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ABSTRACT
To enjoy more social network services, users nowadays are usually
involved in multiple online sites at the same time. Aligned social
networks provide more information to alleviate the problem of data
insufficiency. In this paper, we target on the collective link prediction
problem and aim to predict both the intra-network social links as
well as the inter-network anchor links across multiple aligned social
networks. The cross-network collective link prediction problem is
not an easy task, and the major challenges involve the network char-
acteristic difference problem and different directivity properties of
the social and anchor links to be predicted. To address the problem,
we propose an application oriented network embedding framework,
Hierarchical Graph Attention based Network Embedding (HGANE),
for collective link prediction over directed aligned networks. Very
different from the conventional general network embedding models,
HGANE effectively incorporates the collective link prediction task
objectives into consideration. It learns the representations of nodes
by aggregating information from both the intra-network neighbors
(connected by social links) and inter-network partners (connected by
anchor links). What’s more, we introduces a hierarchical graph atten-
tion mechanism for the intra-network neighbors and inter-network
partners respectively, which resolves the network characteristic dif-
ferences and the link directivity challenges effectively. Extensive
experiments have been conducted on real-world aligned networks
datasets to demonstrate that our model outperformss the state-of-
the-art baseline methods in addressing the collective link prediction
problem by a large margin.
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Figure 1: An example of collective link prediction over multiple
aligned networks
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1 INTRODUCTION
Nowadays, online social networks have become very popular and
extensively used in our lives. To enjoy more services, it is ubiquitous
for users to participate in multiple online social platforms concur-
rently. For example, users may share photos with Instagram and
check the latest news information via Twitter. To simplify the sign
up/in process, most social platforms usually allow users to use their
existing Twitter/Facebook/Google IDs to create their accounts at
these new social sites, which will align different online networks
together naturally. Each of these social platforms can be represented
as a massive network where nodes represent user accounts and
intra-network links represent the social relationships among users.
Specially, accounts owned by the same user in different networks are
defined as anchor nodes [10] and inter-network corresponding rela-
tionships between the anchor users are defined as anchor links [10].
Different online networks connected by anchor links are defined as
multiple aligned social networks [36].
In recent years, there has been a surge of interest in multi-network
analysis. Traditional methods that target on one single network nor-
mally require sufficient information to build effective models. How-
ever, as proposed in [31], this assumption can be violated seriously
when dealing with the cold start [11] and data sparsity problems.
The study of multiple aligned networks provides a direction to al-
leviate the data insufficiency problem and benefits lots of network
mining tasks such as cross-domain recommendation [12, 17] and
information diffusion [8]. Some research works propose to transfer
information across networks by anchor links to enhance the link
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prediction results within multiple networks mutually [1, 35, 36]. Be-
sides, many existing works aim at anchor link formation prediction
automatically [13, 16, 22, 28]. However, most of these works study
either intra-network or inter-network link prediction tasks separately.
As discovered in [32], multiple link prediction tasks in the same net-
works can actually be done simultaneously and enhanced mutually
due to their strong correlations.
Predicting multiple kinds of links among users across multiple
aligned networks is defined as the collective link prediction problem
in [30]. Collective link prediction problem covers several different
link formation prediction tasks simultaneously including both the
intra-network social link prediction and the inter-network anchor
link prediction. It can take advantages of the strong correlations
between these different task to enhance the prediction performance
across these aligned networks synergistically. Figure 1 shows an ex-
ample of the collective link prediction tasks of two social networks.
In the figure, black lines with the arrow indicate existing directed
intra-network social links and the gray lines indicate the existing
inter-network anchor links instead. These directed/undirected red
dashed lines with question marks signify the potential intra-network
and inter-network links to be predicted, respectively.
The problem of collective link prediction is worth exploring due to
both its importance and novelty. Some existing methods have been
introduced to tentatively address the problem [30]. However, these
existing methods mostly ignore the contradiction of different charac-
teristics of aligned networks or adopt fixed parameters to control the
proportion of information diffused across networks, which usually
need to be fine-tuned manually. Besides, these works also fail to
consider the connectivity of the links within and across networks.
The collective link prediction problem studied in this paper is also
very challenging to solve due to the following reasons:

• Network characteristic differences: Since users normally join
in different networks for different purposes, each network usu-
ally has different characteristics and reveals different aspects of
the users. For example, professional relations are established in
LinkedIn while personal social-tiers are built in Twitter. Thus, in-
formation transferred from other networks may be different from
the target network that we want to study. Previous work found
information transfer could also deteriorate the performance of
intra-network link prediction [36]. Correspondingly, anchor link
prediction can be more susceptible as anchor links are directly re-
lated to information transferred across networks. Therefore, it is
more crucial but challenging to overcome network characteristic
difference problem for collective link prediction.

• link directivity differences: The intra-network social links are
usually uni-directed from the initiator pointing to the recipient
instead. For the users involved in the social network, the social
links pointing to them reflect the objective recognition from
the community, whereas that from them to others reflect their
personal social interest. Thus, these social relations collabora-
tively define a unique character in social networks. However,
the inter-network anchor links are bi-directed according to the
definition. Such different directivity properties on social links
and anchor links should be carefully considered in the prediction
model.

