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Abstract—Stationless bike-sharing systems such as Mobike are currently becoming extremely popular in China as well as some other
big cities in the world. Compared to traditional bicycle-sharing systems, stationless bike-sharing systems do not need bike stations.
Users can rent and return bikes at arbitrary locations through an App installed on their smart phones. Such a convenient and flexible
bike-sharing mode greatly solves the last mile issue of the commuters, and better meets their real bike usage demand. However, it also
poses new challenges for operators to manage the system. The first primary challenge is how to accurately estimate the real bike
usage demand in different areas of a city and in different time intervals, which is crucial for the system planning and operation. This
paper for the first time proposes a data driven approach for bike usage demand inference in stationless bike-sharing systems. The idea
is that we first estimate the demands in some regions and time intervals from a small number of observed bike check-out/in data
directly, and then use them as seeds to infer the region-level bike usage demands of an entire city. Specifically, we formulate this
problem as a matrix completion task by modeling the bike usage demand as a matrix whose two dimensions are time intervals of a day
and regions of a city respectively. With the observation that POI distribution of a region is an important indicator to bike demand, we
propose to utilize inductive matrix factorization by considering POIs as side information. As the bike usage data are highly correlated in
both spatial and temporal dimensions, we also incorporate the spatial-temporal correlations as well as the balanced bike usage
constraint into a joint optimization framework. We evaluate the proposed model on a large Mobike trip dataset collected from Beijing,
and the experimental results show its superior performance by comparison with various baseline methods.

Index Terms—Bike-Sharing System, Demand Inference, Matrix Completion, Optimization
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1 INTRODUCTION

S TATIONLESS bike-sharing systems such as Mobike are be-
coming extremely popular in China as well as some other big

cities in the world such as Manchester and Washington DC. Unlike
traditional bike-sharing systems that need to build a large number
of bike stations and users have to rent/return a bike from/to one
of them, there are no stations in stationless bike-sharing systems.
Users can check-out a bike nearby and return it at an arbitrary
location [1]. Fig. 1 shows an example of a Mobike bike, its GPS
positioning module and the corresponding App installed in a smart
phone. A 3G communication component and a GPS module are
embedded in the lock system of each Mobike bike as shown in
Fig. 1(a). Users can scan the QR-code with the pre-installed App
in their smart phones to unlock a Mobike bike for a trip, and lock
it manually after the trip. Fig. 1(b) shows the App installed in the
smart phones. It shows all the Mobike bikes nearby to help the
users find the nearest one for use. During the trip, the App will
record the check-in/out locations and track the travel route of the
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Fig. 1. An example of a Mobike bike and the App.

user, and the system will charge the fee based on the trip time
length and trip distance after the trip.

Stationless bike-sharing systems are designed to better solve
the last mile issue and connect commuters to public transit
networks. Compared to traditional bike-sharing systems, the ad-
vantages of stationless bike-sharing systems are: 1) more flexible
to use, as no bike stations are needed and users can conveniently
pick up and drop off their bikes at arbitrary locations with their
smart phones; 2) better meet users’ need, as the trajectories
of bike users can reflect their real travel demands, and thus the
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last mile issue can be better solved; 3) better relieve the traffic
congestion issue, as more commuters will choose the traveling
mode of riding bikes & taking public transit due to the above
mentioned two advantages rather than driving their private cars. It
is reported by Gaode Map [23] that the traffic jams nearby over
half of the subway stations in Beijing have been relieved after the
stationless sharing bikes starts to be massively deployed in 2017.

Such a brand new bike-sharing mode makes people’s short
trips in big cities much more convenient, but on the other side of
the coin it also poses new challenges for the operators to manage
the system. The first primary challenge is that the real demand
of the bikes in a city is hard to estimate. Accurately estimating
the bike usage demand is essential for both decision making
on deploying bikes in a new city and the following operation
management [16]. First, when a stationless bike-sharing company
decides to deploy bikes in a new city, the first problem they face
is to estimate the number of needed bikes. More specifically, how
many bikes are required in each region of the city and in each hour
of a day. Second, accurately estimating the fine-grained bike usage
demand can greatly facilitate system management and reduce the
labor cost of redistributing the bikes. Compared with traditional
bike sharing systems, the bikes in a stationless bike sharing system
move much more randomly as users can check-out/in the bikes at
arbitrary locations. Thus the distribution of the bikes can become
extremely skewed from place to place and from hour to hour. It is
common that the bikes in some places are usually over supplied
with a large number of unoccupied bikes, while they are over
demanded in some other places where users cannot find a bike
for use. Thus an accurate estimation on the bike usage demand is
crucial for helping the operators work out reasonable strategies on
redistributing the bikes, reducing the manual-rebalance workload
and improving the overall bike utilization.

Although it is practically important, currently there still lacks
of a systematic study of bike usage demand inference in stationless
bike-sharing systems. Traditional bike-sharing systems have been
extensively studied from different aspects, including the bike
rebalancing optimization [12], [29], [30], bike demand prediction
[4], [5], [24], [25], [26], and bike usage patterns mining [20],
[21], [22]. Chen et al. [24] proposed a station-level cluster based
demand prediction model in bike-sharing systems, Li et al. [27]
proposed a hybrid and hierarchical prediction model to predict
the demand of bikes, and Liu et al. [5] proposed a functional
zone based hierarchical prediction model to predict the bike usage
demand for a new bike station. However, these works focus on
studying traditional bike-sharing systems which have bike stations
built at fixed locations with limitated number of docks. Thus, it is
difficult to directly apply them to our study.

In this paper, we propose a data-driven approach to estimate
the fine-grained bike usage demand in stationless bike-sharing
systems. Our method enables an accurate city-wide inference with
a sparse bike usage data collected from a small number of pre-
deployed bikes. To perform a fine-grained inference and also
facilitate effective system management in practice, we first divide
a city into equally sized cell regions inspired by [38], [41], [43]
and model the bike usage data in all the regions as a matrix.
Then we formulate the problem as a matrix completion task by
considering the regions and time intervals as the two dimensions
of the bike usage demand matrix. In this matrix only a very small
number of entry values are known, based on which we need to
infer the remaining entry values. To solve this problem, we need
not only address the data sparsity challenge, but also need to

encode the spatial-temporal correlation of the bike usage, which is
also challenging. To address these challenges, we first incorporate
the POIs of a city based on our previous study [7] and the data
analysis that the POI distribution of a region can largely reflect
its bike usage pattern. An inductive matrix completion method
is proposed by considering the POIs as the side information of
a region. We next propose to add the spatial and temporal cor-
relations into our model. The two correlations make the inferred
bike usage demands of two geographically close regions and the
same region in two successive time intervals yield to be similar.
In addition, note that the entire bike usage should be balanced,
which means the total number of the check-out bikes should be
equal to the number of the check-in bikes. To take this constraint
into consideration, we propose to cluster the regions based on
the bike traffic flows among them, and incorporate an intra-
cluster balanced bike usage constraint into the model. Finally,
a Usage Balanced Inductive Matrix Completion model UBIMC
is proposed to effectively integrate above mentioned components
and more accurately infer the region-level bike usage demand
in different time intervals. The data and code of this work are
publicly available at https://github.com/szwangsummer/UBIMC.

The major contributions of this paper are as follows.

• To the best of our knowledge, we are the first to study
the usage demand inference problem in stationless bike-
sharing systems.

• Our data analysis shows that the bike usage is unbalanced
for most regions in most time intervals of a day, and the
bike usage presents strong correlations in both spatial and
temporal dimensions.

