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ABSTRACT With the development of global positioning technology, sensor networks, and smart mobile
terminal, a large number of trajectory data are accumulated. Trajectory data contains a wealth of information,
including spatiality, time series, and other external descriptive attributes (i.e., features, travelling mode,
and so on). Trajectory analysis and mining show the great value. The research of trajectory similarity
measurement is the basis of trajectory data management and mining, which plays an important role in
trajectory computing. Most trajectory similarity work only focuses on the spatial-temporal features. The
addition of multi-attributes to the trajectories changes the trajectory similarity. However, there are few
researches focusing on multi-attributes trajectory similarity. In this paper, we propose two novel trajectory
similarity measurements, i.e. maximum-minimum trajectory distance and sum of minimum trajectory
distance and analyze the correlation among the spatial-temporal similarity and textual similarity. Finally,
the measurement validity is verified and visualized through clustering, by both a simulation dataset and a
real dataset.

INDEX TERMS Trajectory similarity measurement, clustering, big trajectory data, trajectory computing.

I. INTRODUCTION
With the development of wireless communication
technology, global positioning system, and smart mobile
terminal, trillion byte or even peta byte trajectory data accu-
mulates rapidly. DiDi1 announced that more than 70TB
spatial-temporal data is generated per day and the processing
data size is up to 4500TB daily [1]. In the meantime, with
the popularity of social media, such as Twitter, Facebook,
and Foursquare, a wealth of external information are embed-
ded into the trajectories. As a result, the raw trajectories
are enriched by a wide variety of semantics. For example,
the geo-textual objects in trajectories are associated with the
location name, the point category (i.e., restaurants, museums)
and etc. We unify the semantics2 as the attributes of the
trajectories into the form of a collection of textual keywords.
The trajectories including the locations, timestamps, and
descriptive attributers are called multi-attributes trajectories.

1https://www.didiglobal.com/
2In general, the concept of semantics is hierarchical. However, our paper

only considers the fine-grained information at the lowest level.

There have been some literatures [2]–[5] on multi-attribute
trajectories. The similarity study is basic and important in
trajectory management system. For instance, a similar tra-
jectory can be recommended to a user as a tour reference
in trajectory recommendation system. For another example,
similarity trajectories can be gathered together to find out the
trajectory pattern. The existing trajectory similarity measure-
ments can be divided into two categories w.r.t. the trajectory
representation. If a trajectory is represented as a segments
sequence, the well-known metrics include Line Segments
Distance [6], One Way Distance [7], Edit Distance on Seg-
ment [8], etc. If a trajectory is a points sequence, the trajectory
similarity is defined as Lp-normDistance [9], LCSS [10], and
ERP [10], Hausdorff Distance [11], Fréchet Distance [12],
DTW [13], etc. However, the above measurements take only
the spatial information and the temporal information into
account. The textual similarity is not included. The trajectory
similarity changes when the textual similarity is taken into
account.

Let’s consider the three trajectories in Figure 1 as an exam-
ple. Figure 2 shows the details of the three trajectories. The
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FIGURE 1. Trajectory example.

FIGURE 2. Trajectory information.

bold texts in t2 and t3 are different from the keywords of t1.
In previous work, t1 and t2 are the most similar trajectories
considering the spatial-temporal similarity. However, we can
observe that the keywords on t1 are almost consistent with
the ones on t3. On the other hand, the keywords of t2 are
significantly different from the ones of t1. Thus, t1 and t3 are
most similar when the textual similarity is blended into the
similarity measurement.

Reference [5] is a representative work measuring the sim-
ilarity on the spatial dimension, the temporal dimension,
and the textual dimension all at once. For the spatial fold,
the spatial distance is the average number of matching pairs
of two trajectories whose spatial distances are less than a
threshold. For the temporal fold, the ratio of the common
time period to the total time length of the two trajectories is
used as the temporal distance. For the textual fold, the textual
distance is the average number of exact textual matching
pairs of two trajectories. However, reference [5] suffers from
two main drawbacks. First, reference [5] only regards two
keywords are similar when the two words are exactly same.
This is not practical. Uncertain data or misspell data indeed
exist in the real world (i.e., theatre and theater). Second,
reference [5] does not consider trajectories time alignment,
where the spatial dimension and the temporal dimension are

separated. As we know, the two dimensions depend on each
other.

To overcome the limitations, we propose two approxi-
mate similarity measures on trajectories (that is, MMTD
and SUMTD). Both measurements resolve the problem of
trajectory time alignment, and support approximate similarity
using the edit distance. Besides, we analyze the correlations
among the spatial-temporal similarity and the textual simi-
larity using a real dataset. We find that the spatial-temporal
similarity and the textual similarity are weak correlation.
In order to verify the effectiveness of MMTD and SUMTD,
we apply the two similarity measurements in a classical clus-
tering algorithm (i.e. k-medoids) and visualize the clustering
results.