In this paper, we propose a novel application oriented network em-
bedding framework, namely Hierarchical Graph Attention based
Network Embedding (HGANE), to solve the collective link pre-
diction problem over aligned networks. Very different from the
conventional general network embedding models, HGANE effec-
tively incorporates the collective link prediction task objectives into
consideration. It learns node embeddings in multiple aligned net-
works by aggregating information from the related nodes, including
both the intra-network social neighbors and inter-network anchor
partners. What’s more, we introduces a hierarchical graph atten-
tion mechanism for the intra-network neighbors and inter-network
partners respectively, which handles the network characteristic dif-
ferences and link directivity differences. HGANE balances between
the prediction tasks of both the intra-network social link and inter-
network anchor link and the learned embedding results can resolve
the collective link prediction problem effectively. We conduct de-
tailed empirical evaluations using several real-world datasets and
show that our model outperforms other competitive approaches.
We summarize the main contributions of this paper as follows:
• We propose a novel embedding framework to learns the repre-

sentations of nodes by aggregating information from both the
intra-network neighbors (connected by social links) and inter-
network partners (connected by anchor links).

• We introduce a hierarchical graph attention mechanism. It in-
cludes two levels of attention mechanisms — one at the node
level and one at the network level — to resolve the network char-
acteristic differences and link directivity challenges effectively.

• HGANE incorporates the collectively link prediction task ob-
jectives into consideration and balances between the prediction
tasks of the intra-network social link and inter-network anchor
link, respectively.

• Extensive experiments are conducted on two real-world aligned
social network datasets. The results demonstrate that the pro-
posed model outperforms existing state-of-the-art approaches
by a large margin.

2 PRELIMINARY
Definition 1. (Multiple Aligned Social Networks) : In this
paper, we follow the definitions introduced in [10]. Given n

networks {G(1), . . . ,G(n)} with shared users, they can be de-
fined as multiple aligned networks G = ((G(1),G(2), · · · ,G(n)),
(A(1,2),A(1,3), · · · ,A(1,n),A(2,3), · · · ,A(n−1,n))), where G(i) =

(V (i),E(i)), i ∈ {1, 2, · · · ,n} is a network consisting of nodes and
links, and A(i, j) represents the anchor links between G(i) and G(j).

For two nodes v(i) ∈ V (i) and v(j) ∈ V (j), node pair (v(i),v(j)) ∈
A(i, j) iff v(i) and v(j) are the accounts of the same user in networks
G(i) and G(j) respectively.
For two online networks, such as Foursquare and Twitter used
in this paper, we can represent them as two aligned social
networks G = ((G(1),G(2)), (A(1,2))), which will be used as an
example to illustrate the model. A simple extension of the proposed
framework can be applied to multiple aligned networks conveniently.

Problem Definition : The collective link prediction problem studied
in this paper includes simultaneous prediction of both intra-network
social links and inter-network anchor links. Formally, given two
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aligned networks G = ((G(1),G(2)), (A(1,2))) where both of G(1) and
G(2) are directed social networks. We can represent all the unknown
social links among the nodes in G(k ) as U (k ) = V (k ) ×V (k )\(E(k ) ∪
{(u,u)}u ∈V (k ) ) where k ∈ {1, 2}. And the unknown anchor links
across G(1) and G(2) can be denoted as U (1,2) = V (1) ×V (2)\A(1,2).
We aim at building a mapping f : U (1) ∪U (2) ∪U (1,2) → [0, 1] to
project these intra-network social links and inter-network anchor
links to their formation probabilities.

3 PROPOSED METHOD

Table 1: Descriptions of notations in our framework.

Notation Description

ui Node i in G(1)

vj Node j in G(2)

uini Initiator feature of ui in G(1)

vinj Initiator feature of vi in G(2)

ur ei Recipient feature of ui in G(1)

vr ej Recipient feature of vi in G(2)

N i (ui ) Intra-network neighbors of ui as the initiator
Nr (ui ) Intra-network neighbors of ui as the recipient
Na (ui ) Inter-network anchor partners of ui

ein (ui ,uj ) Intra-network initiator attention of ui to uj
ein (ui ,vj ) Inter-network initiator attention of ui to vj
er e (ui ,uj ) Intra-network recipient attention of ui to uj
er e (ui ,vj ) Inter-network recipient attention of ui to vj

In this section, we will introduce the framework HGANE in detail.
For the convenience of elaboration, we provide the main notations
used through this paper in Table 1. At the beginning, the hierar-
chical graph attention mechanism will be introduced to handle the
problems of network characteristic differences and link directivity
challenges in multiple aligned networks. After that, we will learn
the node embeddings by aggregating information from both the
intra-network neighbors and inter-network partners. Finally, we will
introduce the application oriented network embedding framework
which can balance between the multiple prediction tasks and resolve
the collective link prediction problem effectively.

