
Deep Distribution Network: Addressing the Data Sparsity Issue
for Top-N Recommendation

Anonymous Author(s)

ABSTRACT
Existing recommendation methods mostly learn fixed vectors for
users and items in a low-dimensional continuous space, and then
calculate the popular dot-product to derive user-item distances.
However, these methods suffer from two drawbacks: (1) the data
sparsity issue prevents from learning high-quality representations;
and (2) the dot-product violates the crucial triangular inequality
and therefore, results in a sub-optimal performance.

In this work, in order to overcome the two aforementioned draw-
backs, we proposeDeepDistributionNetwork (DDN) tomodel users
and items via Gaussian distributions. We argue that, compared to
fixed vectors, distribution-based representations are more powerful
to characterize users’ uncertain interests and items’ distinct proper-
ties. In addition, we propose a Wasserstein-based loss, in which the
critical triangular inequality can be satisfied. In experiments, we
evaluate DDN and comparative models on standard datasets. It is
shown that DDN significantly outperforms state-of-the-art models,
demonstrating the advantages of the proposed distribution-based
representations and wassertein loss. All code and data used in exper-
iments are available at https://github.com/anonymous121212/DDN .

CCS CONCEPTS
• Information systems→Recommender systems; •Comput-
ing methodologies → Neural networks.

KEYWORDS
Sparsity, Recommendation, Distribution

ACM Reference Format:
Anonymous Author(s). 1997. Deep Distribution Network: Addressing the
Data Sparsity Issue for Top-N Recommendation. In Proceedings of 42nd
International ACM SIGIR Conference on Research and Development in Infor-
mation Retrieval (SIGIR’19), Jennifer B. Sartor, Theo D’Hondt, and Wolf-
gang De Meuter (Eds.). ACM, New York, NY, USA, Article 4, 4 pages.
https://doi.org/10.475/123_4

1 INTRODUCTION
The effectiveness of recommender systems (RS) often relies on
how well users’ interests or preferences can be understood and
user-item interactions can be modeled. However, the data sparsity
issue arises when users interacted with a limited number of items,
hindering RS from understanding users’ intentions. The problem is
considered as one of major challenges for RS. Nonetheless, tackling

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGIR’19, July 21-25, 2019, Paris, France
© 2016 Copyright held by the owner/author(s).
ACM ISBN 123-4567-24-567/08/06.
https://doi.org/10.475/123_4

the sparsity issue raises great challenges. Users’ interests are diverse,
and perceptions of items differ from user to user. This intricate
information requires models of high-complexity while training
such models needs a large amount of data, which contradicts to the
reality of data scarcity.

Recent studies [3, 7] have suggested the importance of learning
embeddings, or vectors, for users and items. Although embedding-
based models have been proven useful in capturing typical interests
of users and general concepts of items, most of existing approaches
learn fixed vectors to represent users and items. Arguably, users’ be-
haviors are uncertain, and can be seen as stochastic events sampled
from underlying distributions. When a user is modeled with a fixed
vector, all actions of the user are considered to be certain and the
uncertainty is hardly captured. Moreover, existing well-known Col-
laborative Filtering (CF) methods, such as matrix factorization [7],
mostly use the popular dot-product as a metric, which violates the
triangular inequality1, to calculate user-item similarities. Neverthe-
less, according to [5, 11], the triangular inequality is a prerequisite
for fine-grained setting of users and items in a vector space.

Probabilistic distributions are classic and fundamental tools for
tackling uncertainty and dealing with limited data. As users’ ac-
tions are uncertain, we can consider them as observed stochastic
events governed by underlying distributions of user interests. These
distributions are able to describe how interests of users distribute
in the space. As such, in order to power RS with the ability of com-
bating the data sparsity issue with limited data, we propose Deep
Distribution Network (DDN) to learn distributions for users and
items. Specifically, we associate each user and item with a Gauss-
ian distribution, whose mean and covariance matrix are estimated
by deep neural networks, to characterize their interests and prop-
erties. Then, instead of calculating the popular dot-product, the
Wasserstein distance is utilized to measure the difference between
two Gaussian distributions, and the triangular inequality can there-
fore be satisfied. Finally, a pair-wise loss is proposed to minimize
the Wasserstein distance of positive user-item pairs and maximize
negative pairs.

