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ABSTRACT
Looking from a global perspective, the landscape of online social
networks is highly fragmented. A large number of online social net-
works have appeared, which can provide users with various types
of services. Generally, information available in these online social
networks is of diverse categories, which can be represented as het-
erogeneous social networks (HSNs) formally. Meanwhile, in such
an age of online social media, users usually participate in multiple
online social networks simultaneously, who can act as the anchors
aligning different social networks together. So multiple HSNs not
only represent information in each social network, but also fuse
information from multiple networks.
Formally, the online social networks sharing common users are
named as the aligned social networks, and these shared users are
called the anchor users. The heterogeneous information generated
by users’ social activities in the multiple aligned social networks
provides social network practitioners and researchers with the op-
portunities to study individual user’s social behaviors across multi-
ple social platforms simultaneously. This paper presents a compre-
hensive survey about the latest research works on multiple aligned
HSNs studies based on the broad learning setting, which covers
5 major research tasks, including network alignment, link predic-
tion, community detection, information diffusion and network em-
bedding respectively.
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1. INTRODUCTION
In the real world, on the same information entities, e.g., products,
movies, POIs (points-of-interest) and even human beings, a large
amount of information can actually be collected from various sources.
These sources are usually of different varieties, like Walmart vs
Amazon for commercial products; IMDB vs Rotten Tomatoes for
movies; Yelp vs Foursquare for POIs; and various online social
networks websites for social media users. Each information source
provides a specific signature of the same entity from a unique un-
derlying aspect. However, in many cases, these information sources
are usually separated from each other, and an effective fusion of
these different information sources provides an opportunity for re-
searchers and practitioners to understand the entities more compre-
hensively, which renders broad learning [93; 85; 108] an extremely
important learning task.
Broad learning introduced in [93; 85; 108] is a new type of learn-

ing task, which focuses on fusing multiple large-scale information
sources of diverse varieties together and carrying out synergistic
data mining tasks across these fused sources in one unified ana-
lytic. Fusing and mining multiple information sources of large vol-
umes and diverse varieties are the fundamental problems in big data
studies. Broad learning investigates the principles, methodologies
and algorithms for synergistic knowledge discovery across multi-
ple aligned information sources, and evaluates the corresponding
benefits. Great challenges exist in broad learning for the effective
fusion of relevant knowledge across different aligned information
sources, which depends upon not only the relatedness of these in-
formation sources, but also the target application problems to be
studied. Broad learning aims at developing general methodologies,
which will be shown to work for a diverse set of applications, while
the specific parameter settings can be learned for each application
from the training data.
In this paper, we will focus on introducing the broad learning re-
search works done based on online social media data. Nowadays,
to enjoy more social network services, people are usually involved
in multiple online social networks simultaneously, such as Face-
book, Twitter and Foursquare [104; 32]. Individuals usually have
multiple separate accounts in different social networks, and discov-
ering the correspondence between accounts of the same user (i.e.,
network alignment or user anchoring) [98; 99; 32; 91; 96; 84] will
be an interesting problem. What’s more, network alignment is also
the crucial prerequisite step for many interesting inter-network syn-
ergistic knowledge discovery applications, like (1) inter-network
link prediction/recommendation [94; 104; 86; 87; 96; 84; 25; 100;
88], (2) mutual community detection [95; 26; 97; 57; 85; 101], (3)
cross-platform information diffusion [78; 77; 103], and (4) multiple
networks synergistic embedding [83; 93]. These application tasks
are fundamental problems in social network studies, which together
with the network alignment problem will form the backbone of the
multiple social network broad learning ecosystem.
This paper will cover five strongly correlated social network re-
search problems based on broad learning:
• Network Alignment: Identifying the common users shared

by different online social networks can effectively combine
these networks together, which will also provide the oppor-
tunity to study users’ social behaviors from a more compre-
hensive perspective. Many research works have proposed
to align the online social networks together by inferring the
mappings of the shared users between different networks,
which will be introduced in a great detail in this paper.
• Link Prediction: Users’ friendship connections in different

networks have strong correlations. With the social activity
data across multiple aligned social networks, we can acquire
more knowledge about users and their personal social prefer-



ences. We will introduce the existing research works on the
social link prediction problem across multiple aligned social
sites simultaneously.

• Community Detection: Information available across multi-
ple aligned social networks provides more complete signals
revealing the social communities formed by people in the real
world. We will introduce the existing works on community
detection with knowledge fused from multiple aligned het-
erogeneous social networks as the third task.

• Information Diffusion: The formulation of multiple aligned
heterogeneous social networks provides researchers with the
opportunity to study the information diffusion process across
different social sites. The latest research papers on cross-
network information diffusion will be illustrated as well.

• Network Embedding: Information from other aligned net-
works can help refine the feature representations of users ef-
fectively. In recent years, some research papers introduce
the synergistic network embedding across aligned social net-
works, where knowledge from other external networks can
be effectively utilized in representation learning tasks.

The remainder parts of this paper will be organized as follows. We
will first provide the basic terminology definitions in Section 2.
Via the anchor links, we will introduce the inter-network meta path
concept in Section 3, which will be used in the following sections.
The network alignment research papers will be introduced in Sec-
tion 4. Inter-network link prediction and friend recommendation
will be talked about in Section 5. A detailed review about cross-
network community detection will be provided in Section 6. Broad
learning based information diffusion is introduced in Section 7 and
network embedding works are available in Section 8. Finally, we
will illustrate several potential future development directions about
broad learning and conclude this paper in Section 9.

2. TERMINOLOGY DEFINITION
Online social networks (OSNs) denote the online platforms which
allow people to build social connections with other people, who
share similar personal or career interests, backgrounds, and real-life
connections. Online social networking sites vary greatly and each
category of online social networks can provide a specific type of
featured services. To enjoy different kinds of social networks ser-
vices simultaneously, users nowadays are usually involved in many
of these online social networks aforementioned at the same time,
in each of which they will form separate social connections and
generate a large amount of social information.
Formally, the online social networks can be represented as graphs.
Besides the users, there usually exist many other types of informa-
tion entities, like posts, photos, videos and comments, generated by
users’ online social activities. Information entities in online social
networks are extensively connected, and the connections among
different types of nodes usually have different physical meanings.
The diverse nodes and connections render the online social net-
works a very complex graph structure. Meanwhile, depending on
the categories of information entities and connections involved, the
online social networks can be divided into different types, like ho-
mogeneous network, bipartite network and heterogeneous network.
To model the phenomenon that users are involved multiple net-
works, a new concept called “multiple aligned heterogeneous social
networks” [104; 32] has been proposed in recent years.
For the networks with simple structures, like the homogeneous net-
works merely involving users and friendship links, the social pat-
terns in them are usually easy to study. However, for the net-
works with complex structures, like the heterogeneous networks,

the nodes can be connected by different types of link, which will
have totally different physical meanings. One general technique
for heterogeneous network studies is “meta path” [65; 104], which
specifically depicts certain link-sequence structures connecting node
defined based on the network schema. The meta path concept can
also be extended to the multiple aligned social network scenario as
well, which can connect the node across different social networks.
Given a network G = (V, E), we can represent the set of node and
link types involved in the network as sets N and R respectively.
Based on such information, the social network concept can be for-
mally defined based on the graph concept by adding the mappings
indicating the node and link type information.

DEFINITION 1. (Social Networks): Formally, a heterogeneous
social network can be represented as G = (V, E , φ, ψ), where V ,
E are the sets of nodes and links in the network, and mappings
φ : V → N , ψ : E → R project the nodes and links to their
specific types respectively. In many cases, the mappings φ, ψ are
omitted assuming that the node and link types are known by default.

In the following parts of this paper, depending on the categories of
information involved in the online social networks, we propose to
categorize the online social networks into three groups: homoge-
neous social networks, heterogeneous social networks and aligned
heterogeneous social networks.

2.1 Homogeneous Social Network
DEFINITION 2. (Homogeneous Social Network): For a online

social network G, if there exists one single type of nodes and links
in the network (i.e., |N | = |R| = 1), then the network is called a
homogeneous social network.

Given a homogeneous social network G = (V, E) with user set
V and social relationship set E , depending on whether the links
in G are directed or undirected, the social link can denote either
the follow links or friendship links among individuals. Given an
individual user u ∈ V in an undirected friendship social network,
the set of users connected to u can be represented as the friends
of user u in the network G, denoted as Γ(u) ⊂ V = {v|v ∈
V ∧ (u, v) ∈ E}. The number of friends that user u has in the
network is also called the degree of node u, i.e., |Γ(u)|.
Meanwhile, in a directed network G, the set individuals followed
by u (i.e., Γout(u) = {v|v ∈ V ∧ (u, v) ∈ E}) are called the
set of followees of u; and the set of individuals that follow u (i.e.,
Γout(u) = {v|v ∈ V ∧ (v, u) ∈ E}) are called the set of followers
of u. The number of users who follow u is called the in-degree of u,
and the number of users followed by u is called the out-degree of u
in the network. For the users with large out-degrees, they are called
the hubs [31] in the network; while those with large in-degrees,
they are called the authorities [31] in the network.

2.2 Heterogeneous Social Network
DEFINITION 3. (Heterogeneous Social Network): For an on-

line social network G, if there exists multiple types of nodes or
links in the network (i.e., |N | > 1, or |R| > 1), then the network
is called a heterogeneous social network.

Most of the online networks in the real world may contain very
complex information involving multiple types of nodes and con-
nections. For instance, in the social networks to be studied in the
following part, they may involve users, posts, check-ins, words and
timestamps, as well as the friendship links, write links and contain
links among these nodes. Formally, such an online social network
can be defined as G = (V, E), where V denotes the set of nodes
and E represents the set of links in G. The node set V can be di-
vided into several subsets V = U ∪ P ∪ L ∪ T ∪ W involving



the user nodes, post nodes, location nodes, word nodes and times-
tamp nodes respectively. The link set E can be divided into several
subsets as well, E = Eu,u ∪ Eu,p ∪ Ep,l ∪ Ep,w ∪ Ep,t, containing
the links among users, the links between users and posts, and those
connecting posts with location checkins, words, and timestamps.
In the heterogeneous social networks, each node can be connected
with a set of nodes belonging to different categories via various
type of connections. For example, given a user u ∈ U , the set of
user node incident to u via the friend links can be represented as the
online friends of u, denoted as set {v|v ∈ U , (u, v) ∈ Eu,u}; the
set of post node incident to u via the write links can be represented
as the posts written by u, denoted as set {w|w ∈ P, (u,w) ∈
Eu,p}. The location check-in nodes, word nodes and timestamp
nodes are not directly connected to the user node, while via the post
nodes, we can also obtain the set of locations/words/timestamps
that are visited/used/active-at by user u in the network. Such in-
direct connections can be described more clearly by the meta path
concept more clearly in Section 3.

2.3 Aligned Heterogeneous Social Networks
DEFINITION 4. (Multiple Aligned Heterogeneous Networks): For-

mally, the multiple aligned heterogeneous networks involving n
networks can be defined as G = ((G(1), G(2), · · · , G(n)),

(A(1,2),A(1,3), · · · ,A(n−1,n))), where G(1), G(2), · · · , G(n) de-
note these n heterogeneous social networks and the sets A(1,2),
A(1,3), · · · ,A(n−1,n) represent the undirected anchor links align-
ing these networks respectively.
Anchor links actually refer to the mappings of information entities
shared across different sources, which correspond to the the same
information entity in the real world, e.g., users in online social net-
works, authors in different bibliographic networks, and movies in
the movie knowledge libraries.

DEFINITION 5. (Anchor Link): Given two heterogeneous net-
works G(i) and G(j) which share some common information en-
tities, the set of anchor links connecting G(i) and G(j) can be
represented as set A(i,j) = {(u(i)

m , u
(j)
n )|u(i)

m ∈ V(i) ∧ u(j)
n ∈

V(j) ∧ u(i)
m , u

(j)
n denote the same information entity}.