3.1 Hierarchical Graph Attention Mechanism
Social networks consist of nodes and social links that connect them,
while multiple aligned social networks consist of many social net-
works and anchor links across them. Therefore, multiple aligned
social networks have a hierarchical structure, which is illustrated in
Figure 2. Besides, for the target node, it is observed that the rele-
vance of different neighbors is different. For the target network, other
networks are differentially informative since they have different char-
acteristics. Furthermore, as each node is cooperatively characterized
by its neighbor nodes and anchor partners in other networks, their
importance is highly dependent for node embeddings.
Therefore, we propose the hierarchical graph attention mechanism
in this section. It includes two levels of attention mechanisms — one
at the node level and the other at the network level — to make our

Figure 2: Hierarchical structure of multiple aligned networks

model pay more or less attention to different neighbor nodes and
networks when constructing the node representations. These two
levels of attention mechanisms are formally called the intra-network
social attention and the inter-network anchor attention. They are es-
sential to resolve the problems of network characteristic differences
and link directivity challenges in the multiple aligned networks. In
the following subsections, we will introduce the definitions and the
motivations of these two attention mechanisms.

3.1.1 Intra-Network Social Attention.
Given two aligned networks G = ((G(1),G(2)), (A(1,2))), the anchor
links are defined to be bi-directed; while the intra-network social
links are usually uni-directed from the initiator pointing to the recip-
ient instead. Thus, every node plays these two roles within the social
network. Normally, we represent each node ui with two vector rep-
resentations, the initiator feature uini ∈ Rd and the recipient feature
ur ei ∈ Rd , where d is the feature dimension. The initiator feature uini
represents the characteristic of the node as the initiator following
others while the recipient feature ur ei represents the characteristic
of the node as the recipient followed by others. By distinguishing
the initiator and recipient features for each node, we can lay the
foundation for resolving the problem of link directivity challenges
effectively.
For the target node ui , we define the nodes followed by it as its
intra-network recipient neighbors. The set of intra-network recip-
ient neighbors of the initiator ui is denoted as N i (ui ). The node
uj ∈ N i (ui ) iff (ui ,uj ) ∈ E(1). Similarly, the nodes following ui
are defined as its intra-network initiator neighbors and the set of
these neighbors of the recipient ui is denoted as Nr (ui ). The node
uj ∈ Nr (ui ) iff (uj ,ui ) ∈ E(1). Here, based on the two node roles,
we introduce intra-network initiator attention and intra-network
recipient attention, to leverage the structural information within the
social network.
For intra-network social neighbors, the characteristic of the initiator
is relevant to the recipient. The intra-network initiator attention
mechanism computes the coefficients to judge the importance of
the intra-network recipient neighbor to the target initiator. Here,
the concept of intra-network initiator attention mechanism can be
represented formally.

Definition 2. (Intra-Network Initiator Attention) : For the target
node ui and its intra-network recipient neighbor uj ∈ N i (ui ), the
intra-network initiator attention coefficient of ui to uj can be given
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as
ein (ui ,uj ) = σ

(
a(1)

T

in

[
W(1)

in u
in
i

W(1)
r e u

r e
j

] ))
,

where ·T represents transposition and ∥ is the concatenation oper-
ation. W(1)

in ∈ Rd
′×d and W(1)

r e ∈ Rd
′×d are the weight matrixes

applied to every node as the initiator and the recipient for shared

linear transformation in G(1). a(1)
T

in ∈ R2d
′

is a weight vector and σ
denotes the activation function.
a(1)

T

r e , a(1,2)
T

in and a(1,2)
T

r e will be used with similar meanings.
Similarly, since the characteristics of the initiator and the recipient
are correlative, we can introduce the definition of intra-network
initiator attention mechanism formally to obtain the importance of
the intra-network initiator neighbor to the target recipient.

Definition 3. (Intra-Network Recipient Attention) : For the target
node ui and its intra-network initiator neighbor uj ∈ Nr (ui ), the
intra-network recipient attention coefficient of ui to uj can be given
as

er e (ui ,uj ) = σ
(
a(1)

T

r e

[
W(1)

r e u
r e
i

W(1)
in u

in
j

] ))
,

where a(1)
T

r e is also a weight vector. With these two kinds of intra-
network attention mechanism, our model can pay more attention
on useful information and neglect harmful information within the
social networks. It is significant to resolve the problem of directivity
challenges effectively and leverage structural information within
social networks.

3.1.2 Inter-Network Anchor Attention.
Different from the intra-network social attention mechanism which
targets at the node level, the inter-network anchor attention is for the
network level. The anchor links connecting multiple networks play
a crucial role in cross-network information transfer. However, due
to the problem of network characteristic differences, information
transferred from other networks could also undermine the learned
embeddings of the target network.
To handle this problem, we introduce the inter-network anchor at-
tention mechanism. For the target node, the inter-network anchor
attention coefficient to its anchor partners in the other network indi-
cates the importance of information transferred from that network.
As mentioned in the last section, each node is represented by the
initiator and recipient embeddings. To transfer the directed structural
information within networks, two kinds of inter-network anchor at-
tention will be introduced according to these two roles of the nodes.
Different from uni-directed social links, since the anchor nodes
reveal the information of the same user from different aspects, it
is intuitive that their initiator and recipient features in different
networks can be related correspondingly. For the target node and its
anchor partner in some network, the inter-network initiator attention
coefficient indicates the importance of information from that network
to the target node as the initiator. Firstly, we represent the set of the
inter-network anchor partners in the other network for the target
node ui as Na (ui ). If the node pair (ui ,vj ) ∈ A(1,2), vj ∈ Na (ui ).
And the definition of inter-network initiator attention is introduced
as follows.