• A inductive matrix factorization based framework is pro-
posed. The proposed model can effectively incorporate
POIs, the spatial-temporal correlations, as well as locally
balanced bike check-in/out usage constraint into a joint
optimization framework.

• We evaluate the model over a large Mobike dataset with
more than 5 million bike trips in Beijng. The experimental
results verify the superior performance of the proposed
model by comparison with various baseline models.

The remainder of this paper is organized as follows. In Section
2, we give a formal definition of the studied problem and show the
framework of our solution. Section 3 introduces the dataset we
use and gives data analysis. The detail of the model is presented
in Section 4. Evaluations are given in Section 5 followed by related
work in Section 6. Finally, we conclude this work in Section 7.

2 PROBLEM DEFINITION AND FRAMEWORK

2.1 Problem Definition
We first give the following terminology definitions used in this
paper, and then give a formal problem definition.

Definition 1. Bike Trip. A bike trip is represented as Tr =
{lori, ldes, tori, tdes}, where lori denotes the starting location,
consisting of latitude lori.lat and longitude lori.lon; ldes
denotes the destination location, consisting of latitude ldes.lat
and longitude ldes.lon; tori and tdes are the starting time and
the end time of the trip respectively.

To effectively manage the system, the service providers usually
divide a city into small regions and assign several workers to each
region who are responsible to maintain and relocate the bikes in
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the region. Following the real management strategy of the system,
we also divide a city into regions defined as follows.

Definition 2. Region of a City. A city can be divided into
a group of equal-sized grid regions. A region ri of a
city is a square area. It can be represented as ri =
{(lon1, lat1), (lon2, lat2)}, where (lon1, lat1) is the start
location and (lon2, lat2) is the end location of ri, respectively.

Although there are many griddig methods such as Kriging
method, Nearest Neighbor method, and Polynomial Regression
method etc., in this paper we choose to use the equal-sized grid-
ding method due to the following reasons. First, such a gridding
method can reflect the spatial correlations among the regions,
and has been widely used in many spatial-temporal data mining
tasks [38], [41]. Second, compared to other gridding methods,
the equal-sized gridding method is more flexible because larger
regions can be easily obtained by grouping a set of grid regions.
Third, dividing a city into equal-sized cell regions can simplify
the studied problem and is convenient to model the bike trips in
all the cell regions as a matrix.

Definition 3. Bike Check-out/in Matrices. The bike check-out/in
matrices are denoted as Hou/Hin ∈ NR×T , where R is the
number of regions and T is the number of time slots. Each
element houit /h

in
it denotes the number of bike check-out/in in

region ri and in time slot t.

Definition 4. Bike Over-Demand in a Region. We define a region
ri as in a bike over-demand state in time slot t if the following
two conditions are satisfied: 1) the number of check-in bikes
is equal to or slightly larger than the number of check-out
bikes; 2) the average time lag between the check-in time and
check-out time of a bike is less than a predefined threshold τ .

Definition 5. Bike Over-Supply in a Region. We define a region
ri as in a bike over-supply state in time slot t if the check-in
bike number is significantly larger than that of the check-out
bikes. That is fin

it

fou
it
> η, where η is a predefined threshold.

Definition 6. Bike Real Demand/Supply Matrices. The bike real
demand/supply matrices are denoted as Fou/Fin ∈ NR×T .
Each element fouit /f

in
it denotes the real bike demand/supply

in region ri and in time slot t.

Note that the real demand/supply of bikes in a region and in a
time slot is usually larger than the corresponding observed check-
out/in bike number. The bike usage in different regions and time
intervals is rather unbalanced, and in most cases a region is either
in an over-demand or in over-supply state.

Definition 7. Region-POI Matrix. The Region-POI matrix is
denoted as X ∈ NR×M , where M is the size of Point
of Interest (POI) categories. Each element xim denotes the
number of m-th type of POIs located in region ri.

We briefly introduce the problem setting as follows. Before the
stationless bike operators deploy new bikes in a city, they first need
to estimate the demand/supply of the bikes in different regions of
the city and different time intervals of a day. To do that, they will
first estimate the real-demand/supply of bikes in some regions
and time slots based on the current available bike trip data, based
on which the real-demand/supply of the other regions and time
slots are inferred. Note that in the real-world scenario, the bike
deployment to a new city is not one shot but incremental. The bike
usage patterns may change when more bikes are deployed. Thus
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Fig. 2. Framework of the proposed model

the algorithm should be updated when more data are available.
Based on the problem setting and the terminology definitions, we
formally define the studied problem as follows.

Problem Definition: Bike Usage Demand-Supply Inference:
Given the incomplete demand and supply matrices Fou and Fin

constructed from a set of bike trips Tr, the regions of the city
and the POI matrix X, our goal is to infer the hourly real bike
demand and supply for all the regions in the city. That is, we aim
to complete the matrices Fou and Fin simultaneously.

2.2 Framework

The model framework is shown in Fig. 2. The model inputs
are the bike usage demand matrix Fou, the supply matrix Fin,
and the POI feature matrix X. Note that Fou and Fin are both
incomplete due to the insufficient bikes deployed in the early
stage. Our goal is to complete the two matrices through matrix
factorization. Solely factorizing the two matrices may not achieve
promising performance due to the very limited information. Thus
we also incorporate the POI feature matrix and each region is
associated with a set of POI features. To take the POI features
into consideration, we propose to utilize an inductive matrix
factorization model which can effectively encode the POI features
into the learned latent factor matrices. As the bike usages in
geographically close regions and in close time intervals are highly
correlated, we also add the spatial and temporal correlations into
our model. In addition, the bike usage should be balanced, namely
the total demand should be equal to the total supply. However,
directly incorporating this global constraint is difficult to solve.
To simplify this problem, we propose to first cluster the regions
based on the bike traffic flows, and then relax the global constraint
to some local constraints that the bike usage in each cluster should
be balanced. The local balanced bike usage constraints are also
considered for a joint matrix factorization. Finally, the demand
matrix Fou is factorized into two latent factor matrices Uou and
Vou, and the supply matrix Fin is factorized into two latent factor
matrices Uin and Vin. With the learned low-dimensional latent
factor matrices, the demand matrix Fou and the supply matrix Fin

can be easily inferred by multiplying the corresponding two latent
factor matrices. More details of the model will be elaborated in
the following sections step by step.
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Fig. 3. Linear distance distribution of the bike trips.
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Fig. 4. Bike usage unbalance rate in different hours of a day.

3 DATASET AND DATA ANALYSIS

In this paper, we use the public Mobike trip dataset of Beijing
for data analysis. This dataset is released by Mobike in June 2017
for the Mobike bike travel destination prediction challenge 1. In
total there are 5.3 million Mobike bike trip data collected in 18
days from May 14 to May 31 2017, and about 3.2 million trips
are training data while the remaining 2.1 million trips are testing
data. In total we have 5.3 million bike check-out data and 3.2 mil-
lion check-in data. Each trip contains the following information:
orderID, userID, bikeID, bikeType, startTime, startLocation, and
endLocation. Each testing trip contains all the above information
except for the end location of the trip.

Fig. 3 shows the distance distribution of the bike trips. As
the dataset only has the bike check-out and check-in locations, we
cannot calculate a very accurate trip distance. Instead, we calculate
the linear distance which is smaller than the real trip distance
but can roughly reflect the real trip distance. Fig. 3(a) shows the
distance vs trip number. Each blue point in Fig. 3(a) shows the
number of trips with the equal trip distance. One can see that with
the increase of trip distance, the corresponding trip number drops
quickly, which means that only a small number of trips have long
distance and most trips are short. Fig. 3(b) more clearly shows
the distribution of the trip distances. One can see that the linear
distance of nearly 80% trips is less than 1 kilometer, and the linear
distance of more than 95% trips is less than 2 kilometers.

