
Gated Spectral Units: Modeling Co-evolving Patterns for
Sequential Recommendation

Anonymous Author(s)

ABSTRACT
Exploiting historical data of users to make future predictions lives
at the heart of building effective recommender systems (RS). Re-
cent approaches for sequential recommendations often render past
actions of a user into a sequence, seeking to capture the tempo-
ral dynamics in the sequence to predict the next item. However,
the interests of users evolve over time together due to their mu-
tual influence, and most of existing methods lack the ability to
utilize the rich coevolutionary patterns available in underlying data
represented by sequential graphs.

In order to capture the co-evolving knowledge for sequential
recommendations, we start from introducing an efficient spectral
convolution operation to discover complex relationships between
users and items from the spectral domain of a graph, where the
hidden connectivity information of the graph can be revealed. Then,
the spectral convolution is generalized into an recurrent method
by utilizing gated mechanisms to model sequential graphs. Experi-
mentally, we demonstrate the advantages of modeling co-evovling
patterns, and Gated Spectral Units (GSUs) achieve state-of-the-art
performance on several benchmark datasets. All code and data are
available at https://github.com/anounymous1234/GSUs.

KEYWORDS
Sequential Recommendation, Spectral, Graph

ACM Reference Format:
Anonymous Author(s). 1997. Gated Spectral Units: Modeling Co-evolving
Patterns for Sequential Recommendation. In Proceedings of 42nd Interna-
tional ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval (SIGIR’19). ACM, New York, NY, USA, Article 4, 4 pages.
https://doi.org/10.475/123_4

1 INTRODUCTION
What will a customer buy next? The importance of this question
cannot be overstated for building effective recommender systems
(RS). RS intersect multiple products and customers, where charac-
teristics of users and perceptions of items not only shift over time
but also influence each other. This complex temporal information
raises unique challenges.

In order to build a predictive model for users’ future purchases,
we observe that a user’s actions are correlated to not only his or
her past activities but also other users’ behaviors. Interests of users
co-evolve over time and their preferences influence each other

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGIR’19, July 21-25, 2019, Paris, France
© 2016 Copyright held by the owner/author(s).
ACM ISBN 123-4567-24-567/08/06.
https://doi.org/10.475/123_4

time

User I User II

socks

bottle

openner

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

shoes

wine

swimming

suit goggle

influence

Figure 1: An example illustrates how activities of user co-
evovles over time. Yellow and green circles denote purchases
of user I and user II, respectively. (Best viewed in color)

dynamically. For example, as shown in Fig. 1, if user u1 is related
to user u2, when u1 purchases a pair of shoes at time t3, u2 may
buy a pair of socks for u1 at a later time, say t5. Some time later (t7),
when u2 shops a bottle of wine, it is reasonable to expect u1 to be
interested in a bottle opener. We term this phenomenon of evolving
actions of users and their mutual influence over time as co-evovling
patterns. It is no doubt that effectively capturing such rich patterns
can help reason over complex non-linear user-item interactions.

Existing approaches often lack the ability of learning the co-
evovling knowledge, resulting in a limited understanding on behav-
iors of users and how they influence each other over time. Early
works, such as TimeSVD++ [9], focus on modeling the shifting
patterns of a user’s preferences and the popularity of an item by
introducing additional variables changing over time. Recent models
first regard activities of a user as a sequence, and then propose
Markov Chain (MC) based methods to capture the item dependen-
cies or correlations within the sequence. For instance, in Fig. 1, user
u1 shops a goggle at t5 time because of the purchase of a swimming
suit at the time of t1. Another line of work adopts Recurrent Neural
Networks (RNNs) to model the sequence. However, almost all of
them fail to capture the rich co-evovling patterns.

In this paper, in order to utilize the co-evovling patterns and
capture dependencies between actions across different users, we
first formulate timestamped user-item interactions into Sequential
Evolving Graphs (SEGs) (see Definition 2.1), where co-evolutionary
knowledge can be revealed. Then, we generalize a spectral unit
into a recurrent model by introducing gated mechanisms [2] to
model the co-evovling patterns from spectral domains. The proposed
model, Gated Spectral Units (GSUs), recurrently takes a sequence
of graphs as input, and learns state vectors of users and items to
summarize co-evovling patterns within the sequence. Our work
makes the following contributions:

• Novelty: To our knowledge, it is the very first recommendation
method to model sequential graphs from spectral domains.