Definition 4. (Inter-Network Initiator Attention): For the target
node ui and its inter-network anchor partner vj ∈ Na (ui ), the intra-
network initiator attention coefficient of ui to vj as the initiator can

be given as

ein (ui ,vj ) = σ
(
a(1,2)

T

in

[
W(1)

in u
in
i

W(1,2)
in vinj

] ))
,

where W(1,2)
in is the weight matrix applied to every anchor node in

G(2) as the initiator while transferring information toG(1) and a(1,2)
T

in
is a weight vector.
Similarly, considering the recipient role of nodes, it is intuitive that
the recipient features of anchor partners are related. Based on this, we
give the concept of inter-network recipient attention, which denotes
the importance of information from that network to the target node
as the recipient.

Definition 5. (Inter-Network Recipient Attention) : For the target
node ui and its inter-network anchor partner vj ∈ Na (ui ), the intra-
network recipient attention coefficient of ui to vj as the recipient
can be given as

er e (ui ,vj ) = σ
(
a(1,2)

T

r e

[
W(1)

r e u
r e
i

W(1,2)
r e vr ej

] ))
,

where W(1,2)
r e is the weight matrix for every anchor node in G(2) as

the recipient and a(1,2)
T

r e is also a weight vector.
Inter-network anchor attention mechanism can make a great contri-
bution to effective cross-network information transfer. It handles the
problem of network characteristic differences by making our model
focus on more important networks with useful information.
Besides, to make multiple coefficients easily comparable across
different nodes, we normalize all the coefficients mentioned above
across all choices of intra-network neighbors and inter-network
partners using the softmax function. Thus, the four kinds of attention
coefficients of the concerned nodes within networks and across
networks can be rewritten into an unified formula:

αop (ui ,uj/vj ) = softmaxuj /vj (e
op (ui ,uj/vj ))

= exp(eop (ui ,uj/vj ))
/
SUM

op
ui

, where op ∈ {in, re} indicates the role of the target node. And the
denominator is set as

SUM
op
ui =

∑
uk ∈Nop (ui )

exp(eop (ui ,uk )) +
∑

vk ∈Na (ui )

exp(eop (ui ,vk ))

3.2 Multiple Aligned Network Embedding
With the hierarchical graph attention introduced in the previous sec-
tion, we will introduce the cross-network embedding framework
HGANE in this part. HGANE is based on the cross-network graph
neural network model, which extends the traditional graph neural
network (GNN) model [23] to the multiple aligned social networks
scenario. According to the principle of GNN, embeddings can cap-
ture the localized structural features by utilizing information propa-
gated from the intra-network social neighbors. What’s more, it can
preserve more comprehensive features by leveraging cross-network
information transferred by anchor links. Therefore, HGANE learns
the node representations by aggregating information from both the
intra-network neighbors and inter-network partners. At the same
time, HGANE takes advantage of the hierarchical graph attention
mechanism to focus on more important information to handle the
problems of network characteristic differences and link directivity
challenges. The architecture of HGANE is illustrated in Figure 3.
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Figure 3: Architecture of the proposed HGANE. Each node is represented by the initiator and recipient embeddings (the orange
and green little squares) based on its roles in the network. HGANE learns the node embeddings by aggregating information from
both the intra-network neighbors and inter-network partners which is weighted by hierarchical graph attention. With the learned
embeddings, HGANE resolves the collective link prediction task effectively.

Each node is represented by two embeddings, uini and ur ei , according
to its two role in social networks. The implicit initiator and recipient
representations of the node are represented as uini

′
∈ Rd

′

and ur ei
′ ∈

Rd
′

of the potentially different dimension d ′.
The initiator embedding ofui , uini , which indicates its features as the
initiator in the social network, depends on its intra-network recipient
neighbors. Therefore, for the node uj ∈ N i (ui ), ur ej can contribute
to uini with the coefficient, α in (ui ,uj ), determined by intra-network
initiator attention. We define the intra-network neighbor recipient
contribution (NRC) from uj to ui as

NRC(ui ,uj ) = α in (ui ,uj )W
(1)
r e u

r e
j

As to inter-network anchor partners, node embeddings can preserve
more comprehensive information by taking their features of the
same role in other networks into consideration. For the anchor node
vj ∈ Na (ui ), its initiator embedding vinj also contribute to the initia-
tor embedding uini of the target node. To overcome the problem of
network characteristic differences, the inter-network initiator atten-
tion will compute the weights of information from different networks.
The inter-network partner initiator contribution (PIC) from vj to ui
is introduced as

PIC(ui ,vj ) = α in (ui ,vj )W
(1,2)
in vinj

Formally, we can obtain the initiator embedding of ui by aggre-
gating the intra-network neighbor recipient contribution and the
inter-network partner initiator contribution as

uini
′
= σ

( ∑
uj ∈Ni (ui )

NRC(ui ,uj ) +
∑

vj ∈Na (ui )