The anchor links depict a transitive relationship among the infor-
mation entities across different networks. Given 3 information en-
tities u(i)

m , u(j)
n , u(k)

o from networks G(i), G(j) and G(k) respec-
tively, if u(i)

m , u(j)
n are connected by an anchor link and u(j)

n , u(k)
o

are connected by another anchor link, then the user pair u(i)
m , u(k)

o

will be connected by an anchor link by default. For more detailed
definitions about other related terms, like anchor users, non-anchor
users, full alignment, partial alignment and non-alignment, please
refer to [104].

3. META PATH
To deal with the social networks, especially the heterogeneous so-
cial networks, a very useful technique is meta paths [65; 104]. Meta
path is a concept defined based on the network schema, outlining
the connections among nodes belonging to different categories. For
the nodes which are not directly connected, their relationships can
be depicted with the meta path concept. In this part, we will define
the meta path concept, and introduce a set of meta paths within and
across real-world heterogeneous social networks respectively.

3.1 Network Schema
Given a network G = (V, E), we can define its network schema to
describe the categories of nodes and links involved in G.

DEFINITION 6. (Network Schama): Formally, the schema of
network G can be denoted as SG = (N ,R), where N and R
are the sets of node type and link type in the network respectively.

Network schema provides a meta level description of networks.
Meanwhile, if a network G can be outlined by the network schema
SG, G is also called a network instance of the network schema.
For a given node u ∈ V , we can represent its corresponding node
type as φ(u) = N ∈ N , and call u is an instance of node type N ,
which can also be denoted as u ∈ N for simplicity. Similarly, for
a link (u, v), we can denotes its link type as ψ((u, v)) = R ∈ R,
or (u, v) ∈ R for short. The inverse relation R−1 denotes a new
link type with reversed direction. Generally,R is not equal toR−1,
unless R is symmetric.

3.2 Meta Path in Heterogeneous Social Net-
works

Meta path is a concept defined based on the network schema denot-
ing the correlation of nodes based on the heterogeneous informa-
tion (i.e., different types of nodes and links) in the networks.

DEFINITION 7. (Meta Path): A meta path P defined based on
the network schema SG = (N ,R) can be represented as P =

N1
R1−−→ N2

R2−−→ · · ·Nk−1

Rk−1−−−−→ Nk, where Ni ∈ N , i ∈
{1, 2, · · · , k} and Ri ∈ R, i ∈ {1, 2, · · · , k − 1}.
Furthermore, depending on the categories of node and link types
involved in the meta path, we can specify the meta path concept
into several more refined groups, like homogeneous meta path and
heterogeneous meta path, or social meta path and other meta paths.

DEFINITION 8. (Homogeneous/Heterogeneous Meta Path): Let

P = N1
R1−−→ N2

R2−−→ · · ·Nk−1

Rk−1−−−−→ Nk denote a meta path
defined based on the network schema SG = (N ,R). If all the
node types and link types involved in P are of the same category,
P is called a homogeneous meta path; otherwise, P is called a
heterogeneous meta path.

The meta paths can connect any kinds of node type pairs, and
specifically, for the meta paths starting and ending with the user
node types, those meta paths are called the social meta paths.

DEFINITION 9. (Social Meta Path): Let P = N1
R1−−→ N2

R2−−→
· · ·Nk−1

Rk−1−−−−→ Nk denote a meta path defined based on network
schema SG = (N ,R). If the starting and ending node types N1

andNk are both the user node type, P is called a social meta path.

Users are usually the focus in social network studies, and the social
meta paths are frequently used in both research and real-world ap-
plications and services. The number of path segments in the meta
path is called the meta path length. For instance, the length of meta

path P = N1
R1−−→ N2

R2−−→ · · ·Nk−1

Rk−1−−−−→ Nk is k − 1. Meta
paths can also been concatenated together with the meta path com-
position operator.

DEFINITION 10. (Meta Path Composition): Meta paths P 1 =

N1
1

R1
1−−→ N1

2

R1
2−−→ · · ·N1

k−1

R1
k−1−−−−→ N1

k , and P 2 = N2
1

R2
1−−→

N2
2

R2
2−−→ · · ·N2

l−1

R2
l−1−−−→ N1

l can be concatenated together to

form a longer meta path P = P 1 ◦ P 2 = N1
1

R1
1−−→ · · ·

R1
k−1−−−−→

N1
k

R2
1−−→ N2

2

R2
2−−→ · · ·N2

l−1

R2
l−1−−−→ N1

l , if the ending node type of
P 1 is the same as the starting node type of P 2, i.e.,N1

k = N2
1 . The

new composed meta path is of length k + l − 2.

Meta path P = N1
R1−−→ N2

R2−−→ · · ·Nk−1

Rk−1−−−−→ Nk can also
been treated as the concatenation of simple meta pathsN1

R1−−→ N2,

N2
R2−−→ N3, · · · , Nk−1

Rk−1−−−−→ Nk, which can be represented as
P = R1 ◦R2 ◦ · · · ◦Rk−1 ◦Rk.



3.3 Meta Path across Aligned Heterogeneous
Social Networks

Besides the meta paths within one single heterogeneous network,
the meta paths can also be defined across multiple aligned hetero-
geneous networks via the anchor meta paths.

DEFINITION 11. (Anchor Meta Path): Let G(1) and G(2) be
two heterogeneous networks sharing the common anchor informa-
tion entity of types N (1) ∈ N (1) and N (2) ∈ N (2) respectively.
The anchor meta path between the schemas of networks G(1) and
G(2) can be represented as Φ = N (1) Anchor←−−−−→ N (2) of length 1.

The anchor meta path is the simplest meta path across aligned net-
works, and a set of inter-network meta paths can be defined based
on the intra-network meta paths and the anchor meta path.

DEFINITION 12. (Inter-Network Meta Path): A meta path Ψ =

N1
R1−−→ N2

R2−−→ · · ·Nk−1

Rk−1−−−−→ Nk is called an inter-network
meta path between networksG(1) andG(2) iff ∃m ∈ {1, 2, · · · , k−
1}, Rm = Anchor.

The inter-network meta paths can be viewed as a composition of
intra-network meta paths and the anchor meta path via the user
node types. An inter-network meta path can be a meta path start-
ing with an anchor meta path followed by the intra-network meta
paths, or those with anchor meta paths in the middle. Here, we in-
troduce several categories inter-network meta paths involving the
anchor meta paths at different positions as defined in [104]:
• Ψ(G(1), G(2)) = Φ(G(1), G(2)), which denotes the simplest

inter-network meta path composed of the anchor meta path
only between networks G(1) and G(2).
• Ψ(G(1), G(2)) = Φ(G(1), G(2)) ◦ P (G(2)), which denotes

the inter-network meta path starting with an anchor meta
path and followed by the intra-network social meta path in
network G(2).
• Ψ(G(1), G(2)) = P (G(1)) ◦ Φ(G(1), G(2)), which denotes

the inter-network meta path starting with the intra-network
social meta path in network G(1) followed by an anchor
meta path between networks G(1) and G(2).
• Ψ(G(1), G(2)) = P (G(1))◦Φ(G(1), G(2))◦P (G(2)), which

denotes the inter-network meta path starting and ending with
the intra-network social meta path in networksG(1) andG(2)

respectively connected by an anchor meta path between net-
works G(1) and G(2).

These meta path concepts introduced in this section will be widely
used in various social network learning tasks to be introduced later.

4. NETWORK ALIGNMENT
Network alignment is an important research problem and dozens of
papers have been published on this topic in the past decades. De-
pending on specific disciplines, the studied networks can be social
networks in data mining [98; 99; 32; 91; 96; 84] protein-protein
interaction (PPI) networks and gene regulatory networks in bioin-
formatics [27; 60; 38; 61], chemical compound in chemistry [63],
data schemas in data warehouse [45], ontology in web semantics
[14], graph matching in combinatorial mathematics [44], as well as
graphs in computer vision [11; 6].
In bioinformatics, the network alignment problem aims at predict-
ing the best mapping between two biological networks based on
the similarity of the molecules and their interaction patterns. By
studying the cross-species variations of biological networks, net-
work alignment problem can be applied to predict conserved func-
tional modules [58] and infer the functions of proteins [50]. Graem-
lin [17] conducts pairwise network alignment by maximizing an

objective function based on a set of learned parameters. Some
works have been done on aligning multiple network in bioinformat-
ics. IsoRank proposed in [62] can align multiple networks greedily
based on the pairwise node similarity scores calculated with spec-
tral graph theory. IsoRankN [38] further extends IsoRank model by
exploiting a spectral clustering scheme in the framework.
In recent years, with rapid development of online social networks,
researchers’ attention starts to shift to the alignment of social net-
works. Enlightened by the homogeneous network alignment method
in [70], Koutra et al. [35] propose to align two bipartite graphs with
a fast alignment algorithm. Zafarani et al. [76] propose to match
users across social networks based on various node attributes, e.g.,
username, typing patterns and language patterns etc. Kong et al.
formulate the heterogeneous social network alignment problem as
an anchor link prediction problem. A two-step supervised network
alignment method MNA is proposed in [32] to infer potential an-
chor links across networks with heterogeneous information in the
networks. However, social networks in the real world are mostly
partially aligned actually and lots of users are not anchor users.
Zhang et al. have proposed a partial network alignment method
specifically in [91].
In the social network alignment model building, the anchor links
are very expensive to label manually, and achieving a large-sized
anchor link training set can be extremely challenging. In [96],
Zhang et al. propose to study the network alignment problem based
on the PU (Positive and Unlabeled) learning setting instead, where
the model is built based on a small amount of positive set and a
large unlabeled set. Furthermore, in the case when no training data
is available, via inferring the potential anchor user mappings across
networks, Zhang et al. have introduced an unsupervised network
alignment models for multiple (more than 2) social networks in
[98] and an unsupervised network concurrent alignment model via
multiple shared information entities simultaneously in [99].
Next, we will introduce the social network alignment methods based
on the pairwise and global alignment settings respectively.

4.1 Pairwise Unsupervised Network Alignment
In this part, we will study the network alignment problem based
on unsupervised learning setting, which needs no labeled training
data. Given two heterogeneous online social networks, which can
be represented as G(1) = (V(1), E(1)) and G(2) = (V(2), E(2))
respectively, the unsupervised network alignment problem aims at
inferring the anchor links between networks G(1) and G(2). Let
U (1) ⊂ V(1) and U (2) ⊂ V(2) be the user set in these two networks
respectively, we can represent the set of potential anchor links be-
tween networksG(1) andG(2) asA = U (1)×U (2). In the unsuper-
vised network alignment problem, among all the potential anchor
links in set A, we want to infer which one exists in the real world.
Given two homogeneous networks G(1) and G(2), mapping the
nodes between them is an extremely challenging task, which is also
called the graph isomorphism problem [54; 18]. The graph isomor-
phism has been shown to be NP, but it is still not known whether it
also belongs to P or NP-complete yet. So far, no efficient algorithm
exists that can address the problem in polynomial time. In this
part, we will introduce several heuristics based methods to solve
the pairwise homogeneous network alignment problem.

4.1.1 Heuristics based Network Alignment Model
The information generated by users’ online social activities can
indicate their personal characteristics. The features introduced in
the previous subsection, like ECN, EJC and EAA based on social
connection information, similarity/distance measures based on lo-
cation checkin information, temporal activity closeness, and text
word usage similarity can all be used as the predictors indicating



whether the cross-network user pairs are the same user or not. Be-
sides these measures, in this part, we will introduce a category new
measures, Relative Centrality Difference (RCD), which can also be
applied to solve the unsupervised network alignment problem.
The centrality concept can denote the importance of users in the
online social networks. Here, we assume that important users in
one social network (like celebrities, movie stars and politicians)
will be important as well in other networks. Based on such an
assumption, the centrality of users in different networks can be an
important signal for inferring the anchor links across networks.