Our work makes the following contributions:

• Novelty: To the best of our knowledge, it is the first work propos-
ing to model users and items by Gaussian distributions via deep
architectures for recommendation. We demonstrate that, distri-
butions of users and items can be well modeled to alleviate the
data sparsity issue.

• A Wasserstein Loss: We propose a Wasserstein loss for rec-
ommendation tasks. In the proposed loss, the crucial triangular
inequality can be satisfied and therefore, leads to better perfor-
mances, compared to conventional methods.

1The triangular inequality states that, given any three objects o1 , o2 , and o3 , the dis-
tance between any two objects, sayd (o1, o2), should satisfy the constraintd (o1, o2) ≤
d (o1, o3) + d (o2, o3))

https://github.com/anonymous121212/DDN
https://doi.org/10.475/123_4
https://doi.org/10.475/123_4

SIGIR’19, July 21-25, 2019, Paris, France Anon.

Table 1: Notations

Notation Description
U, I user and item set
I+u , I−

u a set of items liked by user u, and all the
remaining items without interactions with u

xu , xi feature vectors for user u and item i
fu (:;Ωu),fi (:;Ωi) two mean networks of user u and item i
дu (:;Πu), дi (:;Πi) two covariance networks of user u and item i

Wu,l
mean,W

i,l
mean projection matrices of the lth layer of

the mean network of user u and item i

Wu,l
cov,W

i,l
cov projection matrices of the lth layer of the

covariance network of user u and item i
n(l) number of neurons of the lth layer

• High Performance: In the experiments, it is shown that DDN
achieves state-of-the-art performances on three benchmark datasets.
Specifically, compared to the best performing comparativemethod,
DDN gains 42.4% and 47.3% improvements in Hit Ratio@10 and
NDCG@10, respectively, averaging on all datasets.

2 BACKGROUND AND PRELIMINARIES
In this sectionwe present the background and preliminaries. Through-
out the paper, we denote scalars by either lowercase or uppercase
letters, vectors by boldfaced lowercase letters, and matrices by
boldfaced uppercase letters. We consider the most common sce-
nario of RS with implicit feedbacks (e.g. clicks, purchases, likes).
We follow the convention that the observed user-item interactions,
such as clicks/purchase/likes, are treated as positive, and the non-
observed ones are regarded as negative observations. Let us assume
that a user u and an item i are associated with a feature vector
xu ∈ Rn(0)×1 and xi ∈ Rn(0)×1, respectively (notation n(0) is de-
scribed in Table 1). A user set and an item set are denoted asU and
I, respectively. For a user u ∈ U, let I+u denote a set of items liked
by user u and I−

u denote the remaining items. Important notations
are summarized in Table 1.

3 PROPOSED MODEL
Instead of deriving vectors of users and items based on their in-
teractions, we aim to learn Gaussian distributions to characterize
interests of users and perceptions of items. To do so, as illustrated
in Fig. 1, we introduce a mean and a covariance network to learn
these two parameters for the users’ distribution. And, since users
and items are two different types of entities, another two deep mod-
els will be built to estimate mean vectors and covariance matrices
of items. Please bear in mind that, although these mean vectors
and covariance matrices are also fixed after training, they together
describe a probability density function. And, this function describes
the sampling probability of each point in a space. This is a key point
to distinguish DDN from existing embedding-based methods .