To sum up, the main contributions of this paper are as
follows:
• We propose two trajectory similarity measures, MMTD
and SUMTD, for multi-attributes trajectories which sup-
port approximate similarity.

• To the best of our knowledge, we are the first to prove
that the spatial-temporal similarity and the textual sim-
ilarity are weak correlated with each other using the
correlation analysis.

• We demonstrate the effectiveness of our proposed simi-
larity metrics in the k-medoids clustering using a simu-
lated dataset and a real dataset.

The rest of the paper is organized as follows. Related
work is reviewed in Section II. Section III introduces the
preliminary. Section IV and Section V propose the trajec-
tory similarity measurements. The correlations of the spatial-
temporal similarity and the textual similarity are analyzed in
Section VI. Section VII reports the experiment evaluation.
Finally, Section VIII concludes this paper and discusses the
future work.

II. RELATED WORK
The similarity measurements on multi-attributes trajecto-
ries can be divided into three types: spatial-temporal simi-
larity, spatial-textual similarity, and spatial-temporal-textual
similarity.

A. SPATIAL-TEMPORAL SIMILARITY MEASUREMENTS
Reference [12]–[15] consider the spatial-temporal similarity
of trajectories. Longest Common Subsequence (LCSS) [14]
takes the number of matching points pairs as the trajectory
distance ignoring the far-away points. LCSS needs a man-
ual matching threshold to determine the distance. Discrete
Fréchet Distance (DFD) [12] considers the locations and
ordering of the points along the curve using the ‘‘shortest dog
leash distance’’. Dynamic Time Warping (DTW) [13] allows
repeating some points to achieve the best alignment. Different
from the above work, [15] computes the spatial distance
by Euclidean distance and temporal distance by timestamp
difference using an exponential function. The linear com-
bination of the spatial and temporal distances is the final
similarity.
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B. SPATIAL-TEXTUAL SIMILARITY MEASUREMENTS
Reference [16]–[18] concerned both the spatial and textual
similarity on two trajectories. Reference [16] computes the
spatial distance using Euclidean distance and the textual dis-
tance by Edit distance. In [17], the spatial distances consist
of trajectory geometric center distance, trajectory length dif-
ference, and direction. The textual distances are based on the
longest common subsequence of visited points, which only
consider the full match. Reference [18] considers the two tra-
jectories are similar if they share a common points sequence
with the similar travel time. Their approach is different from
the existing similarity measures due to considering the visit
frequency.

C. SPATIAL-TEMPORAL-TEXTUAL SIMILARITY
MEASUREMENTS
There are few works [4], [5] consider the trajectory distance
from the spatial aspect, the temporal aspect and the textual
aspect all at once. The similarity measurement proposed
by [5] is a linear combination of the Euclidean distance,
the time interval intersection, and the number of full matching
pair. Reference [4] improves [5] by defining a new textual
similarity by considering the hierarchy of the label semantics.
A category tree is defined for the text classification, and
different weights are assigned to the nodes for establishing
the importance. In this paper, we propose two new similarity
measurements for multi-attributes trajectories. The two new
similarities support trajectory time alignment and the approx-
imate textual similarity.

III. PRELIMINARY
Definition 1 (Multi-Attributes Trajectory): A multi-attributes
trajectory t is a points sequence 〈p1,1, p1,2, . . . , p1,n〉. Each
point is in the form of a tuple 〈l, i, ky〉, representing that
the user locates at l = (x, y) at timestamp i with a textual
collection ky such as travel modes, weather conditions or road
conditions, etc.
Definition 2 (Trajectory Similarity):Given two trajectories

t1, t2, the similarity of the two trajectories is

S(t1, t2) = 1− (ω1, ω2, ω3)

 dist1(t1, t2)
dist2(t1, t2)
dist3(t1, t2)

 (1)

whereωi(i = 1, 2, 3) and 0 ≤ ωi ≤ 1 representing the spatial,
temporal, and textual similarity weights respectively. disti(t1,
t2) (i = 1, 2, 3) is the spatial (temporal and textual) distance
between t1 and t2, and disti(t1, t2) (i = 1, 2, 3) is in [0, 1].
The larger S is, the more similar the two trajectories are.

IV. MINTD: TRAJECTORY SIMILARITY MEASUREMENT
BASED ON DISCRETE POINTS
A. ANALYSIS
Intuitively, the trajectory similarity can be defined as an
aggregate distance of any two points on the trajectory. In par-
ticular, there are four ways.