PIC(ui ,vj )
)
,

where σ denotes a nonlinearity. Besides, the recipient embedding
of ui , ur ei , can be generated in the similar way. Inter-network and

inter-network recipient attention will determine the importance of
different related nodes’ contribution. As the recipient, ui is naturally
characterized by its intra-network initiator neighbors who actively
follow it in social networks. Such intuition leads to the contribution
from every node, such as uj ∈ Nr (ui ), to ui . The intra-network
neighbor initiator contribution (NIC) from uj to ui can be defined as

NIC(ui ,uj ) = αr e (ui ,uj )W
(1)
in u

in
j

The inter-network anchor partners provide more information about
the recipient role of the target node from different sources. Thus,
the recipient embedding of ui will aggregate the information from
other networks by the anchor nodes with different weights computed
by the inter-network recipient attention in other networks. We can
obtain the inter-network partner recipient contribution (PRC) from
uj to ui to be

PRC(ui ,vj ) = αr e (ui ,vj )W
(1,2)
r e vr ej

By combining these contributions from intra-network initiator neigh-
bors and inter-network partners, the recipient embedding of ui can
be represented formally as

ur ei
′
= σ

( ∑
uj ∈Nr (ui )

NIC(ui ,uj ) +
∑

vj ∈Na (ui )

PRC(ui ,vj )
)

To stabilize the learning process of node embeddings, we have found
extending our mechanism to employ multi-head attention to be
beneficial, inspired by Vaswani et al. 2017 [27]. Specifically, K inde-
pendent attention mechanisms execute the above transformation, and
then their embeddings are concatenated, resulting in the following
initiator and recipient feature representations:

uini
′
=

Kn

k=1
σ
( ∑
uj ∈Ni (ui )

NRCk (ui ,uj ) +
∑

vj ∈Na (ui )

PICk (ui ,vj )
)
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ur ei
′
=

Kn

k=1
σ
( ∑
uk ∈Nr (ui )

NICk (ui ,uj ) +
∑

vj ∈Na (ui )

PRCk (ui ,vj )
)

where NRC, PIC, NIC and PRC with the subscript k in the formu-
las denote the contributions computed with the k-th hierarchical
attention mechanism.
With reference to above equations, the formula derivation of com-
puting the node embeddings for G(2) can be obtained in the similar
way. They are not listed due to the page limit.

3.3 Collective Link Prediction Oriented Network
Embedding Framework

The embeddings of each node in multiple aligned networks can be
generated by aggregating information from both the intra-network
neighbors and inter-network partners as introduced in last section.
In this part, we will introduce the network embedding optimization
framework oriented to collective link prediction. The task includes
the simultaneous prediction of the social links within each network
and the anchor links between every two networks.
For a node pair (ui ,uj ) within the social network, we define the prob-
ability of the intra-network social link formation from the initiator
ui pointing to the recipient uj as

p
(
ui ,uj

)
= σ

(
uini

T
· ur ej

)
,

where σ (x) = 1/(1 + exp(−x)) is the sigmoid function. And we
adopt the approach of negative sampling [19] to define the objective
of intra-network social link formation from the initiator uj to the
recipient ui as

Lsoc
(
ui ,uj

)
= logp

(
ui ,uj

)
+

∑
{(um,un )}

log
(
1 − p

(
um ,un

) )
,

where {(um ,un )} denotes the set of the negative social links ran-
dom sampled from the unknown links among nodes in G(1). In the
objective, the first term models the existing social links while the
second term models the negative links. By adding the objective of
each intra-network social link, the final objective for G(1) can be
formally represented as

L(1) =
∑

(ui ,uj )∈E (1)

Lsoc (ui ,uj )

Similarly, we can define the objective for the embedding results for
G(2), which can be formally represented as L(2).
Besides, anchor nodes reflect information of same users. Therefore,
their features tend to be in a close region in the embedding space
whether as the initiator or the initiator. For the cross-network node
pair (ui ,vj ) where ui ∈ E(1) and vi ∈ E(2), we concatenate the
initiator and recipient embeddings of each node to define the the
probability of the inter-network anchor link formation as

p
(
ui ,vj

)
= σ

( (
uini ∥ur ei

)T
·
(
vinj ∥vr ej

) )
Similarly with the objective of the intra-network social link forma-
tion, the objective of node alignment with negative sampling can be
defined as

Lach
(
ui ,vj

)
= logp

(
ui ,vj

)
+

∑
{(um,vn )}

(
1 − p

(
um ,vn

) )
,

where {(um ,vn )} denotes the set of the negative anchor links random
sampled from the unknown anchor links across G(1) and G(2). By
aligning anchor nodes, we can leverage information from multiple
sources to learn the node embeddings comprehensively. Information
transfer across networks is achieved based on every inter-network
anchor link. Formally, the information transfer objective between
G(1) andG(2) is represented by summing up the the objective of each
anchor link as

L(1,2) =
∑

(ui ,vj )∈A(1,2)

(
Lach

(
ui ,vj

) )
To incorporate the collective link prediction task into a unified frame-
work, we learn the node representations with rich information by
jointly training the objective function including the objective for
networks G(1), G(2), and the objective of information transfer, which
can be denoted as

L

(
G(1),G(2)

)
= L(1) + L(2) + α · L(1,2) + β · Lr eд

The parameter α denotes the weight of the information transfer
objective to balance between the several prediction tasks of both
the intra-network social link and inter-network anchor link. In the
objective function, the term Lr eд is added to avoid overfitting and
the parameter β denotes the weight of it. By optimizing the above
objective function, the node embeddings can be learned to resolve
the collective link prediction problem effectively.