DEFINITION 13. (Relative Centrality Difference): Given two
users u(1)

i , u(2)
j from networksG(1) andG(2) respectively, letC(u

(1)
i )

andC(u
(2)
j ) denote the centrality scores of the users, we can define

the relative centrality difference (RCD) as

RCD(u
(1)
i , u

(2)
j ) =

1 +
|C(u

(1)
i )− C(u

(2)
j )|(

C(u
(1)
i ) + C(u

(2)
j )
)
/2

−1

. (1)

Depending on the centrality measures applied, different types of
relative centrality difference measures can be defined. For instance,
if we use node degree as the centrality measure, the relative degree
difference can be represented as

RDD(u
(1)
i , u

(2)
j ) =

1 +
|D(u

(1)
i )−D(u

(2)
j )|(

D(u
(1)
i ) +D(u

(2)
j )
)
/2

−1

. (2)

Meanwhile, if the PageRank scores of the nodes are used to define
their centrality, we can represent the relative centrality difference
measure as

RCD(u
(1)
i , u

(2)
j ) =

1 +
|S(u(1)

i )− S(u(2)
j )|(

S(u
(1)
i ) + S(u

(2)
j )
)
/2

−1

. (3)

In the above equations,D(u) and S(u) denote the node degree and
page rank score of node u within each network respectively.

4.1.2 IsoRank
Model IsoRank [62] initially proposed to align the biomedical net-
works, like protein protein interaction (PPI) networks and gene ex-
pression networks, can be used to solve the unsupervised social
network alignment problem as well. The IsoRank algorithm has
two stages. It first associates a score with each possible anchor
links between nodes of the two networks. For instance, we can
denote r(u(1)

i , u
(2)
j ) as the reliability score of an potential anchor

link (u
(1)
i , u

(2)
j ) between the networks G(1) and G(2), and all such

scores can be organized into a vector r of length |U (1)| × |U (2)|.
In the second stage of IsoRank, it constructs the mapping for the
networks by extracting from r.

DEFINITION 14. (Reliability Score): The reliability score
r(u

(1)
i , u

(2)
j ) of anchor link (u

(1)
i , u

(2)
j ) is highly correlated with

the support provided by the mapping scores of the neighborhoods
of users u(1)

i and u(2)
j . Therefore, we can define r(u(1)

i , u
(2)
j ) as

r(u
(1)
i , u

(2)
j ) (4)

=
∑

u
(1)
m ∈Γ(u

(1)
i

)

∑
u

(2)
n ∈Γ(u

(2)
i

)

1

|Γ(u
(1)
i )||Γ(u

(2)
j )|

r(u
(1)
m , u

(2)
n ), (5)

where sets Γ(u
(1)
i ) and Γ(u

(2)
i ) represent the neighborhoods of

users u(1)
i and u(1)

i respectively in networks G(1) and G(2).

If the networks are weighted, and all the intra-network connections
like (u

(1)
i , u

(1)
m ) will be associated with a weight w(u

(1)
i , u

(1)
m ),

we can represented the reliability measure of r(u(1)
i , u

(2)
j ) in the

weighted network as

r(u
(1)
i , u

(2)
j ) =

∑
u

(1)
m ∈Γ(u

(1)
i

)

∑
u

(2)
n ∈Γ(u

(2)
i

)

w(u
(1)
i , u

(2)
j )r(u

(1)
m , u

(2)
n ), (6)

where the weight term

w(u
(1)
i , u

(2)
j ) (7)

=
w(u

(1)
i , u

(1)
m )w(u

(2)
j , u

(2)
n )∑

u
(1)
p ∈Γ(u

(1)
i

)
w(u

(1)
i , u

(1)
p )

∑
u

(2)
q ∈Γ(u

(2)
i

)
w(u

(2)
j , u

(2)
q

. (8)

As we can see, Equation 4 is a special case of Equation 6 with
link weight w(u

(1)
i , u

(1)
j ) = 1 for u(1)

i ∈ U (1) and u(2)
j ∈ U (2).

Equation 4 can also be rewritten with linear algebra

r = Ar, (9)

where matrix A ∈ R|U
(1)||U(2)|×|U(1)||U(2)| with entry

A
(
(i, j), (p, q)

)
(10)

=


1

|Γ(u
(1)
i

)||Γ(u
(2)
j

)|
, if (u

(1)
i , u

(1)
p ) ∈ E(1), (u

(2)
j , u

(2)
q ) ∈ E(2),

0, otherwise.
(11)

The matrix A is of dimension |U (1)||U (2)|×|U (1)||U (2)|, where the
row and column indexes correspond to different potential anchor
links across the networks. The entry A

(
(i, j), (p, q)

)
corresponds

the anchor links (u
(1)
i , u

(2)
j ) and (u

(1)
p , u

(2)
q ). As we can see, the

above equation denotes a random walk across the graphs G(1) and
G(2) via the social links and anchor links in them. The solution to
the above equation denotes the principal eigenvector of the matrix
A corresponding to the eigenvalue 1. For more information about
the random walk model, please refer to [62].

4.1.3 Matrix Inference based Network Alignment
Formally, given a homogeneous network G(1), its structure can be
organized as the adjacency matrix AG(1) ∈ R|U

(1)|×|U(1)|. If
network G(1) is unweighted, then matrix AG(1) will be a binary
matrix and entry AG(1)(i, p) = 1 (or AG(1)(u

(1)
i , u

(1)
p ) = 1) iff

the correspond social link (u
(1)
i , u

(1)
p ) exists. In the case that the

network is weighted, the entries like AG(1)(i, p) = 1 denotes the
weight of link (u

(1)
i , u

(1)
p ) and 0 if (u

(1)
i , u

(1)
p ) doesn’t exist. In

a similar way, we can also represent the social adjacency matrix
AG(2) for network G(2) as well.
The network alignment problem aims at inferring an one-to-one
node mapping function, that can project nodes from one network
to the other networks. For instance, we can denote the mapping
between networks G(1) to G(2) as f : U (1) → U (2). Via the map-
ping f , besides the nodes, the network structure can be projected
across networks as well. For instance, given a social connection
(u

(1)
i , u

(1)
p ) inG(1), we can represent its corresponding connection

in G(2) as (f(u
(1)
i ), f(u

(1)
p )).

Via the mapping f , we can denote the network structure differences
between G(1) and G(2) as the summation of the link projection
difference between them

L(G
(1)
, G

(2)
, f) = (12)∑

u
(1)
i
∈U(1)

∑
u

(1)
p ∈U(1)

(
A
G(1) (u

(1)
i , u

(1)
p )− A

G(1) (f(u
(1)
i ), f(u

(1)
p ))

)2
.

(13)
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Figure 1: An example of multiple anonymized partially aligned
social networks.
Formally, the one-to-one projection can be represented as a matrix
P as well, where entry P (i, j) = 1 iff anchor link (u

(1)
i , u

(2)
j )

exists between networks G(1) and G(2). Via the matrix P, we can
represent the above loss term as

L(AG(1) ,AG(2) ,P) =
∥∥∥P>AG(1)P−AG(2)

∥∥∥2
. (14)

If there exists a perfect mapping of users across networks, we can
obtain a mapping matrix P introducing zero loss in the above func-
tion, i.e., L(AG(1) ,AG(2) ,P) = 0. Inferring the optimal mapping
matrix P which can introduce the minimum loss can be represented
as the following objective function

P∗ = arg min
P

∥∥∥P>AG(1)P−AG(2)

∥∥∥2

, (15)

where the matrix P is usually subject to some constraint, like P is
binary and each row and column should contain at most one entry
being filled with value 1.
In general, it is not easy to find the optimal solution to the above
objective function, as it is a purely combinatorial problem. Identi-
fying the optimal solution requires the enumeration of all the po-
tential user mapping across different networks. In [70], Umeyama
provides an algorithm that can solve the function with a nearly op-
timal solution.

4.2 Global Unsupervised Network Alignment
The works introduced in the previous section are all about pairwise
network alignment, which focus on the alignment of two networks
only. However, in the real-world, people are normally involved in
multiple (usually more than two) social networks simultaneously.
In this section, we will focus on the simultaneous alignment prob-
lem of multiple (more than two) networks, which is called the “mul-
tiple anonymized social networks alignment” problem formally [98].
To help illustrate the multi-network alignment problem more clearly,
we also give an example in Figure 1, which involves 3 different so-
cial networks (i.e., networks I, II and III). Users in these 3 networks
are all anonymized and their names are replaced with randomly
generated identifiers. Each pair of these 3 anonymized networks
can actually share some common users, e.g., “David” participates
in both networks I and II simultaneously, “Bob” is using networks
I and III concurrently, and “Charles” is involved in all these 3 net-
works at the same time. Besides these shared anchor users, in these
3 partially aligned networks, some users are involved in one sin-
gle network only (i.e., the non-anchor users [104]), e.g., “Alice”
in network I, “Eva” in network II and “Frank” in network III. The
problem studied in this part aims at discovering the anchor links
(i.e., the dashed bi-directional red lines) connecting anchor users
across these 3 social networks respectively.

The significant difference of the studied problem from existing two
network alignment problems is due to the “transitivity law” that
anchor links follow. In traditional set theory, a relationR is defined
to be a transitive relation in domain X iff ∀a, b, c ∈ X , (a, b) ∈
R ∧ (b, c) ∈ R → (a, c) ∈ R. If we treat the union of user
account sets of all these social networks as the target domain X
and treat anchor links as the relation R, then anchor links depict
a “transitive relation” among users across networks. We can take
the networks shown in Figure 1 as an example. Let u be a user
involved in networks I, II and III simultaneously, whose accounts
in these networks are uI , uII and uIII respectively. If anchor links
(uI , uII) and (uII , uIII) are identified in aligning networks (I,
II) and networks (II, III) respectively (i.e., uI , uII and uIII are
discovered to be the same user), then anchor link (uI , uIII) should
also exist in the alignment result of networks (I, III) as well. In
the multi-network alignment problem, we need to guarantee the
inferred anchor links can meet the transitivity law. Formally, the
multi-network alignment problem can be represented as follows.
Given the n isolated social networks {G(1), G(2), · · · , G(n)}, the
multi-network alignment problem aims at discovering the anchor
links among these n networks, i.e., the anchor link setsA(1,2),A(1,3),
· · · ,A(n−1,n). These n social etworks G(1), G(2), · · · , G(n) are
partially aligned and the constraint on anchor links inA(1,2),A(1,3),
· · · ,A(n−1,n) is one-to-one, which also follow the transitivity law.
To solve the multi-network alignment problem, two global network
alignment methods IsoRankN [38] and UMA (Unsupervised Multi-
network Alignment) [98] will be introduced as follows.

4.2.1 IsoRankN
IsoRankN [38] algorithm is an extension to IsoRank. Based on
the learning results of IsoRank, IsoRankN further adopts the spec-
tral clustering method on the induced graph of pairwise alignment
scores to achieve the final alignment results. The new approach
provides significant advantages not only over the original IsoRank
but also over other methods. IsoRankN has 4 main steps: (1) initial
network alignment with IsoRank, (2) star spread, (3) spectral parti-
tion, and (4) star merging, where steps (3) and (4) will repeat until
all the nodes are assigned to a cluster.
Initial Network Alignment: Given k isolated networksG(1), G(2),
· · · , G(k), IsoRankN computes the local alignment scores of node
pairs across networks with IsoRank algorithm. For instance, if the
networks are unweighted, the alignment score between nodes u(i)

l

and u(j)
m between networks G(i), G(j) can be denoted as.

r(u
(1)
i , u

(2)
j ) (16)

=
∑

u
(1)
m ∈Γ(u

(1)
i

)

∑
u

(2)
n ∈Γ(u

(2)
i

)

1

|Γ(u
(1)
i )||Γ(u

(2)
j )|

r(u
(1)
m , u

(2)
n ), (17)

It will lead to a weighted k-partite graph, where the links denotes
the anchor links across networks weighted by the scores calculated
above. If the networks G(1), · · ·G(k) are all complete graphs, the
alignment results will be the maximum weighted cliques. How-
ever, in the real world, such an assumption can hardly met, and
IsoRankN proposes to use “Star Spread” technique to select a sub-
graph with high weights.
Star Spread: For each node in a network, e.g., u(i)

l in network
G(i), the set of nodes connected with u(i)

l via potential anchor links
can be denoted as set Γ(u

(i)
l ). The nodes in Γ(u

(i)
l ) can be further

pruned by removing the nodes connected with weak anchor links.
Here, the “weak” denotes the anchor links with a low score calcu-
lated with IsoRank. Formally, among all the nodes in Γ(u

(i)
l ), we

can denote the node connected to u(i)
l with the strongest link as



v∗ = arg
v∈Γ(u

(i)
l

)
max r(u

(i)
l , v). For all the nodes with weights

lower than β ·r(u(i)
l , v∗) will be removed from Γ(u

(i)
l ) (where β is

a threshold parameter), and the remaining nodes together with u(i)
l

will form a star structured graph S
u

(i)
l

.