1) The minimum point-to-point distance: The simplest
method is to use the minimum distance of any two
points on the trajectories. That considers the best case.
For each point p1,i on t1, we can find the nearest
point p2,j on t2. Then, the minimum distance between
all points pairs on the two trajectories is the distance
between t1 and t2. Formally,

disti(t1, t2) = minp1,i∈t1,p2,j∈t2
{
di(p1,i, p2,j)

}
(2)

where di(p1,i, p2,j) is the distance function. For
instance, we can use the Euclidean distance to com-
pute the spatial distance, the timestamp difference
to represent temporal distance, and the edit distance
for textual distance. Then, in Figure 1, the spatial
distance between t1 and t2 is dist1(t1, t2)=d1(p1,5,
p2,4)=((95−90)2+(30−28)2)0.5=5.4, the temporal
distance between t1 and t2 is dist2(t1, t2)=d2(p1,1,
p2,1)=0, and the textual distance between t1 and t2
is dist3(t1, t2)=d3(p1,3, p2,3)=4. If the weight vector
is (0.3, 0.4, 0.3), the similarity after normalization
between t1 and t2 is 0.95.

2) The maximum point-to-point distance: We can also
use the maximum distance of any two points on the
two trajectories as the trajectory similarity, which pays
attention to the worst case. That is, for each point
p1,i on t1, the furthest point p2,j on t2 is found. Then,
the maximum distance of all points pair is used as the
distance between t1 and t2. That is,

disti(t1, t2) = maxp1,i∈t1,p2,j∈t2
{
di(p1,i, p2,j)

}
(3)

In Figure 1, the spatial distance between t1 and
t2 is dist1(t1, t2)=d1(p1,1, p2,4)=((90-5)2+(28-
15)2)0.5=86, the temporal distance between t1 and t2 is
dist2(t1, t2)=d2(p1,1, p2,1)=10, and the textual distance
between t1 and t2 is dist3(t1, t2)=d3(p1,1, p2,1)=24.
After the normalization, the similarity between t1 and
t2 is 0.01.

3) The sum-min distance [15], [19], [20]: The sum of the
minimum point-point distances focuses on the average-
best case. That is, for each point p1,i on t1, we find the
nearest point p2,j on t2. Then, the distance from t1 to t2
is formally represented as,

disi(t1, t2) =
∑
p1,i∈t1

minp2,j∈t2
{
di(p1,i, p2,j)

}
(4)

Note that disi(t1, t2) 6= disi(t2, t1). Then,

disti(t1, t2) =
1
2

(
disi(t1, t2)
|t1|

+
disi(t2, t1)
|t2|

)
(5)

The spatial distance between t1 and t2 is dist1(t1, t2)
=10.51, and the temporal distance between t1 and t2
is dist2(t1, t2)=0.1, and the textual distance between t1
and t2 is dist3(t1, t2)=7.65. Then, the final normalized
similarity is 0.90.

4) The sum-max distance:Contrary to the sum-min dis-
tance, the average-worst case is evaluated in the fourth
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TABLE 1. The spatial-temporal-textual similarity results by different
cases.

case. For each point p1,i on t1, we can find the furthest
point p2,j on t2. Then, the sum of themaximum distance
of all points on t1 to the furthest points on t2 is used as
the distance from t1 to t2. That is,

disi(t1, t2) =
∑
p1,i∈t1

maxp2,j∈t2
{
di(p1,i, p2,j)

}
(6)

Then,

disti(t1, t2) =
1
2

(
disi(t1, t2)
|t1|

+
disi(t2, t1)
|t2|

)
(7)

Continuing to take Figure 1 as an example, dist1(t1,
t2)= 68.38, dist2(t1, t2)= 8.32, and dist3(t1, t2)=18.15.
The normalized similarity between t1 and t2 is 0.24.

The minimum point-to-point distance (i.e., Case (1)) and
themaximumpoint-to-point distance (i.e., Case (2)) represent
the best and the worst cases of two trajectories, which are sen-
sitive to anomalies. Both the sum-min distance (i.e., Case (3))
and the sum-max distance (i.e., Case (4)) consider the average
situation. The sum-min distance is more representative than
the sum-max distance. For instance, Table 1 shows the simi-
larities between any two trajectories in Figure 1 with the dif-
ferent similarity metrics. Both Case (3) and Case (4) consider
t1, t3 are most similar. The difference between the two cases
is the similarity ranks of S(t1, t2) and S(t3, t2). In Figure 2,
we observe that the texts of t1 and t3 are almost same, so the
similarity difference between t1, t2 and t3, t2 depends mainly
on the spatial-temporal similarities. From Figure 2, t1, t2 are
more similar from the spatial-temporal aspect. In Case (3),
S(t1, t2) >S(t3, t2). However, Case (4) is the opposite. The
drawback of Case (4) is that the spatial distance between t1
and t2 is dominated by the further points pair (i.e., p1,1 and
p2,4). In an extreme case, two same trajectories overlap with
each other. The spatial distance is the distance between the
first point to the last point, which is unreasonable.