3.1 Mean Networks
To learn a mean vector for user u, we build a mean network to
take the user feature xu ∈ Rn(0)×1 into account, and output a mean
vector µu as:

µu = elu
(
...elu

(
Wu,2

mean(elu(︸ ︷︷ ︸
L

Wu,1
meanxu + bu,1mean))+ bu,2mean

)
...
)
, (1)

……

……

Layer 1

Layer L

Layer 1

Layer L

feature vector

Layer 2 Layer 2

……

fu(xu;Ω
u) gu(xu;Π

u)
xu

µu Σu

N (µu,Σu)

Figure 1: The mean and covariance networks of users. A fea-
ture vector xu of useru is taken into fu (xu ;Ωu) andдu (xu ;Πu)
to learn the mean µu and covariance Σu , respectively.

where Wu,l
mean ∈ Rn(l−1)×n(l) and bu,lmean ∈ Rn(l)×1 are projection ma-

trix and bias vector of the lth layer, respectively; elu is an activation
function [2]. We denote the mean network of users as fu (:;Ωu),
where Ωu = {Wu,1

mean, ...,W
u,L
mean, b

u,1
mean, ..., b

u,L
mean} is a parameter

set. Likewise, another mean network, denoted as fi (:;Ωi) param-
eterized by Ωi = {Wi,1

mean, ...,W
i,L
mean, b

i,1
mean, ..., b

i,L
mean}, is utilized

to derive mean vectors of items.

3.2 Covariance Networks
To learn covariance matrices of users, we establish a L-layer covari-
ance network for estimating the covariance matrix of user i . The
diagonal elements of Σu is computed as:

σu = elu
(
...elu

(
Wu,2

cov(elu(︸ ︷︷ ︸
L

Wu,1
covxi +bu,1cov)+ 1)+bu,2cov

)
+ 1...

)
, (2)

where Wu,l
cov ∈ Rn(l−1)×n(l) and bu,lcov ∈ Rn(l)×1 are projection matrix

and bias vector of the lth layer, respectively; 1 denotes an vector of
all ones. Finally, the covariance matrix of user u is given by:

Σu = diag(σu) + I, (3)

where I ∈ Rn(L)×n(L) is an identity matrix ensuring Σu to be positive
semi-definite. The covariance network of users is denoted as дu (:
;Πu), where Πu = {Wu,1

cov, ...,W
u,L
cov , b

u,1
cov, ..., b

u,L
cov } is a parameter

set. Analogously, another covariance network for items is denoted
as дi (:;Πi), where Πi = {Wi,1

cov, ...,W
i,L
cov, b

i,1
cov, ..., b

i,L
cov} includes

all parameters of the network.
Our focus is to model the sparse user-item interaction data with

the proposed distribution-based representations, we therefore avoid
using additional information, such as user demographics or item
textual descriptions, for feature vectors of users and items, even
though these information is shown to be helpful for easing the
sparsity issue. Instead, xu and xi are randomly initialized, and
then optimized during the training. Overall, given a user feature
vector xu , we derive its mean vector and covariance matrix as

Deep Distribution Network SIGIR’19, July 21-25, 2019, Paris, France
Table 2: Statistics of Datasets

Dataset #users #items density
MovieLens-1M 6,014 3,706 1.0%

LastFM 1,892 17,632 0.28%
Amazon Video Games 22,996 10,672 0.049%

µu = fu (xu ;Ωu) and Σu = дu (xu ;Πu), respectively. With an
item feature vector xi , its mean vector and covariance matrix are
calculated as µi = fi (xi ;Ωi) and Σi = дi (xi ;Πi), respectively.

3.3 A Wasserstein Loss
Recall that twoGaussian distributions of useru and item i ,N(µu , Σu)
and N(µi , Σi), are estimated by mean and covariance networks.
Instead of using the dot-product, one can utilize statistical distances
to measure the distance between N(µu , Σu) and N(µi , Σi). In this
section we compare two popular distribution distances: Kullback-
Leibler (KL) divergence and the pth Wasserstein distance, and pro-
pose a Wasserstein based loss for recommendation.