• Demonstrated Effectiveness: It is demonstrated that the co-
evovling patterns can be effectively captured from spectral do-
mains of temporal graphs.

https://github.com/anounymous1234/GSUs
https://doi.org/10.475/123_4
https://doi.org/10.475/123_4

SIGIR’19, July 21-25, 2019, Paris, France Anon.

Table 1: Notations

Notation Description
U, I user and item set
I+i , I−

i a set of items liked by user i , and all other
items without interactions with user i

nu , ni number of users and items
Gt = {U,I, Et } the tth graph consisting of user setU, item

set I and edge set Et
Lt the laplacian matrix of the tth graph
U(l)
t , Λ(l)

t the top-l eigenvectors and eigenvalues of Lt
Hu
t , Hi

t hidden state matrices of users and items at
timestamp t

Wz , Wh , Wr convolutional filters of update, candidate
and reset gate

bz , bh , br bias vectors of update, candidate and reset gate
∆ time interval

• High Performance: Benefiting from the co-evovling knowledge
being effectively captured, GSU significantly outperforms state-
of-the-art methods on three real-world datasets.

2 BACKGROUND AND PRELIMINARIES
This paper focuses on the recommendation problem with implicit
feedbacks (e.g. clicks, purchases, likes), where we only observe
whether a person has interacted with an item and do not observe
explicit ratings. Let us denote a set of users asU and an item set
I. I+i represents the set of all items liked by user i and I−

i stands
for the remaining items. Each user-item interaction is represented
as a tuple (i, j, t̂), denoting that user i has interacted with item j at
timestamp t̂ . We define Sequential Evolving Graphs (SEGs) as:

Definition 2.1. (Sequential Evolving Graphs). Sequential Evovling
Graphs (SEGs) are represented as a sequence of bipartite graphs G =
{G1,G2, ...,Gt , ...}. The tth bipartite graph Gt is defined as Gt =
{U,I, Et }, whereU and I are the user set and item set, respectively
and Et denotes an edge set connecting users inU and items in I. For
an edge (i, j, t̂) ∈ Et , it denotes user i has interacted with item j at
timestamp t̂ when ∆(t − 1) < t̂ ≤ ∆t .1

Given SEGs of length T , we aim to predict edges (user-item in-
teractions) to be formed in GT+1. Throughout the paper, we denote
scalars by either lowercase or uppercase letters, vectors by bold-
faced lowercase letters, and matrices by boldfaced uppercase letters.
Important notations are summarized in Table 1.

3 PROPOSED MODEL
3.1 Spectral Convolution
Inspired by the recent success of graph convolution methods [8], a
recently proposed method [15], SpectralCF, extends the idea of spec-
tral convolutions to the task of collaborative filtering. SpectralCF
shows a great ability to capture preference patterns of users from
the spectral domain of a user-item bipartite graph, and therefore
achieves state-of-the-art performance.

Specifically, given a user-item bipartite graph G and its graph
laplacian L = I − D−1A, where D and A denote the degree matrix
and adjacent matrix of G, respectively, the spectral convolution
1In the case that Et is empty, we remove Gt from G.

operation is defined as:
[

h̃u

h̃i

]
= Ufθ (Λ)UT

[
hu

hi

]
, where U ∈

R(nu+ni)×(nu+ni) and Λ ∈ R(nu+ni)×(nu+ni) are eigenvectors and
eigenvalues of L, respectively; fθ (Λ) is a convolutional filtering
function placed on eigenvalues; hu ∈ R(nu×1) and hi ∈ R(ni×1)
respectively denote state vectors of users and items, and h̃u ∈
R(nu×1) and h̃i ∈ R(ni×1) represent new state vectors of users and
items, respectively, learned from the spectral domain.