To further study whether the usage of bikes in different regions
of Beijing is balanced, namely whether the check-in bike number
is roughly equal to the check-out number, we show the bike usage
unbalance rate of the regions in rush hours of a day in Fig. 4. The
unbalance rate of region ri in t-th time slot is defined as urit =

1. https://www.biendata.com/competition/mobike/

|hin
it −h

ou
it |

max(hin
it ,h

ou
it )
. A small urij means the check-in bike number is

close to the check-out bike number and thus the usage is balanced,
while a large urij means that the bike usage is unbalanced. The
red line y = 0.1 in each figure shows the unbalanced rate 0.1,
which means that the check-in number is very close to the check-
out number. One can see that only a very small number of points
are below the line y = 0.1. The black line shows the average
unbalance rate for all the regions. In 6:00-7:00 am and 7:00-8:00
am, the average unbalance rates are both larger than 1, which
means that the average check-in bike number is two times of the
check-out number, or vice versa. This figure shows that the bike
usage in rush hours are highly unbalanced for most regions.

4 USAGE BALANCED INDUCTIVE MATRIX COM-
PLETION

In this section we will introduce the proposed Usage Balanced
Inductive Matrix Completion (UBIMC) model. In this paper,
we use bold uppercase characters for matrices, bold lowercase
characters with a subscript for row vectors in matrices, and
lowercase characters with a subscript for the scalar elements in
matrices. For example, Fou represents the demand matrix, foui is
the i-th row of Fou which is a vector, and fouij is the i-th row and
j-th column entry of Fou which is a scalar.

Before elaborating the model, we first introduce how to ini-
tialize the real demand and supply matrices Fou and Fin. If the
bike usage is over-supplied in region ri in hour t, namely hinit is
significantly larger than houit , we can use houit as the real demand
fouit directly. We consider hinit as the real bike supply for region
ri in hour t if the real demands of all ri’s neighbor regions are
known. This is because the supply of region ri is mostly composed
of the check-out bikes of all ri’s neighbor regions due to the fact
that most trips are within one kilometers for linear distance.

4.1 The Basic Model

Low rank matrix completion (MC) is widely explored in various
data mining tasks including recommendation [35], clustering [36]
and feature learning [37]. The goal is to recover the incomplete
matrices Fou and Fin by factorizing them into low rank small
matrices, which can be typically formulated as follows:

minL{Uin,Vin} = `(Fin,Uin(Vin)T ) +
λ1

2
(||Uin||2F + ||Vin||2F )

(1)

minL{Uin,Vin} = `(Fou,Uou(Vou)T ) +
λ1

2
(||Uou||2F + ||Vou||2F )

(2)

where the first term is the loss function and the second term is
the regularization term. Uin ∈ RR×Lin

and Vin ∈ RT×Lin

are the latent representations for the bike supply number in the
region and time dimensions respectively, and Uou ∈ RR×Lou

and Vou ∈ RT×Lou

are the latent representations for the bike
demand number in the two dimensions respectively.

We add the two parts together and form a unified objective
function as follows:

minL{Uou,Vou,Uin,Vin} =

`(Fou,Uou(Vou)T ) + `(Fin,Uin(Vin)T )+

λ1

2
(||Uou||2F + ||Uin||2F + ||Vou||2F + ||Vin||2F )

(3)
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Fig. 5. The heat maps of bike check-in/out data vs various POIs (Residential area, office buildings, and malls) in Beijing

4.2 Inductive Matrix Completion By Incorporating POIs

The usage demand of bikes is highly correlated with people’s
activities, which can be largely reflected by the distribution of
POIs. Two regions with similar POI distributions may present
similar bike usage patterns. To show the correlations between
bike usage pattern and the distribution of POIs in a region, we
give the heat maps of bike trip data and three types of POIs
including residential areas, office buildings and malls in Fig. 5.
One can see that Area1 is a large area where the usage demand
of bikes is high. Area1 is located in Chaoyang District which is
close to the center of Beijing. Chaoyang District has the largest
number of office buildings, malls and residential areas among all
the districts of Beijing. Area2 is also a large area presenting high
bike usage demand. Area2 is located in Haidian District which
has a large number of office buildings of IT corporations. Area3 is
a large residential area called Tian Tong Yuan, which is the biggest
residential area in the suburbs of Beijing. Area4 and Area5 are far
from the central area of Beijing and outside the Fifth Ring Road.
However, the subway Line1 crosses the two area. People tend to
ride bikes to Line1 from their homes or return homes after work.

In this paper we consider POIs as the features of the regions.
Each region ri is associated with a POI feature vector xi with
each entry xij denoting the number of the j-th category of POI.
To incorporate the POI features, we apply the recently proposed
inductive matrix factorization model [2], [3]. Inductive matrix
completion is initially proposed in recommender systems to in-
tegrate the features of users and items, and generally it can be also
applied in other matrix completion tasks with side information.
In a recommender system, each user can be associated with a set
of features xT

i such as gender, age, occupation, et al., and each
item is also associated with a set of features yj such as price,
category, size, et al. To incorporate the features of users and items
for recommendation, usually one can model the rating matrix Aij

as Aij = xT
i Wyj , where W can be further factorized as two

low rank matrices W = UVT . Thus xT
i U is the low rank

latent representation of a user, and Vyj is the low rank latent
representation of an item. Motivated by this idea, we consider the
POIs in each region as its features and utilize inductive matrix
factorization model to incorporate such features as follows.

minL{Uou,Vou,Uin,Vin} =

`(Fou,XUou(Vou)T ) + `(Fin,XUin(Vin)T )+

λ1

2
(||Uou||2F + ||Uin||2F + ||Vou||2F + ||Vin||2F )

(4)

where XUou is the low rank latent representation of the re-
gions for the bike check-out data, and Vou is the low rank
latent representation of the time slots. Note that here we have

Uou ∈ RM×Lou

, Vou ∈ RT×Lou

, Uin ∈ RM×Lin

, and
Vin ∈ RT×Lin

.
A significant advantage of inductive matrix completion is

that the POI features are embedded into the factorized low rank
matrices Uin and Uou. Given a new region rm with no bike
check-in and check-out data at all, its real demand can be directly
estimated by xmUin(Vin)T or xmUou(Vou)T .

For simplicity, we let Qin = XUin ∈ RR×Lin

and Qou =
XUou ∈ RR×Lou

. Then the inductive matrix factorization model
can be rewritten as

minL{Uou,Vou,Uin,Vin} =

`(Fou,Qou(Vou)T ) + `(Fin,Qin(Vin)T )+

λ1

2
(||Qou||2F + ||Qin||2F + ||Vou||2F + ||Vin||2F )

(5)

4.3 Matrix Completion by Incorporating Spatial-
Temporal Correlations
Incorporating Spatial Correlations. Two regions close to each
other may present similar bike usage patterns due to their spatial
correlations. To study the spatial correlations of the bike usage,
we compute the Pearson Correlations of the bike check-out and
check-in numbers between each pair of regions in the hours from
6:00 am to 22:00 pm. For each region ri, we first average the
numbers of check-out and check-in bikes in each hour of a day
and form two time serious data Outi = {n1

i , n
2
i , ...}, Ini =

{m1
i ,m

2
i , ...}. Then compute the spatial distance between each

pair of regions ri, rj and their Pearson Correlations pri,rj =∑
l(n

l
i−n̄i)(n

l
j−n̄j)√∑

l(n
l
i−n̄i)

√∑
l(n

l
j−n̄j)

of the bike usage time serious in a day.