Spectral Partition: For each node u(i)
l , IsoRankN aims at se-

lecting a subgraph S∗
u

(i)
l

from S
u

(i)
l

, which contains the highly

weighted neighbors of u(i)
l . To achieve such a objective, IsoRankN

proposes to identify a subgraph with low conductance from S
u

(i)
l

instead. Formally, given a network G = (V, E), let S ⊂ V denote
a subset of G. The conductance of the subgraph involving S can
be represented as

φ(S) =

∑
u∈S

∑
v∈S̄ wu,v

min(vol(S), vol(S̄))
, (18)

where S̄ = V \ S, and vol(S) =
∑
u∈S

∑
v∈V wu,v . IsoRankN

points out that a node subset S containing node u(i)
l can be com-

puted effectively and efficiently with the personalized PageRank
algorithm starting from node u(i)

l .
Star Merging: Considering that links in the star graph S∗

u
(i)
l

are

all the anchor links across networks, there exist no intra-network
links at all in S∗

u
(i)
l

, e.g., the links in network G(i) only. How-

ever, in many cases, there may exist multiple nodes corresponding
to the same entity inside the network as well. To solve such a prob-
lem, IsoRankN proposes a star merging step to combine several
star graphs together, e.g., S∗

u
(i)
l

and S∗
u

(j)
m

. Formally, given two star

graphs S∗
u

(i)
l

and S∗
u

(j)
m

, if the following conditions both hold, S∗
u

(i)
l

and S∗
u

(j)
m

can be merged into one star graph.

∀v ∈ S∗
u

(j)
m

\ {u(j)
m }, r(v, u

(i)
l ) ≥ β · max

v′∈Γ(u
(i)
l

)

r(v′, u
(i)
l ), (19)

∀v ∈ S∗
u

(i)
l

\ {u(i)
l }, r(v, u

(j)
m ) ≥ β · max

v′∈Γ(u
(j)
m )

r(v′, u
(j)
m ). (20)

4.2.2 UMA
The UMA model proposed in [98] addresses the multi-network align-
ment problem with two steps: (1) unsupervised transitive anchor
link inference across multi-networks, and (2) transitive multi-network
matching to maintain the one-to-one constraint, where the first step
is very similar to the matrix inference based alignment algorithm
introduced in Section 4.1.3. Next, we will mainly focus on intro-
ducing the transitivity property on the alignment results.
The transitivity property should holds for the alignment of any n
networks, where the minimum of n is 3. To help illustrate the tran-
sitivity property more clearly, here we will use 3 network alignment
as an example to introduce the multi-network alignment problem
and the UMA model, which can be easily generalized to the case
of n networks alignment. Let G(i), G(j) and G(k) be 3 social net-
works to be aligned concurrently. To accommodate the alignment
results and preserve the transitivity property, UMA introduces the
following alignment transitivity penalty:

DEFINITION 15. (Alignment Transitivity Penalty): Formally, let
T(i,j), T(j,k) and T(i,k) be the inferred binary transitional matri-
ces from G(i) to G(j), from G(j) to G(k) and from G(i) to G(k)

respectively among these 3 networks. Based on the adjacency ma-
trices S(i), S(j) and S(k) of networks G(i), G(j) and G(k), the
alignment transitivity penaltyC({G(i), G(j), G(k)}) introduced by
the inferred transitional matrices can be quantified as the number

of inconsistent social links being mapped fromG(i) toG(k) via two
different alignment paths G(i) → G(j) → G(k) and G(i) → G(k),
i.e.,

C({G(i)
, G

(j)
, G

(k)}) = (21)∥∥∥(T(j,k)
)
>

(T
(i,j)

)
>
S

(i)
T

(i,j)
T

(j,k) − (T
(i,k)

)
>
S

(i)
T

(i,k)
∥∥∥2

F
. (22)

Alignment transitivity penalty is a general penalty concept and can
be applied to n networks {G(1), G(2), · · · , G(n)},
n ≥ 3 as well, which can be defined as the summation of penalty
introduced by any three networks in the set, i.e.,

C({G(1)
, G

(2)
, · · · , G(n)}) (23)

=
∑

∀{G(i),G(j),G(k)}⊂{G(1),G(2),··· ,G(n)}

C({G(i)
, G

(j)
, G

(k)}). (24)

Based on the loss function introduced in Section 4.1.3 and the
above alignment transitivity penalty, the optimal binary transitional
matrices T̄(i,j), T̄(j,k) and T̄(k,i) should minimize friendship in-
consistency and the alignment transitivity penalty at the same time,
which is learned by addressing an optimization problem in UMA
[98]. The objective function aims at obtaining the hard mappings
among users across different networks and entries in all these tran-
sitional matrices are binary, which can lead to a fatal drawback:
hard assignment can be neither possible nor realistic for networks
with star structures as proposed in [35] and the hard subgraph iso-
morphism [36] is NP-hard. To address the function, UMA pro-
poses to relax the hard binary constraints on the variables first and
solve the function with gradient descent. Furthermore, based on
the learning results UMA keeps the one-to-one constraint on anchor
links by selecting those which can maximize the overall existence
probabilities while maintaining the matching transitivity property
at the same time.

5. LINK PREDICTION
Given a screenshot of an online social network, the problem of in-
ferring the missing links or the links to be formed in the future is
called the link prediction problem [39; 23; 104]. Link prediction
problem has concrete applications in the real world, and many so-
cial network services can be cast to the link prediction problem. For
instance, the friend recommendations problem in online social net-
works can be modeled as the social link prediction problem among
users. Users’ trajectory prediction problem can be formulated as
the prediction task of potential checkin links between users and of-
fline POIs (point of interest) in location based social networks. The
user identifier resolution problem across networks (i.e., the network
alignment problem introduced in the previous section) can be mod-
eled as the anchor link prediction problem of user accounts across
different online social networks.
In this section, we will introduce the general link prediction prob-
lems in online social networks. Formally, given the training set
Ttrain involving links belong to different classes (Y = {+1,−1}
denoting the links that have been/will be formed and those will
never be formed) and the test set Ttest (with unknown labels), the
link prediction problem aims at building a mapping f : Ttest → Y
to infer the potential labels of links in the test set Ttest.
Depending on the scenarios of the link prediction problems, the
existing links prediction works can be divided into several differ-
ent categories. Traditional link prediction problems are mainly fo-
cused on inferring the links in one single homogeneous network
[87; 104], like inferring the friendship links among users in online
social networks or co-author links in bibliographic networks. As
the network structures are becoming more and more complicated,
many of them are modeled as the heterogeneous networks involv-
ing different types of nodes and complex connections among them.



The heterogeneity of the networks leads to many new link predic-
tion problems, like predicting the links between nodes belonging to
different categories and the concurrent inference of multiple types
of links in the heterogeneous networks [87; 99]. In recent years,
many online social networks have appeared, and lots of new re-
search opportunities exist for researchers and practitioners to study
the link prediction problem from the cross-network perspective [87;
104; 84; 83].
Meanwhile, depending on the learning settings used in the problem
formulation, the existing link prediction works can be categorized
in another way. For some of the link prediction models, they calcu-
late the user-pair closeness as the prediction result without needing
any training data, which are referred to as the unsupervised link
prediction models [39]. For some other models, they will label the
known links into different classes, and use them as the training set
to learn a supervised classification models as the base model in-
stead. These models are called the supervised link prediction mod-
els [23]. Usually, manual labeling of the links is very expensive and
tedious. In recent years, many of the works have proposed to apply
semi-supervised learning techniques in the link prediction problem
to utilize the links without labels [87; 104; 84; 83].
In this part, we will introduce the link prediction problems in on-
line social networks, including the traditional homogeneous link
prediction and cross-network link prediction.

5.1 Homogeneous Network Link Prediction
Traditional link prediction problems are mainly studied based on
one homogeneous network, involving one single type of nodes and
links. In this section, we will first briefly introduce how to use the
social closeness measures for link prediction tasks. To integrate
different social closeness measures together in the link prediction
task, we will talk about the supervised link prediction model. Fur-
thermore, several semi-supervised link prediction models will also
be introduced in this section, which formulate the link prediction
as a semi-supervised learning problem.

5.1.1 Unsupervised Link Prediction
Given a screenshot of a homogeneous network G = (V, E), the
unsupervised link prediction methods [39] aims at inferring the po-
tential links that will be formed in the future. Usually, the unsu-
pervised link prediction models will calculate the closeness scores
of the node pairs, which will be used as the predicted confidence
scores of these links. Depending on the specific scenario and the
link formation assumptions applied, different measures have been
proposed for the link prediction models.
Local Neighbor based Predicators: Local neighbor based predi-
cators are based on regional social network information, i.e., neigh-
bors of users in the network. Consider, for example, given a social
link (u, v) in network G, where u and v are both users in G, the
neighbor sets of u, v can be represented as Γ(u) and Γ(v) respec-
tively. Based on Γ(u) and Γ(v), the following predicators measur-
ing the proximity of users u and v in network G can be obtained.

1. Preferential Attachment Index (PA) [5]:
PA(u, v) = |Γ(u)| |Γ(v)| . (25)

PA(u, v) uses the product of the degrees of users u and v in
the network as the proximity measure, considering that new
links are more likely to appear between users who have large
number of social connections.

2. Common Neighbor (CN) [24]:
CN(u, v) = |Γ(u) ∩ Γ(v)| . (26)

CN(u, v) uses the number of shared neighbor as the prox-
imity score of user u and v. The larger CN(u, v) is, the

closer user u and v are in the network.

3. Jaccard’s Coefficient (JC) [24]:

JC(u, v) =
|Γ(u) ∩ Γ(v)|
|Γ(u) ∪ Γ(v)| . (27)

JC(u, v) takes the total number of neighbors of u and v into
account, considering that CN(u, v) can be very large be-
cause each one has a lot of neighbors rather than they are
strongly related to each other.

4. Adamic/Adar Index (AA) [1]:

AA(u, v) =
∑

w∈(Γ(u)∩Γ(v))

1

log |Γ(w)| . (28)

Different from JC(u, v), AA(u, v) further gives each com-
mon neighbor of user u and v a weight, 1

log|Γ(w)| , to denote
its importance.

5. Resource Allocation Index (RA) [107]:

RA(u, v) =
∑

w∈(Γ(u)∩Γ(v))

1

|Γ(w)| . (29)

RA(u, v) gives each common neighbor a weight 1
|Γ(w)| to

represent its importance, where those with larger degrees will
have a less weight number.

All these predicators are called local neighbor based predicators as
they are all based on users’ local social network information.
Global Path based Predicators: In addition to the local neighbor
based predicators, many other predicators based on paths in the
network have also been proposed to measure the proximity among
users.

1. Shortest Path (SP) [23]:

SP (u, v) = min{|pu v|}, (30)

where pu v denotes a path from u to v in the network and
|p| represents the length of path p.

2. Katz [28]:

Katz(u, v) =

∞∑
l=1

βl
∣∣∣plu v∣∣∣ , (31)

where plu v is the set of paths of length l from u to v and
parameter β ∈ [0, 1] is a regularizer of the predicator. Nor-
mally, a small β favors shorter paths as βl can decay very
quickly when β is small, in which case Katz(u, v) will be
behave like the predicators based on local neighbors.