Nonetheless, the number of parameters in fθ (Λ) is linear to the
dimensionality of data, resulting in an unscalable model. To circum-
vent this issue, [15] utilizes a polynomial approximation to approx-
imate дΘ(Λ) as дθ (Λ) ≈

∑P
p=0 θ

′
pΛ

p . As a result, the spectral con-

volution is reformulated as
[

H̃u

H̃i

]
= (UU⊺ + UΛU⊺)

[
Hu

Hi

]
Θ,

where Hu ∈ R(nu+ni)×F and Hu ∈ R(nu+ni)×F are F -dimensional
row-vectors for users and items, respectively; and Θ ∈ R(F×F) is a
generalized convolutional filter with F channels and F filters.

However, as we aim tomodel co-evovling patterns from sequential
graphs other than one static graph, computing the eigendecom-
position of laplacians of multiple graphs would be prohibitively
expensive. In order to adopt the aforementioned spectral convo-
lution operation for modeling sequential graphs, we notice that,
rather than the full eigen-decomposition, top-l eigenvectors and
eigenvalues are sufficient to approximate L [1]. Thus, we adopt
ARPACK [10], a most popular iterative eigensolver. Its complexity
is O((nu + ni)l2 + el), where e stands for the number of edges, and
linear w .r .t . the graph size (nu + ni). Due to the sparsity of our
graphs, we have e ≪ nu +ni . Given the top-l eigenvectors U(l)

t and
eigenvalues Λ(l)

t of the tth graph, we have:[
H̃u
t

H̃i
t

]
= (U(l)

t U(l)
t
⊺
+ U(l)

t Λ(l)
t U(l)

t
⊺
)
[

Hu
t−1

Hi
t−1

]
Θ, (1)

where Hu
t−1 ∈ R(nu+ni)×F and Hi

t−1 ∈ R(nu+ni)×F are state matri-
ces of users and items from the previous time step t − 1; H̃u

t and

H̃i
t are learned by convolving

[
Hu
t−1

Hi
t−1

]
on the current graph Gt .

As such, H̃u
t and H̃i

t captures the evolving patterns by integrating
information from the previous step (t − 1) with newly formed con-
nections of the current step t . Hereafter, we denote the spectral con-

volution operation in Eq. 1 as a function: Conv(
[

Hu
t−1

Hi
t−1

]
,Gt ;Θ),

parameterized by a convolutional filter Θ.

3.2 Gated Spectral Units

Recall that our spectral convolution Conv(
[

Hu
t−1

Hi
t−1

]
,Gt ;Θ) is ca-

pable of capturing the patterns co-evolving from the previous graph
to the current graph. It is an natural idea to introduce gated mech-
anisms [2] into our spectral convolution to capture co-evolving
patterns from a sequence of graphs. Therefore, we present Gated
Spectral Units (GSUs), which are capable of learning the co-evovling
patterns from sequential graphs.

In GSUs, the update gate Zt ∈ R(nu+ni)×F convolves the histor-
ical state matrices on the current graph to decide how much the

Gated Spectral Units SIGIR’19, July 21-25, 2019, Paris, France

unit updates its state matrices. It is computed by:

Zt = σ (Conv(
[

Hu
t−1

Hi
t−1

]
,Gt ;Wz) + bz), (2)

where Wz ∈ R(nu+ni)×F , bz ∈ R(nu+ni)×1, and σ denotes the
sigmoid function. A candidate gate generates a candidate state
matrices by resetting the previous Hu

t−1 and Hi
t−1, and convolving

them on Gt as:[
Ĥu
t

Ĥi
t

]
= tanh(Conv(Rt ⊙

[
Hu
t−1

Hi
t−1

]
,Gt ;Wh) + bh), (3)

where Wh ∈ R(nu+ni)×F , bh ∈ R(nu+ni)×1, and the reset gate
Rt ∈ R(nu+ni)×F is similar to the update gate as below:

Rt = σ (Conv(Hu
t−1,H

i
t−1,Gt ;Wr) + br), (4)

whereWr ∈ R(nu+ni)×F and br ∈ R(nu+ni)×1. Finally, the output of
GSUs at time t is a linear interpolation between the previous state

matrices
[

Hu
t−1

Hi
t−1

]
∈ R(nu+ni)×F and the candidate

[
Ĥu
t

Ĥi
t

]
∈

R(nu+ni)×F as below:[
Hu
t

Hi
t

]
= Zt ⊙

[
Hu
t−1

Hi
t−1

]
+ (1 − Zt) ⊙

[
Ĥu
t

Ĥi
t

]
), (5)

where ⊙ denotes the element-wise multiplication.
Overall, GSUs take the current graph Gt and previous Hu

t−1
and Hi

t−1 as inputs, and output Hu
t and Hi

t for the current time
step t . Thus, given the initial state matrices, Hu

0 and Hi
0, which

are randomly initialized as trainable parameters, GSUs are able to
recurrently process a sequence of graphs, and output state matrices
of users and items of the last step, which summarize the co-evovling
patterns within the sequence.