The spatial distance is measured by the number of regions across
which region ri can reach rj .

Pearson Correlation can show the linear relationship between
two sets of data, but it cannot reflect the quantitive similarity
between the two sets of data. For example, the Pearson Correlation
between (1, 2, 4) and (2, 4, 8) is 1 since they present the same
increase trend. However, the quantity of the two data sets are
not quite similar. To address this issue, we define Absolute Mean
Difference (AMD) as follows to measure the quantitive difference
of two time serious data Outi and Outj .

AMD(Outi, Outj) =
1

m

m∑
k=1

|nki − nkj |
max(nki , n

k
j )

The value of AMD is in [0, 1]. A larger AMD means a larger
difference in the bike check-out or check-in numbers between
two regions. Compared to Pearson Correlation that can measure
whether two time serious data present similar trend, AMD can
show the average quantity difference of the two time serious data.
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(a) The Pearson Correlations of bike usage data for each pair of regions
with different spatial distances
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(b) The Absolute Mean Difference (AMD) of bike usage data for each
pair of regions with different spatial distances

Fig. 6. The spatial correlation of Mobike bike usage data

Fig. 6 shows the results. The x-axis is the spatial distance
between two regions, and the y-axis is the Pearson Correlation
(Fig. 6(a)) and the AMD (Fig. 6(b)), respectively. Each point in
the figures represents a Pearson Correlation or AMD between two
regions and the red circle represents the average value of all the
region pairs with the same spatial distance. The left upper figure
in Fig. 6(a) shows the check-in bike number correlation between
each pairs of regions, the right upper figure shows the check-out
bike number correlations, and the lower two figures shows the
correlation between the check-in bike number of a region with
the check-out bike number of another region. From Fig. 6(a) one
can see that two neighbor regions with distance 1 have the largest
Pearson Correlations in all the four cases. The whole trends are
that the correlations first drop with the increase of the spatial
distance and then become stable. When the spatial distance is
too large, say 4, the correlation is so small that we can consider
there is no apparent correlations between them. Fig. 6(b) shows
the very similar trend as Fig. 6(a). Fig. 6(b) shows that in all the
four cases, the AMD value of two regions with the spatial distance
less than 2 is much smaller than that of two regions far away from
each other. It also verifies the high spatial correlation of the bike
check-out and check-in quantities in different regions. From the
two groups of figures one can conclude that two regions that are
spatially close to each other are much more likely to present both
similar bike usage trend and bike usage quantity. This motivates us
that incorporating such spatial correlations could potentially help
us better perform the bike usage demand inference problem.

To take the spatial correlation into consideration, we add the
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Fig. 7. Mobike bike trip distribution in different hours of weekdays and
weekends.

following penalty term.
n∑

i,j=1

f(d(ri, rj))(||qin
i − qin

j ||2F + ||qou
i − qou

j ||2F ) (6)

where qou
i is the i-th row of the matrix Qou, and qin

i is the i-
th row of the matrix Qin. This penalty term aims to control the
similarity of the learned latent factors in the region dimension
based on the spatial distance of the two regions ri and rj .
f(d(ri, rj)) is an exponential decaying function controlled by
the distance between ri and rj , and a larger distance d(ri, rj)
will lead to a smaller f(d(ri, rj)). The idea is that a small spatial
distance between ri and rj leads to a large value of f(d(ri, rj)),
and thus a large penalty is assigned to it for making them closer to
each other in the latent space. A large spatial distance between ri
and rj , on the contrary, means that they might have low bike usage
pattern correlations and thus small penalty should be assigned.

Temporal Correlation. In addition to the spatial correlation,
the bike usage also presents high temporal correlation. We plot
the distributions of the bike trip number in different hours of
weekdays and weekends in Fig. 7, respectively. One can see
that there are two significant peaks from 7:00 am to 9:00 am
and from 17:00 pm to 19:00 pm on weekdays. The peaks on
weekend is not that significant as people do not go to work, but
there is still a significant increase from 6:00 am to 7:00 am and a
significant decrease from 20:00 pm to 21:00 pm. Overall, in the
day time the curve of weekend is smoother than that of weekdays.
Except for the peaks in the morning and night, the bike usage
in neighbor hours changes smoothly, which presents remarkable
temporal correlation. Thus different from previous work [38] that
uses the temporal correlation directly, we need to consider both
the two peaks and the smoothly changing trends of the bike usage
time serious data of a day. In this paper, we make the assumption
that the latent factors of a region in two successive slots should
be similar except that one time slot is in the rush hour and the
other is not. To achieve this end, we add the following constraint
to capture the temporal correlation of the bike usage.

T−1∑
i=1

I(i, i+ 1)(||vin
i − vin

i+1||2F + ||vou
i − vou

i+1||2F ) (7)

where vou
i is the i-th row of the matrix Vou, and vin

i is the i-th
row of the matrix Vin. I(i, j) is such an indicator function,

I(i, i+ 1) =

{
0 i ∈ {6 : 00, 8 : 00, 16 : 00, 18 : 00}
1 otherwise

This indicator function aims to penalize the latent factor
difference of a region in two successive time slots ti and tj if
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they are both in rush hours or non-rush hours. If one of the two
time slots is in rush hours and the other is not or vice versa, the
value of the indicator function is zero and no penalty is assigned.

4.4 Matrix Completion with Locally Balanced Bike Us-
age Constraint

The bike usage should be balanced, namely the total number of
check-out bikes should be equal to the total number of check-in
bikes. However, it is intractable to find the optimal solution that
satisfies the globally balanced bike usage constraint. Instead we
relax the global constraint to several local constraints. The idea
is that we first cluster the regions based on the bike traffic flows
among them. Inter-cluster bike flows will be of a relative small
proportion and can be neglected compared with the large-volume
of intra-cluster bike flows. Then we assume the bike usage in each
region cluster is balanced. The motivation of doing this is that,
1) the bike usage is not evenly distributed in a city and present
several hot areas where the bike demands are much larger than in
the other areas; 2) a locally balanced constraint is much easier to
solve; and 3) most bike trips are short in distance.

Clustering regions based on bike traffic flow. We apply
a hierarchical clustering method to cluster the regions based on
the available bike traffic flows among the regions. Specifically,
we first construct a bike traffic flow graph G. Each node of G
denotes a region and each edge eij between two regions ri and
rj denotes the corresponding bike traffic flow. Note that graph
G is a directional graph. eij denotes how many bike trips start
from region ri and end at region rj , while eji denotes how many
bike trips start from region rj and end at region ri. Based on the
bike traffic flow graph G, we utilize an agglomerative clustering
method to cluster the regions. Here we define the similarity
between two clusters as follows by considering both the bike
check-in and check-out flows of the two region clusters.

Sim(ci, cj) =
Fci−>cj

Fci−>•
+
Fci−>cj

F•−>cj

+
Fcj−>ci

Fcj−>•
+
Fcj−>ci

F•−>ci

(8)

In formula (8), Fci−>cj denotes the number of bike trips
starting from region cluster ci and ending at region cluster cj ,
Fci−>• denotes the number of all the bike trips starting from
region cluster ci, and F•−>cj denotes the number of all the bike
trips ending at the region cluster cj . This similarity measurement
means that region clusters ci and cj are similar if the bike flow
between them is large while the flow between the two clusters to
the other region clusters is small. The pseudocode of the clustering
algorithm is given Algorithm 1.