Random Walk based Link Prediction: In addition to the unsuper-
vised link predicators which can be obtained from the networks di-
rectly, there exists another category link prediction methods which
can calculate the proximity scores among users based on random
walk [21; 19; 33; 4; 68; 42; 24]. In this part, we will introduce the
concept of random walk at first. Next, we will introduce the prox-
imity measures based on random walk, which include the commute
time [19; 42; 24], hitting time [19; 42; 24] and cosine similarity
[19; 42; 24].
Let matrix A be the adjacency matrix of networkG, whereA(i, j) =
1 iff social link (ui, uj) ∈ E , where ui, uj ∈ V . The normalized
matrix of A by rows will be P = D−1A, where diagonal ma-
trix D of A has value D(i, i) =

∑
j A(i, j) on its diagonal and

P (i, j) stores the probability of stepping on node uj ∈ V from
node ui ∈ V . Let entries in vector x(τ)(i) denote the probabilities
that a random walker is at user node ui ∈ V at time τ . Then we



have the updating equation of entry x(τ)(i) via the random walk as
follows:

x(τ+1)(i) =
∑
j

x(τ)(j)P(j, i). (32)

In other words, the updating equation of vector x will be repre-
sented as:

x(τ+1) = Px(τ). (33)

By keeping updating x according to the following equation until
convergence, we can have the stationary vector x(τ+1) as{

x(τ+1) = PTx(τ),

x(τ+1) = x(τ).
(34)

The above equation is equivalent to

v = PTv, (35)

where v denotes the stationary random walk probability vector.
The above equation denotes that the final stationary distribution
vector v is actually a eigenvector of matrix PT corresponding to
eigenvalue 1. Some existing works have pointed out that if a markov
chain is irreducible [19] and aperiodic [19] then the largest eigen-
value of the transition matrix will be equal to 1 and all the other
eigenvalues will be strictly less than 1. In addition, in such a condi-
tion, there will exist one single unique stationary distribution which
is vector v obtained at convergence of the updating equations.
Proximity Measures based on Random Walk

1. Hitting Time (HT):

HT (u, v) = E
(
min{τ |τ ∈ N+, X(τ) = v ∧X0 = u}

)
, (36)

where variable X(τ) = v denotes that a random walker is at
node v at time τ .
HT (u, v) counts the average steps that a random walker
takes to reach node v from node u. According to the defini-
tion, the hitting time measure is usually asymmetric,HT (u, v) 6=
HT (v, u). Based on matrix P defined before, the definition
of HT (u, v) can be redefined as [19]:

HT (u, v) = 1 +
∑

w∈Γ(u)

Pu,wHT (w, v). (37)

2. Commute Time (CT):

CT (u, v) = HT (u, v) +HT (v, u). (38)

CT (u, v) counts the expectation of steps used to reach node
u from v and those needed to reach node v from u. Accord-
ing to existing works, the commute time, CT (u, v), can be
obtained as follows

CT (u, v) = 2m(L†u,u + L†v,v − 2L†u,v), (39)

where L† is the pseudo-inverse of matrix L = DA −A.
3. Cosine Similarity based on L† (CS):

CS(u, v) =
xTuxv√

(xTuxu)(xTv xv)
, (40)

where, xu = (L†)
1
2 eu and vector eu is a vector of 0s ex-

cept the entries corresponding to node u that is filled with 1.
According to existing works [19; 42], the cosine similarity
based on L† , CS(u, v), can be obtained as follows,

CS(u, v) =
L†u,v√
L†u,uL

†
v,v

. (41)

4. Random Walk with Restart (RWR): Based on the definition
of random walk, if the walker is allowed to return to the start-
ing point with a probability of 1 − c, where c ∈ [0, 1], then
the new random walk method is formally defined as random
walk with restart, whose updating equation is shown as fol-
lows: {

x
(τ+1)
u = cPTx

(τ)
u + (1− c)eu,

x
(τ+1)
u = x

(τ)
u .

(42)

Keep updating x until convergence, the stationary distribu-
tion vector x can meet

xu = (1− c)(I− cPT )−1eu. (43)

The proximity measure based on random walk with restart
between user u and v will be

RWR(u, v) = xu(v), (44)

where xu(v) denotes the entry corresponding to v in xu.

5.1.2 Supervised Link Prediction
In some cases, links in the networks are explicitly categorized into
different groups, like links denoting friends vs those representing
enemies, friends (formed connections) vs strangers (no connec-
tions). Given a set of labeled links, e.g., set E , containing links
belonging to different classes, the supervised link prediction [23]
problem aims at building a supervised learning model with the la-
beled set. The learnt model will be applied to determine the labels
of links in the test set. In this part, we still take the link formation
problem as an example to illustrate the supervised link prediction
model.
To represent each of the social links, like link l = (u, v) ∈ E
between nodes u and v, a set of features representing the charac-
teristics of the link l or nodes u, v will be extracted in the model
building. Normally, the features can be extracted for links in the
prediction task can be divided into two categories:
Link Feature Extraction
• Features of Nodes: The characteristics of the nodes can be

denoted by various measures, like these various node cen-
trality measures. For instance, for the link (u, v), based on
the known links in the training set, the centrality measures
can be computed based on degree, normalized degree, eigen-
vector, Katz, PageRank, Betweenness of nodes u and v as
part of the features for link (u, v).

• Features of Links: The characteristics of the links in the net-
works can be calculated by computing the closeness between
the nodes composing the nodes. For instance, for link (u, v),
based on the known links in the training set, the closeness
measures can be computed based on reciprocity, common
neighbor, Jaccard’s coefficient, Adamic/Adar, shortest path,
Katz, hitting time, commute time, etc. between nodes u and
v as the features for link (u, v).

We can append the features for nodes u, v and those for link (u, v)
together and represent the extracted feature vector for link l =
(u, v) as vector xl ∈ Rk×1, whose length is k in total.
Link Prediction Model
With the training set Ltrain, the feature vectors and labels for the
links inLtrain can be represented as the training data {(xl, yl)}l∈Ltrain .
Meanwhile, with the testing set Ltest, the features extracted for the
links in it can be represented as {xl}l∈Ltrain . Different classifica-
tion models can be used as the base model for the link prediction
task, like the Decision Tree, Artificial Neural Network and Sup-
port Vector Machine (SVM) [2]. The model can be trained with the
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Figure 2: PU Link Prediction.

training data, and the labels of links in the test can be determined
by applying models to the test set.
Depending on the specific model being applied, the output of the
link prediction result can include (1) the predicted labels of the
links, and (2) the prediction confidence scores/probability scores
of links in the test set.

5.1.3 PU Link Prediction
In the real world, for the links which are unlabeled, some of them
can actually be formed in the future. In this subsection, we will
introduce a method MLI to solve the PU link prediction problem
in one single network [104]. From a given network, e.g., G, two
disjoint sets of links: connected (i.e., formed) links P and uncon-
nected links U , can be obtained. To differentiate these links, MLI
uses a new concept “connection state”, z, to show whether a link is
connected (i.e., formed) or unconnected in network G. For a given
link l, if l is connected in the network, then z(l) = +1; otherwise,
z(l) = −1. As a result, MLI can have the “connection states” of
links in P and U to be: z(P) = +1 and z(U) = −1.
Besides the “connection state”, links in the network can also have
their own “labels”, y, which can represent whether a link is to be
formed or will never be formed in the network. For a given link l,
if l has been formed or to be formed, then y(l) = +1; otherwise,
y(l) = −1. Similarly, MLI can have the “labels” of links in P and
U to be: y(P) = +1 but y(U) can be either +1 or −1, as U can
contain both links to be formed and links that will never be formed.
By using P and U as the positive and negative training sets, MLI
can build a link connection prediction model Mc, which can be
applied to predict whether a link exists in the original network, i.e.,
the connection state of a link. Let l be a link to be predicted, by
applying Mc to classify l, the connection probability of l can be
represented to be:

DEFINITION 16. (Connection Probability): The probability that
link l’s connection states is predicted to be connected (i.e., z(l) =
+1) is formally defined as the connection probability of link l:
p(z(l) = +1|x(l)), where x(l) denotes the feature vector ex-
tracted for link l based on meta path.

Meanwhile, if we can obtain a set of links that “will never be
formed”, i.e., “-1” links, from the network, which together with P
(“+1” links) can be used to build a link formation prediction model,
Mf , which can be used to get the formation probability of l to be:

DEFINITION 17. (Formation Probability): The probability that
link l’s label is predicted to be formed or will be formed (i.e.,
y(l) = +1) is formally defined as the formation probability of link
l: p(y(l) = +1|x(l)).

However, from the network, we have no information about “links
that will never be formed” (i.e., “-1” links). As a result, the for-
mation probabilities of potential links that we aim to obtain can be
very challenging to calculate. Meanwhile, the correlation between

link l’s connection probability and formation probability has been
proved in existing works [15] to be:

p(y(l) = +1|x(l)) ∝ p(z(l) = +1|x(l)). (45)

In other words, for links whose connection probabilities are low,
their formation probabilities will be relatively low as well. This
rule can be utilized to extract links which can be more likely to be
the reliable “-1” links from the network. MLI proposes to apply
the the link connection prediction modelMc built with P and U to
classify links in U to extract the reliable negative link set.

DEFINITION 18. (Reliable Negative Link Set): The reliable neg-
ative links in the unconnected link set U are those whose connection
probabilities predicted by the link connection prediction model,
Mc, are lower than threshold ε ∈ [0, 1]:

RN = {l|l ∈ U , p(z(l) = +1|x(l)) < ε}. (46)
Some Heuristic methods have been proposed to set the optimal
threshold ε, e.g., the spy technique proposed in [41]. As shown
in Figure 2, MLI proposes randomly select a subset of links in P
as the spy, SP , whose proportion is controlled by s%. s% = 15%
is used as the default sample rate in [104]. Sets (P − SP) and
(U ∪ SP) are used as positive and negative training sets to the
spy prediction model, Ms. By applying Ms to classify links in
(U ∪ SP), their connection probabilities can be represented to be:

p(z(l) = +1|x(l)), l ∈ (U ∪ SP), (47)

and parameter ε is set as the minimal connection probability of spy
links in SP:

ε = min
l∈SP

p(z(l) = +1|x(l)). (48)

With the extracted reliable negative link set RN , MLI can solve
the PU link prediction problem with classification based link pre-
diction methods, where P and RN are used as the positive and
negative training sets respectively.

5.2 Inter-Network Link Prediction
Besides the link prediction problems in one single target network,
some research works have been done on simultaneous link predic-
tion in multiple aligned online social networks concurrently [87;
104; 84; 83].

5.2.1 MLI
Method MLI proposed in [104] is a general link prediction frame-
work and can be applied to predict social links in n partially aligned
networks simultaneously. When it comes to n partially aligned net-
work G(1), · · · , G(n), the optimal labels of potential links {L(1),

L(2), · · · ,L(n)} of networks G(1), · · · , G(n) will be:
Ŷ(1)

, Ŷ(2)
, · · · , Ŷ(n)

= arg max
Y(1),··· ,Y(n)

(49)

p
(
y(L(1)

) = Y(1)
, · · · , y(L(n)

) = Yn|G(1)
, · · · , G(n)

)
. (50)

The above target function is very complex to solve and, in [104],
MLI proposes to obtain the solution by updating one variable, e.g.,
Y(1), and fix other variables, e.g., Y(2), · · · ,Y(n), alternatively
with the following equation [87]:

(Ŷ(1))(τ)= arg max
Y(1) p

(
y(L(1)) = Y(1)|G(1), G(2), · · · , G(n),

(Ŷ2)(τ−1), (Ŷ3)(τ−1), · · · , (Ŷn)(τ−1)
)
,

(Ŷ(2))(τ)= arg max
Y(2) p

(
y(L(2)) = Y(2)|G(1), G(2), · · · , G(n),

(Ŷ(1))(τ), (Ŷ(3))(τ−1), · · · , (Ŷ(n))(τ−1)
)
,

· · · · · ·

(Ŷ(n))(τ)= arg max
Y(n) p

(
y(L(n)) = Y(n)|G(1), G(2), · · · , G(n),

(Ŷ(1))(τ), (Ŷ(2))(τ), · · · , (Ŷ(n−1))(τ)
)
.