B. BASELINE: MINTD
According to the above analysis, we propose MINTD under
the average-best case (i.e., Case (3)).
(Definition 3 (MINTD): Given two trajectories t1 =
{p1,1, p1,2, . . . , p1,n}, t2 = {p2,1, p2,2, . . . , p2,n}, MINTD
between t1 and t2 is (8), as shown at the bottom of the next
page.

The spatial distance (denoted as d1) is the Euclidean dis-
tance. The temporal distance (denoted as d2) is determined by
the timestamp difference of two points. The textual distance

(denoted as d3) is the edit distance of keywords associated
with the two points.

We call MINTD as the base line since MINTD doesn’t
resolve the time alignment problem. As a result, the points
pair for computing the spatial similarity, the temporal sim-
ilarity and the textual similarity are not the same pair. The
practicability of the method is limited. In Section V, we will
introduce two time alignment aware trajectory similarity
measurements.

V. MMTD AND SUMTD: TIME ALIGNMENT AWARE
TRAJECTORY SIMILARITY MEASUREMENT
Time alignment is important for measuring the trajectory
similarity. Before presenting the two new time alignment
aware similarity measurements, we define anchor points and
aligned points first.
Definition 4 (Anchor Points and Aligned Points): Given

two trajectories t1 = {p1,1, p1,2, . . . , p1,n}, t2 =

{p2,1, p2,2, . . . , p2,n}, p1,i ∈ t1 and p2,j ∈ t2 are defined as the
anchor points at the timestamp k . Generally, an aligned point
on one trajectory is defined as the previous point of anchor
points on the other trajectory. That is, the aligned pointon t2
w.r.t. p1,i(∈ t1) is p2,j−1. Symmetrically, the aligned point on
t1 w.r.t. p2,j(∈ t2) is p1,i−1. Then, the aligned points pairs at
timestamp k are {(p1,i−1, p2,j−1), (p1,i−1, p2,j), (p1,i, p2,j−1)}.
For example, in Figure 1, assume p1,2 and p2,2 are the

anchor points. Then, the aligned point on t2 w.r.t p1,2 on
t1 is p2,1. The aligned point on t1 w.r.t p2,2 on t2 is p1,1.
Then, the aligned points pairs are {(p1,1, p2,1), (p1,1, p2,2),
(p1,2, p2,1)}.
We use the aggregate distance between the aligned points

and the anchor points as the trajectory similarity.MMTD uses
the maximum of minimum distances between the aligned
points and the anchor points (in Section V.A), which focuses
on the worst-best case. SUMTD is the sum of the dis-
tances between the anchor points and the minimum distance
between the aligned points (in Section V.B), which concerns
the average case.

A. MMTD: MAXIMUM-MINIMUM DISTANCE
The trajectory is regarded as a whole. The keywords associ-
ated with each point constitute a word bag for the trajectory.
The similarity of the two word-bags is the textual similarity
of the two trajectories. The spatial-temporal similarities are
considered together. Generally, the minimum distance of any
two aligned points (i.e., min{d1(p1,i−1, p2,j−1), d1(p1,i−1,
p2,j), d1(p1,i, p2,j−1)}) and the distance of anchor points d1
(p2,i, p2,j) are computed respectively. Then, the distance of
the two trajectories is the maximum one. Specially, for the
starting point (e.g. p1,i(i=1) of t1), we compute the maximum
distance between the points on t2 with the starting point
(p1,1) on t1, denoted max{d1(p1,1, p2,j), d1(p1,1, p2,j−1)} (j ∈
[2,m]). We do the same calculation for the starting point p2,1
on t2. The temporal-spatial distance dist1,2(t1, t2)=d1(p1,i,
p2,j) (i ∈ [2, n], j ∈ [2,m]) is defined as following,
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d1(p1,i, p2,j) = max


d1(p1,i, p2,j)

min

 d1(p1,i−1, p2,j)
d1(p1,i, p2,j−1)
d1(p1,i−1, p2,j−1)

(9)

If i = 1, j = 1, the distance is d1(p1,1, p2,1).
If i = 1, j ∈ [2,m], the distance equals max{d1(p1,i, p2,j),
d1(p1,i, p2,j−1)}. If i ∈ [2, n], j = 1, the distance
is max{d1(p1,i, p2,j), d1(p1,i−1, p2,j)}. Equation (9) is the
famous discrete Fréchet Distance [12], where the temporal
similarity is implied in the equation. In order to support
approximate textual similarity, edit distance is employed in
MMTD.
Definition 5 (MMTD): Given two trajectories t1 = {p1,1,

p1,2, . . . , p1,n}, t2={p2,1, p2,2, . . . , p2,n},

MMTD(t1, t2) = 1− (ω1,2, ω3)
(
dist1,2(t1, t2)
dist3(t1, t2)

)
(10)

where dist1,2 is the discrete Fréchet Distance, and the textual
distance dist3 is the Edit distance of the two words bags of
the two trajectories.