4 EXPERIMENT

Table 2: Statistics of datasets

Dataset #Nodes #Social Links #Anchor Links
Twitter 5,223 164,920

3,388
Foursquare 5,392 76,972
Facebook 4,137 57,528

4,137
Twitter 4,137 147,726

4.1 Datasets
We conducted experiments using two real-world aligned social net-
works: Twitter-Foursquare and Facebook-Twitter(Statistical infor-
mation in Table 2):
• Twitter-Foursquare [10]: Twitter is the most popular world-

wide microblog site and Foursquare is the famous location-
based social network. There are 5,223 users and 164,920 fol-
low links in Twitter and 5,392 users and 76,972 social links in
Foursquare. Among these crawled Foursquare users, 3,388 of
them are aligned by anchor links with Twitter.

• Facebook-Twitter [2]: Facebook is another worldwide online
social media. The Facebook and Twitter accounts of 4,137 users
were crawled. Every node has a counterpart in the other network.
There are 57,528 social links in Facebook and 147,726 follow
links in Twitter among these users.

It is noted that these two datasets were crawled respectively and
there is no overlap of these two Twitter subnetworks.
Source Code: The source code of HGANE is available in http:
//www.anonymized.com.

http://www.anonymized.com
http://www.anonymized.com
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4.2 Comparison Methods

Table 3: Comparision of different models

Method
Multiple
Networks

Links
Directi.
Differe.

Network
Charact.
Differe.

Predict
Social
Link

Predict
Anchor

Link

DeepWalk !

Node2Vec !

GAT !

IONE ! ! !

DIME ! ! !

MNN ! ! !

CLF ! ! !

HGANE ! ! ! ! !

The network embedding methods used in the experiment are listed
as follows (summarized in Table 3):

• DeepWalk [21]: Skip-gram based vertex embedding method for
a single network that extends the word2vec [20] to the network
scenario and uses local information obtained from truncated
random walks to learn latent representations by treating walks
as the equivalent of sentences.

• Node2Vec [7]: Word-to-vector approach for a single network
that modifies the random walk strategy in DeepWalk into a more
sophisticated random walk or breadth-first search schemes to
explore the network structure more efficiently.

• GAT [27]: A neural network architecture to learn node represen-
tation by leveraging masked self-attention layers, it achieves or
matches the state-of-the-art performance on the node classifica-
tions.

• IONE [16]: A representation learning model to learn multiple
aligned network structures by modeling input and output context
information of nodes so as to preserve the proximity of users
with “similar” followers/followees in the embedded space for
network alignment.

• DIME [35]: An embedding framework emerging heterogeneous
social network embedding through broad learning with aligned
autoencoder to transfer information from mature networks to
emerging networks and improve the link prediction in emerging
networks.

• MNN [1]: A multi-neural-network framework with one indi-
vidual neural network for each social network or feature while
the vertex representations are shared for intra-network link pre-
diction over aligned networks. It is not suitable for anchor link
prediction as it assigns anchor users with the same feature vec-
tors.

• CLF [30]: A method aiming at collective link prediction with
two phases: 1) collective link prediction of anchor and social
links, and step (2) propagation of predicted links across the
partially aligned “probabilistic networks” with collective random
walk, to infer the anchor links across networks and social links
in one network simultaneously.

4.3 Experiment Setting
In our experiment, we will target on the collective link prediction
task and concern the performance of social link prediction in
G(1), G(2), and anchor link prediction across these two networks.
These three subtasks will be denoted as Soc1, Soc2, Ach in the
experiment results. As link prediction is regarded as a binary
classification task, the performance will be evaluated with Area
Under the Curve (AUC) metric.
All the existing links in the two aligned networks are used as the
positive link set, including social links within two networks and
anchor links across these two networks. We sample a subset of
unknown links among nodes in the same network randomly as
the negative social link set, which is of the double size of the
positive social link set. The negative anchor link set is generated
by the random sample of unknown cross-network links. The size
of the negative anchor link set is five times of that of the positive
set. A proportion of the links in the positive and negative sets
are sampled as the training set, the rest as the test set.
For our embedding framework HGANE, we initialize the initia-
tor and recipient features of each node with the common initiator
and recipient neighbor features within its networks. There are
two attention-based layers involved for each network. The first
layer consists of K = 8 attention heads computing 256 features
each, followed by an exponential linear unit (ELU) [5] nonlinear-
ity. The second layer is a single attention head to compute node
embeddings, followed by a softmax activation. The dimension
of the embeddings is 100. During training, we apply dropout
[24] to the normalized attention coefficients. And we train for
3000 epochs using the Adam optimizer [9] with the learning rate
of 0.005. The parameters α = 1.0 and β = 0.0005 are used in the
experiments.
For the comparison methods that target at one single network,
such as Node2vec, DeepWalk and GAT, we preprocess the
datasets by merging two networks into one and regarding anchor
links as social links within networks. We apply the linear SVM
classifier for those embedding methods that can’t directly predict
the formation of links.