The pth Wasserstein distance (Wp) between two probability mea-
sures, x1 ∼ P1 and x1 ∼ P2, is defined as:

Wp (P1,P2) :=
(

inf
γ ∈Γ(x1,x2)

∫
d(x1, x2)pdγ (x1, x2)

)1/p
, (4)

where Γ(P1,P2) denotes the joint distribution of P1 and P2, and
d(:, :) can be any distance, such as L2 distance. It is easy to ver-
ify thatWp distance satisfies the triangular inequality [1], while
KL-divergence violates the inequality. As discussed in [5, 11], the
satisfaction of the inequality benefits RS for reasoning over intricate
user-item relationships, while the violation results in problematic
representations of users and items. Moreover, if two distributions
are non-overlapping, the Wasserstein distance can still measure
the distance between them, while KL-divergence fails and leads to
vanishing gradients. Hence, a Wasserstein based loss is proposed
as:

L = − ∑
(u,i,i′)∈D

ln σ {W2(N(µu , Σu),N(µi′ , Σi′)) (5)

−W2(N(µu , Σu),N(µi , Σi))} + λ(| |Ωu | |22 +
| |Ωi | |22 + | |Πu | |22 + | |Πi | |22),

where σ denotes a sigmoid function; the training data D is created
by {(u, i, i ′)|u ∈ U ∧ i ∈ I+u ∧ i ′ ∈ I−

u }; and λ represents the
weight on the regularization terms. Fortunately, theW2 distance
between two Gaussian distributions has an analytical solution as
W2(N(µ1, Σ1),N(µ2, Σ2)) = | |µ1−µ2 | |22 +Tr (Σ1

1/2Σ2Σ1
1/2). Eq. 5

seeks to maximize the Wasserstein distance of a negative pair (u, i ′)
and minimize the distance of a positive pair (u, i). For evaluation,
the final recommendation list of items for a user u is given by
rankingW2(N(µu , Σu),N(µi , Σi)) in an ascending order.

4 EXPERIMENTS
In this section we conduct experiments to anwser the following
research questions:
RQ1: Does DDN outperform state-of-the-art methods?
RQ2: Are the distribution-based representations helpful for tackling
the data sparsity issue?
RQ3: How does the proposed Wasserstein loss work?
RQ4: Can DDN handle cold-start users in an effective way?

4.1 Experimental Settings
ComparativeModels.We compare DDNwith five state-of-the-art
methods: ItemKNN [10], eALS [4],BPR [9],NCF [3] andCML [5]
2. Among them, only ItemKNN does not learn user vectors or item
vector, while all others represent users and items with vectors. NCF
optimizes vectors of users and items via deep architectures, and
CML proposes a metric obeying the triangular inequlity.
Datasets.We test all methods on three standard datasets:MovieLens-
1M , LastFM , and Amazon Video Games [8]. As in [3], we trans-
form datasets with explicit ratings into implicit data by regarding
rating of 5 as positive feedbacks and all others as negative. For
each dataset, we select the latest item of each user for testing and
the second latest one for validation. All remaining items are for
training. The statistics of datasets are shown in Table 2.
Evaluation Protocols.We evaluate all models in two metrics: Hit
Ratio@N (HR@N) and NDCG@N. We follow a common strategy as
in [3] to avoid heavy computation on evaluating all user-item pairs.
For each user i , we randomly sample 999 negative items, and rank
them with the single ground-truth item. Based on the rankings of
these 1, 000 items, HR@N and NDCG@N can be evaluated.
Paramter Settings. For ItemKNN, we employ the cosine distance
to measure item similarities. For eALS and BPR, we search the
latent dimensions from {8, 16, 32, 64} and L2 regularization term
from {0.0001, 0.001, 0.01, 0.1}. The network shape of NCF is set as
(32, 16, 8), as suggested in the original paper [3]. Since we avoid
using the item content, the Lf loss of CML is excluded for a fair
comparison. λc is chosen from {0.001, 0.01, 0.1, 1, 10}. All hyper-
parameters are tuned using the validation set. For DDN, the Adam
optimizer [6] with the learning rate of 0.001 is adopted.

