this approach enhances RPN 2’s model-
ing capacity and performance robustness. The effectiveness of this hybrid interdependence will be
further examined through experiments on real-world benchmark datasets in Section 9.

The fusion function, denoted as fusion(-) above, plays a critical role in defining hybrid interdepen-
dence by determining how different interdependence strategies are combined. This same function
can also be used for effective integration of the outputs from multi-channel and multi-head compo-
nents in our architecture. We will discuss these fusion functions in detail in the following section.

6 Data Compression Function and Fusion Function

Beyond interdependence functions, we also expand the scope of data transformation capabilities by
presenting a new family of data compression functions. Together with previously introduced data
expansion functions [89], they will define a comprehensive set of methods for transforming data
across vector spaces. Additionally, to integrate outputs learned from different heads and channels,
we propose a family of fusion functions based on various numerical and statistical metrics and
aggregation techniques, which will be utilized in the wide architecture of the RPN 2 model.

Readers seeking for a concise review of these component functions may also refer to Figure 19,
which provides a summary of the functions to be introduced in this and the following sections.

6.1 Data Compression Functions

In addition to the aforementioned data interdependence functions, which are defined based on either
the input data batch or the underlying structural information, we introduce a new family of compo-
nent functions in this paper: the data compression function. This new data compression function,
together with the data expansion functions introduced in our previous work [89], will comprise the
family of data transformation functions.

As briefly mentioned in Section 4.1, the data transformation function £ : R™ — RP” projects
data instances from a space of dimension m to a target space of dimension D. Depending on the
relative sizes of m and D, this function can be further categorized into two types: data expansion
functions (D > m) and data compression functions (D < m). We have introduced various data
expansion functions in the previous article [89], and readers are encouraged to refer to that paper
for more information before proceeding with this subsection. Several new data expansion functions
will also be introduced in the following subsection, which expands data instances with orthogonal
polynomials and wavelets.

In this subsection, we focus on introducing the data compression functions that can be incorporated
into the new RPN 2 model. Since the data interdependence relationships have been adequately ad-
dressed by the previously introduced data interdependence functions, we will treat all data instances
and attributes as independent by default for the compression functions discussed below.

6.1.1 Identity and Reciprocal Compression Function

The identity and reciprocal functions, previously introduced in [89], can serve as both expansion
and compression functions. For a given data instance x € IR, we can represent the identity and
reciprocal data compression functions as follows:

1
#(x) = x € RY and k(x) = —€ RY. (88)

To distinguish these from data expansion functions, we use the lower-case notation d to represent
the compression space dimension. As with expansion functions, optional pre- and post-processing
functions (e.g., activation or normalization functions) can be applied to the data instance before and
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Figure 19: An overview of the newly added data compression and fusion functions, and the updated
data expansion, parameter reconciliation, and remainder functions implemented in the TINYBIG
v0.2.0 toolkit for constructing the RPN 2 model architecture. The cross-line added to the “Expan-
sion Remainder” denotes the function has been deleted from the toolkit.

after the compression function. It’s worth noting that in these cases, the output dimension equals the
input dimension, i.e., d = m.
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6.1.2 Linear Compression Function

We can also define a linear data compression function based on a pre-defined constant matrix
C € R™*?. This function compresses a data instance from the input space of dimension m to
the compression space of dimension d as follows:

r(x) = xC € R% (89)

It’s worth noting that this function was also defined as a data expansion function in our previous work
[89]. The linear transformation matrix C is pre-computed and provided as an input at the function
definition. Additionally, the compression space dimension d is a manually set hyper-parameter.

This linear compression function can be particularly effective when dealing with sparse input data.
By reducing the vector dimensions, it helps decrease both the model space, time and learning costs,
often with minimal information loss.

6.1.3 Geometric Patch based Compression Function

In Section 5.2, we introduced several approaches to obtain geometric patches from the underlying
grid structures of the input data batch. These methods can also be utilized to define data compression
functions.

Formally, given a data instance x and its underlying grid structure, we can extract a set of patches
denoted as P = {p1,po, - p|7;|}. The size of this patch set (i.e., |P|) is determined by three
factors: the original size of x, the patch shapes, and the patch center distance hyper-parameters
used in the selected packing strategies. Each patch p; € P is represented as an ordered list of
coordinates covered by the patch in the data grid structure. These coordinates can be used to retrieve
the corresponding attribute values from the data instance vector x via the index-coordinate bijection
introduced in the previous Section 5.2.2.

For simplicity, we use the notation p; = x(p;) € IRP to represent the attribute elements covered by
patch p; € P from the input data instance vector x, where p denotes the patch size as introduced
in Section 5.2.2. In this paper, we propose to compress the patch vector p; using a mapping ¢ :
R? — R9, which transforms it into a dense representation of length d. This mapping defines our
patch-based data compression function as follows:

k(x) = [¢(p1), d(P2), -+, d(pPyp))] € R%. (90)

In the above compression function, its compression output vector dimension is d = |P| x dg. The
dimension parameter dg must be manually specified when defining the patch vector compression
mapping ¢. For the majority of mappings ¢ studied in this paper, the output is typically a scalar, i.e.,
the dimension dg = 1.

In practice, there are various ways to define the patch vector compression mapping ¢. We illustrate
several of these approaches as follows:

(a) Vector Norms: (b) Entropy:
é(p) = IIpll, € R, 1) ¢(p) =—> (p(i)logp(i)) €R,  (92)
where p € {1,2,--- ,00}. where vector p needs to be positive.
(c) Statistical Metrics: (d) Numerical Operator:

. 93) (94)
¢(p) = metric(p) € R. ¢(p) = operator(p) € R.

For the vector norm-based patch compression mapping, the L, norm can be selected with p values
from the set {1,2,--- ,00}. In the case of statistical metric-based patch compression functions, we
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employ the general function notation “metric(-)” to represent various statistical measures, including
but not limited to variance, standard deviation, and skewness. For numerical operator-based patch
compression functions, the “operator(-)” notation encompasses different numerical operators, such
as maximum, minimum, sum, and product, as well as various averaging functions like arithmetic
mean, geometric mean, harmonic mean, median, and mode. All of these diverse patch compression
mappings have been implemented in the TINYBIG v0.2.0 toolkit.

6.1.4 Feature Selection based Compression Function

Several conventional machine learning techniques can also be employed to define data compression
functions, notably feature selection and dimension reduction. Feature selection is a process in ma-
chine learning and data analysis that aims to choose a subset of relevant features from a larger set of
available features for model construction. Dimensionality reduction techniques, on the other hand,
seek to reduce the number of features or variables in a dataset while preserving as much important
information as possible. In classic machine learning models, both feature selection and dimension
reduction offer numerous advantages, such as improving model performance, reducing overfitting,
simplifying models for easier interpretation, and decreasing training time.

Unlike the aforementioned compression functions, which can be applied directly to any input data
instances or mini-batches, most existing feature selection and dimensionality reduction methods are
primarily designed as pre-processing steps for static inputs on complete datasets. However, the
multi-layered RPN 2 model involves dynamic inputs at each layer, where input and output values
continuously change as new model parameters are learned. Consequently, most of these conven-
tional static feature selection and dimensionality reduction methods can hardly be incorporated into
the layers or adapted to such dynamic learning settings.

In this paper, we propose utilizing several incremental feature selection and dimension reduction
approaches for defining the data compression functions at each layer. Simultaneously, we call for
the development of novel online (or incremental) feature selection and dimension reduction methods
from the research community, specifically those that can be adapted into the layers for deep function
learning tasks.

Formally, given an input data instance x € IR™, we can represent the feature selection-based data
compression function as follows:

r(x) = feature-selection(x) € R, (95)

Here, the function “feature-selection(-)” represents an incremental feature selection approach capa-
ble of processing any input data instance x during the learning process. The output dimension d
must be manually specified when defining this function. Several examples of such approaches, in-
cluding the incremental variance threshold method and incremental feature clustering method, will
be introduced in detail in the following sections.

Incremental Variance Threshold Method: Slightly different from the notations used in the above
compression functions, the incremental variance threshold method needs to calculate the variance
for each attribute based on the inputs, which can only operate on the data batches instead of the
individual instances discussed above.

Formally, given an input data batch X € IR?*™, we calculate its attribute variance vector as follows:
var(X) =v € R™. (96)

The iy, entry of vector v denotes the variance calculated for the ¢, attribute of data batch X, i.e.,
the column vector X(:, 7).

For small-sized input data batches, the calculated variance vector may change dramatically between
batches, potentially leading to unstable performance. To address this issue, the incremental variance
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threshold method maintains a record of all historical variance vectors calculated since the first batch.
This record is incrementally updated with new variance vectors as follows:

(t—1)-v+v

; e R™, 97)

v =
where ¢ denotes the counter index of the current batch and v represents the historical variance record

vector for all attributes. Furthermore, during both training and inference, attributes with variance
values greater than a specified threshold are selected for the output:

feature-selection(X) = [X(:,7)];c(1.9,... mpav(i)>p (98)

where p denotes the provided variance threshold hyper-parameter.

In practice, rather than setting the variance threshold hyper-parameter p (which may lead to varying
numbers of selected attributes and cause dimension inconsistency between different data batches
and training epochs), it is more common to select the top-k attributes with the largest variances.
This approach precisely determines the output dimension as d = k.

Incremental Feature Clustering Method: For the incremental feature clustering-based method,
given an input data batch X € RY*™, the algorithm partitions the m attributes into %k non-
overlapping clusters based on pairwise similarities (e.g., cosine similarity) calculated from the input
data batches. Formally, we can represent these attribute clusters as:

C={C1,Ca,-+ ,Ci}owhere | JCi={1,2,--- ,m} ACiNC; =0,Vi,j € {1,2,--- ,k}. (99)

As new data batches arrive, this method incrementally updates the similarity scores among the at-
tributes (similar to Equation (97)), creating new partitions of the attributes. Within each identified
attribute cluster, the most representative features are selected, typically those with the highest vari-
ance scores (or based on other selection criteria). This process can be represented as:

feature-selection(X) = [X(:,%)];cc, nc, ccnv(iy>p - (100)

where p is a threshold parameter and it can be set as the highest variance scores for each cluster
(e.g., the top-1 attribute with the largest variance in each cluster). Consequently, for the incremental
feature clustering-based compression function, the output compression space dimension equals the
provided cluster number hyper-parameter, i.e., d = k.

For most input data batches, the number of attributes is typically not very large, especially compared
to the number of instances. Therefore, recording attribute variances and learning attribute clusters
does not incur significant space or time costs. Moreover, as the RPN 2 model’s performance con-
verges during the learning process, changes in the input data batches for each layer between sequen-
tial epochs become minor, resulting in minimal changes to attribute variances or clusters.

To further optimize the feature selection-based compression function, we can implement an early-
stopping parameter. This parameter halts the updating of variance metrics and clustering results
after a specified number of training epochs, helping to reduce the computational costs associated
with tuning these incremental feature selection methods.

6.1.5 Dimension Reduction based Compression Function

Similar to feature selection, dimension reduction is another frequently used technique in classic
machine learning for transforming high-dimensional data into a lower-dimensional space. In this
paper, we propose the use of two dimensional reduction methods to define the data compression
function, including the incremental principal component analysis and random projection.
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Incremental PCA: Incremental Principal Component Analysis (PCA) [66] is a technique used for
dimensionality reduction when dealing with large or continuously growing datasets. It extends tra-
ditional PCA to handle data incrementally by updating the principal components as new data arrives,
rather than recomputing them from scratch.

Formally, given the input data batch X € IR?*™, its singular value decomposition (SVD) can be
represented as:

X =UZV', (101)

where U € RY*® and V € R™*™ are both orthogonal matrices. The matrix ¥ =
diag(c1,09, -+ ,0,,0,---,0) € RP*™ is a rectangular diagonal matrix with r singular values
01 > 09 > --- > 0, > 0 and zeros on the diagonal. The number of non-zero singular values on the
diagonal of matrix 3 also defines the rank of matrix X.

The column vectors of matrix U are orthogonal and called the left singular vectors, while the or-
thogonal column vectors of matrix V are called the right singular vectors. In the right singular
matrix V, we denote the columns corresponding to the & largest singular values as V, € R™**,
This helps calculate the principal components for each data instance x € IR™ in the data batch as:

k(x) = xV}; € RY, (102)

where the instance output dimension d = k.

As a new data batch X’ € R?*"™ arrives, we need to efficiently calculate the SVD of the concate-
nation of X and X’. The resulting V' matrix will help update the principal components from the
new data batch X’. In [66], the authors introduce an efficient approach to update the previous SVD
decomposition results (i.e., U, X, V of X) to calculate the new SVD decomposition matrices U’,
3, V' by incorporating the new data batch X'. In this paper, we will use this method of incremental
data batch dimension reduction for defining the data compression function.

Random Projection: Besides incremental PCA, random projection is another computationally effi-
cient method for dimensionality reduction that can be used incrementally. While not as commonly
used as PCA for incremental learning, it has unique advantages, especially for very high-dimensional
data. The random projection method was proposed based on the Johnson-Lindenstrauss lemma
[34], which states that “a set of points in a high-dimensional space can be projected onto a lower-
dimensional space while preserving pairwise distances”.

Formally, given the input data instance x € IR™, random projection proposes to generate a random
matrix R € R™*¥ of size m x k to project the input data instance into a lower-dimensional space
as follows:

k(x) = xR € RF. (103)
There exist different approaches to generate the random matrix R, such as sparse random projection
and Gaussian random projection.
For the sparse random projection method, the random matrix R elements are generated subject to

the density parameter s € [0, 1]. For instance, each matrix element R (i, j) may take values:

—y/Z  with probability £,
R(i,j) =<0 with probability 1 — s, (104)

+ i with probability 3.

Meanwhile, for the Gaussian random projection, the random matrix elements, e.g., R(7, j), are
randomly drawn from the Gaussian distribution as follows:
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R(i, j) ~ N (o, ;) . (105)

Similar to the feature selection-based compression functions, an early-stop parameter can also be
applied to these dimension reduction-based compression functions. This parameter will halt the up-
dating and tuning of the function’s internal components as the RPN 2 model performance stabilizes
with training epochs.

In addition to the dimension reduction methods based on incremental PCA and random projection,
we have implemented several manifold-based techniques, including Isomap, t-SNE, Locally Linear
Embedding, MDS, Spectral Embedding, and SMACOF. While we will not delve into the specifics of
these manifold-based compression functions here, readers are encouraged to select the most suitable
methods for their particular project and function learning tasks.

6.1.6 Probabilistic Compression Function

Building upon our previous work [89], which introduced probabilistic expansion functions for ex-
panding input data instance vectors into their log-likelihood in naive or combinatorial modes, we
now introduce a novel category of data compression functions based on probability distributions,
termed probabilistic compression functions. These functions aim to compress data instances into
vectors using probabilistic sampling methods.

Formally, given a data instance x € IR™, we define the probabilistic compression function based on
probabilistic sampling as:

K(x) =t € RY, (106)

where the output vector t is conditionally dependent on x following certain distributions. For exam-
ple, using a Gaussian distribution:

tlx ~ N(p, X). (107)

The dimension d of the output vector t is a hyper-parameter requiring manual setup. While we use
the Gaussian distribution A (, ) as an example, t|x can follow other distributions, such as Cauchy
or Laplace distributions, which have been employed in defining probabilistic expansion functions in
our previous work [89].

Similar to the previously introduced expansion functions, probabilistic compression functions can
operate in both the naive and combinatorial modes.