Algorithm 1 Region Clustering based on Bike Traffic Flows
Input: The bike flow graph G and the cluster number K
Output: The region cluster matrix C

1: Initialize each region as a cluster;
2: Construct the cluster similarity matrix S based on formula (8);
3: while (t < K) do
4: Pick a pair of clusters ci and cj with the largest similarity

using S;
5: Merge cluster ci and cj ;
6: Delete rows/columns i and j from S and create a new row

and column for the new merged cluster;
7: Update the similarity matrix S;
8: end while
9: return C

The difference between the check-in and check-out bike num-
bers in the i-th region cluster can be represented as

ck(Q
inVin −QouVou) (9)

where ck is the i-th row of the region cluster matrix C. The
check-in and check-out difference in all the region clusters can be
calculated by

K∑
k=1

ck(QinVin −QouVou) (10)

As the bike traffic flows within the same cluster are large and
among different clusters are small, the number of check-out bikes
should be close to the check-in number in the same cluster. Thus
we need to minimize the difference between supply and demand
in each cluster as given in formula (10),

By taking both the spatial-temporal correlation and the locally
balanced bike usage constraint into consideration, we can write
the final objective function as follows.

minL{Qin,Qou,Vin,Vou} = `(Fin,QinVin) + `(Fou,QouVou)︸ ︷︷ ︸
inductive matrix completion

+
λ1

2

R∑
i,j=1

f(d(ri, rj))(||qin
i − qin

j ||2F + ||qou
i − qou

j ||2F )︸ ︷︷ ︸
spatial correlation

+
λ2

2

T−1∑
i=1

I(i, i+ 1)(||vin
i − vin

i+1||2F + ||vou
i − vou

i+1||2F )︸ ︷︷ ︸
temporal correlation

+
λ3

2

K∑
i=1

||ck(QinVin −QouVou)||2F︸ ︷︷ ︸
balanced bike usage constraint

+
λ4

2
(||Qin||2F + ||Qou||2F + ||Vou||2F + ||Vin||2F )︸ ︷︷ ︸

regularization term

s.t. Qin,Qou,Vin,Vou ≥ 0
(11)

The first term in the objective function is the inductive matrix
completion which utilizes the POI features of the regions to help
complete the sparse matrices Fou and Fin, the second term is the
spatial correlation term, the third term is the temporal correlation
term, the fourth term is the balanced bike usage constraint term to
connect the bike demand data and bike supply data, and the final
term is the regularization term to avoid overfitting.

One can see that our model forces two regions with similar POI
features (similar x) and spatially close to each other (similar q) to
have similar bike demand in the same time intervals (similar v),
which is consistent with our data observation. The bike demand
and supply data in the first three terms of the model can be
optimized separately. However, the demand and supply of bikes
should not be estimated independently as the usage of bike should
be balanced. Thus we have the fourth term to add the constraint
that the total demand should be roughly equal to the total supply
in a region cluster. Based on the factorized low ranked matrices
Qou and Vou, the real bike demand fouij in region ri and time
slot tj can be inferred by fouij = qou

i vou
j , where qou

i = xiUou.
A significant advantage of our method is that it can efficiently
predict the bike usage demand for a new region rnew with the
POI features xnew with the above steps.
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4.5 Optimization Algorithm

To make the objective function (11) easy to optimize, we first
rewrite the second term and the third term as the matrix form. For
the second term, we first define the distance closeness matrix as
D with each entry dij = f(d(ri, rj)). Then the second term can
be rewritten as

λ1

2

R∑
i,j=1

f(d(ri, rj))(||qin
i − qin

j ||2F + ||qou
i − qou

j ||2F )

=
λ1

2

R∑
i,j=1

dij(||qin
i − qin

j ||2F + ||qou
i − qou

j ||2F )

=
λ1

2

R∑
i,j=1

dij [(q
in
i − qin

j )((qin
i )T − (qin

j )T )+

(qou
i − qou

j )((qou
i )T − (qou

j )T )]

=λ1[tr((Q
in)T (Z−D)Qin) + tr((Qou)T (Z−D)Qou)]

=λ1(tr((Q
in)TLspatialQ

in) + tr((Qou)TLspatialQ
ou))

where Z ∈ RR×R and zii =
∑F

j=1 dij . Lspatial = Z−D is the
Laplacian matrix. Similarly, the third term can be rewritten as

λ2(tr(V
inLtemporal(V

in)T ) + tr(VouLtemporal(V
ou)T ))

With the above deductions, the matrix form of the objective
function (11) is as follows.

minL{Qin,Qou,Vin,Vou} = `(Fin,QinVin) + `(Fou,QouVou)︸ ︷︷ ︸
inductive matrix completion

+ λ1(tr((Q
in)TLspatialQ

in) + tr((Qou)TLspatialQ
ou))︸ ︷︷ ︸

spatial correlation

+ λ2(tr(V
inLtemporal(V

in)T ) + tr(VouLtemporal(V
ou)T ))︸ ︷︷ ︸

temporal correlation

+
λ3

2
||C(QinVin −QouVou)||2F︸ ︷︷ ︸

balanced bike usage constraint

+
λ4

2
(||Qin||2F + ||Qou||2F + ||Vou||2F + ||Vin||2F )︸ ︷︷ ︸

regularization term

s.t. Qin,Qou,Vin,Vou ≥ 0
(12)

The pseudocode of the algorithm is given in Algorithm 2.

Algorithm 2 Usage Balanced Inductive Matrix Completion
Input: Incomplete bike demand/supply matrix Fou/Fin, the POI

features of the regions matrix X, and region-cluster matrix C.
Output: Low rank matrices Uou, Uin, Vou, Vin.

1: Initialize the matrices Uou, Uin, Vou, Vin with small random
values, and let Qin = XUin, Qou = XUou

2: Set γ as the learning rate
3: while (t < IterMax and Lt − Lt+1 > ε) do
4: Calculate the gradients ∇QinL, ∇QouL, ∇VinL, ∇VouL.
5: Update Qin = Qin − γ∇QinL
6: Update Qou = Qou − γ∇QouL
7: Update Vin = Vin − γ∇VinL
8: Update Vou = Vou − γ∇VouL
9: Update t and L

10: end while
11: Get Uou, Uin based on the learned Qou, Qin

12: return Uou, Uin, Vou, Vin
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Fig. 8. Impact of parameter η on the sparsity of the two matrices.

5 EVALUATION

We evaluate the effectiveness of the proposed UBIMC through
answering the following two questions. (1) Whether UBIMC is
more effective than previous bike demand prediction models in
the stationless bike-sharing systems? (2) Whether incorporating
the spatial-temporal correlations and the balanced bike usage
constrain can improve the performance of the model? If it does, to
what extent it improves?

5.1 Dataset and Experiment Setup

Dataset. We use the publicly available Mobike trip dataset for
evaluation. The details of the dataset are described in Section 3.
We also use more than 0.18 million POIs of Beijing. For each POI,
we extract the location and the POI type such as mall, restaurant
and parks. We categorize all the POIs into 17 classes. Some similar
POI categories are grouped for simplicity. The statistics of the POI
data is shown in Table 1. One can see that Office, residential, Mall
& Shopping, and restaurant are four major types of POIs, and they
together account for more than 60% of the total number of POIs.

We partition the main urban area (within the Fifth Ring Road)
of Beijing into 28×28 regions, and the area of each region is
about 1 square kilometer. Then we map the check-out and check-
in locations of each trip data to the corresponding regions. We
further extract the check-in/out hours of each trip, and group the
trips of a region that are in the same hour of a day. Then we
average the hourly check-in/out numbers in each region for all the
days in our dataset, and construct the check-out matrix Hou and
the check-in matrix Hin, based on which we construct the real
demand and supply matrices Fou, Fin. Given the bike check-out
number houij of region ri in hour tj , we consider houij is the real
demand fouij if region ri in tj is in over-supply state based on
Definition 3. Given a region rj in hour tj , if all its neighbor
regions are in over-supply state, we consider the check-in bike
number hinij is the real supply f inij . In this way, we obtain the real
demand and supply matrices Fou and Fin for evaluation.