4.2 Performance Comparison (RQ1 and RQ2)
To anwser RQ1 and RQ2, DDN is compared with five state-of-the-
art models on three datasets with different densities. Table 3 shows
the performance comparison. Overall, benefiting from the proposed
distribution-based representations andWasserstein loss, DDN beats
all comparative methods, and achieves 42.4% and 47.3% improve-
ments over the best comparative model in HR@10 and NDCG@10,
respectively, averaging on all three datasets. These experiments
reveal a number of interesting discoveries: (1) CML yields the sec-
ond best performances in MovieLens-1M and Amazon Video Games,
demonstrating the importance of the satisfaction of the triangular
inequality; (2) Owing to the capability of capturing non-linearities
via deepmodels, NCF defeats other comparative methods in LastFM ;
(3) It is shown that DDN achieves more improvements in a sparser
dataset than in a denser one. It is validated that, compared to com-
parative approaches, DDN can better diminish the negative impacts
of the data sparsity issue.

4.3 Effectiveness of the Wasserstein Loss (RQ3)
In order to anwser RQ3, we conduct experiments to compare DDN
withDDN-KL, which is a variant of DDN employing the KL-divergence
to measure the distances between users and items. Fig. 2 shows the
performance comparison between DDN and DDN-KL inMovieLens-
1M. Overall, when N is vared from 3 to 10, DDN consistently out-
performs DDN-KL in HR@N and NDCG@N. Specifically, DDN
2https://github.com/changun/CollMetric

https://github.com/changun/CollMetric

SIGIR’19, July 21-25, 2019, Paris, France Anon.

Table 3: Performance comparison in HR@10 and NDCG@10. The best and second best method are boldfaced and underlined,
respectively. ⋆ and ⋆⋆ denote the statistical significance for p < 0.05 and p < 0.01, respectively, compared to the best baseline.

Dataset Metric ItemKNN eALS BPR NCF CML DDN DDN vs. best
MovieLens-1M HR@10 0.038 0.049 0.061 0.081 0.092 0.128⋆ 39.1%

NDCG@10 0.021 0.024 0.025 0.039 0.041 0.058⋆⋆ 41.4%
LastFM HR@10 0.063 0.101 0.121 0.103 0.101 0.147⋆ 42.7%

NDCG@10 0.031 0.035 0.039 0.052 0.050 0.076⋆⋆ 46.1%
Amazon Video Games HR@10 0.032 0.041 0.046 0.052 0.055 0.080⋆⋆ 45.4%

NDCG@10 0.018 0.019 0.021 0.022 0.034 0.042⋆ 54.5%

3 4 5 6 7 8 9 10

N

0.04

0.06

0.08

0.10

0.12

0.14

H
R
@
N

DDN-KL DDN

3 4 5 6 7 8 9 10

N

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.055

0.060

N
D
C
G
@
N

DDN-KL DDN

Figure 2: In MovieLens-1M, DDN is compared with DDN-KL
in terms of HR@N and NDCG@N with N varied from 3 to
10. Errors bars are 1-standard deviation.

improves DDN-KL by 21.0% and 31.0% in HR@N and NDCG@N,
respectively, averaging on N 3. This experiment shows that, benefit-
ing from the satisfaction of the triangular inequality, the proposed
Wasserstein loss assists DDN with reasoning over complex user-
item relations with limited data.

4.4 Recommending for Cold-start Users (RQ4)
The cold-start problem is one of the major challenges for RS. In
this section we are curious if DDN can handle cold-start users in
an effective way. Therefore, we compare DDN with two strong
competitors, NCF and CML, in an extremely sparse setting, where
each user is only associated with one item for training, one for val-
idation and one for testing. Table 3 shows that, suffering from the
cold-start problem, the performances of NCF and CML inevitably
degrade. However, DDN outperforms NCF and CML in terms of
HR@10 and NCDG@10. Specifically, in MovieLens-1M, DDN im-
proves CML by 46.0% and 48.4%, in HR@10 and NCDG@10, respec-
tively. In LastFM, DDN beats NCF by 58.3% and 43.9%, in HR@10
and NCDG@10, respectively. Hence, it is demonstrated that, com-
pared with two best performing state-of-the-art baselines, DDN
can better handle cold-start users.