B. SUMTD: TRAJECTORY SUM OF MINIMUM DISTANCE
MMTD is sensitive to outliers since MMTD is the distance
between the two points. The average distance will help reduc-
ing the influence of outliers. Therefore, we propose SUMTD.
Definition 6 (SUMTD): Given two trajectories t1={p1,1,

p1,2, . . . , p1,n}, t2={p2,1, p2,2, . . . , p2,n}, SUMTD between
t1, t2 is

SUMTD(t1, t2) = 1− (ω1,2, ω3)
(
dist1,2(t1, t2)
dist3(t1, t2)

)
(11)

dist3 is the Edit Distance of the two word-bags for the
two trajectories. The spatial-temporal distance dist1,2(t1,
t2)=d′1(p1,i, p2,j) (i ∈ [2, n], j ∈ [2,m]) is computed by
Equation (12),

d ′1(p1,i, p2,j)=d1(p1,i, p2,j)+min


d1(p1,i−1, p2,j)
d1(p1,i, p2,j−1)
d1(p1,i−1, p2,j−1)

(12)

If i = 1, j = 1, the distance is d1(p1,1, p2,1). If i = 1,
j ∈[2,m], the distance equals to d1(p1,i, p2,j)+d1(p1,i, p2,j−1).
If i ∈[2, n], j = 1, the distance is d1(p1,i, p2,j) +

TABLE 2. The spatial-temporal-textual similarity rank by different
measurement.

d1(p1,i−1, p2,j). Generally, the minimum distance of any two
aligned points min{d1(p1,i−1, p2,j−1), d1 (p1,i−1, p2,j), d1
(p1,i, p2,j−1)} and the distance of anchor points d1 (p2,i, p2,j)
are computed respectively. Then, the distance of two trajec-
tories is the sum of the two distances obtained earlier. Similar
to MMTD, the spatial-temporal similarities are considered
together.

C. A TOY EXAMPLE
We continue to use the example in Figure 1 and Figure 2 as
the toy example to elaborate MINTD, MMTD, SUMTD. The
weight vector is (0.4,0.3,0.3) in Equation (1) and (0.5,0.5) in
Equations (10,11). Table 2 shows that the spatial-temporal-
textual similarity rank of any two trajectories among {t1, t2,
t3}. From Table 2, we observe that the lists of similarity
rank are consistent though the similarity measurements are
different. Specifically, t1 and t3 are the most similar. t2 and t3
are the least similar.

VI. CORRELATION ANALYSIS
Most of the existing work assume that the spatial similarity,
the temporal similarity and the textual similarity are indepen-
dent. However, to the best of our knowledge, none of the work
gives a strict proof. In this section, we evaluate the relevance
of the three similarities using a real dataset by the correlation
analysis in statistics.

A. DATASETS
We use a real dataset scrawled from Foursquare [21], [22].
The real dataset obtains 49,062 users in New York City
(NYC) and 31,544 users in Los Angeles (LA). Each check-
in record contains users’ ID, venues with the geo-locations,
check-in timestamp, and tips. We align each user’s check-in
points by the timestamps, such that a user check-in trajectory
is formed. The textual set for each venue is generated by the

MINTD(t1, t2) = (ω1, ω2, ω3) ·



1
2


∑

p1,i∈t1
minp2,j∈t2

{
d1(p1,i, p2,j)

}
|t1|

+

∑
p2,j∈t2

minp1,i∈t1
{
d1(p1,i, p2,j)

}
|t2|


1
2


∑

p1,i∈t1
minp2,j∈t2

{
d2(p1,i, p2,j)

}
|t1|

+

∑
p2,j∈t2

minp1,i∈t1
{
d2(p1,i, p2,j)

}
|t2|


1
2


∑

p1,i∈t1
minp2,j∈t2

{
d3(p1,i, p2,j)

}
|t1|

+

∑
p2,j∈t2

minp1,i∈t1
{
d3(p1,i, p2,j)

}
|t2|




(8)
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FIGURE 3. Trajectory time distribution (LA).

FIGURE 4. Trajectory time distribution (NYC).

TABLE 3. Statistics of real data sets.

keywords in the tips associatedwith the venue. The number of
textual keywords associated with a venue is between [0,18].
We select 3 texts randomly for each check-in venue as the
textual attributes.