3.3 Optimization and Prediction
Given SEGs of length K generated from the training data, we ran-
domly sample a batch of SEGs of lengthT+1 (T+1 ≪ K) for training.
For each SEGs of lengthT + 1, we feed the firstT graphs into GSUs
to obtain Hu

T and Hi
T . And, the score of an edge (i, j) ∈ ET+1 at

step T + 1 can be calculated as Hu
T (i, :)

⊺Hi
T (j, :), where Hu

T (i, :) and
Hi
T (j, :) denote the ith and jth row of Hu

T and Hi
T , respectively. We

optimize the parameters of GSUs by minimizing the loss as:

L = −∑
(i, j)∈ET+1
j′∈I−

i

ln σ (Hu
T (i, :)

⊺Hi
T (j, :) − Hu

T (i, :)
⊺Hi

T (j
′, :))

+λ(| |Hu
T | |

2
F + | |Hi

T | |
2
F), (6)

where λ is an regularization term. Eq. 6 seeks to maximize the
difference between the scores of an existing edge (i, j) ∈ ET+1 and
a non-existing edge (i, j ′), where j ′ is sampled from I−

i .
For evaluation, the last T graphs of SEGs of length K are taken

into GSUs to attain Hu
T and Hi

T . The final item recommendation
for a user i is given by ranking the score Hu

T (i, :)
⊺Hi

T (j, :) in a
descending order.

4 EXPERIMENTS
In this section we conduct experiments to answer the following
research questions:
• RQ1: Are the co-evolving patterns being effectively captured?

• RQ2: How do the co-evovling patterns work for handling the
cold-start problem?

4.1 Datasets
In our experiments, we use three publicly available timestamped
datasets: (1)ML-1M: [3] MovieLens-1M contains 1, 000, 209 ratings,
6, 014 users and 3, 706movies; (2)ADM [11]: Amazon Digital Music
5-core includes 4, 731 users, 2, 420 video games; (3) AIV: Amazon
Instant Videos 5-core is collected by [11] and consists of 4, 818 users
and 1, 685 items.

As in [5], we transform datasets with explicit ratings into implicit
data by regarding rating of 5 as positive feedback and all others as
negative ones. For each dataset, we select the most recent item of
each user for testing and the second most recent one for validation.
All remaining items will be used for training. To create SEGs to
capture co-evovling patterns, we set the time interval ∆ as 1 day for
ML-1M and AIV, and 7 for ADM to reduce the numder of graphs.
As a result, we attain the SEGs of length (K) 977, 754, and 1, 472 for
the dataset of ML-1M, ADM, and AIV, respectively.

4.2 Experimental Settings
Evaluation Protocols.We evaluate all models in two metrics: Hit
Ratio@10 (HR@10) and NDCG@10. HR@10 measures the fraction
of relevant items at top-10 recommendations out of all relevant
items, while NDCG@10 evaluates their ranking performance. We
follow a similar strategy as in [5] to avoid heavy computation on
evaluating all user-item pairs. For each user i , we randomly sample
999 negative items, and rank these items with the ground-truth item.
Based on the rankings of these 1, 000 items, HR@10 and NDCG@10
can be evaluated.
Comparative Models.We compare GSUs with six state-of-the-art
algorithms. They can be categorized into two groups: (1) Non-
sequential Models: BPR [12] and SpectralCF [15]2; (2) Sequential
Models: FPMC [13],TransRec [4],GRU4Rec [6]3 andCaser [14]4.
The first group is added to validate the usefulness of sequential rec-
ommendation models, and the second group is for demonstrating
the advantage of modeling co-evovling patterns.
Parameter Settings. For all methods, we search the latent dimen-
sions from {8, 16, 32, 64}. The L2 regularization term is selected
from {0.0001, 0.001, 0.01, 0.1} for BPR, SpectralCF, FPMC, TransRec
and GSUs. We tune all hyper-parameters using the validation set.
For GRU4Rec and Caser, we use the parameter settings as suggested
in the original papers. The Adam optimizer [7] with the learning
rate of 0.001 is adopted, and l in Eq. 1 and T are empirically set to
6 and 10, respectively, for GSUs.