4.4 Experiment Result
In the collective link prediction task, we compare the perfor-
mance of eight different embedding methods under different
training rate λ ∈ {20%, 40%, 60%, 80%}. Table 4 shows the per-
formance of our model and other seven baseline methods eval-
uated by AUC with different training rate λ. The method we
proposed in this paper, HGANE, performs much better than
the other methods in the three subtasks simultaneously, which
shows its effectiveness in the collective link prediction task.
HGANE incorporates the task-oriented objectives into consider-
ation and thus balance between the prediction tasks of both the
intra-network social link and inter-network anchor link simulta-
neously.
Considering the experiments with different training rate λ, as
the ratio drops, the performance of all the methods deteriorates.
However, the performance degradation of the proposed model is
rather moderate compared to other methods since we leverage
the information of the multiple aligned networks and handle the
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Table 4: Performance comparison with different methods. Soc1, Soc2 and Ach indicate social link prediction in the first and second
network and anchor link prediction respectively.

Dataset Method

Training Ratio

0.2 0.4 0.6 0.8

Soc1 Soc2 Ach Soc1 Soc2 Ach Soc1 Soc2 Ach Soc1 Soc2 Ach

Twitter
&

Foursquare

DeepWalk 75.8% 72.5% 57.9% 80.3% 76.9% 63.1% 82.2% 79.7% 67.3% 85.7% 82.5% 75.4%
Node2Vec 82.5% 77.4% 64.3% 84.6% 80.9% 66.1% 86.4% 84.3% 72.1% 89.3% 88.3% 78.9%

GAT 85.5% 78.2% 65.5% 91.5% 86.9% 68.9% 92.5% 90.3% 75.8% 92.6% 92.3% 80.9%
IONE 83.2% 75.7% 72.1% 86.2% 81.7% 78.0% 88.2% 84.7% 85.6% 88.7% 84.7% 87.4%
DIME 85.1% 76.2% 74.8% 88.4% 80.3% 76.3% 89.8% 83.0% 82.6% 92.0% 85.2% 84.9%
MNN 89.2% 72.4% - 92.9% 81.1% - 94.8% 86.1% - 96.3% 87.6% -
CLF 84.5% 78.7% 70.9% 86.7% 80.5% 75.2% 90.9% 84.2% 83.1% 92.3% 86.5% 87.1%

HGANE 94.4% 90.3% 76.7% 96.4% 95.1% 85.8% 97.1% 96.8% 90.0% 97.5% 97.5% 93.0%

Facebook
&

Twitter

DeepWalk 76.3% 70.3% 55.8% 81.5% 75.2% 70.9% 84.0% 81.6% 77.7% 90.9% 86.5% 78.9%
Node2Vec 83.0% 81.5% 58.6% 86.6% 85.7% 76.2% 88.8% 87.5% 81.0% 91.3% 88.2% 83.2%

GAT 87.3% 86.1% 60.2% 92.0% 90.0% 78.5% 94.7% 92.8% 83.5% 95.7% 93.4% 85.5%
IONE 82.8% 79.1% 77.9% 85.9% 82.6% 85.4% 87.4% 85.1% 89.4% 90.9% 89.1% 92.1%
DIME 87.1% 86.2% 74.3% 88.4% 87.3% 81.9% 89.8% 90.0% 85.1% 94.0% 92.2% 87.5%
MNN 88.6% 87.1% - 92.4% 91.3% - 94.4% 93.1% - 95.7% 94.8% -
CLF 84.9% 81.1% 80.5% 88.7% 85.9% 84.2% 91.4% 88.9% 87.6% 93.1% 90.2% 90.4%

HGANE 91.8% 90.9% 84.8% 95.2% 94.8% 93.4% 97.1% 96.9% 95.8% 98.1% 97.5% 97.1%

Table 5: Validation of the design of represent each node with
two embeddings to resolve the link directivity differences prob-
lem. Our full model outperforms two variants with either the
initiator or recipient features.

Feature
Twitter&Foursquare Facebook&Twitter

Soc1 Soc2 Ach Soc1 Soc2 Ach

initiator 93.4% 93.2% 85.2% 97.0% 94.9% 95.8%
recipient 93.0% 93.7% 85.6% 97.1% 95.1% 96.2%

both 97.2% 96.8% 93.0% 98.1% 97.5% 97.1%

problem of network characteristic differences. Even when the
training rate λ is as low as 20%, the baseline models will suffer
from the information sparsity a lot, but our model can still obtain
very good performance.
To demonstrate the effectiveness of considering the directivity,
we compare our full model to its two variants with either the
initiator features or the recipient features. The experiment results
show in Table 5 with the training ratio as 0.8. We found that the
two variants can give better results than other baselines but their
performance is much inferior to that of the full model. According
to the experimental statistics of two datasets, the performance
of social link prediction within the more dense network can be
improved more by distinguishing nodes’ initiator and recipient
roles.

4.5 Hypothesis Verification
As mentioned in the method part, in our framework, each node
is represented with the initiator and recipient features and it
is crucial to determine how to aggregate information from the
neighbors connected by social links and anchor links. If the

Figure 4: Four hypotheses about how the neighbors contribute
to the target node. There are two kinds of contribution modes
for social neighbors and anchor partners respectively.