The variation of the timestamps difference of any two
consecutive checked-in venues is large. Figure 3 and
Figure 4 show the timestamps difference distribution. From
the two figures, we can see almost 50% of the check-in
timestamps difference are less than 14 or 15 days. Thus,
we divide the trajectories by two weeks (i.e. 14 days). Then,
the trajectories, whose length is greater than 2, are left. The
statistical information of the trajectories before the time divi-
sion and after the time division is shown in Table 3.

B. CORRELATION
1,200 trajectories are selected by the simple random sam-
ple. The spatial-temporal similarity and the textual similarity

TABLE 4. Spatial-temporal and textual correlation analysis(MMTD).

between any two trajectories are computed as MMTD and
SUMTD (i.e., Definition 5 andDefinition 6) respectively. The
correlation matrix is generated from SPSS through Kendall
test in correlation analysis. The Kendall test [23] is a non-
parameter hypothesis test that uses the calculated correlation
coefficients to test the statistical dependence of two variables.
The Kendall correlation coefficient ranges from -1 to 1.When
the absolute value of τ is closer to 1, the correlation of the two
variables is strong. When the absolute value of τ is closer
to 0, the two random variables are independent. We take the
MMTD as an example. The result of spatial-temporal and
textual correlation of MMTD is shown in Table 4. From
Table 4, we observe that the correlation coefficient is 0.30,
so the spatial-temporal similarity and the textual similarity
are weak correlation.

In order to determine whether the relevance of the samples
can represent the relevance of the population, we performed
the hypothesis test with the confidence level a=0.01.

Proof:
H0: There is no significant effect between the spatial-

temporal similarity and the text similarity.
H1: There is a significant effect between the spatial-

temporal similarity and the text similarity.
In Table 4, the two-sided test Sig= 0.00<0.01. Therefore,

we reject the hypothesis H0. In other words, the spatial-
temporal similarity and the text similarity have a significant
effect.

Proof done.

VII. EXPERIMENTS
A. SETTINGS
In the experimental evaluation, we use a simulation dataset
and the real dataset in Section VI. The simulation dataset is
generated by the well-known Thomas Brinkhoff Generator.
Each data includes an object status, an object id, a timestamp,
and a location. A set of keywords is assigned to a simulated
object based on the text distribution of the real data set.
We generated 1,290 trajectories including 15,181 points. The
weights of spatial-temporal similarity and textual similarity
are (0.5, 0.5) in default.

We implement all the experiments using Java on a PC
with an Intel Core i7-7500U 2.90GHz processor. MINTD,
MMTD, SUMTD and MSM are compared. MINTD, MMTD
and SUMTD are our proposed methods. MSM is revised
from [5] with a specific distance instead of the number of
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FIGURE 5. Addition of interpolated points.

matching pairs. Finally, we use the classical clustering tech-
niques to visualize the similarity of trajectories.

B. SIMULATED EXPERIMENTS
We choose 10 trajectories randomly from 1,290 simulated tra-
jectories as the seed trajectories. 50 trajectories are generated
by the trajectory transformation approach in [5] with the dif-
ferent transformed rates and the transformed type (e.g. addi-
tion of interpolated points, addition of random points, points
removing, points order change, and points replacement). For
example, if we remove points from the seed trajectory with 10
points and r = 0.2, 2 points will be removed from the seed tra-
jectory. Comparing the similarity between the seed trajectory
and the transformed trajectory is for evaluating the impact of
every change on the different similarity measurement.

Figure 5 shows the average similarity change trend when
r interpolated points are added. We randomly select two
consecutive points from the seed trajectory and use the linear
interpolation method to add a new point. The texts of the
new point take the intersection of the keywords from the
two consecutive points. After inserting interpolated points,
we expect that the similarity of two trajectories are high
and the similarity changes little with r increasing. From
Figure 5, we observe that the similarity scores of MINTD,
MMTD, SUMTD decrease, while the similarity score of
MSM remains stable as the transformed rate increases. Since
MSM uses the most matched points to compute the dis-
tances without time alignment, inserting interpolated points
to the trajectories has no effect on MSM. However, since
MSM requires the exact match for calculating text similarity,
the similarity scores are lowest among the four methods. The
similarity scores of MMTD, SUMTD and MINTD decrease
resulting from the increase of the spatial distances. For the
three measurements, the textual similarities between the seed
trajectory and the transformed trajectory doesn’t change since
the whole word bags for two trajectories are same. The spatial
distances increase as the result of the increased distance
between the interpolated points and the points on the seed tra-
jectories. Comparing with MMTD and SUMTD, the change
of similarity scores of MINTD is most obvious. That is

FIGURE 6. Addition of random points.

because MMTD and SUMTD consider the time alignment,
only the distances between aligned points and the anchor
points contribute to the final similarity. However, MINTD is
determined by the distances between any two points on the
trajectories. The distance from the transformed trajectory to
the seed trajectory increase obviously.