Naive Probabilistic Compression Function: This naive probabilistic compression function as-
sumes independence among attributes in the input data instance vector. It performs sequential ran-
dom sampling of attributes without replacement from the data instance to compose the output vector
of the desired length. Beyond simple random sampling with uniform distributions (implemented
in the TINYBIG v0.2.0 toolkit as well), we can also sample attributes based on instance attribute
values as follows.

Formally, given a data instance vector x € IR™, the sampling probabilities of all available attributes
in the first sampling step can be represented as:

P(f(xz)|92)>VZe {1727 7m}u (108)

where 0; denotes the hyper-parameters of the distribution corresponding to the 4, attribute. For
Gaussian distributions, it can represent the mean p; and standard deviation o; of the i, attribute,
as indicated in Equation (107). In practice, we may set equal-valued hyper-parameters 6 for all
attributes, i.e., 0; = 0,Vi € 1,2,--- ;m.
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The mapping f(-) used above projects the attribute value x; to a scalar compatible with the dis-
tribution. For normalized attribute values, we can simply define f(x;) = x;; otherwise, we can
define it as a normalization mapping, i.e., f(x;) = normalize(x;|0;). Additionally, we can define
the mapping to extract insightful numerical or statistical metrics about the attributes, similar to those
introduced in Section 6.1.3.

Furthermore, to maintain consistency with probabilistic expansion function outputs in certain learn-
ing scenarios, we can project the sampled attributes to their log-likelihoods, redefining the naive
probabilistic compression function as:

r(x) = log P(t|#) € R™. (109)

Combinatorial Probabilistic Compression Function: Building on the combinatorial expansions
introduced in our previous work [89], we now present the combinatorial probabilistic compression
function. Unlike naive probabilistic compression functions, this approach considers relationships
among variables in multivariate distributions, enabling better modeling of complex data distribu-
tions.

Formally, given a data instance vector x € IR™, we can represent the combination of k selected
attributes from x as (§), for k € {1,2,--- ,m}. For an input vector x of length m, the notation ()
represents a set containing (7:) attribute combination tuples, e.g.,

b= () = (G (G}
b=2: (3) = (ama) Gaaxa) (o). (110)

X
k=3: (2> = {(Xl,XQ,Xg), (X17X27X4)7 U 7(xm72>xm71xm)} .

For all attribute combination tuples in (2) using multivariate distributions (e.g., N'(p, 3) defined
on d variables), one approach to compose the output attribute t € R¢ is to randomly select one

combination tuple from (2) according to tuple-wise probability scores, similar to Equation (108).

However, this sampling-based method can be challenging to implement due to the exponential size
growth of (:;) as d increases. For large d values, both enumerating d-sized attribute combinations in
(’;) and computing multivariate distributions with d variables become computationally expensive.

To address this, we can utilize combinatorial expansion functions, consistent with the probabilistic
expansion functions introduced in [89]:

wn- ()66

This expansion output contains Zle (T) tuples of varying lengths. Based on this expansion,
we can define the combinatorial probabilistic compression function by sampling d tuples from
k(x|1 : k), treating the tuples as independent “items”. Depending on tuple length, a corresponding
multivariate distribution can be applied to compute the log-likelihood of the tuples:

k(x) = log P (<“(’;|k)> |0) eR%. (112)

In practice, due to the exponential growth of output dimensions in the combinatorial expansion
function denoted by Equation (111), the hyper-parameter k is typically set to a small value, e.g.,
k = 2 or k = 3. This ensures both the efficiency of this probabilistic compression function and also
the output value consistency with the previous probabilistic expansion function outputs.
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6.2 Fusion Functions

The wide architecture with multi-head and multi-channel design endows RPN 2 with enhanced
learning capacities. In the previous RPN model, we used a summation-based fusion strategy that
assigned equal importance to each head and channel. However, for more complex function learning
tasks, this simple summation approach may no longer be adequate. In this section, we introduce
several advanced fusion strategies that can more effectively aggregate the outputs from the wide
architectures. Moreover, these fusion functions are versatile, supporting not only the construction of
hybrid interdependence functions but also other essential functions, thus offering RPN 2 significant
flexibility in architectural design.

To simplify the notations, we represent the inputs to the fusion function as matrices

A, Ay - Ay, with the fusion output denoted by
A = fusion(Aq, Ag, -+, Ay). (113)
The dimensions of the input matrices A1, Ao, --- , Ax may be identical or vary, depending on the

specific definition of the fusion function. We will specify their dimensions in detail when introducing
the concrete functions below.

6.2.1 Weighted Summation based Fusion Function

The weighted summation-based fusion function requires that all input matrices have identical dimen-
sions. Formally, given interdependence matrices A1, Ao, ..., Ar € R™*" of dimension m X n,
we can combine them through a weighted summation as follows:

k
fusion(Ay, Ag, -+, Ag) = Y a;A; € R™, (114)
i=1
where «; represents the weight assigned to matrix A; foreach i € {1,2,---  k}.

These weights can either be provided manually, leveraging domain expertise, or initialized as learn-
able parameters. Alternatively, we may set them to fixed values, such as 1 or %, simplifying the
fusion function to a straightforward summation or averaging of the input matrices, respectively.

6.2.2 Numerical Operators based Fusion Function

In addition to weighted summation, the fusion operator can be defined using various numerical op-
erators introduced in Section 6.1.3, such as maximum, minimum, and different averaging functions.
Like the summation-based fusion function, these numerical operator-based fusion functions also
require that the input matrices have identical dimensions.

For example, we can define the fusion operator using the maximum operator, combining the input
interdependence matrices A1, Ag, ..., A € R™*™ as follows:

fusion(A1,Ag, - ,Ay) = A € R™*", (115)
and the entry A(i,7) (fori € {1,2,--- ,m}and j € {1,2,--- ,n}) can be represented as
A(Zvj) = max (Al(zvj)vAQ(lh?)? e aAk(l7])) . (116)

6.2.3 Hadamard Product based Fusion Function

In this paper, we extend the Hadamard product, originally defined for two matrices, to handle k
matrices, A1, Ag, -+ , A € R™*"™, enabling element-wise fusion across multiple inputs:
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A= quiOH(Al,AQ, s ,Ak) =Aj0As0---0A; € IR,mxn, (117)
where for the (4, j);, element is calculated as
A(z’j):Al(Z7]>XA2(Z7])XXAk(Zvj) (118)

The Hadamard product-based fusion function is particularly beneficial for hybrid interdependence
functions that incorporate both structural and data batch information. Here, structural information
can serve as a filtering mask, selectively extracting relevant information from data batches. We
provide an example of defining the hybrid interdependence function for graph-structured data in
Section 5.3.2.

6.2.4 Concatenation and Linear Transformation based Fusion Function

Similar to the wide architectures discussed earlier, we can concatenate the input interdependence
matrices and then reduce them to the desired dimensions using a linear transformation. This fusion
function requires only that the input matrices have the same number of rows, allowing for differing
numbers of columns.

Formally, given input interdependence matrices A1, Ao, ..., Ay, where each matrix A; € R"*"
has m rows and n; columns, we define the fusion operator as follows:

A = fusion(A, Ay, -+, Ay)

(119)
= (A1UA2|_|~'~|_|A]€)W€RmXH
where LI denotes the row-wise concatenation of the matrices. The term W € (i1 ni)xn repre-
sents a learnable parameter matrix that projects the concatenated matrix to a dimension of n.

The concatenation of these interdependence matrices results in a relatively large dimension, specifi-
cally UK, Ai € Rm* (=11 To reduce the number of learnable parameters, we can also apply
low-rank parameter reconciliation, allowing us to rewrite the fusion function as follows:

A = fusion(Aj, Ag, -+, Ay)

(120)
= (U,A) (PQT) e R™™,

where the parameter matrix W is factorized into the inner product of two sub-matrices, specifically
W =PQ" ¢ ]R(Z?:l”i)x", where P € R(Zi1m)x7 and Q € R™™" represent the low-rank
factorization sub-matrices of W.

Beyond the operators discussed above, several other fusion operators can also be employed to define
fusion strategies for the hybrid interdependence function. While we illustrated this with attribute
interdependence functions as an example of hybrid interdependence, similar functions can also be
defined and fused for instance interdependence relationships, though these will not be covered in
this section.

7 Other Component Function Updates in the Enhanced RPN 2 Model

Moreover, to enhance the existing suite of data expansion and parameter reconciliation functions, we
introduce several new implementations designed to augment these components. These functions, in
combination with others mentioned earlier, facilitate the creation of more versatile, efficient, and ef-
fective architectures within RPN 2. In refining the TINYBIG v0.2.0 toolkit, we deliberately deleted
the complementary expansion-based remainder function proposed in our previous work [89]. This
decision was made to eliminate redundancy in RPN 2, as such complementary expansion-based
remainders can be equivalently implemented using the multi-head and multi-channel mechanisms,
which are now the default strategy in building RPN 2. These updated component functions intro-
duced in this section have also been summarized in the previous Figure 19.
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7.1 Data Expansion Functions

In addition to the aforementioned interdependence and compression functions, this paper also ex-
pands the existing list of data expansion functions proposed in our previous work [89]. In our pre-
vious RPN paper [89], we introduced several orthogonal polynomials, such as the Chebyshev and
Jacobi polynomials. In mathematics, an orthogonal polynomial sequence is a family of polynomials
where any two distinct polynomials in the sequence are orthogonal to each other under some inner
product. Building on our previous work, we will define several new orthogonal polynomials that
can perform different data expansions for extracting useful information from the input data batch.

In addition to these new orthogonal polynomials, we also introduce a novel data expansion func-
tion based on wavelets, designed to expand multi-modal data such as audio signals and images into
new spaces. In signal processing, a wavelet is formally defined as a wave-like oscillation with an
amplitude that begins at zero, increases or decreases, and then returns to zero one or more times.
Compared to the transformations introduced in [89], such as Fourier transformation, wavelet trans-
formation replaces trigonometric basis functions with wavelet-based basis functions, which offers
greater advantages in terms of multi-resolution analysis, adaptability, and computational efficiency.

In this section, we will introduce additional orthogonal polynomials and new wavelet transformation
techniques that can be utilized to define data expansion functions. These newly added component
functions significantly enrich the foundational building blocks available for RPN 2 model design,
potentially enhancing its learning performance across diverse function learning tasks.

7.1.1 Hermite Polynomials based Expansion Function

Hermite polynomials, first defined by Pierre-Simon Laplace in 1810 and studied in detail by Pafnuty
Chebyshev in 1859, were later named after Charles Hermite, who published work on these polyno-
mials in 1864. The Hermite polynomials can be defined in various forms:

Probabilist’s Hermite polynomials:

2 n 2
He,(xz) = (—=1)"exp (g) dd?exp (_a;) ) (121)

Physicist’s Hermite polynomials:

H,(z) = (—1)"exp (z°) dd—nn exp (—2?). (122)

These two forms are not identical but can be reduced to each via rescaling:

n n T
H, =22 H 2 H =2"2H,(— . 12
n(x) en(\fx), and He, () " (ﬁ) (123)

In this paper, we will use the Probabilist’s Hermite polynomials for to define the data expansion
function by default, which can be formally defined as the following recursive representations:

Heni1(x) = xHe,(x) — nHe,—1(x),¥n > 1. (124)

Some examples of the Probabilist’s Hermite polynomials are also illustrated as follows:

Heg(z) =

Hei(z) =

Hey(x) = (125)
Hes(z) = z° — 3u;

Hey(z) = 2* — 622 + 3.



Based on the Probabilist’s Hermite polynomials, we can define the data expansion function with
order d as follows:

k(x|d) = [Hei(x), Hea(x), -+ , Hea(x)] € RP, (126)

where d is the order hyper-parameter and the output dimension D = md. Similar as the data
expansion functions introduced in the previous paper [89], the constant term H e () is not included
in the expansion outputs.

7.1.2 Laguerre Polynomials based Expansion Function

In mathematics, the Laguerre polynomials, named after Edmond Laguerre, are the nontrivial solu-
tions of Laguerre’s differential equation:

zy”" + (a+1—x)y +dy =0, (127)

where y = y(x) is a function of variable x. Notations y’ and y” denote first- and second-order
derivatives of function y with respect to variable z. Term d € N is a non-negative integer and
a € R is a hyper-parameter.

The closed-form of the Laguerre polynomials can be represented as follows:

" (x) n! dzm (e v ) n! dz 1 v ’ (128)
where Tda; denotes the derivative operator.

In practice, the Laguerre polynomials can be recursively defined as follows, which will be used
for defining the data expansion function below. Specifically, when o« = 0, the above Laguerre
polynomials are also known as simple Laguerre polynomials.

Base casesn = 0and n = 1:

P =1, and P (2) = 1+ a — a. (129)

High-order cases with degree n > 2:

@n—1+a- 2P (@) - (0 -1+ )P @) (130)

P (2) =
n

The recursive-form representations of the Laguerre polynomials can be used to define the data ex-
pansion function as follows:

k(x|d, a) = | P (x), P\ (x), -, P\ (x)| € RP, (131)

where d and « are the function hyper-parameters and the output dimension D = md.

7.1.3 Legendre Polynomials based Expansion Function

The Legendre polynomials, named after mathematician Adrien-Marie Legendre, are defined as an
orthogonal system over the interval [—1, 1], where the polynomial term P, (z) of degree n satisfies
the following equation:
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+1
/ P, (z)P,(x)dx =0, if m # n. (132)

-1

Specifically, according to Bonnet’s formula, the Legendre polynomials can be recursively repre-
sented as follows:

Base casesn = 0and n = 1:

Py(z) =1, and P (z) = x. (133)

High-order cases with degree n > 2:

P,(z) = (134)
The Legendre polynomials help define the data expansion function as follows:
k(x|d) = [Pr(x), P2(x), -, Pa(x)] € R, (135)

where the output dimension D = md.

7.1.4 Gegenbauer Polynomials based Expansion Function

The Gegenbauer polynomials, named after mathematician Leopold Gegenbauer, are orthogonal
polynomials that generalize both the Legendre and Chebyshev polynomials, and are special cases of
Jacobi polynomials.

Formally, the Gegenbauer polynomials are particular solutions of the Gegenbauer differential equa-
tion:

(1 -2y — 2a+ Day' +d(d+2a)y =0, (136)

where y = y(z) is a function of variable z and d € N is a non-negative integer.

When o = %, the Gegenbauer polynomials reduce to the Legendre polynomials introduced earlier;
when o = 1, they reduce to the Chebyshev polynomials of the second kind.

The Gegenbauer polynomials can be recursively defined as follows:

Base casesn = 0and n = 1:

P (z) =1, and P (2) = 2aa. (137)

High-order cases with degree n > 2:

2¢(n — 1+ a)P () — (n + 2a — 2)P\%, (2)

P (x) = (138)
n
Based on the Gegenbauer polynomials, we can define the expansion function as follows:
r(xld, @) = [P (x), P37 (x),-- -, P (x)| € R”, (139)

where the output dimension D = md.
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7.1.5 Bessel and Reverse Bessel Polynomials based Expansion Functions

Formally, the Bessel polynomials are an orthogonal sequence of polynomials with the following
closed-form representation:

" (n4 k) sa\k
Bn(x)—’;)(;_k)!)k!(2> ‘ (140)

Another definition, favored by electrical engineers, is sometimes known as the reverse Bessel poly-
nomials, with the following closed-form representation:

o 1\ " (n+k)! ank
Rn(z) = 2" B, (x) _kzﬂi(”*k)’k!?“ . (141)

Both the Bessel and reverse Bessel polynomials can be recursively defined as follows:

Base casesn = 0and n = 1:

Bessel: By(x) = 1,and By(z) =z + 1;

(142)
Reverse Bessel: Ry(x) = 1,and Ry (z) =z + 1.
High-order cases with degree n > 2:
Bessel: B, (x) = (2n — 1)xB,,_1(x) + Bp_2(x);
(@) = (2 = DaBy-1(x) + Bu-a(0) )

Reverse Bessel: R, (z) = (2n — 1)B,,_1(2) + 2 B,,_o(x).