Table 6: Hypothesis verification. SC+AD is adopted in our
framework and achieves the best results.

Hypothesis
Twitter&Foursquare Facebook&Twitter

Soc1 Soc2 Ach Soc1 Soc2 Ach

SC+AC 97.2% 96.0% 89.4% 98.1% 97.0% 96.0%
SD+AD 91.8% 91.3% 82.8% 97.0% 95.2% 95.3%
SD+AC 91.8% 91.3% 82.1% 96.9% 95.3% 94.3%
SC+AD 97.2% 96.7% 92.4% 98.1% 97.1% 96.7%

neighbor’s initiator and recipient features contribute to the target
node’ s recipient and initiator respectively, we name it as cross-
contribution. Conversely, if the initiator and recipient features
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Figure 5: Hyperparameter analysis. Our method is robust to
choices of d, α and β on two datasets

of two neighbor nodes are related correspondingly, we name
it direct-contribution. By combining two mechanism with two
kinds of links, there are four different hypotheses as illustrated
in Figure 4.
The hypotheses SC+AD is adopted in our framework. To validate
it, we study the variants of our full model with the other three
hypotheses and compared their performances on the collective
link prediction task in Table 6. The experimental results indicate
the model with SC+AD can achieve the best performance in
both social link prediction and anchor link prediction. If direct-
contribution is replaced with cross-contribution for anchor links,
AUC of the anchor link prediction decreases a lot in two datasets.
And the performances of the social link prediction are affected
if we adopt direct-contribution for social links.

4.6 Parameter Analysis
Now we examine the influence of three key parameters in our
framework: the embedding size d and the weight of the infor-
mation transfer objective α and the weight of the regularization
β . The three subfigures on the left in Figure 5 show the sen-
sitivity analysis on the first dataset while the rest is about the
second dataset. The results in the first two subfigures indicate

that setting the embedding size d to 100 can provide the best
performance on both two datasets. Even when d is as low as
10, our model can achieve good results on three kinds of link
prediction simultaneously.
The parameter α denotes the strength of aligning the two net-
works. The two subfigures about α in the middle show how
different values of α can affect the results on different datasets.
The optimal α is near 1.0. When setting α in [1, 3], all the link
prediction tasks perform well and stably. Anchor link prediction
and social link prediction in sparser networks are affected as α
increases. However, social link prediction in the dense networks
is still stable. For the weight parameter β , the best setting is in
[0.1, 0.2] according to the last two subfigures. It has a certain
impact on anchor link prediction across the network while social
link prediction within the network is not that sensitive to the
parameter β on both two datasets.

5 RELATED WORK
Multi-Network Analysis Traditional link prediction methods
focus on one single network [7, 14, 18, 21] and suffer from the
data insufficiency problem in the cold start scenarios. Therefore,
multi-network analysis has been a hot research topic and stud-
ied for data enrichment for several years on which dozens of
papers have been published. Some work studied on information
transfer across networks by anchor links to improving the qual-
ity of inter-network link prediction [1, 31, 32, 35, 36]. Besides,
many existing works aim at anchor link formation prediction
automatically [5, 10, 15, 33, 37]. However, most of these works
study either intra-network or inter-network link prediction tasks
separately. Zhang et al. first proposed the collective link predic-
tion task and the Positive-Unlabeled classification framework
[30] to propagate probabilistic information within and across
networks. The existing methods mostly ignore the contradiction
of different characteristics of aligned networks or adopt fixed
parameters to control the proportion of information diffused
across networks, which usually need to be fine-tuned manually.
Besides, these works also fail to consider the link connectivity
of the links within and across networks. Our model targets on
the task of collective link prediction and takes advantage of hier-
archical attention mechanism to resolve the problems of network
characteristic differences and link directivity challenges.
Neural attention mechanism Neural attention mechanism has
inspired many state-of-the-art models in several machine learn-
ing tasks including image classification [4], image caption gener-
ation [29], machine translation [6, 26] and semantic role labeling
[25]. Its effectiveness is owed to making the model focus on
more important detailed information and neglecting the useless
information. In recent years, some works have also investigated
the use of attention on graphs [3, 27, 34]. For example, Velick-
ovic et al. proposed GAT which learns node representation by
leveraging masked self-attention layers and Zhang et al. stud-
ied a model using a convolutional sub-network to control each
attention head’s importance to achieve the state-of-the-art perfor-
mance on the node classifications. These works used attentional
processing on node representation learning which aims to learn
embeddings for nodes in a single graph. Our work propose the
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hierarchical graph attention to model multiple aligned networks
and overcome network characteristics contradiction to transfer
more effective information across networks.

6 CONCLUSION
In this paper, we study the collective link prediction problem in
multiple aligned social networks. We propose a novel application
oriented network embedding framework, namely Hierarchical
Graph Attention based Network Embedding (HGANE) to learn
node embeddings by aggregating information from the related
nodes, including both the intra-network social neighbors and
inter-network anchor partners. The hierarchical graph attention
mechanism is introduced to resolve the network characteristic
differences and link directivity differences. We conduct detailed
empirical evaluations using several real-world datasets and the
results demonstrate that our model outperforms other competi-
tive approaches and handles the collective link prediction prob-
lems effectively.
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