4.3 Performance Comparison (RQ1)
In this section we compare GSUs with six state-of-the art meth-
ods to answer RQ1. Table 2 shows the performance comparison
in terms of HR@10 and NDCG@10. Overall, GSUs improves the
best comparative method by 27.9% and 53.4% in terms of HR@10
and NDCG@10, respectively, averaging on all three datasets. This
experiment reveals two interesting observations:

2https://github.com/lzheng21/SpectralCF
3https://github.com/hidasib/GRU4Rec
4https://github.com/graytowne/caser_pytorch

https://github.com/lzheng21/SpectralCF
https://github.com/graytowne/caser_pytorch

SIGIR’19, July 21-25, 2019, Paris, France Anon.

Table 2: Performance comparison in HR@10 and NDCG@10. The best and second best method are boldfaced and underlined,
respectively. ⋆ and ⋆⋆ denote the statistical significance forp < 0.05 andp < 0.01, respectively, compared to the best competitor.

Dataset Metric BPR SpectralCF FPMC TransRec GRU4Rec Caser GSUs GSUs vs. best
ML-1M HR@10 0.061 0.081 0.092 0.099 0.102 0.103 0.131⋆⋆ 27.2%

NDCG@10 0.025 0.031 0.039 0.041 0.046 0.045 0.061⋆⋆ 35.6%
ADM HR@10 0.022 0.031 0.041 0.043 0.051 0.048 0.065⋆⋆ 27.4%

NDCG@10 0.011 0.018 0.019 0.021 0.024 0.022 0.034⋆ 41.7%
AIV HR@10 0.072 0.088 0.096 0.010 0.111 0.117 0.151⋆ 29.1%

NDCG@10 0.022 0.031 0.034 0.037 0.039 0.041 0.075⋆ 82.9%

HR@10 NDCG@10
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07 ADM

TransRec
GRU4Rec

Caser
GSUs

HR@10 NDCG@10
0.00

0.02

0.04

0.06

0.08

0.10 AIV

TransRec
GRU4Rec

Caser
GSUs

Figure 2: Performance comparison in HR@10 and
NDCG@10 under a sparse setting, where each user is
associated with only one user-item interaction for training.

• Non-sequential methods underperform sequential methods, in-
dicating the benefits of modeling the short- and long- term dy-
namics in users’ actions.

• Regardless of the data sets and the evaluation metrics, the pro-
posed GSUs always achieve the best performance. This shows
that by leveraging the power of co-evovling patterns, GSUs can
better predict users’ future actions.

4.4 Recommending for Cold-start Users (RQ2)
The cold-start problem is one of the most challenging issues for
RS. It happens when a user interacted with very few number of
items, causing a difficulty to understand the user’s preferences. We
are interested in if co-evovling patterns are helpful for alleviating
the cold-start problem. As such, we conduct experiments under an
extremely sparse setting, where we only use the first interaction of
each user for training, and the second and third one for validation
and test, respectively. All others are discarded. Consequently, we
obtain SEGs of length 458 and 1, 158 for the datasets of ADM and
AIV, respectively. Fig. 2 illustrates the performance comparison
under the sparse setting. In ADM, GSUs outperform the best com-
parative method, GRU4Rec, by 32.3% and 31.8% in HR@10 and
NDCG@10, respectively. In AIV, GSUs beat the best performing
competitor, Caser, by 47.6% and 34.8% in HR@10 and NDCG@10,
respectively. It is validated that, benefiting from the ability of cap-
turing co-evolving patterns, GSUs can better handle cold-start users
than state-of-the-art comparative methods.

5 CONCLUSIONS
Despite the promising results achieved by recent sequential meth-
ods, most of them fail to leverage the co-evovling patterns, and such
patterns are affluent in users actions and beneficial for reasoning
over intricate user-item relationships.