Both the Bessel and reverse Bessel polynomials can be used to define the data expansion functions
as follows:

Bessel: k(x|d) = [B1(x), Ba(x),- - - , Bg(x)] € R,

144
Reverse Bessel: k(x|d) = [R1(x), Ra(x), -+, Ra(x)] € R”, (14

where the output dimension D = myd.

7.1.6 Fibonacci and Lucas Polynomials based Expansion Functions

Formally, the Fibonacci polynomials are a polynomial sequence that can be considered a generaliza-
tion of the Fibonacci numbers. Similarly, Lucas polynomials are generated from the Lucas numbers
in an analogous manner.

Both Fibonacci and Lucas polynomials can be defined recursively. The Lucas polynomials can be
viewed as identical to the Fibonacci polynomials but with different base case representations:

Base casesn = 0and n = 1:

Fibonacci: Fy(z) =0, and Fy(z) = 1;

145
Lucas: Lo(z) = 2,and Ly (z) = x. (143)
High-order cases with degree n > 2:
Fibonacci: F,(x) = xF,_1(z) + F_2(x); (146)
Lucas: Ly (x) = ©Lyp—1(x) + Lp—2(x).

EXAMPLE 1 Based on these recursive representations, we can illustrate some examples of the Fi-
bonacci and Lucas polynomials as follows:
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Fibonacci Polynomials: Lucas Polynomials:

Fo(x) =0 Lo(z) =2

Fi(z)=1 Li(z) =«

Fy(z)=1x Ly(z) = 2° 4+ 2

Fy(z) =22 +1 (147) Ly(z) = 2% + 3z (148)
Fy(z) = 2° + 2z Ly(z) = 2" + 42% + 2

Fs(x) =2 + 322 + 1 Ls(x) = 2° 4 52% + 52

Both the Fibonacci and Lucas polynomials can be used to define the data expansion functions as
follows:

Fibonacci: k(x|d) = [Fi(x), Fa(x),--- , F4(x)] € R?,

Lucas: k(x|d) = [L1(x), Ly(x), - , Lg(x)] € RP, (149

where the output dimension D = md.

7.1.7 Wavelet based Expansion Functions

In our previous paper [89], we introduced the Fourier series for expanding data instances into a
sequence of trigonometric functions. Fourier series are closely related to the Fourier transform,
which can be used to find frequency information for non-periodic functions. In fact, the Fourier
transform can be viewed as a special case of the continuous wavelet transform. While the standard
Fourier transform is only localized in frequency, wavelets are localized in both time and frequency,
making them particularly useful for non-stationary signals where frequency components change
over time.

Wavelet transform represents the input data as a summation of basis functions, known as wavelets.
Specifically, the basis functions in wavelet transformation can be categorized into the mother wavelet
and father wavelet, which are orthogonal and can both be derived from the child wavelet via rescal-
ing and translation operators.

Formally, given the input variable x € R™, to approximate the underlying mapping f : R™ — R"
with wavelet analysis, we can define the approximated output as

Fx) 2 S (F(x), buu(x]a,b)) - bsi(x|a,b), (150)

s,t

where ¢, ;(-|a, b) denotes the child wavelet defined by hyper-parameters ¢ > 1 and b > 0:

1 —t.b-af
¢s,t(I|a,b)—ﬁ¢(x tas a). (151)

Specifically, the functions {¢5 ¢}, , cy, defines the orthonormal basis of the space and the mapping
¢(-) used in the child wavelet may have different representations:

(a) Haar wavelet: (b) Beta wavelet:

1
< 1 — a—1 1— B—1
13 O—T< 27 (152) ¢(T|O[,B) B(O[,B)T ( T) )
o(r)=q-1, 3<7<1,,
0, otherwise. where a, 8 € [1, 00].

(153)
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(c) Ricker wavelet:

(d) Shannon wavelet:

2 (1 - 5)2) 72 (154) b(r) = sin(277) — sin(77) (155)
¢(T):\/3TmieXp(_22)' = P :
(e) Difference of Gaussians: (f) Meyer wavelet:
= P(7|0 — P(7]0 4 _
o(1]o1,02) (110, 01) (710, 02), (156) o(r) = %4—2?7 e T=0,
where P(:|0, 01) denotes the PDF of the sm(T;)j%C:; G otherwise.
Gaussian distribution. (157)

To apply the aforementioned wavelets for data expansion, we need to re-examine Equation (150)
introduced earlier. This equation can be interpreted in various ways within the context of RPN 2:

> {f(). bs(xla,b)) - d(xla.b), (158)
s, coefficients the expansion
and
DA f) 0se(x]a. b)) - b (x]a,b). (159)
s,t v R
" coefficients the expansion

Based on these above two representations, we can introduce the 14:-order and 2,,4-order wavelet
data expansion functions as follows:

r(x|d = 1) = [p0,0(x), ¢0.1 (%), , Ps.+(x)] € RP™. (160)

and
k(x|d =2) = k(x|d = 1) @ k(x|d = 1) € RP=. (161)

The output dimensions of the order-1 and order-2 wavelet expansions are Dy = s-t-m and Dy =
(s-t-m)?, respectively.

7.2 Parameter Reconciliation Function

We have introduced several different categories of parameter reconciliation functions in the previ-
ous paper [89] already. In this part, we will introduce a new category of parameter reconciliation
functions defined based on the random matrices.

7.2.1 Random Matrix Adaption based Parameter Reconciliation Function

According to the low-rank reconciliation (LoRR) function introduced in our previous paper [89],
given a parameter vector w € R! of length [, we can fabricate it into a parameter matrix of shape
n x D as follows:

Y(w)=AB'T € R, (162)

where A € R™" and B € RP*" are the low-rank parameter sub-matrices of rank r reshaped
from the input parameter vector w. The length of the input parameter is determined by the rank
hyper-parameter r, i.e., [ = (n + D) - r.

The recent VeRA paper [39] proposes to freeze the sub-matrices A and B as random constants, e.g.,
A,B ~ N(0,1), (163)
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where the sub-matrix elements are randomly sampled from the Gaussian distribution A/(0, I).

The learnable parameters can be added as the diagonal matrices Ay = diag(A;) € R™*™ and
Ay = diag(Xg) € R™ ", where vectors A; € R™ and Ay € IR” are split from the input parameter
w. This defines the random matrix adaptation-based parameter reconciliation function as follows:

Y(w) = AfAA BT € R™*P, (164)

where the required number of learnable parameters is [ = n + 7.

7.2.2 Random Matrix based Hypernet Parameter Reconciliation Function

We introduced the Hypernet parameter reconciliation function in our previous paper [89]. Given the
input parameter vector w € IR', the function can be represented as:

¢(w) = Hypernet(w) € R"*P, (165)

where “Hypernet(-)” can be defined with different models, such as MLP, with randomized and frozen
parameters. In the previous paper [89], we implemented this function with a 2-layered MLP model
of dimensions (I,d,n - D), i.e.,

Hypernet(w) = o(wH;)H, € R™*P, (166)

where H; € R and Hy € R4*(™D) are the randomly initialized frozen parameters of the MLP.
Notation d denotes the middle hidden layer dimension and o(-) denotes the sigmoid function. By
default, we have the middle dimension | < d < n - D.

In experimental testing, we encountered implementation challenges with this reconciliation function.
For some data expansion functions, the expansion space D can be very large, and the hypernet
initialization may consume space of O (d - (I + n - D)).

In this paper, based on the aforementioned random matrix adaptation techniques, we propose replac-
ing the two large-sized frozen parameter matrices H; and Hy with their low-rank representations:

Hypernet(w) = o (W(PQT)) (STT)

6
= (o (WP)Q)S) TT e R™*P, (en

where P € R, Q € R¥*", S € R™" and T € R("*P)*" are the low-rank random and frozen
sub-matrices that can compose the matrices H; and Hj of the hypernet. Moreover, by leveraging
the associative law of matrix multiplication, we can avoid explicitly calculating and storing H; and
H; as indicated by the above equation. These low-rank random matrix representations reduce the
space consumption of this function to O (r - (I + 2d + n - D)).

8 Unifying Existing Backbones with RPN 2

The incorporation of new interdependence functions and compression functions significantly en-
hances RPN 2’s capabilities, offering both improved modeling power and increased learning effi-
ciency when dealing with complex data characterized by diverse underlying interdependence rela-
tionships. By strategically selecting these component functions based on the specific input data, we
can construct highly versatile model architectures using RPN 2. Furthermore, RPN 2 provides a uni-
fied framework capable of representing the many influential contemporary backbone architectures,
including but not limited to Convolutional Neural Networks (CNNs), Recurrent Neural Networks
(RNNSs), Graph Neural Networks (GNNs), and Transformers.
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Motivations of Backbone Unification: While unifying existing backbone models is not the primary
focus of this paper, we propose this unification with several key goals. First, we aim to uncover the
foundational architectural similarities and highlight the critical differences among current backbone
models (to be discussed in this section). Second, a unified architectural representation enables the
theoretical analyses and comparisons of learning performance for these existing structures (to be
discussed in the following Section 10). Finally, and most importantly, this unification allows us to
pinpoint the core weaknesses within these models, opening up pathways for potential enhancements
or the creation of novel “Transformer-Next” architectures—an exploration we will pursue in our
future papers.

The illustrations of the unified representation of CNN, RNN, GNN and Transformer with RPN 2
are also provided in the following Figure 22 and Figure 24, respectively.

8.1 Unifying CNNs with RPN 2

Convolutional Neural Networks (CNNs) [43] have long served as the backbone model for image
processing tasks. Over time, their application has expanded beyond image data, encompassing
a diverse range of modalities. With appropriate model extensions, CNNs have been successfully
adapted to process data in other modalities, such as point clouds [58], textual data [36], time series
[44], and graph structures [14]. In this section, we will introduce the Convolutional Neural Networks
(CNNs) initially designed for images with the convolutional and pooling operators, and discuss how
to represent CNNs into the unified representation of the RPN 2 model based on the component
functions introduced above.

8.1.1 Convolutional Neural Network (CNN)

In this part, we will examine the architecture of CNN model, with particular emphasis on two crucial
components in the model, i.e., the convolutional operator and the pooling operator. These operators
play pivotal roles in the CNN'’s ability to effectively extract features from input data, forming the
foundation of the model’s success in various tasks, particularly in image processing.

CNN Model Architecture: The r]ght Convolution Pooling  Convolution  Pooling  giien Fully Connected

Operator Operator Operator Operator Layers

plot illustrates the architecture of a clas-
sic Convolutional Neural Network (CNN) ]
model, comprising convolutional opera-

tors, pooling operators, and fully con- |

nected layers. Given an input image of Input Convolutional Pooling Convolutional  Pooling

a “hummingbird”, the CNN processes it Image Features Features Features  Features
through a series of layers of different op- ) ) )

erators. Initially, the convolutional layers Figure 20: An illustration of CNN model.

shift convolutional kernels (i.e., parameter matrices or tensors) across the image to compute convolu-
tional feature maps. These features then pass through pooling layers, where pooling kernels extract
salient features and compress the maps through operations such as max-pooling, resulting in com-
pressed feature maps. CNNs often employ a deep architecture by stacking multiple convolutional
and pooling layers sequentially, allowing for the extraction of increasingly abstract features. After
the final convolutional or pooling layer, the learned feature maps are flattened into a dense feature
vector. This flattened vector is then processed by fully connected layers, which perform the final
classification of the input image into the appropriate label category, in this case, “Hummingbird”.

Convolutional Operator: Convolution has been a cornerstone in conventional image processing
tasks, employed for tasks such as blurring, sharpening, embossing, and edge detection. While con-
ventional convolution operators often rely on manually defined kernel matrices, Convolutional Neu-
ral Networks (CNNs) innovate by learning these kernels as parameters. This approach endows CNNs
with superior modeling capacity and flexibility compared to traditional image processing techniques,
as the learned kernels can capture diverse useful image feature patterns.
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Formally, given an input image X € R"***4 with height h, width w, and depth d, the convolutional
operator shifts a kernel parameter matrix W € RPr+Ph+D)x (puwtpy,+1)x(Patpatl) of sizes pj, +
pl, + 1, pw + pl, + 1, and pg + p); + 1 along the rows, columns, and depth dimensions. For a sub-
image centered at pixel coordinates (i, j, k), we can represent it as X = X (i — pp, : i + p},j — Pw :
J + Py, k —pa : k+ pl;), whose convolution with the kernel is calculated as:

Ph+D) Pwtpl, PatD)

XxW= > > > X(r,st) W(pn+Dj, =700+ Py — 8,04+ Dy — 1), (168)
r=0 s=0 t=0

where * denotes the convolutional operator. In practice, many algorithms and toolkits substitute this
convolutional operator with the cross-correlation operator instead:

Pr+P), Pw+Pl, PatD)

XoW = Z;J Z:O ; X(r,s,t) - W(r,s,t). (169)

The convolutional operator X * W and the cross-correlation operator X o W are mathematically
different but equivalent in practical model learning, with the distinction that the kernel matrix W
is flipped in all dimensions for convolution. In practice, this substitution of convolution with cross-
correlation does not impact the model’s learning performance, as W is a learned parameter. More-
over, using cross-correlation can enhance computational efficiency on backend hardware without
the redundant costs for the tensor reshaping and flipping at the memory.

Beyond the kernel sizes (or the patch shape and size in RPN 2), CNNs incorporate additional hyper-
parameters that significantly influence their behavior and learning performance. A key example
is the stride, which defines the steps for shifting the kernel across the input. The choice of stride
directly affects the spatial dimensions of the resulting feature maps, thereby impacting the model’s
receptive field and the level of detail preserved in the output. The stride parameters used in CNNs
can be precisely determined by the patch packing strategies in RPN 2 as discussed in the previous
Sections 5.2.4-5.2.6.

Pooling Operator: The pooling operator, devoid of learnable parameters, serves to compress the
convolution feature map by extracting salient features. Various pooling methods can be employed
based on the learning context, including max-pooling, mean-pooling, and min-pooling, which ex-
tract the maximum, average, and minimum values from feature map regions, respectively.

Similar to the convolutional operator, the pooling

operator utilizes kernels of dimensions py, p,,, and 2 2 7 3

pq (and also p),, p!,, p;), which traverse the convo- o+ RE o IE
lutional feature along its row, column, and depth Max-Pooling
dimensions with specified stride lengths. How- g8l 52| a4 gterrizi:éx; 8 | 6
ever, unlike convolution kernels, pooling kernels o

contain no learnable parameters and merely delin- 3 | 1 2 | 6

eate the input regions for pooling operations. As
depicted in Figure 21, a 4 x 4 feature map sub- Figure 21: An illustration of pooling operator.
jected to a 2 x 2 max-pooling kernel with stride (2, 2) yields a condensed 2 x 2 feature map, where
each value represents the maximum from the corresponding input region.