Figure 6 shows the changes of the average trajectory simi-
larity with random points being added into the seed trajectory.
The locations of new points are generated from the spatial
range and the temporal range randomly. Three texts of the
new points are randomly selected from the keyword’s vocabu-
lary expect the keywords set on the trajectory. From Figure 6,
the trajectory similarities of MMTD, SUMTD and MINTD
decrease obviously with r increasing. SUMTD is most sen-
sitive to the random points insertion. The change trend of
MMTD is more sensitive than the one of MINTD since
MMTD is determined by the maximum one between anchors
distance and aligned points distances. However, MINTD uses
the best cases among any points pair. The large distances
generated by the random points to the seed trajectories are
ignored. The similarity scores of MSM are smallest among
all the measurements. Meanwhile, MSM fails to respond to
similarity change with the random points being inserted.

Figure 7 shows the changes of the average trajectory simi-
larity with removing points randomly from the seed trajecto-
ries. Removing points indicate that both the trajectory length
and the trajectory shape change. Thus, the changes on the
similarity should be distinct. Figure 7 shows the trajectory
similarity decreases as r increasing. When r reduces to 1,
the similarity decreases to 0, since there is no points on
the transformed trajectory. When r ≤ 0.8, the curve of
MINTD and MSM decrease smoothly. In contrast, SUMTD
and MMTD change sharply. The reason is the same as the
previous analysis. Both MSM and MINTD use the distances
between any two points, which slow the reducing trend. With
the points removing, the aligned points pairs and the anchors
pairs change. Thus, SUMTD and MMTD grasp the change.
However, the changes of SUMTD is slightly obvious than the
one of MMTD.

In Figure 8, we verify the four measurements under the
points order change. The timestamps of the new trajectories
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FIGURE 7. Removing points.

FIGURE 8. Points order change.

are generated through switching the timestamps of several
points from the seed trajectories randomly, while the geo-
graphic locations and the keywords remain same. With points
order change, the trajectory shapes change as well. From
Figure 8, we observe that MINTD and MSM don’t change
with different transformed rates. That is because both of them
ignore the time alignment. Furthermore, MINTD regards
two trajectories are same (i.e., the similarity scores are 1).
Since MINTD separates the relation between the location,
the keyword and the timestamp on a point, the best similarity
is counted. Thus, points order changes have no effect on
MINTD, which is not practical. Though MSM also concerns
the best case, the requirement for keywords exact match
lowers down the similarity score. The curve of MSM is below
the other three methods. The similarity scores of SUMTD and
MMTD are similar when r is less than 0.6. SUMTD shows
better performance than MMTD when r becomes large.
In Figure 9, we replace the points in the seed trajectorywith

random points into a new trajectory. In this case, the trajectory
length remains the same, while both the trajectory shape
and the location changes. Comparing the curves of MSM
in Figure 5 to Figure 9, the similarities of MSM almost are
same. That indicates that MSM hardly perceives any changes
on the seed trajectory. The similarities of MINTD, SUMTD
and MMTD decrease linearly with r increasing. SUMTD
outperforms the other two measurements. In Figure 6 and

FIGURE 9. Points replacement.

Figure 9, the new trajectories both contain randompoints. The
difference between them is the trajectory length. We can see
that SUMTD changes more obviously in Figure 6. SUMTD
is the distance sum between all points pairs after repeating
some points. Hence, SUMTD is more sensitive on trajectory
length. However, the similarity scores of MMTD in both
figures are similar. We can see that MMTD changes a lot
in Figure 9. That is because MMTD is determined by the dis-
tance between two points. The new random points deteriorate
the similarity score of MMTD.

C. VISUALIZATION WITH THE SIMULATED DATA
As we know, the k-medoids [24] algorithm is immune to
outliers since it improved from k-means and chooses the
objects in clusters as the center. Hence, we choose the k-
medoids to visualize the effectiveness of the similarity mea-
surements with the 1,290 simulated trajectories. We use the
silhouette coefficient [24] to specify the parameter k , which
is widely used especially when the ground truth of a dataset
is not available. Figure 10 and Figure 11 show the cluster
result of the simulated data. One color represents one cluster.
By default, k = 3.

In Figure 10, we only consider the spatial-temporal simi-
larity. The weights are set asw1,2 = 1 andw3 = 0 in SUMTD
and MMTD, and the weights are set as w1 = w2 = 0.5 and
w3 = 0 in MINTD and MSM. Since the spatial-temporal
locality, the objects with large spatial-temporal similarities
tend to be clustered together. We observe that the cluster are
similar in SUMTD and MMTD, which shows the explicit
spatial distribution. However, the clusters in MINTD and
MSM are not distinguishable.