Note that the parameter η in Definition 3 can affect the sparsity
of the two matrices. We show the sparsity change curves of the two
matrices under different settings of η in Fig. 8. One can see that
a larger η leads to sparser F ou and F in. In this paper we set
η = 1.2, which means a region is over-supplied if the check-in
bike number is 1.2 times larger than the check-out bike number.
Although a larger η will let us have a denser matrix F ou and
more ground truth data, it will lead to misclassify more over-
supplied regions as not over-supplied. Under such a setting, around
32% entries of the demand matrix F ou and 8% entries of the
supply matrices F in have ground truth values. For the entries
without ground truth values due to data sparsity or unavailability,
out model can still give estimations. But we do not evaluate the
estimations for these entries due to the lack of ground truth data.
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TABLE 1
Statistics of the POI in Beijing

Category of POI Number Percentage
Government agency 6,997 3.78%

Life services 13,282 7.19%
Education & Training 5,876 3.18%

Parks 955 0.52%
Transportation facilities 6,351 3.43%

Automobile service 11,187 6.06%
Scenic spots 1,572 0.85%

Cultural media 624 0.34%
Entertainment 4,576 2.48%

Restaurant 20,457 11.08%
Residential 35,135 19.02%

Hotel 1,479 0.80%
Mall & Shopping 26,283 14.23%

Exercise & Fitness 1,845 1%
Financial 5,196 2.81%

Medical & Hospitals 4,289 2.32%
Office 38,577 20.89%
Total 184,681 100%

Experiment Setting. We evaluate the performance of UBIMC
on the following two settings. For the first setting, we randomly
partition the regions into two groups. One group of regions are
used for training, and the other group of regions are used for
testing. We conduct experiments under such a setting to examine
whether UBIMC can make accurate predictions for the new
regions. For the second setting, we randomly sample some entries
from the demand matrix Fou and supply matrix Fin, and assume
that the other entries are unknown and need to be inferred. We
choose to use the data in the time period from 6 am to 22 pm for
evaluation. In the following experiments, we perform two groups
of experiments with different data sparsity ratios based on the
above two experiment settings. In the first group of experiments,
we randomly select 50% data for training and the remaining 50%
data for testing. In this case, 84% entries of the demand matrix
and 96% entries of the supply matrix are missing, respectively.
In the second group of experiments, 30% data are selected for
training and the remaining 70% are for testing. In this case,
the demand and supply matrices are even sparser with 91%
and 97.6% missing entry values, respectively. Following previous
matrix factorization works [2], [32], we run our algorithm 5 rounds
with different initializations of the low dimensional matrices, and
average the results. The results show that the deviation of the
results in different rounds is not significant and small than 0.01
for ER. Thus we present the average of 5-round results as the final
results in the following experiments. As the bike usage patterns
on weekdays and weekends are different, we evaluate our model
on weekdays and weekends separately. Specifically, we train two
models for weekdays and weekends by using the corresponding
data respectively, and then evaluate the results.

5.2 Baselines and Evaluation Metrics
Baselines. We compare UBIMC with both state-of-the-art matrix
completion and bike demand prediction models that are proposed
for traditional bike-sharing systems, and variations of UBIMC.
Specifically, we first compare UBIMC with the existing methods
as follows to answer the first question.

• Context-Aware Matrix Factorization (CAMF) [31].
Context-aware matrix factorization technique is widely

explored recently to address the data sparsity issue in
matrix completion [31], [32]. As solely factorizing the
demand matrix Fou and supply matrix Fin cannot achieve
promising performance due to data sparsity, we can factor-
ize them together with the POI feature matrix by assuming
they share a latent feature represent matrix.

• Boosted Inductive Matrix Completion (BIMC) [2].
BIMC is proposed to address the blog recommendation
task in the microblogging site of Tumblr. The main dif-
ference between BIMC and our proposal is that BIMC
combines both standard matrix completion and inductive
matrix completion to reduce the noise in the input data as
well as to incorporate side information. Although BIMC
was proposed to solve a totally different task, we also
compare with it since the ideas of the two models are
similar. For the check-out and check-in matrices, we use
two BIMC models to complete them separately.

• LinUOTD [39]. LinUOTD is a linear regression model
proposed recently to predict the Unit Original Taxi De-
mand (UOTD) [39]. A spatial-temporal regularization is
added into the model to make it fit the spatial-temporal
data prediction task. In this paper, we construct the fol-
lowing features for LinUOTD and use it for our inference
task: number of different types of POIs in the region,
time slot, average bike usage of neighbor regions, region
cluster, number of subway and bus stations, etc.

• Single Region Level Estimation (SRLE). The single
region level estimation performs the bike usage demand
estimation for each single region [27] rather than es-
timating the demands of all the regions like a whole
as the proposed matrix completion method. Such model
generally first extracts a set of global features and then
feeds them into a regression model like Random Forest
(RF) or K-Nearest Neighbor Regressor (KNN).

• Functional Zone based Random Forest Regressor
(FZ+RF)[5]. FZ+RF is a recent work that predict the
station-level bike demand for bike system expansion. It
proposes a bi-clustering model on POIs and stations by
utilizing POI characteristics and geographical distances
as features [5]. This method is designed for traditional
bike-sharing systems and cannot be applied to our case
directly. To make it comparable, we modify this method
and consider each region as a Voronoi Region as proposed
in [5], and then use the POI distribution in each region
and the distance among regions to cluster the regions
into functional regions. Then we predict the Function-to-
Function and Region-to-Region bike transitions based on
their method. Finally, we predict the bike demand in each
region by using their proposed Random Forest Regressor.

To answer the second question, we also compare UBIMC with
the following variations.

• UBIMC-Spa. UBIMC-Spa is a variation of UBIMC
which does not consider the spatial correlation term. We
choose it as a baseline to test whether the spatial correla-
tions is helpful to the studied task.

• UBIMC-Tem. Similar to UBIMC-Spa, UBIMC-Tem is a
variation of UBIMC which does not consider the temporal
correlation term. This baseline is used to test whether the
temporal correlation is helpful.
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• UBIMC-Ban. UBIMC-Ban removes the intra-cluster bal-
anced bike usage constraint. This baseline is used to test
whether incorporating the balanced bike usage constraint
can improve the performance.

Evaluation metrics. We use two types of metrics for evalua-
tion. The first metric is the estimation accuracy. Based on the fact
that the real demand should be no less than the number of observed
check-out bikes and the real supply should be no less than the
number of observed check-in bikes, we use the inference accuracy
defined as follows to perform a coarse grained evaluation. Given
the check-out bike number houij of region ri in time tj and the
estimate real demand fouij , if fouij ≥ houij we say the estimation is
accurate; otherwise we say the estimation is wrong.

Acc =

∑
i,j I(fouij ≥ houij )

NT
.

Note that Acc can be used to evaluate all the regions in all
the time slots since ground truth is not needed in this evaluation.
The second type of metrics are Error Rate (ER) and Root Mean
Squared Logarithmic Error (RMSLE) [27].