8.1.2 Representing CNN with RPN 2

Before formalizing the representation of CNN architecture within RPN 2, we will first discuss how
to represent the convolutional and pooling operators using the component functions introduced in
previous sections.

Representing Convolution with Grid Structural Interdependence Function: The convolutional
operator in CNNs utilizes learnable kernel parameters to extract information from input images.
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Figure 22: An illustration of representing CNN and RNN with RPN 2.

These kernels shift along the dimensions of the input image tensor, operating on sub-image patches
of equal size to the kernels. The feature extraction process can be represented as the inner product
of flattened sub-image patches with the kernel parameter vector, where identical kernel parameters
are shared across all sub-image patches.

Formally, for an input image X € R"***9 with height h, width w, and depth d, we can represent its
flattened form as vector x = reshape(X) € R("*®*4) The original image modality specific topo-
logical structure can be represented as grid(x|h, w, d), as described in Section 5.2.2. The sub-image
matrix X from Equation (168) actually corresponds to a cuboid patch patch(i, j, k) centered at co-
ordinate (4, j, k) in the grid, with patch shape hyper-parameters py,, p),, Puw, Py, Pa, and p/; defined
in Section 5.2.2.

The cross-correlation (or convolution) based feature extraction defined in above Equation (169) can
be equivalently represented as:

XoW:(p,w)zZp(i)~w(i), (170)

where p = x(patch(i, j, k)) = reshape(X) € R? is the flattened patch vector representation of the
sub-image, with p = (pp, + p}, + 1) X (pw + P, + 1) X (pa + pl; + 1) denoting the patch size.
Notation w = reshape(X) denotes the flattened kernel parameter vector of equal length p.

The feature extraction for the entire input image can be calculated concurrently using patch packing
strategies discussed in the previous Sections 5.2.4-5.2.6. Using the structural interdependence func-
tion from Section 5.2.3 with patch center distance hyper-parameters dy,, d.,, dq4, we can represent the
extracted feature map as:

(re(x), (W) = (5 (x€(x)) , (W) = (xA,c@ W), (171)
where
« £(x) = A € R™ ™ This denotes the structural interdependence function with the
padding mode.

* k(x) = x € R™: This denotes the identity data expansion function.

o Y(w) =I@w = W & RPXPeount)XPeount: This represents the duplicated padding-based
parameter reconciliation function with diagonal block matrix outputs.
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The structural interdependence function has been introduced in the previous Equation (66), while
the identity data expansion and duplicated padding-based parameter reconciliation function were
introduced in the previous paper [89]. Specificall, the matrix dimension term m/’ is defined as m’ =
P X Deount> as indicated in Equation (73), where p.ount represents the number of patches in the
grid, as defined in the previous Equation (71). The term I is a constant identity matrix defined
as I = diag([1,1,---,1]) € RPeount*Peount and T ® W creates peoynt duplicated paddings of
parameter vector w along the diagonal, which can be extremely sparse.

In practice, an alternative, more flexible, and efficient representation of the convolution operator with
RPN 2 involves applying a “reshape(-)” post-processing operation to the data expansion function.
This operation reshapes each expanded instance vector  (x€(x)) = xA, of length m/, into a two-
dimensional matrix of shape pcount X p. Under this representation, the parameter reconciliation
function can be simplified to an identity function, i.e., t»(w) = w € IRP, where the inner product
with the expanded data matrix is subsequently processed by another “reshape(-)” output-processing
operator, converting the result back into vectors. This method significantly reduces storage and
computational costs compared to the previously discussed representation.

Representing Pooling with Compression Function: The pooling operator in CNNs can be
precisely represented using the geometric patch-based compression functions introduced in Sec-
tion 6.1.3. In CNNs, these geometric patches typically have a cuboid shape, with pooling strides
corresponding to the patch center distance hyper-parameters. Different pooling approaches can be
implemented using various patch compression mappings defined in the previous Section 6.1.3.

Representing CNN with RPN 2: Based on the above analyses, as illustrated in the Plot (a) of
Figure 22, we can represent the CNN model within RPN 2 using the following layers. The repre-
sentation of the fully connected layers (i.e., MLP) has been introduced in the previous paper [89]
already, which will not repeated here.

* Convolutional Layer: Represented as a single-head layer in RPN 2 with: (1) identity data
expansion function; (2) cuboid patch-based structural interdependence function (in padding
mode); (3) identity parameter reconciliation function; (4) zero remainder function; and (5)
reshape functions for both expansion post-processing and output-processing. For multi-
channel CNNs, corresponding channel numbers can be used to define parameters in RPN
2. For models with skip-layer residual connections (e.g., ResNet [26]), a linear remainder
function can be used instead of the zero remainder function.

* Pooling Layer: Represented as an RPN 2 layer with: (1) cuboid patch-based data com-
pression function (using numerical operator-based patch compression mappings); (2) iden-
tity interdependence function; (3) constant parameter reconciliation function; and (4) zero
remainder function.

An example of the CNN’s representation using RPN 2 is shown in Plot (a) of Figure 22. This
configuration includes one convolutional layer, one pooling layer, and one feed-forward layer. A
deeper CNN architecture can be similarly represented by adding multiple layers to this structure.

8.2 Unifying RNN with RPN 2

Recurrent neural networks (RNNs) denote a family of deep models that capture the internal transi-
tional states of data sequences, which have been extensively used for the modeling of language [88],
time series [10], and video sequences [77]. In this section, we will investigate to unify RNN with
RPN 2’s representation based on the component functions introduced in the previous sections.

8.2.1 Recurrent Neural Network (RNN)

In this part, we will examine the architecture of the RNN model, with a particular focus on the
crucial recurrent state updating operator. This operator forms the cornerstone of RNNs, enabling
them to process sequential data by maintaining and updating internal states across time steps.
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RNN Model Architecture: As depicted in the right O
plot, the Recurrent Neural Network (RNN) model can

be represented as a multi-layer architecture with full v Unfold
connections. In this structure, x; € R™ with dif- U

ferent subscripts represent the sequence inputs, h; € w

R? denotes the learned embeddings of the inputs, and 1
0; € R" represents the corresponding outputs. The
model’s parameters are defined by three key matrices:
W € R™*9  which represents the parameters of the
fully connected layer between input and hidden layers;
V € R%*" which denotes the parameters of the fully
connected layer between hidden and output layers; and
U € R% *4r which is the state transitional parameter
unique to RNNs, allowing embedding state vectors to
transition along the sequence. This recurrent structure,
particularly the state transition facilitated by parameter
U, distinguishes RNNs from traditional feedforward models, enabling them to capture sequential
dependencies in the data. By incorporating this feedback loop, RNNs can maintain and utilize in-
formation from previous time steps, making them particularly well-suited for processing sequential
data such as time series or natural language.

Figure 23: An illustration of RNN model.

Recurrent State Updating Operator: The RNN model architecture depicted in Figure 23 can be
unfolded into a sequential structure. In this unfolded representation, xj,Xso,--- ,X; € R™ de-
note the sequence inputs, while hy, hs,---  h, € IR% represent the learned hidden state vectors
connected via fully connected layers. These hidden state vectors are then projected to the corre-
sponding outputs 01,09, - - ,0, € R"™. Notably, the parameters W € R™* U € R > and
V € R9*™ are shared across all time steps, maintaining consistency in the network’s behavior
throughout the sequence.

Formally, for the i, input vector x;, we can express its learned embedding vector h; based on input
x; as follows:

h; = x;,W € R Vi e {1,2,--- ,b}. (172)

The primary distinction between Recurrent Neural Networks (RNNs) and other models discussed in
both our previous work [89] and the current paper lies in the sequential dependence among inputs.
In RNN:gs, the state of a later input instance is not solely dependent on itself, but also on the states of
preceding inputs. This characteristic can be formally represented as follows:

h, =0 (h_yU+h;),Vie{1,2,---,b}. (173)

We use the notations with the prime symbols, i.e., h}, to represent the input state vectors updated
with their dependent conditions. For the initial input of the sequence, the embedding input vector
hg is typically assigned a dummy vector, such as a zero vector or a vector with random values.
Subsequently, based on the learned embedding vector h;, the corresponding output vector o; (for
Vi€ 1,2,---,b)is computed as:

o; = softmax (h;V) € R". (174)

This formulation elegantly captures the essence of RNNGs: their ability to process sequential data by
maintaining a state that gets updated at each time step, allowing the network to retain information
from previous inputs.

8.2.2 Representing RNN with RPN 2

In this part, we will explore how to represent the RNN model within the RPN 2 framework. Our
primary focus will be on the hidden state recurrent updating process, as described in Equation (173).
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We will investigate how to represent this crucial step using the component functions introduced in
previous sections, thereby demonstrating how the unique sequential nature of RNNss can be captured
within our unified framework.

Representing Recurrent Operator with Chain Structural Interdependence Function: In the
recurrent state update equation (i.e., Equation (173)), updating each state vector h} (for Vi €

1,2,---,b) requires both h;_; and h; as inputs. The state vectors across the data batch can be
arranged into a matrix H = [hy, hy, - -+, hy] € RY*™, enabling concurrent updates as follows:

H' = (¢(H) " s(H),¢(w)) + 7(h;) = o(A; HU + H), (175)
where

* k(H) = H: This denotes the identity data transformation function.

o1 0 --- 0
o 01 --- 0
00 0 --- 0
 &(H) = Ae, = . . . . .| : This denotes the uni-directional chain structural
0o 00 --- 1
00 0 --- 0]

interdependence function.

» Y(w) = U € R9*dr: This denotes the identity parameter reconciliation function that
reshapes the input parameter vector into a matrix.

* m(H) = H: This denotes the linear remainder function (without dimension adjustment),
and can be viewed as an identity function.

The output is typically processed through an activation function, such as o(-) shown above. In
this representation, the interdependence matrix models the uni-directional dependencies. For a bi-
directional RNN, the interdependence matrix will also include ones in the lower off-diagonal entries,
capturing the reverse directional relationships.

Representing RNN with RPN 2: Based on this analysis, as illustrated in Plot (b) of Figure 22, we
propose the following representation of the RNN model using RPN 2. For an input batch with b
sequential instances, RPN 2 defines the chain structural interdependence matrix of dimensions d x d
to model their interdependence relationships:

* Recurrent Layer: Represented as a single-head and single-channel layer in RPN 2 with:
(1) identity data expansion function; (2) chain structural interdependence function; (3)
identity parameter reconciliation function; and (4) identity remainder function. The out-
put of each layer is processed with an activation function.

The unified representation of RNN with RPN 2 is also illustrated in the Plot (b) of Figure 22, which
involves one recurrent state updating layer. For the RNN with multi-layers, we can stack the above
recurrent layers on top of each with perceptron layers inserted between them. Also both the input
and output processing layers can be represented by the perceptron layer, which has been introduced
in the previous paper [89] and will not be detailed again here.

8.3 Unifying GNN with RPN 2

In addition to the image and sequence data discussed previously, graph-structured data are preva-
lent in the real world, with notable examples including molecular graphs, online social networks,
and interconnected websites. To address the unique challenges posed by such data, Graph Neural
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Figure 24: An illustration of representing GNN and Transformer with RPN 2.

Networks (GNNs) have emerged as a specialized family of deep learning models designed to handle
graph-structured data with extensive connections. In this section, we will introduce GNN models
and investigate how to unify them within RPN 2 canonical representation framework.

8.3.1 Graph Neural Network (GNN)

In this part, we will explore the architecture of the GNN models and delve into the spectral graph
convolutional operator. This operator plays a crucial role in updating node representations by aggre-
gating information from neighboring nodes within graph-structured data.

GNN Model Architecture: Graph Neu-
ral Networks (GNNs) can be conceptual- T,;?;:' Feed romyard ha’l‘_,«"

ized as a generalization of Recurrent Neural
Networks (RNNs), where the input struc-
ture evolves from a linear chain to an ex-
tensively interconnected graph. The right
plot illustrates this concept with an exam- R ‘
ple input graph, showcasing multiple nodes o —
and their complex interconnections. Addi- ; I'_ O
tionally, it depicts a potential deep GNN ar-
chitecture designed for learning the embed-
dings of a target node within the graph. The
process of learning the embedding vector for a target node in a GNN involves aggregating informa-
tion from its surrounding neighbors. These neighboring nodes serve as inputs to a fully connected
feed-forward layer in the network. Crucially, the embeddings of these neighbor nodes are themselves
learned through a similar process, recursively incorporating information from their own neighbors.
This recursive nature of information aggregation allows GNNSs to capture complex, multi-hop rela-
tionships within the graph data.

1-hop Neighbors

Figure 25: An illustration of GNN model.

Spectral Graph Convolution (SGC) Operator: In the aforementioned graph neural network ar-
chitecture, the neighborhood aggregation operator (illustrated as the fully connected feedforward
module in Figure 25) is formally known as the spectral graph convolutional operator.

Formally, given a graph G = (V, ) with node set VV and link set £, we define I'(v) = {uju €
V A (u,v) € E} as the set of neighbors for a target node v € V. Each node v € V is initially
represented by an input vector x,, € IR™. The Graph Convolutional Network (GCN) model learns
node embeddings by aggregating neighbor information through multiple layers of the spectral graph
convolutional (SGC) operator as follows:
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1
h, = SGC(x,[T(u)) =o [ > mxuw +x,W | e R", (176)
uw€el(v)

where W € R™*™ represents the learnable parameters, and o(-) denotes an activation function,
such as sigmoid or ReL.U.

Notably, the contribution of each neighbor node u € I'(v) is weighted by the inverse of its degree,
1

IXOIE This normalization scheme ensures that nodes with numerous connections (i.e., the neigh-
boring node u with a large node degree |I'(w)|) contribute less to the aggregation, preventing highly
connected nodes from dominating the information flow. This degree-based weighting mechanism

helps balance the influence of nodes with varying connectivity levels in the graph structure.

8.3.2 Representing GNN with RPN 2

In this part, we will demonstrate how to represent the GNN model architecture using RPN 2. Specif-
ically, we will interpret the spectral graph convolutional (SGC) operator in GNNs as a structural
interdependence function defined for the graph data modality.

Representing SGC Operator with Graph Structural Interdependence Function: In GNN mod-
els, node representations can be learned concurrently in a data batch, which can significantly reduce
computational time compared to individual node representation learning.

Formally, given an input graph G = (V, £) with node set V, we can organize all node raw features
as a data batch X € R®*™, where b = || if the batch contains all nodes in the graph. The spectral
graph convolutional (SGC) operator for all node representations can be represented as:

H = SGC(X|G) = 0 (AXW) € RM*", (177)

where A € RY*? is the row-normalized adjacency matrix describing connections among nodes
within the graph. It is calculated as A = DA +1, where A is the graph’s adjacency matrix and
D is the diagonal degree matrix with D(i,7) = 3, A(i, §). As noted in Section 5.2.9, matrix A
can be composed with the graph-based structural interdependence function (i.e., Equation (81)) with
optional row-normalization, which models the interdependence relationships among instances.

Therefore, we can rewrite the SGC operator-based graph instance batch updating equation as:
SGC(X|G) = (ke(X), (W) = (E(X)w(X), (W) = o (AXW ). (178)
where

+ {(X|G) = A € RY*?: This denotes the graph-based structural interdependence function.
* k(X) = X € RY*™: This denotes the identity data expansion function.

* ¢)(w) = reshape(w) = W € IR"*"™: This represents the identity parameter reconciliation
function.