(51)



When predicting social links in network G(i), MLI can extract fea-
tures based on the intra-network social meta path extracted from
G(i) and those extracted based on the inter-network social meta
path across G(1), G(2), · · · , G(i−1), G(i+1), · · · , G(n) for links
in P(i), U (i) and L(i). Feature vectors x(P), x(U) as well as the
labels, y(P), y(U), of links in P and U are passed to the PU link
prediction modelM(i) and the meta path selection modelMS(i).
The formation probabilities of links in L(i) predicted by model
M(i) will be used to update the network by replace the weights of
L(i) with the newly predicted formation probabilities. The initial
weights of these potential links in L(i) are set as 0. After finishing
these steps on G(i), we will move to conduct similar operations on
G(i+1). MLI iteratively predicts links in G(1) to G(n) alternatively
in a sequence until the results in all of these networks converge.

5.2.2 SLAMPRED
The cross-network link prediction model SLAMPRED introduced
in [83] aims at inferring the links for emerging networks based on
semi-supervised learning setting. SLAMPRED proposes to embed
the feature vectors of links from aligned networks into a shared fea-
ture space. Via the shared feature space, knowledge from the source
networks will be effectively transferred to the target network.
Formally, let Gt denote the target emerging network, where the
user set can be represented as U t. The existing social connec-
tions in Gt can be represented as the binary social adjacency ma-
trix At ∈ {0, 1}|U

t|×|Ut|, where entry At(i, j) = 1 iff the cor-
responding social link (uti, u

t
j) exists between users uti and utj in

Gt. In the studied problem here, our objective is to infer the po-
tential unobserved social links for the target network, which can be
achieved by finding a sparse and low-rank predictor matrix S ∈ S
from some convex admissible set S ⊂ R|U

t|×|Ut|. Meanwhile, the
inconsistency between the inferred matrix S and the observed so-
cial adjacency matrix At can be represented as the loss function
l(S,At). The optimal social link predictor for the target network
can be achieved by minimizing the loss term, i.e.,

arg min
S∈S

l(S,At). (52)

Meanwhile, to utilize the other heterogeneous information avail-
able in the emerging network Gt and other external source net-
works G1, G2, · · · , GK . SLAMPRED proposes to extract a group
of intimacy features and project the link instances to a shared fea-
ture space as introduced in [83]. The adapted features from the
target network and external sources can be represented as tensors
X̂t, X̂1, · · · , X̂K . Formally, the intimacy scores of the poten-
tial social links based on these adapted features from the external
source networks can be represented as

int(S, X̂i) =

dt∑
k=1

∥∥∥S ◦ X̂i(k, :, :)
∥∥∥

1
, i ∈ {t, 1, 2, · · · ,K} (53)

int(S, X̂1, · · · , X̂K) =

K∑
k=1

αi · int(S, X̂k), (54)

where users in X̂k are organized in the same order as Xt. Parame-
ters αi denotes the importance of the information transferred from
the source network Gi.
By adding the intimacy terms about the source networks into the
objective function, the equation can be rewriten as follows:

arg min
S∈S

l(S,At)− αt · int(S, X̂t)−
K∑
k=1

αi · int(S, X̂k)) (55)

+ γ · ‖S‖1 + τ · ‖S‖∗ , (56)

where ‖S‖1 and ‖S‖∗ denote the L1-norm and trace-norm of ma-
trix S respectively.
By studying the objective function, we observe that the intimacy
terms are convex while the empirical loss term l(S,At) is non-
convex. In [83], the introduced model proposes to approximate
it with other classical loss functions (e.g., the hinge loss and the
Frobenius norm) instead, and the convex squared Frobenius norm
loss function is used in [83] (i.e., l(S,At) =

∥∥S−At
∥∥2

F
). There-

fore, the above objective function can be represented as a convex
loss term minus another convex term together with two convex
non-differentiable regularizers, which actually renders the objec-
tive function non-trivial. According to the existing works [75; 64],
this kind of objective function can be addressed with the concave-
convex procedure (CCCP). CCCP is a majorization-minimization
algorithm that solves the difference of convex functions problems
as a sequence of convex problems. Meanwhile, the regularization
terms can be effectively handled with the proximal operators in
each iteration of the CCCP process.

6. COMMUNITY DETECTION
In the real-world online social networks, users tend to form differ-
ent social groups [3]. Users belonging to the same groups usually
have more frequent interactions with each other, while those in dif-
ferent groups will have less interactions on the other hand [106].
Formally, such social groups form by users in online social net-
works are called the online social communities [97]. Online so-
cial communities will partition the network into a number of con-
nected components, where the intra-community social connections
are usually far more dense compared with the inter-community so-
cial connections [97]. Meanwhile, from the mathematical repre-
sentation perspective, due to these online social communities, the
social network adjacency matrix tend to be not only sparse but also
low-rank [101].
Identifying the social communities formed by users in online social
networks is formally defined as the community detection problem
[97; 95; 26]. Community detection is a very important problem
for online social network studies, as it can be crucial prerequisite
for numerous concrete social network services: (1) better organi-
zation of users’ friends in online social networks (e.g., Facebook
and Twitter), which can be achieved by applying community detec-
tion techniques to partition users’ friends into different categories,
e.g., schoolmates, family, celebrities, etc. [16]; (2) better recom-
mender systems for users with common shopping preference in e-
commerce social sites (e.g., Amazon and Epinions), which can be
addressed by grouping users with similar purchase records into the
same clusters prior to recommender system building [56]; and (3)
better identification of influential users [69] for advertising cam-
paigns in online social networks, which can be attained by select-
ing the most influential users in each community as the seed users
in the viral marketing [55].
In this section, we will focus on introducing the social commu-
nity detection problem in online social networks. Given a het-
erogeneous network G with node set V , the involved user nodes
in network G can be represented as set U ⊂ V . Based on both
the social structures among users as well as the diverse attribute
information from the network G, the social community detection
problem aims at partitioning the user set U into several subsets
C = {U1,U2, · · · ,Uk}, where each subset Ui, i ∈ {1, 2, · · · , k}
is called a social community. Term k formally denotes the total
number of partitioned communities, which is usually provided as a
hyper-parameter in the problem.
Depending on whether the users are allowed to be partitioned into
multiple communities simultaneously or not, the social community



detection problem can actually be categorized into two different
types:

• Hard Social Community Detection: In the hard social com-
munity detection problem, each user will be partitioned into
one single community, and all the social communities are
disjoint without any overlap. In other words, given the com-
munities C = {U1,U2, · · · ,Uk} detected from network G,
we have U =

⋃
i Ui and Ui ∩ Uj = ∅, ∀i, j ∈ {1, · · · , k}.

• Soft Social Community Detection: In the soft social commu-
nity detection problem, users can belong to multiple social
communities simultaneously. For instance, if we apply the
Mixture-of-Gaussian Soft Clustering algorithm as the base
community detection model [105; 74], each user can belong
to multiple communities with certain probabilities. In the
soft social community detection result, the communities are
no longer disjoint and will share some common users with
other communities.

Meanwhile, depending on the network connection structures, the
community detection problem can be categorized as directed net-
work community detection [43] and undirected network commu-
nity detection [106]. Based on the heterogeneity of the network
information, the community detection problem can be divided into
the homogeneous network community detection [72] and heteroge-
neous network community detection [57; 66; 85; 101]. Further-
more, according to the number of networks involved, the commu-
nity detection problem involves single network community detec-
tion [37] and multiple network community detection [97; 95; 26;
85; 101]. In this section, we will take the hard community detec-
tion problem as an example to introduce the existing models pro-
posed for conventional (one single) homogeneous social network,
and especially the recent broad learning based (multiple aligned)
heterogeneous social networks [32; 86; 87; 104] respectively.
This section is organized as follows. At the beginning, in Sec-
tion 6.1, we will introduce the community detection problem and
the existing methods proposed for traditional one single homoge-
neous networks. After that, we will talk about the latest research
works on social community detection across multiple aligned het-
erogeneous networks. In Section 6.2, we will be focused on the
concurrent mutual community detection [97] across multiple aligned
heterogeneous networks simultaneously, where information from
other aligned networks will be applied to refine their community
detection results mutually.

6.1 Homogeneous Network Community De-
tection

Social community detection problem has been studied for a long
time, and many community detection models have been proposed
based on different types of techniques. In this section, we will talk
about the social community detection problem for one single homo-
geneous network G, whose objective is to partition the user set U
in networkG into k disjoint subsets C = {U1,U2, · · · ,Uk}, where
U =

⋃
i Ui and Ui ∩ Uj = ∅, ∀i, j ∈ {1, 2, · · · , k}. Several dif-

ferent community detection methods will be introduced, which in-
clude node proximity based community detection, modularity maxi-
mization based community detection, and spectral clustering based
community detection.

6.1.1 Node Proximity based Community Detection
The node proximity based community detection method assumes
that “close nodes tend to be in the same communities, while the
nodes far away from each other will belong to different commu-
nities”. Therefore, the node proximity based community detection
model partition the nodes into different clusters based on the node

proximity measures [39]. Various node proximity measures can be
used here, including the node structural equivalence to be intro-
duced as follows, as well as various node closeness measures as
introduced in Section 5.1.1.
In a homogeneous network G, the proximity of nodes, like u and
v, can be calculated based on their positions and connections in the
network structure.

DEFINITION 19. (Structural Equivalence): Given a networkG =
(V, E), two nodes u, v ∈ V are said to be structural equivalent iff

1. Nodes u and v are not connected and u and v share the same
set of neighbors (i.e., (u, v) /∈ E ∧ Γ(u) = Γ(v)),

2. Or u and v are connected and excluding themselves, u and
v share the same set of neighbors (i.e., (u, v) ∈ E ∧ Γ(u) \
{v} = Γ(v) \ {u}).

For the nodes which are structural equivalent, they are substitutable
and switching their positions will not change the overall network
structure. The structural equivalence concept can be applied to
partition the nodes into different communities. For the nodes which
are structural equivalent, they can be grouped into the same com-
munities, while for the nodes which are not equivalent in their po-
sitions, they will be partitioned into different groups. However, the
structural equivalence can be too restricted for practical application
in detecting the communities in real-world social networks. Com-
puting the structural equivalence relationships among all the node
pairs in the network can lead to very high time cost. What’s more,
the structural equivalence relationship will partition the social net-
work structure into lots of small-sized fragments, since the users
will have different social patterns in making friends online and few
user will have identical neighbors actually.
To avoid the weakness mentioned above, some other measures are
proposed to measure the proximity among nodes in the networks.
For instance, as introduced in Section 5.1.1, the node closeness
measures based on the social connections can all be applied here to
compute the node proximity, e.g., “common neighbor”, “Jaccard’s
coefficient”. Here, if we use “common neighbor” as the proximity
measure, by applying the “common neighbor” measure to the net-
workG, the networkG can be transformed into a set of instances V
with mutual closeness scores {c(u, v)}u,v∈V . Some existing simi-
larity/distance based clustering algorithms, like k-Medoids, can be
applied to partition the users into different communities.

6.1.2 Modularity based Community Detection
Besides the pairwise proximity of nodes in the network, the con-
nection strength of a community is also very important in the com-
munity detection process. Different measures have been proposed
to compute the strength of a community, like the modularity mea-
sure [48] to be introduced in this part.
The modularity measure takes account of the node degree distribu-
tion. For instance, given the network G, the expected number of
links existing between nodes u and v with degrees D(u) and D(v)

can be represented as D(u)·D(v)
2|E| . Meanwhile, in the network, the

real number of links existing between u and v can be denoted as
entry A[u, v] in the social adjacency matrix A. For the user pair
(u, v) with a low expected connection confidence score, if they are
connected in the real world, it indicates that u and v have a rela-
tively strong relationship with each other. Meanwhile, if the com-
munity detection algorithm can partition such user pairs into the
same group, it will be able to identify very strong social communi-
ties from the network.
Based on such an intuition, the strength of a community, e.g., Ui ∈
C can be defined as∑

u,v∈Ui

(
A[u, v]−

D(u) ·D(v)

2|E|

)
. (57)



Furthermore, the strength of the overall community detection result
C = {U1,U2, · · · ,Uk} can be defined as the modularity of the
communities as follows.