Figure 11 shows the clusters results after the addition of
the text similarity. We observe that the clusters generated
by MINTD and MSM are similar in Figure 10 (a) (d) and
Figure 11 (a) (d). SinceMINTD andMSMseparate the spatial
similarity computing, the temporal similarity computing and
the textual similarity computing, the points which contributes
to the final similarity are not the same pairs. As a result,
the clusters in MINTD and the ones in MSM distribute over
the whole space.
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FIGURE 10. Trajectory spatial-temporal clustering (k=3). (a) MINTD.
(b) SUMTD. (c) MMTD. (d) MSM.

FIGURE 11. Trajectory spatial-temporal-textual clustering (k=3).
(a) MINTD. (b) SUMTD. (c) MMTD. (d) MSM.

D. VISUALIZATION WITH THE REAL DATA
In this section, we apply k-medoids with the real dataset
with k = 3. We select two trajectory sets from LA. The
trajectory length in one set is 3, and the one in the other set

FIGURE 12. Clusters of trajectories with length equal to 3. (a) SUMTD.
(b) MMTD.

is between 3 to 15. Similar to the results in Figure 10(a)(d)
and Figure 11(a)(d), MINTD and MSM is weak distinguish.
Hence, in this section, we only visualize the results ofMMTD
and SUMTD. Figure 12 and Figure 13 show the clustering
results. Each color (i.e., green, red, yellow) represents a clus-
ter. In order to evaluate similarity distribution of the clusters,
we also tested the discrete coefficient.

Figure 12(a) and Figure 12 (b) show the clustering results
of trajectories with equal length (i.e. 3) under SUMTD and
MMTD, respectively. We observe that the distribution of
clusters is a little different. The right sides of Figure 12(a)
and Figure 12(b) are very sparse and almost in green and
red. In the left side, the distribution of the green, red and
yellow clusters of Figure 12(a) are more uniform, while
in Figure 12 (b), the distribution of green clusters accounts
for a large proportion. The average discrete coefficients of
SUMTD andMMTD are the same (i.e., 0.72), though it seems
that the clusters in Figure 12(a) is more compact than the ones
in Figure 12 (b). The same discrete coefficients is because
the trajectories in the green clusters in Figure 12(a) are more
dispersed.

Figure 13 (a) and Figure 13(b) show the clustering results
of SUMTD and MMTD with trajectory length from 3 to
15. We observe that the distribution of clusters is similar,
especially for the green and yellow clusters. The red cluster
in Figure 13(a) is sparser than the red cluster in Figure 13(b).
The average discrete coefficients of SUMTD and MMTD are
0.76 and 0.7 respectively. MMTD shows better stability than
SUMTD when the length of the trajectories varies.
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FIGURE 13. Clusters of trajectories with length between 3 to 15.
(a) SUMTD. (b) MMTD.

FIGURE 14. The performance test of trajectory similarity methods.

E. EFFICIENCY
In this section, we tested the performance with varying tra-
jectory size. The trajectory size is the points number in a
trajectory.We increase the trajectory size from [3, 13] to [190,
200]. Taking [3, 13] as example, it means the minimum
number of points in a trajectory is 3 and the maximum one
is 13. Figure 14 shows the average running time of MMTD
and SUMTD. We observe that the running time increases
when the average trajectory size (points number) increases,
which mainly results from the spatial-temporal distance com-
putation. The running time of the two methods are almost
same, since both of them require traversing the whole trajec-
tory. However, even if the trajectory size becomes 190-200,
the average running time is only 200ms.

VIII. CONCLUSION
The booming social media enrich the trajectories with multi-
attributions including spatial information, temporal infor-
mation and other external information. However, most of
existing works only focus on the similarity measures on
the spatial-temporal feature. In this paper, we proposed
two trajectory similarity measurements that measure the
spatial-temporal-textual trajectory similarity at the same
time. MMTD evaluates the worst of the best cases of tra-
jectory, while SUMTD is the average similarity of trajecto-
ries. Both of MMTD and SUMTD resolve the problem of
trajectory time alignment and support approximate similar-
ity for multi-attributes trajectories. After the series of the
experiments, SUMTD is most effective to various trajectory
changes. We also prove that the temporal-spatial similarity
and the semantic textual similarity are weak correlation. In
our future work, we will work on the new similarity measure-
ment on the road network employingmulti-source data fusion
and supporting a hierarchal semantics among trajectories into
a city. We also will apply our proposed measurements in
trajectory recommendation and trajectory mining.
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