5 CONCLUSIONS
We present Deep Distribution Network (DDN) to model users and
items with Gaussian distributions for Top-N recommendation. Com-
pared to existing approaches learning fixed vectors of users and
items, DDN addresses the uncertainty inherent from the data spar-
sity issue by distribution-based representations. In DDN, each user
and item is associated with a Gaussian distribution, whose mean
and covariance are estimated by deep neural networks. Experi-
mentally, we show that, compared to fixed vectors, the proposed
distribution-based representations can better ease the sparsity issue

3Although similar results are observed in other two datasets, LastFM and Amazon
Video Games, we omit the results due to limited space.

HR@10 NDCG@10
0.00

0.02

0.04

0.06

0.08

0.10

0.12 MovieLens-1M
NCF CML DDN

HR@10 NDCG@10
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14
LastFM

NCF CML DDN

Figure 3: Performance comparison in HR@10 and
NDCG@10 under a sparse setting, where each user is
associated with only one user-item interaction for training.

and handle cold-start users. Additionally, we propose a Wasserstein
distance based loss satisfying the triangular inequality, which is cru-
cial for the performances of RS. By comparing DDN with one of its
variants, DDN-KL, it is demonstrated that the proposedWasserstein
loss leads to a better performance.

REFERENCES
[1] Philippe Clement andWolfgang Desch. 2008. An elementary proof of the triangle

inequality for the Wasserstein metric. Proc. Amer. Math. Soc. 136, 1 (2008), 333–
339.

[2] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. 2015. Fast and
accurate deep network learning by exponential linear units (elus). arXiv preprint
arXiv:1511.07289 (2015).

[3] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural Collaborative Filtering. In Proceedings of the 26th International
Conference on World Wide Web, WWW 2017, Perth, Australia, April 3-7, 2017. 173–
182. https://doi.org/10.1145/3038912.3052569

[4] Xiangnan He, Hanwang Zhang, Min-Yen Kan, and Tat-Seng Chua. 2016. Fast ma-
trix factorization for online recommendation with implicit feedback. In Proceed-
ings of the 39th International ACM SIGIR conference on Research and Development
in Information Retrieval. ACM, 549–558.

[5] Cheng-Kang Hsieh, Longqi Yang, Yin Cui, Tsung-Yi Lin, Serge Belongie, and
Deborah Estrin. 2017. Collaborative metric learning. In Proceedings of the 26th
International Conference on World Wide Web. International World Wide Web
Conferences Steering Committee, 193–201.

[6] Diederik Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980 (2014).

[7] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-
niques for recommender systems. Computer 8 (2009), 30–37.

[8] Himabindu Lakkaraju, Julian J McAuley, and Jure Leskovec. 2013. What’s in a
Name? Understanding the Interplay between Titles, Content, and Communities
in Social Media. ICWSM 1, 2 (2013), 3.

[9] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2009. BPR: Bayesian personalized ranking from implicit feedback. In Proceedings
of the twenty-fifth conference on uncertainty in artificial intelligence. AUAI Press,
452–461.

[10] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. 2001. Item-based
collaborative filtering recommendation algorithms. In Proceedings of the 10th
international conference on World Wide Web. ACM, 285–295.

[11] Yi Tay, Luu Anh Tuan, and Siu Cheung Hui. 2018. Latent relational metric
learning via memory-based attention for collaborative ranking. In Proceedings of
the 2018 World Wide Web Conference on World Wide Web. International World
Wide Web Conferences Steering Committee, 729–739.

https://doi.org/10.1145/3038912.3052569

	Abstract
	1 Introduction
	2 Background and Preliminaries
	3 Proposed Model
	3.1 Mean Networks
	3.2 Covariance Networks
	3.3 A Wasserstein Loss

	4 Experiments
	4.1 Experimental Settings
	4.2 Performance Comparison (RQ1 and RQ2)
	4.3 Effectiveness of the Wasserstein Loss (RQ3)
	4.4 Recommending for Cold-start Users (RQ4)

	5 Conclusions
	References