DEFINITION 20. (Modularity): Given the community detection
result C = {U1,U2, · · · ,Uk}, the modularity of the community
structure is defined as

Q(C) =
1

2|E|
∑
Ui∈C

∑
u,v∈Ui

(
A[u, v]−

D(u) ·D(v)

2|E|

)
. (58)

The modularity concept effectively measures the strength of the de-
tected community structure. Generally, for a community structure
with a larger modularity score, it indicates a good community de-
tection result.
Another way to explain the modularity is from the number of links
within and across communities. By rewriting the above modularity
equation, we can have

Q(C) (59)

=
1

2|E|

∑
Ui∈C

∑
u,v∈Ui

(
A[u, v]−

D(u) ·D(v)

2|E|

)
(60)

=
1

2|E|

 ∑
Ui∈C

∑
u,v∈Ui

A[u, v]−
∑
Ui∈C

∑
u,v∈Ui

D(u) ·D(v)

2|E|

 (61)

=
1

2|E|

 ∑
Ui∈C

∑
u,v∈Ui

A[u, v]−
1

2|E|

∑
Ui∈C

∑
u∈Ui

D(u)
∑
u∈Ui

D(v)

 (62)

=
1

2|E|

 ∑
Ui∈C

∑
u,v∈Ui

A[u, v]−
1

2|E|

∑
Ui∈C

(
∑
u∈Ui

D(u))
2

 . (63)

In the above equation, term
∑
u,v∈Ui A[u, v] denotes the number

of links connecting users within the community Ui (which will be
2 times the intra-community links for undirected networks, as each
link will be counted twice). Term

∑
u∈Ui D(u) denotes the sum

of node degrees in community Ui, which equals to the number of
intra-community and inter-community links connected to nodes in
community Ui. If there exist lots of inter-community links, then
the modularity measure will have a smaller value. On the other
hand, if the inter-community links are very rare, the modularity
measure will have a larger value. Therefore, maximizing the com-
munity modularity measure is equivalent to minimizing the inter-
community link numbers.
The modularity measure can also be represented with linear alge-
bra equations. Let matrix A denote the adjacency matrix of the
network, and vector d ∈ R|V|×1 denote the degrees of nodes in the
network. The modularity matrix can be defined as

B = A− dd>

2|E| . (64)

Let matrix H ∈ {0, 1}|V|×k denotes the communities that users
in V belong to. In real application, such a binary constraint can
be relaxed to allow real value solutions for matrix H. The optimal
community detection result can be obtained by solving the follow-
ing objective function

max
1

2|E|Tr(H>BH) (65)

s.t. H>H = I, (66)

where constraint H>H = I ensures there are not overlap in the
community detection result.
The above objective function looks very similar to the objective
function of spectral clustering to be introduced in the next section.
After obtaining the optimal H, the communities can be obtained

by applying the K-Means algorithm to H to determine the cluster
labels of each node in the network.

6.1.3 Spectral Clustering and Community Detection
In the community detection process, besides maximizing the prox-
imity of nodes belonging to the same communities (as introduced in
Section 6.1.1), minimizing the connections among nodes in differ-
ent clusters is also an important factor. Different from the previous
proximity based community detection algorithms, another way to
address the community detection problem is from the cost perspec-
tive. Partition the nodes into different clusters will cut the links
among the clusters. To ensure the nodes partitioned into different
clusters have less connections with each other, the number of links
to be cut in the community detection process should be as small as
possible [59; 71].
Cut: Formally, given the community structure C = {U1,U2, · · · ,Uk}
detected from network G. The number of links cut [59] between
communities Ui,Uj ∈ C can be represented as

cut(Ui,Uj) =
∑
u∈Ui

∑
v∈Uj

I(u, v), (67)

where function I(u, v) = 1 if (u, v) ∈ E ; otherwise, it will be 0.
The total number of links cut in the partition process can be repre-
sented as

cut(C) =
∑
Ui∈C

cut(Ui, Ūi), (68)

where set Ūi = C \ Ui denotes the communities except Ui.
By minimizing the cut cost introduced in the partition process, the
optimal community detection result can be obtained with the mini-
mum number of cross-community links. However, as introduced in
[59; 71], by minimizing the cut of edges across clusters, the results
may involve high imbalanced communities, some community may
involve one single node. Such a problem will be much more severe
when it comes to the real-world social network data. In the follow-
ing part of this section, we will introduce two other cost measures
that can help achieve more balanced community detection results.
Ratio-Cut and Normalized-Cut: As shown in the example, the
minimum cut cost treat all the links in the network equally, and can
usually achieve very imbalanced partition results (e.g., a singleton
node as a cluster) when applied in the real-world community de-
tection problem. To overcome such a disadvantage, some models
have been proposed to take the community size into consideration.
The community size can be calculated by counting the number of
nodes or links in each community, which will lead to two new cost
measures: ratio-cut and normalized-cut [59; 71].
Formally, given the community detection result C = {U1,U2,
· · · ,Uk} in network G, the ratio-cut and normalized-cut costs in-
troduced in the community detection result can be defined as fol-
lows respectively.

ratio− cut(C) =
1

k

∑
Ui∈C

cut(Ui, Ūi)
|Ui|

, (69)

where |Ui| denotes the number of nodes in community Ui.

ncut(C) =
1

k

∑
Ui∈C

cut(Ui, Ūi)
vol(Ui)

, (70)

where vol(Ui) denotes the degree sum of nodes in community Ui.
As shown in the above example, from the computed costs, we find
that the community detected in plot C achieves much lower ratio-
cut and ncut costs compared with those in plots B and D. Compared



against the regular cut cost, both ratio-cut and normalized-cut pre-
fer a balanced partition of the social network.
Spectral Clustering: Actually the objective function of both ratio-
cut and normalized-cut can be unified as the following linear alge-
bra equation

min
H∈{0,1}|V|×k

Tr(H>L̄H), (71)

where matrix H ∈ {0, 1}|V|×k denotes the communities that users
in V belong to.
Let A ∈ {0, 1}|V|×|V| denote the social adjacency matrix of the
network, and the corresponding diagonal matrix of A can be rep-
resented as matrix D, where D has value D(i, i) =

∑
j A(i, j) on

its diagonal. The Laplacian matrix of the network adjacency matrix
A can be represented as L = D −A. Depending on the specific
measures applied, matrix L̄ can be represented as

L̄ =

{
L, for ratio-cut measure,

D
−1
2 LD

−1
2 , for normalized-cut measure.

(72)

The binary constraint on the variable H renders the problem a non-
linear integer programming problem, which is very hard to solve.
One common practice to learn the variable H is to apply spectral
relaxation to replace the binary constraint with the orthogonality
constraint.

min Tr(H>L̄H), (73)

s.t.H>H = I. (74)

As proposed in [59], the optimal solution H∗ to the above objective
function equals to the eigen-vectors corresponding to the k smallest
eigen-values of matrix L̄.

6.2 Mutual Community Detection
Besides the knowledge transfer from developed networks to the
emerging networks to overcome the cold start problem [95], in-
formation in developed networks can also be transferred mutually
to help refine the detected community structure detected from each
of them. In this section, we will introduce the mutual community
detection problem across multiple aligned heterogeneous networks
and introduce a new cross-network mutual community detection
model MCD. To refine the community structures, a new concept
named discrepancy is introduced to help preserve the consensus of
the community detection result of the shared anchor users accord-
ing to [97].
For the given two aligned heterogeneous networks G(1) and G(1),
the Mutual Community Detection problem aims to obtain the op-
timal communities C(1) = {U (1)

1 , U
(1)
2 , · · · , U (1)

k(1)} and C(2) =

{U (2)
1 , U

(2)
2 , · · · , U (2)

k(2)} of these two networks respectively. Users
in each detected social community are more densely connected
with each other than with users in other communities. Instead of
the propagation based social intimacy score computation among
users, MCD proposes to use the meta paths introduced in Section 3
to utilize both direct and indirect connections among users in close-
ness scores calculation. With full considerations of the network
characteristics, MCD exploits the information in aligned networks
to refine and disambiguate the community structures of the mul-
tiple networks concurrently based on a novel concept community
discrepency. More detailed information about the MCD model will
be introduced as follows.

6.2.1 Discrepancy
By maximizing the consensus (i.e., minimizing the “discrepancy”)
of the clustering results about the anchor users in multiple partially

aligned networks, model MCD will be able to refine the cluster-
ing results of the anchor users with information in other aligned
networks mutually. The confidence scores for each user belong to
these communities can be represented as matrices H(1) and H(2).
Matrix H(1) = [h

(1)
1 , h

(1)
2 , . . . , h

(1)
n ]>, n = |U|, h(1)

i = (hi,1,

hi,2, . . . , hi,k) and hi,j denotes the confidence that u(1)
i ∈ U

(1) is
in cluster U (1)

j ∈ C(1). And it is similar for matrix H(2).
Let ui and uj be two anchor users in the network, whose accounts
in G(1) and G(2) are u(1)

i , u(2)
i , u(1)

j and u(2)
j respectively. If users

u
(1)
i and u(1)

j are partitioned into the same cluster in G(1) but their

corresponding accounts u(2)
i and u(2)

j are partitioned into different
clusters in G(2), then it will lead to a discrepancy [97; 57] between
the clustering results of u(1)

i , u(2)
i , u(1)

j and u(2)
j in aligned net-

works G(1) and G(2).
The discrepancy between the clustering results of ui and uj across
aligned networksG(1) andG(2) is defined as the difference of con-
fidence scores of ui and uj being partitioned in the same cluster
across aligned networks. Considering that in the clustering re-
sults, the confidence scores of u(1)

i and u(1)
j (u(2)

i and u(2)
j ) be-

ing partitioned into k(1) (k(2)) clusters can be represented as vec-
tors h

(1)
i and h

(1)
j (h(2)

i and h
(2)
j ) respectively, while the confi-

dences that ui and uj are in the same cluster in G(1) and G(2)

can be denoted as h(1)
i (h

(1)
j )T and h

(2)
i (h

(2)
j )T . Formally, the dis-

crepancy of the clustering results about ui and uj is defined to be

dij(C(1), C(2)) =
(
h

(1)
i (h

(1)
j )T − h

(2)
i (h

(2)
j )T

)2

if ui, uj are both anchor users; and dij(C(1), C(2)) = 0 otherwise.
Furthermore, the discrepancy of C(1) and C(2) will be:

d(C(1), C(2)) =

n(1)∑
i

n(2)∑
j

dij(C(1), C(2)), (75)

where n(1) = |U (1)| and n(2) = |U (2)|. In the definition, non-
anchor users are not involved in the discrepancy calculation.

6.2.2 Normalized Discrepancy
However, considering that d(C(1), C(2)) is highly dependent on the
number of anchor users and anchor links between G(1) and G(2),
minimizing d(C(1), C(2)) can favor highly consented clustering re-
sults when the anchor users are abundant but have no significant
effects when the anchor users are very rare. To solve this problem,
model MCD proposes to minimize the normalized discrepancy in-
stead.
The normalized discrepancy measure computes the differences of
clustering results in two aligned networks as a fraction of the dis-
crepancy with regard to the number of anchor users across partially
aligned networks:

nd(C(1), C(2)) =
d(C(1), C(2))

(|A(1,2)|) (|A(1,2)| − 1)
. (76)

Optimal consensus clustering results of G(1) and G(2) will be:

Ĉ(1), Ĉ(2) = arg min
C(1),C(2)

nd(C(1), C(2)). (77)

The normalized-discrepancy objective function can also be repre-
sented with the clustering results confidence matrices H(1) and
H(2) as well. Meanwhile, considering that the networks studied
in this section are partially aligned, matrices H(1) and H(2) con-
tain the results of both anchor users and non-anchor users, while



non-anchor users should not be involved in the discrepancy calcu-
lation according to the definition of discrepancy. The introduced
model proposes to prune the results of the non-anchor users with
the anchor transition matrix between the networks. By minimizing
the normalized discrepancy together with the community detection
cost terms of networks G(1) and G(2), MCD can learn the consen-
sus community structures of multiple social networks mutually.