ER =
1

n

N∑
i=1

T∑
j=1

|fij − f̄ij |
fij

RMSLE =

√√√√ 1

n

N∑
i=1

T∑
j=1

(log(fij + 1)− log(f̄ij + 1))2

where fij is the real value while f̄ij is the estimation. As ER
and RMSLE are more quantitive evaluation metrics and need the
ground truth demand/supply bike number, we only evaluate the
entries of Fou and Fin which have the ground truth values as
described in Section 5.1.

5.2.1 Parameter Study
There are four parameters in UBIMC to control the importance
of different components. As different parameter settings can
significantly affect the model performance, in this subsection we
study the sensitivity of UBIMC to the parameters λ1, λ2, λ3 and
λ4. We use the following 2-round tuning method to find the best
parameter setting. In the first round, we first fix the values of
the three parameters to 1, and then tune the value of the fourth
one to find the value that achieves the best performance. In the
second round, we fix the three parameters with their values found
in the first round, and then tune the fourth one to find the best
value setting again. Here we use ER as the evaluation metric. The
result is shown in Fig. 9. One can see that the model performance
is sensitive to all the four parameters, which implies that the
spatial correlation, the temporal correlation, the balanced bike
usage constraint and the regularization term are all important to
the studied problem and should be carefully considered. A proper
parameter setting in Fig. 9 is λ1 = 10, λ2 = 1000, λ3 = 0.1,
and λ4 = 100. Thus in the following experiments, we use this
parameter setting for evaluation.

5.2.2 Results over Inference Accuracy
We first present the inference accuracy of various models. We
perform the evaluation through two tasks under two experiment
settings described in Section 5.1. Task1 corresponds to the
first experiment setting and Task2 corresponds to the second
experiment setting. As the bike usage patterns in weekdays and

TABLE 2
Accuracy comparison of various methods on the two tasks

Methods train = 30%, Test = 70%
T1 (Wee) T1 (Wke) T2 (Wee) T2 (Wke)

CAMF 0.685 0.654 0.724 0.722
BIMC 0.712 0.687 0.732 0.713

LinUOTD 0.654 0.647 0.636 0.656
SRLE 0.675 0.654 0.710 0.713
FZ-RF 0.702 0.686 0.842 0.804

UBIMC-Spa 0.726 0.702 0.846 0.823
UBIMC-Tem 0.715 0.705 0.834 0.815
UBIMC-Ban 0.726 0.712 0.845 0.822

UBIMC 0.745 0.724 0.862 0.826

Methods train = 50%, Test = 50%
T1 (Wee) T1 (Wke) T2 (Wee) T2 (Wke)

CAMF 0.735 0.714 0.825 0.802
BIMC 0.745 0.723 0.822 0.824

LinUOTD 0.587 0.612 0.634 0.635
SRLE 0.744 0.697 0.812 0.810
FZ-RF - - - -

UBIMC-Spa 0.808 0.793 0.914 0.903
UBIMC-Tem 0.793 0.784 0.906 0.886
UBIMC-Ban 0.816 0.784 0.916 0.895

UBIMC 0.836 0.804 0.935 0.910
1 T1: Task 1, T2: Task 2.
2 Wee: weekday, Wke: weekend.

weekends can be different significantly, we also conduct the
evaluation on weekdays and weekends separately.

Table 2 shows the experiment results. The best result is
highlighted with bold font. Note that FZ-RF is proposed to predict
the bike usage demand for new regions. So we only apply it for
Task1. Based on Table 2, we can have the following conclu-
sions. First, it is obvious that more training data leads to better
performance. One can see the performance of the methods with
50% training data consistently outperforms their corresponding
performance with only 30% training data. Second, the bike flows
in weekends are harder to predict than that in weekdays. On
average, the inference accuracy in weekdays is 2%-5% higher that
than in weekends for different methods. This is mainly because
1) the bike usage pattern in weekend is more complex and less
regular compared to in weekdays, and 2) we only have 5 days
data in weekend which is sparse. Third, Task1 is much harder
than Task2 as the regions for prediction have no data in all
the time intervals. Fourth, UBIMC outperforms all the baselines
in all the cases, which verifies its effectiveness. Compared to
CAFM, BIMC, LinUOTD, SRLE, and FZ-RF, the performance
improvement of UBIMC is significant. Among the three baselines,
FZ-RF performs best because it considers both the spatial and POI
features for prediction, but it is still inferior to UBIMC. CAMF
performs bad as it ignores the spatial and temporal correlations
and the balanced bike usage constraint. BIMC performs better than
CAMF because BIMC also uses inductive matrix factorization to
integrate the POI features. The performance of LinUOTD is un-
desirable, and it is even inferior to CAFM. This is mainly because
it is a linear regression model and cannot effectively incorporate
other information and constrains. UBIMC also outperforms the
three variations UBIMC-Spa, UBIMC-Tem, and UBIMC-Ban. It
demonstrates that these components all contribute to generating a
more accurate inference, and ignoring any one of them can lead to
performance drop.
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Fig. 9. Impact of the four parameters on the model performance for demand inference
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Fig. 10. ER comparison of various methods on the two tasks (50% training data)
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Fig. 11. ER comparison of various methods on the two tasks (30% training data)

5.2.3 Results over RMSLE in Rush Hours

Table 3 shows the RMSLE comparison of various methods, and a
lower RMSLE means a better performance. In this experiment, we
focus on evaluating the performance of the methods on rush hours
from 7 am to 9 am and from 17 pm to 19 pm in weekdays, since the
bike usage demand in rush hours are much larger in other hours.
We use 50% of the entire data for training and the remaining
50% for testing. We also perform the two tasks and for each
task we evaluate the inference performance for bike demand and
supply separately. One can see that UBIMC outperforms all the
baselines in almost all the cases. For Task1, the average RMSLE
achieved by UBIMC is 0.33, while the RMSLE of the state-of-
the-art model FZ-RF is 0.405, which is a significant performance
improvement reducing RMSLE by nearly 20%. It shows that
UBIMC is much more effective than FZ-RF in bike usage demand
inference for new regions. For Task2 which is a relatively easier
task, UBIMC outperforms all the baselines in all the cases, and
performance improvement is even more significant. On average,
UBIMC reduces RMSLE by 46% compared to CAMF and 40%
compared to SRLE. It demonstrates that simply factorizing the
demand and supply matrices Fou and Fin cannot achieve desir-
able performance. Similar to the results in Table 2, the results
shown in Table 3 demonstrate BIMC outperforms CAMF, but
is inferior to our proposal. LinUOTD performs worst among all

the methods. Table 3 also verifies that UBIMC outperforms thee
variations UBIMC-Spa, UBIMC-Tem, and UBIMC-Ban. It further
demonstrates that the three components are all helpful to the task.
Additionally, the three variations also outperforms other baselines,
which also shows the power of the proposed model.

5.2.4 Results over ER

Fig. 10 and Fig. 11 show the experimental result over the metric
ER of different methods with 50% and 30% training data, respec-
tively. The results are similar to previous results. UBIMC performs
best among all the methods in all the cases. As shown in Fig. 10,
for Task1 the average ER of UBIMC is around 0.35 on weekdays,
and for Task2 the average ER of UBIMC is around 0.26 on
weekdays, which verifies again that Task1 is harder to infer than
Task2. As shown in Fig. 11, the average ER of UBIMC is around
0.57 for Task1 and 0.42 for Task2 on weekdays. Similar to the
RMSLE comparison experiment, the inference performance for
the supply (check-in) is inferior to the demand (check-out) due to
the sparser data of the real supply data on the metric ER.