For graphs with a large number of nodes and links, the normalized adjacency matrix A can be
extremely large. In such cases, as proposed in the Graph-Bert paper [91], batches of small-sized sub-
graphs covering only the neighborhood can be sampled and fed into the model for node embedding
vector updating, greatly reducing memory consumption.

Representing GNN with RPN 2: Based on the above description, we can represent the GNN
model architecture with RPN 2 by selecting the following component functions to compose the
model layers:
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* SGC Layer: The RPN 2 layer with one single head and one channel, comprising: (1)
graph-based structural interdependence function with optional row normalizations as the
post-processing function, (2) identity data transformation function, (3) identity parameter
reconciliation function, and (4) zero remainder function. The layer may also use an optional
activation function for output processing. For models with skip-layer residual connections
(similar to Graph-Bert [91]), a linear remainder function can be used instead of the zero
remainder function.

An example of the GNN’s representation using RPN 2 is shown in Plot (a) of Figure 24, which
includes a single graph convolutional layer. To construct deeper GNN architectures, additional
SGC-based data batch updating layers can be incorporated by adding corresponding layers to RPN
2.

8.4 Unifying Transformer with RPN 2

Since being processed in 2017, Transformer [75] has been the dominant backbone model used in
building many Al models. In recent years, Transformer has demonstrated its effectiveness in pro-
cessing the inputs in different modalities, including but not limited to images [16], point cloud [92]
and graphs [91]. Meanwhile, we have also witnessed some criticisms about Transformer in terms of
its extremely high time and space costs, which lead to the current huge demands of both computa-
tional facilities and energy consumptions. In this section, we will introduce the detailed components
used in Transformer, and investigate to unify Transformer within the canonical representation of
RPN 2, which may illustrate potential opportunities to address such weakness.

8.4.1 Transformer

In this part, we will first delve into the architecture of the Transformer model, with a particular focus
on its pivotal component: the scaled dot-product attention mechanism. This mechanism forms the
cornerstone of the Transformer’s ability to process sequential data effectively.

Transformer Model Architecture: The right plot illustrates the o)
. L. . Softmax
Transformer model architecture, comprising an encoder (depicted N

in the left red block) and a decoder (shown in the right blue
block). Both the encoder and decoder blocks incorporate sev-
eral key functional components, including Multi-Head Attention,
Feed-Forward layers, and Add & Norm (normalization) layers.

Add & Norm

Feed
Forward

Add & Norm Add & Norm
The encoder’s output serves as input to the decoder, facilitat- Feed e
ing the generation of the final output. In the decoder block, the Lo _I)_T_JL
Multi-Head Attention component undergoes slight modifications, Add & Norm ) ((Add & Norm Je~y

Multi-Head Masked
Attention Attention

==

resulting in Masked Attention and Cross Attention components.
The Masked Attention involves adding masks to the attention

mechanism, while the Cross Attention accepts inputs from multi- st < Posiional
. Encoding Encoding
ple sources. A crucial feature of both encoder and decoder blocks e ot
[ Embedding :] Embedding

is their incorporation of positional information through positional
encoding. This positional data, combined with the input embed-
ding, is fed into the attention component to enhance the learn-
ing process. The decoder’s output undergoes further processing
through Linear and Softmax layers to produce the final output. This sophisticated architecture en-
ables the Transformer to effectively handle sequential data while capturing long-range dependencies,
making it particularly effective for tasks such as machine translation and text generation.

Figure 26: An illustration of the
transformer model architecture.

Scaled Dot-Product Attention in Transformer: In our previous RPN paper [89], we have already
demonstrated how to represent the MLP model within the RPN framework. Building upon that
foundation, we will now focus on examining the attention mechanism integral to the Transformer
model.
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Formally, consider an input data batch X € IR®*™ containing b instances. The Transformer model
processes and embeds this input into latent representations, taking into account the element-wise
relationships within the input through its attention mechanism. In the case of single-head attention,
we can represent the calculated pairwise attention matrix among the input elements as follows:

QK'
\/F

A = softmax ( ) € R"? where Q = XW, € R"", and K = XW;, € R**".  (179)

In the attention matrix A, each element A (4, j) represents the calculated attention score between
the 7;;, and 7, instances of the input batch. The model employs learnable parameter matrices
W,, W, € R™*" to compress the input batch X into query and key matrices Q,K € R"*",
respectively. This transformation allows the model to project the input into a space where relevant
similarities can be more easily computed.

Building upon the attention matrix, we can formally express the learned representations of the input
batch as follows:

QK'
\/,,7

H = softmax ( ) V € RY*", where V. = XW, € R"*". (180)

In the above formula, matrix W,, € IR™*"™ denotes the learnable parameters involved in defining
the value matrix V' € RP*™ of the input batch.

8.4.2 Representing Transformer with RPN 2

In this part, we will explore how to represent the Transformer architecture using RPN 2 by defining
its internal component functions. We will particularly focus on the scaled dot-product attention
module, a key component of the Transformer model.

Representing Attention with Parameter Efficient Bilinear Interdependence Function: We can
rewrite the attention matrix from Equation (179) by substituting Q and K with their detailed repre-
sentations XW, and XW:

X X T X ib. o
A = softmax XW (XWe) ) _ softmax AW W, X ) (181)
NG NG

The term A = XW, W/ X can be represented as a low-rank parameterized bilinear interdepen-
dence function on the input data batch X, as introduced in Section 5.1.6. Here, W,, W, € R™*"

denote the low-rank parameter matrices, whose product composes the bilinear parameter matrix
W =W, W] € R™*™,

To handle the division by /7, we introduce a special normalization called scaled-softmax normal-
ization:

A
scaled-softmax (A |r) = softmax [ — | . (182)
VT

Thus, we can represent the input data batch updating in Transformer, i.e., Equation (180), as:
(1e(X), (W) = (E(X)K(X), (W) = AXW T, (183)
where

¢ ¢(X) = A = XW,W]XT € Rb*: This denotes the low-rank parameterized bilinear
interdependence function with scalaed-softmax row normalization.
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* 1(X) = X € RY*™: This denotes the identity data transformation function.

* ¢(w) = W € R™™ ™: This denotes the identity parameter reconciliation function.

Residual connections in Transformer can be effectively implemented with remainder functions.
Other normalization functions in the module can be implemented with pre-, post-, and output-
processing functions in RPN 2, as introduced in [89].

Representing Transformer with RPN 2: Based on this analysis, we can represent the Transformer
model within RPN 2 by selecting the following component functions to compose the layers:

» Attention Layer: The RPN 2 layer with multi-head, comprising: (1) low-rank parameter-
ized bilinear interdependence function with scalaed-softmax row normalization, (2) iden-
tity data transformation function, (3) identity parameter reconciliation function, and (4)
linear remainder function. The layer may also use an optional normalization function for
output processing.

An example of the Transformer’s representation using RPN 2 is shown in Plot (b) of Figure 24,
which includes a single transformer block. Additional attention layers in the Transformer can be
represented by adding corresponding layers to RPN 2. The feed-forward layer in the Transformer
is similar to that in an MLP and will not be discussed in detail here.

9 Empirical Evaluations of RPN 2

To evaluate the effectiveness of the proposed RPN 2 model for function learning tasks on different
interdependent datasets, this section presents empirical studies conducted on real-world benchmark
datasets across various modalities, including images, language, time-series and graphs. The or-
ganization of this section is as follows: Section 9.1 explores the RPN 2 model’s performance on
discrete classification tasks involving vision and language benchmark datasets, which exhibit grid-
and chain-structured interdependence relationships, respectively. Moving beyond discrete data, Sec-
tion 9.2 focuses on the RPN 2 model’s application to continuous time-series prediction and graph-
structured data classification tasks, both characterized by inherent chain- and graph-structured inter-
dependence.

Beyond the main experimental results, we provide a comprehensive analysis of the method’s per-
formance, including learning convergence, parameter sensitivity, ablation studies, interpretability,
and visualizations. These investigations offer deeper insights into the method’s advantages and
robustness when addressing function learning tasks across datasets with diverse interdependence
structures.

9.1 Discrete Vision and Language Data Classification

Equipped with the grid and chain-based structural interdependence functions, the proposed RPN
2 model can effectively capture local interdependence relationships among image pixels and se-
quential interdependence relationships among words or tokens in documents. These capabilities are
expected to enhance RPN 2’s learning performance for vision and language classification tasks. To
validate the effectiveness of the proposed RPN 2 model and its interdependence functions, extensive
experiments were conducted on several benchmark image and language datasets.

This subsection is organized as follows. We begin by introducing the datasets and experimental
setups. A detailed analysis of the grid-based structural interdependence function is presented, ex-
ploring factors such as local patch shapes, sizes, and packing strategies. For the chain-based struc-
tural interdependence function, we examine the impact of various chain-based interdependence ma-
trix representations on language classification tasks. In addition to analyzing the interdependence
functions, we investigate the influence of other model components and architectural variations on
learning performance for vision and language classification. Finally, we report the main results of
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Table 1: The table summarizes key statistical information for the discrete image and language
datasets. These datasets are pre-partitioned into training and testing sets. For each image and docu-
ment instance, the table also specifies their input and output sizes.

Image Datasets Language Classification Datasets
MNIST | CIFAR-10 IMDB AGNews SST2
Input Image Size | 28 x 28 | 32 x 32 x 3 | 512 x 300 | 64 x 300 | 32 x 300

Output Class # 10 10 2 4 2
Train Instance # | 60,000 50,000 25,000 120,000 67,349
Test Instance # 10,000 10,000 25,000 7,600 872

RPN 2, comparing its performance to several baseline methods, including MLP, the earlier version
RPN (without interdependence functions), CNN, and RNN.

9.1.1 Dataset Description and Experiment Setups

Dataset Descriptions: Following our previous work [89], we evaluate the proposed method on two
image benchmark datasets (MNIST and CIFAR-10) and three language datasets (IMDB, AGNews,
and SST2). Comparisons are made with MLP, the previous RPN 2 method, CNN, and RNN. The
basic statistical details of these datasets are summarized in Table 1.

* Image Datasets: For the MNIST and CIFAR-10 datasets, the images are flattened into
vectors and normalized using mean-std normalization. No image augmentations (e.g., hor-
izontal/vertical flipping, rotation, or noise addition) were applied in these experiments.

* Language Datasets: For IMDB, AGNews, and SST2, we utilize the pre-trained GloVe
6B encoder to convert each token into a 300-dimensional embedding vector. To manage
variable-length documents, dataset-specific maximum lengths are employed for truncation
or padding: 512 for IMDB, 64 for AGNews, and 32 for SST2.

Experiment Setups: All image and language datasets used in the experiments come with pre-
defined training and testing splits. For consistency and fairness, all baseline methods use the same
data partitions. Model performance is evaluated using accuracy as the default metric.

9.1.2 Grid Interdependence Investigation: Patch Shapes, Sizes and Packing Strategies

In the RPN 2 model learning framework, images are represented as grid structures, where each pixel
is uniquely identified by a coordinate tuple. The model captures local interdependence relationships
between pixels through patches of distinct geometric shapes—including cuboids, cylinders, and
spheres, which are defined as an ordered set of pixel coordinates in the underlying grid structure.
While cuboid and cylindrical patches are particularly effective for image data analysis, spherical
patches are better suited for 3D point-cloud data—a topic beyond the scope of this section but slated
for future investigation. Here, we explore how the choice of patch shape (cuboid or cylinder), size,
and packing strategy impacts the performance of the RPN 2 model in image classification tasks.

To systematically evaluate these effects, we conduct extensive experiments on the CIFAR-10 dataset
using the RPN 2 model with a consistent architecture comprising three main components: (1) Az-
tribute Interdependence Layers: Two layers implementing grid-based structural attribute interde-
pendence functions, each utilizing identity data transformation, identity parameter reconciliation,
and zero remainder functions, with both layers maintaining 128 output channels; (2) Compression
Layer: A single layer employing grid-based data compression function, constant eye parameter
reconciliation, and zero remainder functions, outputting 128 channels; and (3) Perceptron Layers:
Three successive layers utilizing identity data transformation, identity parameter reconciliation, and
zero remainder functions, with output dimensions progressively decreasing from 1024 to 512, and
finally to 10, respectively.
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Figure 27: Analysis of the size and packing strategies of the cuboid patch shape. Size 1: p;, = pj, =
1, pw = pi, = 1; Size 2: py, = p), = 2, pyy = P, = 2; Size 3: p, = p}, = 3, pw = p), = 3; and
Size 4: py, = pj, = 4, pw = p), = 4. For all these shapes, we have p; = p/; = 0 by default.

Our comprehensive evaluation of RPN 2’s performance examines variations in both patch shapes
and their packing strategies within the underlying grid structure. This analysis focuses particularly
on the impact of patch shape modifications in two critical components: the grid-based structural
attribute interdependence function and the grid-based data compression function. The compara-
tive performance results for cuboid and cylinder patch shapes are presented in Figures 27 and 28,
respectively.

Patch Shapes: Our analysis reveals that patch shape significantly influences both learning per-
formance and the number of learnable parameters. Specifically, a cuboid patch with dimensions
pn = p, = 4,pw = pl, = 4 (and 128 channels) covers 10, 368 feature map elements, while a
cylinder patch with radius p, = 4 (and 128 channels) encompasses 6,272 patch elements. Using
the sparse square packing strategy for projections between 128 input and output channels, the inter-
dependence function requires 2,021, 514 learnable parameters for cuboid patches versus 1, 485, 834
for cylinder patches. Under the densest packing strategy, RPN 2 achieves an accuracy of 0.771 with
cuboid patches and 0.780 with cylinder patches.

Patch Sizes: The relationship between patch size and RPN 2’s learning performance is multifaceted,
as it influences not only the patch dimensions but also the center distances in packing and compres-
sion functions. For the interdependence function with cuboid patches, we find that minimal dimen-
sions (p, = p}, = 1 and p,, = p), = 1) yield superior performance across all packing strategies
except densest packing. This pattern holds true for cylindrical patches as well. The enhanced perfor-
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Figure 28: Analysis of the size and packing strategies of the cylinder patch shape. Size 1: p, = 1;
Size 2: p, = 2; Size 3: p, = 3; and Size 4: p, = 4. For all these shapes, we have p; = p/, = 0 by
default.

mance likely stems from the smaller packing parameters, which minimize information loss during
processing.

Packing Strategies: Among the investigated patch-related parameters, packing strategies demon-
strate the most substantial impact on model performance. Our experiments show that the “densest
packing” and “dense/denser packing” strategies consistently outperform sparse or complete pack-
ing approaches. These results suggest that maintaining some degree of redundancy is crucial for
effectively capturing interdependence relationships and extracting relevant information from image
data. The densest packing strategy achieves the highest accuracy scores, particularly with larger
patch configurations—such as cuboid patches with dimensions p;, = p}, = 3 and p,, = p), = 3, or
cylinder patches with radius p,, = 4. However, this superior performance comes at a computational
cost, as these configurations require over 135M learnable parameters, significantly more than other
packing strategies.