In this work, in order to power RS with the ability to capture
co-evolving patterns, we first formulate the dynamic user-item bi-
partite graph into Sequential Evovling Graphs (SEGs) (see Definition

2.1). Then, in order to utilize co-evolutionary patterns from SEGs,
we propose Gated Spectral Units (GSUs). GSUs incorporate gated
mechanisms into a spectral convolution. In this way, GSUs are able
to learn from sequential graphs and capture the co-evovling patterns
from spectral domains. In experiments, we demonstrate the useful-
ness of leveraging co-evolving patterns by comparing GSUs with
six state-of-the-art comparative methods. Overall, averaging on all
three datasets, GSUs achieve 27.9% and 53.4% improvements over
the best performing competitor in terms of HR@10 and NDCG@10,
respectively. Additionally, we evaluate GSUs and three comparative
methods in an extremely sparse setting, where each user is asso-
ciated with only one user-item interaction. In the sparse setting,
GSUs show its superior ability for handling cold-start users.

REFERENCES
[1] Xinlei Chen and Deng Cai. 2011. Large scale spectral clustering with landmark-

based representation.. In AAAI, Vol. 5. 14.
[2] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. 2014.

Empirical evaluation of gated recurrent neural networks on sequence modeling.
arXiv preprint arXiv:1412.3555 (2014).

[3] F Maxwell Harper and Joseph A Konstan. 2016. The movielens datasets: History
and context. ACM Transactions on Interactive Intelligent Systems (TiiS) 5, 4 (2016),
19.

[4] Ruining He, Wang-Cheng Kang, and Julian McAuley. 2017. Translation-based
recommendation. In Proceedings of the Eleventh ACM Conference on Recommender
Systems. ACM, 161–169.

[5] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural Collaborative Filtering. In Proceedings of the 26th International
Conference on World Wide Web, WWW 2017, Perth, Australia, April 3-7, 2017. 173–
182. https://doi.org/10.1145/3038912.3052569

[6] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.
2015. Session-based recommendations with recurrent neural networks. arXiv
preprint arXiv:1511.06939 (2015).

[7] Diederik Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980 (2014).

[8] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[9] Yehuda Koren. 2009. Collaborative filtering with temporal dynamics. In Proceed-
ings of the 15th ACM SIGKDD international conference on Knowledge discovery
and data mining. ACM, 447–456.

[10] Richard B Lehoucq, Danny C Sorensen, and Chao Yang. 1998. ARPACK users’
guide: solution of large-scale eigenvalue problems with implicitly restarted Arnoldi
methods. Vol. 6. Siam.

[11] Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton van den Hengel.
2015. Image-based Recommendations on Styles and Substitutes. arXiv preprint
arXiv:1506.04757 (2015).

[12] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2009. BPR: Bayesian personalized ranking from implicit feedback. In Proceedings
of the twenty-fifth conference on uncertainty in artificial intelligence. AUAI Press,
452–461.

[13] Steffen Rendle, Christoph Freudenthaler, and Lars Schmidt-Thieme. 2010. Factor-
izing personalizedmarkov chains for next-basket recommendation. In Proceedings
of the 19th international conference on World wide web. ACM, 811–820.

[14] Jiaxi Tang and Ke Wang. 2018. Personalized top-n sequential recommenda-
tion via convolutional sequence embedding. In Proceedings of the Eleventh ACM
International Conference on Web Search and Data Mining. ACM, 565–573.

[15] Lei Zheng, Chun-Ta Lu, Fei Jiang, Jiawei Zhang, and Philip S Yu. 2018. Spectral
collaborative filtering. In Proceedings of the 12th ACM Conference on Recommender
Systems. ACM, 311–319.

https://doi.org/10.1145/3038912.3052569

	Abstract
	1 Introduction
	2 Background and Preliminaries
	3 Proposed Model
	3.1 Spectral Convolution
	3.2 Gated Spectral Units
	3.3 Optimization and Prediction

	4 Experiments
	4.1 Datasets
	4.2 Experimental Settings
	4.3 Performance Comparison (RQ1)
	4.4 Recommending for Cold-start Users (RQ2)

	5 Conclusions
	References