From the above experiments, one can conclude that 1) UBIMC
is much more effective than previous bike demand prediction
models in stationless bike-sharing systems, and 2) incorporating
the spatial-temporal correlations and the balanced bike usage
constraint can significantly improve the performance of the model.
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TABLE 3
RMSLE comparison in rush hours

Task1: train = 50%, Test = 50%

Methods demand (check-out) supply (check-in) Average7-9 am 17-19 pm 7-9 am 17-19 pm
CAMF 0.615 0.562 0.574 0.547 0.575
BIMC 0.587 0.546 0.562 0.554 0.562

LinUOTD 0.617 0.608 0.614 0.587 0.606
SRLE 0.480 0.478 0.464 0.446 0.467
FZ-RF 0.420 0.348 0.434 0.416 0.405

UBIMC-Spa 0.367 0.356 0.335 0.346 0.351
UBIMC-Tem 0.412 0.387 0.367 0.356 0.381
UBIMC-Ban 0.320 0.338 0.344 0.366 0.342

UBIMC 0.327 0.322 0.325 0.345 0.330
Task2: train = 50%, Test = 50%

Methods demand (check-out) supply (check-in) Average7-9 am 17-19 pm 7-9 am 17-19 pm
CAMF 0.512 0.468 0.520 0.515 0.534
BIMC 0.518 0.502 0.492 0.474 0.496

LinUOTD 0.524 0.546 0.522 0.498 0.522
SRLE 0.446 0.454 0.513 0.476 0.47
FZ-RF - - - - -

UBIMC-Spa 0.325 0.344 0.323 0.315 0.327
UBIMC-Tem 0.332 0.320 0.314 0.325 0.323
UBIMC-Ban 0.320 0.298 0.324 0.326 0.317

UBIMC 0.262 0.275 0.284 0.314 0.284

6 RELATED WORK

As a convenient and green transportation mode, bike-sharing
system has attracted increasing research interests since the first
system was deployed in Europe in 1965 [19]. Current researches
can be roughly summarized into the following three categories:
system planning [14], [15], [16], [18], [25], [28], system prediction
[5], [13], [20], [24], [27], [34], and system operation [8], [9], [10],
[11], [12], [17], [30]. Recently, with the great success of deep
learning techniques, deep learning models have been widely used
to various spatial-temporal data mining tasks including crowd flow
prediction [41], [44], [45], [49] and traffic flow prediction [46],
[48]. Next we will review the related works.

Before setting up a bike-sharing system, the first task is to
determine the number, capacity and locations of the bike stations.
Luigi et al. [18] proposed a methodology for calculating the
potential demand for bike use and the willingness to pay of future
users. A location model for fixing the bike pick-up and drop-off
stations is also proposed. Lin and Yang [16] addressed the strategic
planning of public bike sharing system by considering the interests
of both users and investors. Their model can determine the number
and locations of bike stations, the network structure of bike paths
connected between the stations, and the travel paths for users
between each pair of origins and destinations. Chen et al. [15]
proposed to leverage heterogeneous urban open data to address the
bike station place problem. Carlos et al [28] proposed a GIS-based
method to calculate the spatial distribution of the potential demand
for bike trips, locate the bike stations using location-allocation
models and determine the capacities of the bike stations.

Froehlich et al. [13] adopted a Bayesian network to predict
station status based on the current time and current available dock
number. Andreas et al. [20] made a short term prediction of the
number of available bikes in stations via the analysis of cyclic
mobility patterns. Li et al. [27] proposed a hybrid and hierarchical
prediction model to predict the number of bikes that will be rent
from/returned to each station cluster in the early future . Chen et al.
[24] proposed a station cluster-level over demand prediction model

in bike-sharing systems by considering the correlation among
the stations. Liu et al. [5] tried to predict the station-level bike
demand for bike system expansion. They proposed a bi-clustering
model on POIs and stations by utilizing POI characteristics and
geographical distances as features. Then they predict the Function-
to-Function and Region-to-Region bike transitions by a Random
Forest Regressor. Yoon et al [34] proposed a personal journey
advisor application for helping people to navigate the city using
the available bike-sharing system.

A primary task in system operation is to re-balance or re-
allocate the bikes from time to time for the unbalanced bike
usage. Chemla et al. [12] formulated this task as an optimization
problem and proved it is NP-hard. They proposed a branch-and-
cut algorithm for solving a relaxation of the problem. Forma
et al. [11] further proposed a 3-step mathematical programming
based heuristic for this problem. Liu et al. [30] provided an
integer nonlinear programming formulation of multiple capaci-
tated bike routing problem with the objective of minimizing the
total travel distance. Some other works studied how to rebalance
the bike demand with minimum operation cost through making
corresponding reservation policies [10] and pricing mechanisms
[8], [9]. Bao et al. [6] made the first attempt to plan bike lanes
based on the massive Mobike trajectory data. Aeschbach et al
[17] studied various methods to balance bike-sharing systems
by actively engaging customers in the balancing process. They
discovered that by appropriately sending “control signals” to cus-
tomers requesting them to slightly change their intended journeys,
bike-sharing systems can be balanced without using staffed trucks.

Recently, deep leaning models have enjoyed considerable
success in various spatial-temporal data mining tasks due to their
powerful hierarchical feature learning ability. A line of studies
applied CNN to capture the spatial correlation by treating the
entire city’s traffic as images. Ma et al. [42] utilized CNN on
images of traffic speed for the speed prediction problem. Zhang
et al. [44], [45] proposed to use residual CNN on the images of
traffic flow. These methods simply use CNN on the whole city
and use all the regions for prediction. The major limitation of
these method is that although they used historical traffic images
in previous time slots for prediction, they did not explicitly model
the temporal sequential dependency. Another line of research is
combining CNN model and RNN model to capture both spatial
and temporal correlations. Yao et al. [46] proposed a Spatial-
Temporal Dynamic Network (STDN) model for road network
based traffic prediction. Cheng et al. [47] proposed the DeepTrans-
port model which combined CNN and RNN to capture the spatial-
temporal traffic data within a transport network. All these models
are basically designed for one-step prediction, which means they
focus on predicting the traffic data in the next time slot like 20
minutes or half an hour. [48] was the first recent work that studied
multi-step taxi passenger demand prediction. [48] proposed to
use the attention-based neural network which combined encoder-
decoder framework and ConvLSTM to predict the passenger
pickup/dropoff demands for the mobility-on-demand services. All
these works focused on predicting the future urban traffic or crowd
flows based on a large number of observed historical data, which
is quite different from the research purpose of this work.

7 CONCLUSION AND FUTURE WORK

This paper studied the novel problem of inferring the bike usage
demand in stationless bike-sharing systems and proposed a data-
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driven approach to effectively address it. We first utilized a
relatively small number of the bike check-out and check-in data
to identify the real bike demand and supply in some regions
and time intervals for constructing the sparse demand and supply
matrices. Then we tried to complete the two matrices by matrix
factorization. To more accurately perform matrix completion, we
also incorporated POIs, bike usage correlations among regions and
intra-cluster balanced bike usage constraint into the model. Finally
a usage balanced inductive matrix factorization model UBIMC
was proposed. Experiment results on a large Mobike trip dataset
in Beijing verified the effectiveness of UBIMC.

For the future work it would be interesting to further study
the impact of some other external factors on the usage of bikes
such as weather [33], population distribution in a city and the
future urban planning [40]. For example, the bike usage demand
might be significantly affected if a new subway station will be
built in a region in the future. Taking such information into
consideration may further improve the model performance. We
are also interested in bike usage prediction based on the bike
trip data [?]. Real time bike usage prediction is also essential
for efficient system management especially for rebalancing the
system. We will study whether the spatial-temporal correlation
and the locally balanced bike usage constraint studied in this work
are also important for bike traffic prediction.
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