9.1.3 Grid Interdependence Layer Depth and Width Investigation

We further investigate the effects of model depth (i.e., number of interdependence layers) and width
(i.e., number of channels) using RPN 2 with a cylinder patch of size d,, = 4 and the densest packing
strategy. Our investigation encompasses architectures with 1, 2, 3, and 4 grid-based interdependence
layers, featuring channel configurations of 64, 128, 256, and hybrid combinations. Throughout
these variations, we maintain consistent compression and perceptron layers with identical output
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Figure 29: Analysis of RPN 2’s performance as a function of model depth (number of inter-
dependence layers) and width (number of channels). The hybrid channel configurations imple-
ment progressively increasing channel numbers across layers: (1) one-layer model: [3,64]; (2)
two-layer model: [3,64,128]; (3) three-layer model: [3,128,128,256]; and (4) four-layer model:
[3,128, 128, 256, 256].

dimensions. Figure 29 presents both the accuracy scores achieved by these architectural variations
and their corresponding numbers of learnable parameters.

The experimental results demonstrate that increasing both depth and width enhances RPN 2’s learn-
ing capacity, resulting in steady improvements in accuracy scores. Among all tested configurations,
the architecture with 4 layers and 256 channels achieves superior performance compared to other
variants. However, we observe that increasing model width leads to a dramatic expansion in the
number of learnable parameters, with the majority of these additional parameters concentrated in
the subsequent perceptron layers.

9.1.4 Grid based Compression Layer Analysis

Our previous analyses employed a single compression layer to process feature maps learned by grid-
based interdependence layers before flattening and feeding them to subsequent perceptron layers.
Here, we extend our investigation to examine the effects of incorporating multiple compression
layers between interdependence layers, enabling progressive compression of learned feature maps
throughout the network.
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Figure 30: Analysis of compression layer configurations in RPN 2, where compression layers are
strategically inserted between interdependence layers for feature map compression. The insertion
frequency follows three patterns: “Every 4 layer”, “Every 2 layer”, or “Every 1 layer”, indicating a
compression layer follows every 4, 2, or 1 interdependence layers, respectively. The parameter p,.
denotes the cylinder patch radius used in compression functions, while pr_decreasing” represents an
adaptive configuration starting with p, = 4 and halving at each successive compression layer. All
compression layers maintain consistent patch packing strategy parameters with cd;, = cd,, = 2.

The analysis provided in this part focuses on the RPN 2 model with 4 layers, where we systemati-
cally evaluate compression layer insertion frequencies of every 1, 2, or 4 interdependence layer(s).
Additionally, we investigate the impact of varying cylinder patch sizes in compression layers, depart-
ing from our previous assumption of identical patch sizes between compression and interdependence
layers. Our investigation encompasses compression layers with fixed patch radii (p, = 1, p, = 2,
pr = 4) and an adaptive configuration where p,. begins at 4 and halves after each compression layer.
For example, in a 4-layer RPN 2 model with compression layers after each interdependence layer,
the adaptive configuration yields four compression layers with progressively decreasing patch radii
of4,2,1,and 1.

Results shown in Figure 30 reveal three key findings: (1) inserting compression layers every two
interdependence layers yields superior performance compared to other frequencies; (2) when com-
pression layers are added every two interdependence layers, cylinder patches with p,, = 1 achieve
optimal performance; and (3) while large patch sizes (p,, = 4) initially degrade model performance,
implementing progressive size reduction across compression layers leads to improved results.

9.1.5 Chain Interdependence Investigation: Uni-directional, Bi-directional, Single-Hop, and
Multi-Hop

Expanding beyond our analysis of grid-based structural interdependence functions on image data,
we evaluate the effectiveness of chain-based structural interdependence functions on language data.
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Figure 31: Analysis of chain-based structural interdependence functions’ impact on RPN 2’s classi-
fication performance across IMDB, AGNews, and SST2 datasets. Performance comparison encom-
passes four distinct interdependence modes: “Uni-directional”, “Bi-directional”, Multi-Hop”, and
“Exponential Approx”.

Our investigation employs a five-layer RPN 2 architecture comprising: an input perceptron layer,
two chain-based structural interdependence function layers with an intervening perceptron layer,
and an output perceptron layer. The model processes classification by aggregating learned token
representations from the second interdependence layer via summation before feeding them to the
output perceptron layer. Figure 31 presents RPN 2’s performance results using chain structural
interdependence functions across three datasets: IMDB, AGNews, and SST2.

Our analysis reveals several key insights about chain-based structural interdependence functions
when their outputs are aggregated through summation. Notably, uni-directional and bi-directional
chain structural interdependence functions achieve comparable performance levels. Multi-hop in-
terdependence functions (with hop counts » = 3 or h = 5) demonstrate significant perfor-
mance improvements over their single-hop counterparts, with particularly pronounced gains on the
SST2 dataset. Furthermore, the exponential approximation of multi-hop interdependence functions
achieves comparable—and in some cases slightly superior—performance on IMDB and AGNews
datasets, validating the effectiveness of our approximation approach.

9.1.6 The Main Results of RPN 2 on Vision Data Classification

Table 2 presents a comprehensive performance comparison between RPN 2 and several baseline
methods. For comparison, we include the standard MLP, our previous RPN model [89], CNN (for
image classification tasks), and LSTM (for language classification tasks). While we also evaluated
vanilla RNN for language classification, its performance was significantly inferior to LSTM, hence
we report LSTM results as the representative sequential model baseline.

As shown in Table 2, the proposed RPN 2, equipped with interdependence functions, significantly
outperforms the earlier RPN model introduced in [89], particularly on the CIFAR-10 dataset. These
results highlight the effectiveness and importance of the interdependence functions in capturing
relationships among attributes and instances. Furthermore, RPN 2 achieves comparable—and occa-
sionally superior—performance to CNN and LSTM models. This demonstrates RPN 2’s potential
not only to theoretically unify CNN and RNN architectures within its canonical representation but
also to empirically deliver performance on par with these established backbone models in practical
applications.
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Table 2: The learning performance of the comparison methods on discrete image and language
datasets is evaluated using Accuracy as the default metric. For each dataset, the best-performing
method is highlighted in bold math font.

Models Image Datasets Language Datasets
MNIST \ CIFAR10 IMDB \ AGNews \ SST2
MLP 9.82x 1071 | 563 x 107! | 8.85 x 107! | 9.21 x 10~ | 8.05 x 10~*

Previous RPN 1 g6 101 | 5.61 x 10~ | 8.86 x 10~ | 9.10 x 10~ | 8.07 x 10~

[89]
CNN (Image) & -1 -1 -1 -1 -1
LSTM (Language) 9.96 x 10 8.47 x 10 8.93 X 10 9.14 x 10 8.27 x 10
RPN 2 9.98 x 107 1(8.52 x 10~1(8.93 x 10~1|9.22 x 1071 8.23 x 10!

9.1.7 Visualization of Cylinder Patches of Images

In Figure 32, we present several examples of the raw images from the CIFAR-10 dataset and
their corresponding expansions using the grid-based interdependence function. The first and third
columns contain 10 raw images sampled from the CIFAR-10 dataset, while the second and fourth
columns display their respective expanded images.

For each pixel in a raw image, the grid-based structural interdependence function pads the pixels
within the cylindrical patch of radius p, = 4 (with a diameter of 9). To visualize these patches,
we include some pixels with dummy values to enclose each cylindrical patch within a cuboid of
size 9 x 9 x 3. Compared to the raw image pixels, the expanded images still retain the outlines of
the objects. Moreover, for each pixel in the raw images, their expansions provide richer contextual
information about their local learning neighborhood. This additional information enables the RPN
2 model to utilize a more detailed learning context for classifying these images, leading to improved
performance compared to the previous RPN model [89].

9.1.8 Visualization of Chain-based Multi-Hop Interdependence Functions

In Figure 33, we illustrate the chain-based structural interdependence matrices used in RPN 2 for
classifying the IMDB dataset. The left plot represents the multi-hop interdependence matrix with
hop h = 5, while the right plot shows its exponential approximation.

From the visualization, both matrices exhibit non-zero entries concentrated along their diagonal
regions. However, as indicated by the diagonal colors, the non-zero entries in the multi-hop interde-
pendence matrix have relatively larger values compared to those in the exponential approximation
matrix, which penalizes higher-order matrix powers using constant factors. Additionally, we cal-
culate the percentages of non-zero entries in these matrices. The exponential approximation inter-
dependence matrix contains approximately 7.096% non-zero entries, significantly higher than the
sparse multi-hop interdependence matrix, which has only 1.165% non-zero entries.

9.2 Time-Series Data Prediction and Graph Data Classification

In addition to discrete image and language data, the RPN 2 model has also demonstrated effec-
tiveness in learning from continuous data and graph-structured data. In this subsection, we present
the experimental evaluation of RPN 2 and several comparison methods on continuous time-series
benchmark datasets related to finance and traffic over time, as well as on graph-structured bench-
mark datasets pertaining to citation networks.
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Figure 32: An illustration of raw images (shown in the first and third columns) from the CIFAR-10
dataset and their expanded counterparts (shown in the second and fourth columns), generated using
the grid-based structural interdependence functions with a cylindrical patch of radius p,, = 4.

We begin by providing a brief overview of these time-series and graph benchmark datasets. Next,
we present the experimental results obtained by the comparison methods. Finally, we illustrate some
of the learned interdependence matrices specifically for the graph data.
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Figure 33: An illustration of the chain-based structural interdependence matrices for the IMDB
language dataset classification. The percentages of non-zero elements in the two matrices are as
follows: (1) multi-hop (h = 5) interdependence matrix: 1.165%, and (2) exponential approximation
interdependence matrix: 7.096%.

Table 3: The table summarizes the key statistics of the raw time-series benchmark datasets. For the
Stock and ETF datasets, instances vary in length, with the mean and standard deviation (mean4std)
provided. In contrast, instances in the LA and Bay Area traffic datasets are aligned and have identical
lengths. Additionally, the table includes the number of attributes recorded for each data instance at
each timestamp.

Time-Series Datasets
Stock | ETF | Traffic-LA | Traffic-Bay
Instance # 7,163 1,344 207 325
Timestamp # | 2,078 =833 | 1,908 + 893 34,272 52,116
Attribute # 6 6 1 1

9.2.1 Time-Series Dataset Description and Experiment Setups

Dataset Descriptions: The time-series data studied in the experiments include stock market and
urban traffic datasets. Specifically, the stock market datasets comprise Nasdaqg-traded stocks and
ETFs, while the urban traffic datasets include data collected from the Los Angeles region and the
San Francisco Bay Area. Basic statistical information about these datasets is summarized in Table 3.
For the stock and ETF datasets, each instance has 7 attributes at each timestamp, corresponding to
“Open”, “Close”, “High”, “Low”, “Volume”, and “OpenlInt”. In this project, we specifically predict
the “Open” attribute, which represents the opening price of the stocks and ETFs for each trading
day. Meanwhile, for the traffic data, there is a single attribute representing the accumulated traffic
counts within a specific time period, which is used as the target for prediction in the experiments.

Experimental Setups: In the experiments, these datasets were cleaned, pre-processed, and parti-
tioned according to their temporal granularities: per day for stock and ETF data, and per minute for
traffic data. For each instance in the finance datasets (i.e., the stock and ETF datasets), we extracted
the recent one-year trading records and partitioned them into input-output pairs. The input spans 10
prior trading days, while the output represents the next day’s opening price, with a time gap of 1.
Similarly, for the traffic data (i.e., the LA and Bay Area datasets), all available records were used to
create input-output pairs with the same setup as the finance data. The performance of all comparison
methods is evaluated using MSE (Mean Squared Error) as the default metric.
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Table 4: The learning results of the comparison methods on the time-series benchmark datasets
are presented in the table. The scores represent the MSE achieved by each method. For the best
performance on each dataset, the corresponding scores are highlighted in bold math font.

Models Time-Series Prediction Datasets
Stock | ETF | Traffic-LA | Traffic-Bay
MLP 1.96 x 10~* | 3.36 x 10~% |1.70 x 10~1| 8.13 x 102
Prev‘?;gs]RPN 1.94 x 1074 |3.31 x 10~4| 1.71 x 10! | 8.12 x 102
RNN 1.85 X 1074 347 x107% | 1.74 x 1071 | 8.13 x 1072
RPN 2 1.85 X 10~%| 3.35 x 107* | 1.74 x 10~ ! [7.99 x 102

9.2.2 The Main Results of RPN 2 on Time-Series Prediction

In Table 4, we present the forecasting results of RPN 2 on the time-series datasets. For comparison,
the table also includes the performance of RNN, the previous RPN, and MLP, where MLP and RPN
project the input sequence of length 10 to the desired output. The scores in the table represent the
MSE achieved by these methods on the four time-series benchmark datasets.

From the results, we observe that RPN 2 achieves comparable performance to RNN on the Stock,
ETF, and Traffic-LA datasets. However, compared to MLP and the previous RPN model, the ad-
vantages of RNN and RPN 2 in sequence data modeling are less pronounced. This is likely because
MLP and RPN, built with fully connected layers, can effectively utilize the historical record infor-
mation. Notably, on the Traffic-Bay dataset, RPN 2 outperforms the other methods. This improve-
ment can be attributed to the relatively longer sequences in the Traffic-Bay dataset, which provide
more training data samples to enhance the learning process of RPN 2.

9.2.3 Graph Dataset Description and Experiment Setups

Dataset Descriptions: We studied three citation graph benchmark datasets: Cora, Citeseer, and
Pubmed. Basic statistical information about these datasets is provided in Table 5. Each dataset
consists of a set of nodes representing papers, connected by citation links among them. Specifically,
the Cora, Citeseer, and Pubmed datasets contain 2, 708, 3,327, and 19, 717 nodes, connected by
10,556, 9,104, and 88, 648 links, respectively. In addition to the graph structure, each node is
associated with a feature vector (a bag-of-words representation of the paper’s textual description,
weighted by TF-IDF) and a label denoting the paper’s topic. Detailed statistical information is also
included in Table 5.

Experimental Setups: In the experiments, subsets of nodes were sampled for training and testing
the graph learning and node classification models. Specifically, for each class in the three graph
datasets, 20 instances were sampled for training, and a set of 1,000 nodes was randomly sampled
for testing. For the graph neural networks and RPN 2, training was conducted using semi-supervised
and transductive learning settings, effectively incorporating unlabeled instances into the model train-
ing. Conversely, the MLP and the previous RPN model were trained using classic supervised and
inductive learning settings, relying solely on the labeled training set.

9.2.4 The Main Results of RPN 2 on Graph Classification

In Table 6, we present the learning performance of RPN 2 and the baseline methods on the three
graph benchmark datasets. For each dataset, the table also includes the model architectures, with
the numbers inside brackets representing the input, hidden, and output dimensions, respectively.
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Table 5: The table provides an overview of the graph benchmark datasets, including the number of
nodes and links, as well as the input attributes and output label classes. For the experiments, we
randomly sampled 20 node instances per class as the training set for each graph dataset, and 1,000
random nodes as the testing set.

Graph Datasets
Cora | Citeseer | Pubmed
Node # 2,708 3,327 19,717
Link # 10,556 9,104 88,648

Input Dim. 1,433 3,703 500
Output Dim. 7 6 3
Train # 140 120 60
Test # 1,000 1,000 1,000

Table 6: The classification performance of the comparison methods on nodes in the graph bench-
mark datasets is reported. All comparison methods share the same input, hidden, and output layer
dimensions, with detailed architectural information provided below the graph datasets.

Graph Datasets
Cora Citeseer Pubmed
Models |
[1433, 16, 7] [3703, 16, 6] [500, 16, 3]
MLP 6.61 x 1071 3.05 x 10~1 3.83x 107!

Previous RPN

-1 -1 -1
[89] 6.82 x 10 3.17x 10 4.06 x 10

GCN 8.15 x 1071 7.03 x 1071 7.90 x 1071

RPN 2

-1 -1 -1
(graph interdependence) 8.22 x 10 7.09 X 10 7.96 x 10

RPN 2

-1 —1 —1
(hybrid interdependence) 8.30 x 10 7.05 x 10 8.02 x 10

The reported results show that the RPN 2 model, equipped with graph-based interdependence func-
tions, achieves a significant performance improvement compared to both the previous RPN model
and the MLP model. Additionally, RPN 2 achieves comparable performance to the GCN model
across these datasets. Furthermore, the table includes the learning performance of RPN 2 using
a hybrid interdependence function, which combines the graph interdependence function with a bi-
linear interdependence function, using the product as the fusion function. The results indicate that
the hybrid interdependence function slightly enhances the performance of RPN 2 on the Cora and
Pubmed datasets, demonstrating the effectiveness of bilinear functions in capturing interdependence
relationships within input data batches.

9.2.5 Graph Interdependence Matrix Visualization

In Figure 34, we display the graph-based interdependence matrices calculated using various graph
structural interdependence functions. Specifically, Plot (a) is based on the graph adjacency matrix,
Plots (b) and (c) represent the multi-hop and PageRank graph interdependence matrices, and Plots
(d) and (e) correspond to the bilinear and hybrid graph interdependence matrices.
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Figure 34: An illustration of the graph, multi-hop graph, PageRank, and hybrid interdependence
matrices (combining graph and bilinear methods) computed on the Cora dataset is provided. The
non-zero entry ratios of these matrices are 0.110%, 0.454%, 0.783%, and 0.110%, respectively. (For
better visibility of the non-zero matrix entry values, please zoom in on the figure.)

From the visualizations, the value scales of the entries in the multi-hop interdependence matrix are
relatively larger compared to the other matrices. In terms of sparsity, the multi-hop and PageRank
interdependence matrices have more non-zero entries than the one-hop and hybrid interdependence
matrices. The hybrid interdependence matrix is constructed by masking the bilinear interdependence
matrix with a binary graph interdependence matrix, where non-zero entries are column-normalized.
Some of these matrices are highly sparse. For better visibility of the matrix entry values, it is
recommended to zoom in on the figure to examine the sparsely distributed non-zero entries.

10 Interpretation of RPN 2 with Interdependence Functions

Empirical evaluations provided in the previous section show that incorporating data interdependence
functions significantly enhances the learning performance of RPN 2, especially when compared to
the previous RPN model introduced in [89]. In this section, we discuss interpretations of RPN
2 with data and structural interdependence functions from both theoretical machine learning and
biological neuroscience perspectives. These interpretations also highlight the motivations and ad-
vantages of integrating interdependence functions within the RPN 2 model architecture.
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10.1 Theoretic Machine Learning Interpretations

The RPN 2 model introduced in previous sections effectively captures interdependent relationships
among both instances and attributes, making it adaptable to both inductive and transductive learning
settings. In the following, we use the transductive learning setting as an example to examine the
theoretical learning performance of RPN 2 with instance interdependence functions; similar results
also apply to RPN 2 with attribute interdependence functions in other learning settings.

Formally, in the transductive learning setting, let the dataset be D = {x1,Xa," - , X, }, consisting
of n data instances, with a subset of these instances having known labels for model training, denoted
as T = {x1,X2, - ,Xm} C D. For each instance x; € T, its known label vector is represented by
f(x;). As introduced in [89], the learning loss incurred by the model g(-|w) on the dataset D can
be formally represented as follows:

[ peollatxiw) = £Gllax = [ pe0 llatxiw) = £l ax+ [ po) llglxiw) = FGollax,  (184)
x€D xeT x€D\T

overall error £ empirical error L, expected error Legp

where p(x) denoting the sampling probability for instance x € D.

Motivated by recent work [19], we aim to derive the generalization error bound of RPN 2 with
interdependence functions to interpret its learning performance as follows:

Lezp < L + generalization error bound. (185)

The term “generalization error bound” in the above equation can be derived based on various learn-
ing theories, such as VC Dimension [74, 8] and Rademacher Complexity [4]. These theories con-
sider different factors—such as model architecture, component modules, and input data—in defining
generalization error bounds, which will be discussed in detail below.

10.1.1 Generalization Error-Bound based on VC Dimension

To streamline the analysis, we consider a binary classification transductive learning problem using
the RPN 2 model, which includes identity expansion, instance interdependence, identity reconcilia-
tion, zero remainder, and K layers as an example.

Formally, given a data batch X € RR®*9, where dy = m represents the input dimension, we can
represent the RPN 2 model as follows:

9K 0 gr—1 00 gr i R — {41, -1}, (186)
where the k¢, -layer defines a mapping gy, : RP*% -1 — RbXd e,
gr(X|wy k) = (ke k(X), Y (Wy 1)) + 7 (X). (187)

The corresponding hypothesis class of the above model can be represented as
H={9(X|w,K)=gxogx-10--0g: RY*™ — {41, —l}b} , (188)

which together with the output label “sign” function actually define the VC-dimension of the model:

VC-dimension(sign o ) = min {m, rank(A¢, ), {di}ref1,. ik} }

189
< min {I‘al’lk(Agi), dKfl} . ( )

Based on the above bound, as indicated in [19], for any § € (0, 1), with probability 1 — ¢, the
expected generalization error for any model g € sign o H satisfies
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Lonp(9) — Lom(g) < \/ % (min{rank(Agi), di_1} - In(em) + In (;‘)) (190)

The error bound derived above offers valuable insights into the RPN 2 model:

* On rank(Ag¢,) < b: The previous RPN model [89], which lacks the capability to model
interdependence relationships, can be viewed as a special case of RPN 2 with an identity
interdependence matrix, i.e., A¢, = I € R"*?, yielding a default rank of b. This suggests
that the new RPN 2 model—and all the backbone models discussed in previous sections
that can be represented as RPN 2—achieves a tighter error bound by incorporating inter-
dependence than the previous RPN model, along with all models previously discussed in
[89] that can be represented by RPN.

* Onrank(Ag,) v.s. dx—1: If dx_1 < rank(Ag,), the introduced interdependence function
becomes redundant; however, if dg_1 > rank(Afi ), the interdependence function reduces
the model’s error bound. In other words, the model architecture itself influences the effec-
tiveness of the interdependence function.

10.1.2 Generalization Error-Bound based on Rademacher Complexity

Compared to the classic VC dimension theory, Rademacher complexity analysis provides a data-
dependent bound for broader hypothesis classes. Building on the RPN 2 model discussed above, we
derive its generalization error bound based on Rademacher complexity.

Formally, consider the constrained hypothesis classes H?“ C H, where model parameters satisfy
|lwk|| 0o < w and the optional bias term satisfies ||bg||, < f§ for each layer k € 1,2,--- , K. As
analyzed in [19], the Rademacher complexity of this restricted hypothesis class can be represented
as follows:

|Ae, X, .. /log(n), (191)

2 K-1
w cn k
Rm,n(H'B) ) < —m) <Z Cg ||A§1 oo) + 0362 HA&

m(n pors

where ¢y = 2L, co = 2Lw, c3 = Lw\/> and L is the Lipschitz constant of the layer’s optional ac-

tivation function. Furthermore, following the derivations in [17], for any § € (0, 1), with probability
1 — 8, the generalization error for any model g € H?* satisfies the following:

‘Cem( )<Rmn(H6w n mm{m o \/ Tl* ((15)> (192)

m(n —

£e:cp (g) -

where ¢4 and c5 are constants with the value bounds: ¢4 < 5.05 and ¢; < 0.8.

Based on the generalization error bound above, we gain insights, particularly from Equation (191),
where both ||Ag, || and ||A¢, X||,_,  influence the tightness of the error bound:

* On the norm term ||Ag, || : This norm of the interdependence matrix A, reflects the
largest absolute row sums of the matrix. Therefore, to tighten the error bound, normalizing
the matrix A¢, may be necessary in practical applications.

* On the norm term ||A¢ X||, , : This norm of the interdependence matrix represents
SUP|z, 1 | A¢, Xz]| ., which can be relaxed as follows:

2 Xl -
(193)

[Ae X500 = mjaXII(AaX)-,jllg < [lAg, gmjaXHX-,sz <A
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In other words, both the matrix A, and the input data batch X affect the error bound.
Normalizing A, can effectively reduce its 2-norm term ||Ag, ||,. As for | X]|,_, ., data
batches with smaller row norms, balanced row magnitudes, or properties such as sparsity,
low rank, and orthogonality result in smaller norm values.

10.2 Biological Neuroscience Interpretations

In addition to theoretical machine learning interpretations, the interdependence function components
in the RPN 2 model architecture may also simulate certain compensatory functions of biological
nervous systems, including (but not limited to) sensory integration in the brain cortex, relational
memory in the hippocampus, and working attention mechanisms.

10.2.1 Understanding Interdependence from Sensory Integration at Brain Cortex

The brain integrates interdependent information from multiple sensory inputs (such as vision, hear-
ing, and touch) in multimodal areas of the cortex, including the parietal and prefrontal cortices.
These regions serve as hubs where sensory inputs from diverse sources converge, enabling the brain
to form unified representations of objects and events. During sensory information integration in the
cortex, the brain naturally captures relationships among these multimodal sensory sources.

As shown in Figure 35, we illustrate a lateral Motor

view of the human brain, highlighting its four (
main lobes: the frontal, parietal, temporal, and )
occipital lobes (also illustrated in Figure 37). - SR
The frontal and parietal lobes are separated by 7 U i e
the central sulcus, a groove between tissues, =3y y -
where the sensory cortex (in pink) and motor e R
cortex (in purple) are located adjacent to each
other on either side of the sulcus. In the right
panel of Figure 35, we see the primary sensory
cortex with an orderly (inverted) tactile repre-
sentation, extending from the toe (at the top left of the cerebral hemisphere) to the mouth (at the
bottom right). Each cerebral hemisphere in the primary somatosensory cortex represents tactile
sensations from the opposite (contralateral) side of the body.

Brain (lateral view) Sensory Homunculus

Figure 35: Brain Sensory Cortex.

The amount of primary somatosensory cortex dedicated to a body part is not proportional to the size
of the body surface but, rather, to the relative density of tactile receptors. Body parts with a higher
density of tactile receptors, such as the lips and hands, occupy larger areas in the somatosensory
cortex, reflecting their heightened sensitivity to tactile stimulation.

With this diverse and extensive sensory information, the brain rarely processes inputs independently.
Instead, it fuses them, captures interdependent relationships, and generates an optimal response
for the motor systems. This integration and processing of multimodal sensory inputs mirror how
structured models in machine learning capture interdependencies across different data attributes and
1nstances.

10.2.2 Understanding Interdependence from from Hippocampus and Relational Memory

The hippocampus plays a crucial role in relational memory, enabling the brain to encode relation-
ships between objects, contexts, and spatial locations. This function is especially important for in-
tegrating interdependencies across time and space, allowing the brain to learn sequences, temporal
patterns, and associations between events.

As illustrated in Figure 36, the hippocampus is located within the temporal lobe (see also Figure 37).
Key structures within the temporal lobe that support long-term memory include the hippocampus
and surrounding regions, such as the perirhinal, parahippocampal, and entorhinal cortices. The
hippocampus, along with the dentate gyrus, has a curved shape reminiscent of a seahorse. Humans
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and other mammals possess two hippocampi, one on each side of the brain. As part of the limbic
system, the hippocampus plays a central role in consolidating information from short-term to long-
term memory and in spatial memory, which supports navigation. In addition to the hippocampus,
regions like the prefrontal and visual cortices also contribute to explicit memory; however, these will
not be discussed in this paper.

The memory mechanism, supported by the
hippocampus and other cortical areas, enables
the brain to encode, store, retain, and re-
trieve information and past experiences, captur-
ing interdependencies both explicitly and im-
plicitly among instances and attributes. For
example, during spatial navigation, the hip-
pocampus integrates environmental informa-
tion (attributes) with specific locations or land-
marks (instances), allowing for memory re-
trieval based on complex interdependencies be-
tween these elements. This is analogous to how the RPN 2 model captures interdependence in
structured data through the data and structural interdependence functions introduced in this paper.

Brain (sagittal view) Hippocampus

Figure 36: Brain Hippocampus.

10.2.3 Understanding Interdependence from Attention Mechanisms

In addition to sensory information integration and memory, attention mechanisms in the
brain—particularly involving the prefrontal cortex and posterior parietal cortex—enable selective
processing of interdependent information by dynamically modulating neural activity. By focusing
on specific attributes or instances while filtering out irrelevant details, the brain can prioritize impor-
tant interdependent relationships, such as the correlation between auditory and visual stimuli within
a given context.

Attention is the behavioral and cognitive pro-  cortex
cess of selectively focusing on specific aspects
of information—whether subjective or objec-
tive—while disregarding other perceivable in-
formation. This process involves a complex
network of brain regions that work together to
regulate and sustain focus. Key areas include
the prefrontal cortex, parietal cortex, anterior
cingulate cortex, thalamus, and basal ganglia, Brain Cortex and Thalamus Brain Cortex and Lobe
. . . (sagittal view) (lateral view)

some of which are shown in Figure 37. In par-

ticular, the thalamus, the purple region depicted
in the figure, consists of two oval collections of nuclei that make up most of the diencephalon’s mass.
Often described as a relay station, the thalamus directs nearly all sensory information (except for ol-
factory signals) to the cortex, making an initial stop in the thalamus before reaching its cortical
destination. The thalamus is subdivided into specialized nuclei, each handling specific types of
sensory information, which it routes to the appropriate area in the cortex for further processing.

Thalamus

Figure 37: Brain Cortex and Thalamus.

Supported by the thalamus and other cortical regions, the brain’s attention mechanisms are essential
for capturing interdependencies among sensory information and sequential events. Attention enables
the brain to prioritize relevant information, filter out distractions, and integrate sensory inputs and
events over time—Xkey to understanding relationships between different stimuli.

11 Intellectual Merits, Limitations and Future Work Timeline
In this section, we discuss the intellectual merits of the RPN 2 model equipped with interdependence

functions. Additionally, we address the current model’s limitations, highlighting potential directions
for future development and the next phase of this project.
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11.1 Intellectual Merits

In this paper, we propose a redesign of the RPN 2 model architecture by incorporating data in-
terdependence functions that model relationships among both attributes and instances. Based on
empirical experiments and theoretical analyses provided in previous sections, these interdependence
functions significantly enhance the learning performance of the RPN 2 model. Below, we summa-
rize the intellectual merits of the newly proposed RPN 2 model.

Theoretical Merits: Unlike the previous RPN model [89], which assumes attributes and instances
are independent and identically distributed, the newly designed RPN 2 model effectively captures
interdependent relationships among both attributes and instances through a set of interdependence
functions defined using information from the input data batch. These data interdependence functions
significantly expand the modeling capabilities of RPN 2 for complex function learning tasks on
interdependent data. The theoretical analyses provided in this paper also offer insights into defining
optimal interdependence functions that lead to tighter generalization error bounds based on both VC
dimension and Rademacher complexity theories. From a biological neuroscience perspective, these
interdependence functions emulate certain compensatory functions of the biological nervous system
within the RPN 2 model.

Technical Merits: The RPN 2 model introduces a diverse family of interdependence functions that
capture relationships among attributes and instances from various perspectives, including the input
data batch, underlying topological and geometrical structures, and combinations of these. These
interdependence functions enable unification of diverse backbone models, such as CNNs, RNNs,
GNNs, and Transformers (and their variants), as discussed in this paper. We demonstrate that these
backbone models share similar architectures, with key differences arising from how the interdepen-
dence functions are defined. These observations provide valuable insights for designing the future
“Transformer-Next” new backbone models.

Computational Merits: The interdependence functions introduced here compute matrices to
model relationships among instances and attributes. These computed interdependence matrices
are typically small and often sparse across many learning settings, resulting in minimal storage
requirements. Additionally, because interdependence functions operate on the data batch as in-
put—applying attribute interdependence prior to data transformation—they save considerable com-
putational time compared to operations performed on transformed data batches. As with the previous
paper [89], the RPN 2 model architecture allows for computations of different component functions
to be distributed across multiple chips, machines, or cloud platforms, enhancing learning efficiency
and safeguarding data privacy and model parameter security.

11.2 Limitations

When implementing the RPN 2 architecture and its component modules, we identified several limi-
tations, particularly in modeling capabilities for dynamic data, learning algorithms, and the potential
deployment of large-scale intelligent systems.

Learning Limitations: One challenge encountered in the implementation of the RPN 2 model lies
in adapting loss functions, optimizers, and error backpropagation-based learning algorithms. While
conventional representation learning-based loss functions, optimizers, and algorithms are applica-
ble to the current function learning task, they exhibit certain inconsistencies with function-oriented
learning models. In both this paper and the previous work [89], our function learning models re-
quire compressing the input data batch into the output space using perceptron-based layers (involv-
ing identity data transformation, identity reconciliation, and zero remainder functions). Although
such layers are necessary for traditional representation learning models, they perform minimal data
transformation in function learning models, significantly reducing the data batch’s representational
capabilities as dimensions are compressed.

Modeling Limitations: This paper successfully unifies several dominant backbone models within
the canonical RPN 2 representation. However, challenges remain in representing RNN models with
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RPN 2, as the current model lacks dynamic processing capabilities, requiring temporal interdepen-
dence in RNNs to be converted into spatial interdependence instead. This highlights a limitation
of RPN 2 in modeling “temporal dynamics”, a key factor in developing future world models with
spatial intelligence. To address this, we plan to redesign modules in the current RPN 2 model to
enable “temporal dynamics” modeling, which will be a primary focus of our future work.

Large-Scale Intelligent Systems: To demonstrate the effectiveness of our proposed techniques, we
aim to build a large-scale intelligent system based on the RPN 2 model, showcasing its multimodal
modeling capabilities, learning performance advantages, and inherent parameter efficiency. Creating
such systems will require redesigning many component functions and models to ensure learning ef-
ficiency when handling large-scale data and vast numbers of parameters. Once the above limitations
in learning and modeling are addressed, we will initiate the large-scale intelligent system project,
which will be developed in parallel with the current RPN 2-based backbone framework project.

11.3 Future Work Timeline

In the upcoming year of 2025, we plan to address the current limitations of the RPN 2 model and
the TINYBIG Vv0.2.0 library. Our primary focus will be on refining the RPN 2 model framework
and developing application projects that leverage the enhanced RPN 2 model and TINYBIG v0.2.0
toolkit.

Framework Enhancement Projects: Based on our current development pace, we estimate to spend
another six months on addressing the learning limitations in the current RPN 2 model. Specifi-
cally, we aim to explore function learning-oriented loss functions, optimized objective functions,
and model learning algorithms. A new version of RPN 2, featuring these learning-related enhance-
ments, is expected for release by mid-2025. Additionally, we plan to incorporate “time” and related
functions into the RPN 2 model to enable dynamic learning scenarios. Modeling “temporal dynam-
ics” will require a substantial redesign of the current RPN 2 functions and components, which will
be time-intensive. Following the resolution of learning limitations, we anticipate another six months
to integrate “temporal dynamics” into the model architecture, with a target release by the end of
2025.

Application Projects: In parallel with addressing the challenges in learning and modeling, we plan
to undertake several system-building projects to conduct preliminary testing of RPN 2 on large-scale
datasets with one or a few modalities. We expect to initiate a large-scale intelligent system project
by the end of 2025, a project that will likely take several years due to its anticipated challenges and
complexities. Technical reports on the progress of the RPN 2 and intelligent system projects will be
released as new developments become available.

12 Related Work

In this section, we briefly discuss existing work related to this paper, including various backbone
models proposed for data across different modalities and recent advancements in multi-modality
foundation model learning.

12.1 Related Backbone Models

With the integration of data interdependence functions, the RPN 2 model proposed in this paper has
demonstrated the capability to unify several dominant backbone models, including convolutional
neural networks, recurrent neural networks, graph neural networks, and Transformers. In this sec-
tion, we briefly introduce these backbone models and highlight key papers that have contributed
critical technical breakthroughs.

12.1.1 Convolutional Neural Networks

Originally defined in the 19th century in Fourier’s work [21], convolution has become a widely
used mathematical operator in both continuous signal processing and discrete image processing.
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In traditional computer vision, convolution is extensively applied in tasks such as image blurring,
sharpening, resizing, and edge detection. Manually defined convolution kernels can provide mean-
ingful physical interpretations but may have limited applicability for diverse vision tasks. To ad-
dress this limitation, Yann LeCun introduced the convolutional neural network (CNN), known as
LeNet [43], proposing that convolution kernels be defined as learnable parameters that can be au-
tomatically learned from input data. These learnable convolution kernels significantly improve the
learning performance of vision models [55] and expand their applicability to various vision-related
tasks [83, 2]. Following LeNet, additional CNN variants have been developed, such as AlexNet
[40] and VGGI16 [69]. AlexNet, with its 5 convolutional layers, achieved 84.6% accuracy on Ima-
geNet, while VGG16, with 13 convolutional layers, further boosted accuracy to 92.7%. However, as
model architectures became deeper, performance degradation emerged, where deeper models tended
to show higher training and testing errors than shallower ones. To address this issue, Kaiming He
introduced ResNet [26], incorporating skip-layer residual connections into the CNN architecture,
which increased performance to 96.4% on ImageNet.

12.1.2 Recurrent Neural Networks

The study of recurrent neural networks (RNNs) originated from research in associative memory.
Frank Rosenblatt [65] introduced a three-layer perceptron neural network with recurrent connections
in the middle layer. Another foundation of associative memory came from statistical mechanics
with the Ising model [9], which modeled thermal equilibrium. Later, Roy J. Glauber [23] extended
the Ising model by adding a time component, allowing for temporal evolution. Building on the
Ising model, Sherrington and Kirkpatrick developed the Sherrington-Kirkpatrick model as an exactly
solvable model of spin glass, featuring an energy function with multiple local minima. Based on this
model, John Hopfield introduced the Hopfield network with binary activation functions [30], later
extended to continuous activation functions [31]. In recent years, Hopfield has further investigated
methods to increase memory storage capacity by modifying network dynamics and energy functions
[41, 42, 62]. With the resurgence of neural networks in the 1980s, new RNN architectures, such
as the Jordan network [35] and Elman network [18], emerged to study cognitive psychology. To
address gradient explosion and vanishing issues, Hochreiter and Schmidhuber [29] introduced the
Long Short-Term Memory (LSTM) network, which has since become the dominant RNN model.
To model bidirectional dependencies in input sequences, the Bidirectional RNN (Bi-RNN) [68]
was developed, using two RNNSs to process inputs in different directions. For a simplified LSTM
structure, the Gated Recurrent Unit (GRU) [12] was introduced as an alternative RNN architecture.
More recently, Gu and Dao proposed the Mamba state space model [25, 13], which incorporates
recurrent models for sequence data by updating states over time.

12.1.3 Graph Neural Networks

Unlike images and language, graphs, as topological structures, lack a fixed order of nodes [22],
necessitating distinct model designs. Before the advent of graph neural networks (GNNs), graph
learning algorithms were primarily developed based on topological structures. Yan and Han pro-
posed gSpan [84], a graph-based substructure pattern mining algorithm that extracts frequent sub-
graphs for feature learning. Sun introduced path-based algorithms [72] to extract features from
graphs for various learning tasks. With the rise of neural networks, unsupervised algorithms for
learning graph representations emerged, such as DeepWalk [57] and node2vec [24]. To effectively
leverage labeled node information, the Graph Convolutional Network (GCN) [37] was developed
to learn node representations by aggregating information from neighboring nodes. The Graph At-
tention Network (GAT) [76] further enhanced GCN by incorporating an attention mechanism based
on pairwise node representations. However, as GNN architectures deepen, issues such as the over-
smoothing problem [48] and the suspended animation problem [90] can arise. Techniques such as
edge dropout [64] and graph residual learning [90] have been proposed to mitigate these issues. In-
spired by the effectiveness of Transformer models in language processing, researchers have recently
explored Transformer-based GNN models, including Graph-Transformer [87], GPT-GNN [32], and
Graph-BERT [91].
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12.1.4 Attention and Transformer

The concept of attention was first introduced by Google DeepMind in [52] to model adaptive se-
lection of high-resolution image regions. Around the same time, Bengio and collaborators applied
attention mechanisms in machine translation models [3]. Following these initial explorations, at-
tention mechanisms have proven effective across a range of deep learning tasks and are widely
implemented in various deep learning models [82, 85, 79, 5]. Based on scaled dot-product attention,
researchers at Google introduced the Transformer model [75] in 2017, which represents language
data using pairwise self-attention scores derived from inputs. Shortly after, Google launched the pre-
trained BERT (Bidirectional Transformer) model [15] for language understanding in 2018. Around
the same time, other Transformer-based language models were proposed by teams from different
organizations, including GPT from OpenAl [60] and BART from Meta [45]. Today, Transformer
has become the dominant backbone for large language models, with model sizes expanding sig-
nificantly in recent years. For example, the initial GPT-1 model had only 117 million parameters,
while the recent GPT-4 model has grown to 1.8 trillion parameters. Inspired by the success of Trans-
former models in natural language processing, researchers have also explored applying Transformer
architectures to other fields, including ViT [16] for image processing, Graph-BERT [91] for graph
learning, and DiT [56] for image and video generation.

12.2 Multi-Modality Foundation Models

The RPN 2 model introduced in this paper can also serve as a foundation model applicable to
learning tasks across datasets with different modalities, aligning closely with current advancements
in multi-modality foundation model learning.

12.2.1 Multi-Modality Data Alignment

Multi-modal data representation learning aims to integrate and interpret heterogeneous data types
(e.g., images, text, audio, video, and sensor data) through unified representations. OpenAl intro-
duced Contrastive Language-Image Pretraining (CLIP) [59], which correlates images and language
and enables zero-shot image classification. Google Research proposed ALIGN [33], which aligns
visual and textual features by training on large-scale image-text pairs with contrastive objectives.
Another approach focuses on learning hierarchical representations that capture both intra- and inter-
modal relationships. The VATT model (Video-Audio-Text Transformer) [1] employs self-supervised
learning across multiple modalities to capture high-level correlations. Similarly, recent advance-
ments in large-scale foundation models, such as Unified-IO [51], aim to unify inputs from multiple
modalities within a common encoder-decoder framework, enhancing generalization across modali-
ties. Additional models, such as LXMERT [73], Unicoder-VL [46], Oscar [49], and VILBERT [50],
have also been proposed for multi-modal representation learning, particularly for vision-language
tasks. Recently, Meta introduced MetaCLIP [81], pre-trained on a larger image-text dataset, which
outperforms CLIP on zero-shot image classification tasks.

12.2.2 Multi-Modality Tokenizer

Tokenization is essential in multi-modal learning, as it converts raw inputs from different modalities
into token representations that machine learning models can process. Extending the concept of tok-
enization from natural language processing (NLP) to a multi-modal context has driven innovations
in representing complex, multi-source input data. A key development is the introduction of multi-
modal tokenizers that handle diverse inputs, such as text, images, and videos, enabling downstream
tasks like multi-modal fusion. Early models, such as VisualBERT [47], combined pre-trained BERT
embeddings with visual features by treating images as sequences of region tokens derived from ob-
ject detection models like Faster R-CNN. More recent models, such as BEiT-3 [80] and FLAVA [71],
expand on this concept by introducing universal tokenizers that map images, text, and audio into a
unified token space. Other advances in multi-modal tokenization, such as Pix2Seq [11], represent
images as sequences of tokens, facilitating the adaptation of NLP-like transformers to the vision
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domain. With the rise of large language models, recent research has proposed converting video
data into discrete tokens [86] to enable reasoning in language models. For instance, VideoPoet [38]
employs video tokenizers to transform multi-modal data into discrete tokens for video generation.

12.2.3 Multi-Modality Generative Models

The field of generative modeling has advanced rapidly, with recent models demonstrating impres-
sive capabilities in data synthesis. The denoising diffusion probabilistic model [27] has proven
effective in generating image data and serves as a foundational model for the current surge in gener-
ative Al. To improve efficiency, the latent diffusion model [63] performs generation within the latent
space using cross-attention mechanisms. The DiT model [56] further introduces a scalable diffusion
approach with Transformers as the backbone. Building on these diffusion models, multi-modal gen-
erative models can produce coherent outputs (e.g., text, images, or video) from multi-modal inputs
by learning cross-modal relationships. Models like DALL-E [61] and Imagen [67] leverage text-to-
image generation via diffusion, pushing the boundaries of visually rich outputs conditioned on text.
GLIDE [54] explores text-guided image generation and editing with diffusion models. Recently, Sta-
bility Al released Stable Diffusion 3 [20], which incorporates scaling rectified flow Transformers.
These models not only generate high-quality images but also demonstrate creativity and abstrac-
tion across modalities. Beyond text-to-image generation, video generation has gained focus in the
community. Make-A-Video [70], Dreamix [53], and Video Diffusion [28] extend diffusion concepts
to video by leveraging pretrained text-to-image models with additional motion learning. Using the
latent alignment algorithm [7], Stability Al has recently expanded their image generation model for
video [6] and 3D object generation from image inputs [78].

13 Conclusion

In this paper, we redesigned the Reconciled Polynomial Network and introduced the new RPN 2
model, which incorporates an innovative component—the data interdependence function—into its
architecture to explicitly model diverse relationships among both data instances and attributes. These
data interdependence functions significantly enhance RPN 2’s capabilities for complex function
learning tasks on interdependent data, including but not limited to images, language, time series,
and graphs. To demonstrate the efficacy of RPN 2’s data interdependence modeling, we conducted
extensive experiments on various multi-modal benchmark datasets, showing that RPN 2 consistently
outperforms existing backbone models in multiple deep function learning tasks.

This enhancement also expands RPN 2’s unifying potential, enabling it to encompass a broader
range of prevalent backbone architectures within its canonical representation, including convolu-
tional neural networks (CNNs), recurrent neural networks (RNNs), graph neural networks (GNN),
and Transformers. Through these unifications, we illustrate the shared architectures and unique dif-
ferences of these backbone models. These insights not only open new avenues for designing superior
“Transformer-Next” models but also position RPN 2 as a robust framework for advancing function
learning architecture design. Beyond empirical experiments, this paper also interprets the RPN 2
model from theoretical machine learning and biological neuroscience perspectives.

To support the adoption, implementation, and experimentation of RPN 2, we have updated our
toolkit to the new TINYBIG Vv0.2.0, which incorporates interdependence modeling capabilities in
model design and learning, along with updates to head and layer modules and model architecture.
This updated toolkit enables researchers to efficiently design, customize, and deploy new RPN 2
models across a wide range of function learning tasks on diverse interdependent datasets.
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