7. INFORMATION DIFFUSION
Social influence can be widely spread among people, and infor-
mation exchange has become one of the most important social ac-
tivities in the real world. The creation of the Internet and online
social networks has rapidly facilitated the communication among
people. Via the interactions among users in online social networks,
information can be propagated from one user to other users. For
instance, in recent years, online social networks have become the
most important social occasion for news acquisition, and many out-
breaking social events can get widely spread in the online social
networks at a very fast speed. People as the multi-functional “sen-
sors” can detect different kinds of signals happening in the real
world, and write posts to report their discoveries to the rest of the
world via the online social networks.
In this section, we will study the information diffusion process in
the online social networks. Diffusion denotes the spreading process
of certain entities (like information, idea, innovation, even heat in
physics and disease in bio-medical science) through certain chan-
nels among the target object group in a system. The entities to
be spread, the channels available, the target object group and the
system can all affect the diffusion process and lead to different dif-
fusion observations.
Depending on the system where the diffusion process is originally
studied, the diffusion models can be divided into (1) information
diffusion models in social networks [29; 103], (2) viral spreading
in the bio-medical system [53; 12], and (3) heat diffusion in physi-
cal system [47; 8]. We will take the information diffusion in online
social networks as one example. The channels for information dif-
fusion belong to certain sources, like online world diffusion chan-
nels and offline world diffusion channels, or diffusion channels in
different social networks. Meanwhile, depending on the diffusion
channels and sources available, the diffusion models include (1)
single-channel diffusion model [92; 29], (2) single source multi-
channel diffusion model [82], (3) multi-source single-channel dif-
fusion model [81; 77], and (4) multi-source multi-channel diffu-
sion model [78; 103; 79]. Based on the categories of topics to be
spread in the online social networks, the diffusion models can be
categorized into (1) single topic diffusion [29; 78], (2) multiple in-
tertwined topics concurrent diffusion [103; 92; 34; 13; 7].
In the following part of this section, we will introduce different
kinds of diffusion models proposed to depict how information prop-
agates among users in online social networks. We will first talk
about the classic diffusion models proposed for the single-network
single channel scenario, including the threshold based models, cas-
cades based models, heat diffusion based models and viral diffusion
based models. After that, the random walk based cross-network
diffusion model will be introduced.

7.1 Traditional Information Diffusion Models
The “diffusion” phenomenon has been observed in different disci-
plines, like social science, physics, and bio-medical science. Var-
ious diffusion models have been proposed in these areas already.
In this part, we will provide a brief introduction to these models,
and introduce how to apply or adapt them for describe information
diffusion process in online social networks.
LetG = (V, E) represent the network structure, based on which we

want to study the information diffusion problem. Formally, given
a user node u ∈ V , we can represent the set of neighbors of u
as Γ(u). Each user node in the network G will have an indicator
denoting whether the user has been activated or not. We will use
notation s(u) = 1 to denote that user u has been activated, and
s(u) = 0 to represent that u is still inactive. Initially, all the users
are inactive to a certain information. Information can be propagated
from an initial influence seed user set S ⊂ V who are exposed
to and activated by the information at the very beginning. At a
timestamp in the diffusion process, given user u’s neighbor, we can
represent the subset of the active neighbors as Γa(u) = {v|v ∈
Γ(u), s(v) = 1}. The set of inactive neighbors can be represented
as Γi(u) = Γ(u) \ Γa(u). Generally, the information diffusion
process will stop if no new activation is available.

7.1.1 Linear Threshold (LT) Models
In this subsection, we will introduce the threshold models, and will
use linear threshold model as an example to illustrate such a kind
of models. Several different variants of the linear threshold models
will be briefly introduced here as well.
Generally, the threshold models assume that individuals have a unique
threshold indicating the minimum amount of required information
for them to be activated by certain information. Information can
propagate among the users, and the information amount is deter-
mined by the closeness of the users. Close friends can influence
each other much more than regular friends and strangers. If the in-
formation propagated from other users in the network surpass the
threshold of a certain user, the user will turn to an activated sta-
tus and also start to influence other users. Therefore, the threshold
values can determine the performance of users in the online social
networks. Depending on the setting of the thresholds as well as the
amount of information propagated among the users, the threshold
models have different variants.
LT Model: In the linear threshold (LT) model [29], each user has
a unique threshold denoting the minimum required information to
active the user. Formally, the threshold of user u can be repre-
sented as θu ∈ [0, 1]. In the simulation experiments, the threshold
values are normally selected from the uniform distribution U(0, 1).
Meanwhile, for each user pair, like u, v ∈ V , information can be
propagated between them. As mentioned before, close friends will
have larger influence on each other compared with regular friends
and strangers. Formally, the amount of information users u can
send to v is denoted as weight wu,v ∈ [0, 1]. Generally, the to-
tal amount of informations can send out is bounded. For instance,
in the LT model, the total amount of information user u can send
out is bounded by 1, i.e.,

∑
v∈Γ(u) wu,v ≤ 1. Different ways have

been proposed to define the specific value of the weightwu,v value,
and in many of the cases wu,v can be different from wv,u since the
information each user can send out can be different. However, in
many other cases, to simplify the setting, for the same user pair,
wu,v and wv,u are usually assigned with the same value. For in-
stance, in some LT models, Jaccard’s Coefficient is applied to cal-
culate the closeness between the user pairs which will be used as
the weight value.
In the LT model, the information sent from the neighbors to user
u can be aggregated with linear summation. For instance, the total
amount of information user u can receive from his/her neighbors
can be denoted as

∑
v∈Γ(u) w(v, u)s(v) or

∑
v∈Γau w(v, u). To

check whether a user can be activated or not, LT model will only
need to check whether the following equation holds or not,∑

v∈Γau

w(v, u) ≥ θu. (78)



It denotes whether the received information surpasses the activation
threshold of user u or not. Here, we also need to notice that inac-
tive neighbors will not send out information, and only the active
neighbors can send out information. The information provided so
far shows the critical details of the LT model. Next, we will show
the general framework of the LT model to illustrate how it works.
In the LT model, the initial activated seed user set can be repre-
sented as S, users in which can start the propagation of informa-
tion to their neighbors. Generally, information propagates within
the network step by step.

• Diffusion Starts: At step 0, only the seed users in S are ac-
tive, and all the remaining users have inactive status.

• Diffusion Spreads: At step t(t > 0), for each user u, if the
information propagated from u’s active neighbors is greater
than the threshold of u, i.e.,

∑
v∈Γau w(v, u) ≥ θu, u will

be activated with status s(u) = 1. All activated users will re-
main active in the coming rounds, and can send information
to their neighbors. Active user cannot be activated again.

• Diffusion Ends: If no new activation happens in step t, the
diffusion process will stop.

Other Threshold Models: The LT model assumes the cumulative
effects of information propagated from the neighbors, and can il-
lustrate the basic information diffusion process among users in the
online social networks. The LT model has been well analyzed, and
many other variant models have been proposed as well. Depending
on the assignment of the threshold and weight values, many other
different diffusion models can all be reduced to a special case of
the LT model.

• Majority Threshold Model: Different from the LT mode,
in majority threshold model [10], an inactive user u can be
activated if majority of his/her neighbors are activated. The
majority threshold model can be reduced to the LT model in
the case that: (1) the influence weight between any friends
(u, v) in the network is assigned with value 1; (2) the thresh-
old of any user u is set as 1

2
D(u), where D(u) denotes the

degree of node u in the network. For the nodes with large
degrees, like the central node in the star-structured diagram,
their activation will lead to the activation of lots of surround-
ing nodes in the network.

• k-Threshold Model: Another diffusion model similar to the
LT model is called the k-threshold diffusion model [10], in
which users can be activated of at least k of his/her neigh-
bors are active. The k-threshold model is equivalent to the
LT model with settings (1) the influence weight between any
friend pairs (u, v) in the network is assigned with value 1;
and (2) the activation thresholds of all the users are assigned
with a shared value k. For each user u, if k of his/her neigh-
bors have been activated, u will be activated.

Depending on the values of k, the k-threshold model will
have different performance. When k = 1, a user will be
activated of at least one of his/her neighbor is active. In such
a case, all the users in the same connected components with
the initial seed users will be activated finally. When k is a
very large value and even greater than the large node degree,
e.g., k > maxu∈V D(u), no nodes can be activated. When
k is a medium value, some of the users will be activated as
the information propagates, but the other users with less than
k neighbors will never be activated.

7.1.2 Independent Cascade (IC) Model
An information cascade occurs when a people observe the actions
of others and then engage in the same acts. Cascade clearly illus-
trates the information propagation routes, and the activating actions
performed for users to their neighbors. In this part, we will talk
about the cascade based models and use the independent cascade
(IC) model as an example to illustrate the model architecture.
IC Model: In the diffusion process, about one certain target user,
multiple activation trials can be performed by his/her neighbors. In
the independent cascade model [29], each activation is performed
independently regardless of the historical unsuccessful trials. The
activation trials are performed step by step. When user u who has
been activated in the previous step and tries to activate user v in
the current step, the success probability is denoted as pu,v ∈ [0, 1].
Generally, if users u and v are close friends, the activation probabil-
ity will be larger compared with regular friends and strangers. The
specific activation probability values is usually correlated with the
social closeness between users u and v, which can also be defined
based the Jaccard’s Coefficient in the simulation. The activation
trials will only happen among the users who are friends. If u suc-
ceeds in activating v, then user v will change his/her status to “ac-
tive” and will remain in the status in the following steps. However,
if u fails to activate v, u will lose the chance and cannot perform
the activation trials any more.
In IC model, the activation trials are performed by flipping a coin
with certain probabilities, whose result is uncertain. Even with the
same provided initial seed user set S, the number of users who will
be activated by the seed users can be different if we running the
IC model twice. Formally, we can represent the set of activated
users by the seed users as Va ⊂ V . Therefore, in the experimental
simulations, we usually run the diffusion model multiple times and
calculate the average number of activated users, i.e., |Va|, to denote
the expected influence achieved by the seed user set S.
Other Cascade Models: Generally, the independent activation as-
sumption renders the IC model the simplest cascade based diffu-
sion models. In the real world, the diffusion process will be more
complicated. For the users, who have been failed to be activated by
many other users, it probably indicates that the user is not interested
in the information. Viewed in such a perspective, the probability for
the user to be activated will decrease as more activation trials have
been performed. In this part, we will introduce another cascade
based diffusion model, decreasing cascade model (DC) [30].
To illustrate the DC model more clearly and show it difference
compared with the IC model, we use notation P (u → v|T ) to
represent the probability for user u to activate v given a set of users
T have performed and failed the activation trials to v already. Let
T , T ′ denote two historical activation trial user set, where T ⊆ T ′.
In the IC model, we have

P (u→ v|T ) = P (u→ v|T ′). (79)

In other words, every activation trial is independent with each other,
and the activation probability will not be changed as more activa-
tion trials have been performed.
As introduced at the beginning of this subsection, the fact that users
in set T fail to activate v indicates that v probably is not interested
in the information, and the change for v to be activated afterwards
will be lower. Furthermore, as more activation trials, e.g., users
in T ′ are performed, the probability for u to active v will be de-
creased, i.e.,

P (u→ v|T ) ≥ P (u→ v|T ′). (80)

Intuitively, this restriction states that a contagious node’s probabil-



ity of activating some v decreases if more nodes have already at-
tempted to activate v, and v is hence more “marketing-saturated”.
The DC model incorporates the IC model as a special case, and is
more general in information diffusion modeling than the IC model.

7.1.3 Epidemic Diffusion Model
The threshold and cascade based diffusion models introduced in the
previous part mostly assume that “once a user is activated, he/she
will remain the active status forever”. However, in the real world,
these activated users can change their minds and the activated users
can still have the chance to recover to the original status. In the
bio-medical science, diffusion models have been studied for many
years to model the spread of disease, and several epidemic diffu-
sion models have been introduced already. In the disease propaga-
tion, people who are susceptible to the disease can be get infected
by other people. After some time, many of these infected peo-
ple can get recovered and become immune to the disease, while
many other users can get recovered and get susceptible to the dis-
ease again. Depending on the people’s reactions to the disease af-
ter recovery, several different epidemic diffusion models [51] have
been proposed already.
Susceptible-Infected-Recovered (SIR) Diffusion Model: The SIR
model was proposed by W. O. Kermack and A. G. McKendrick in
1927 to model the infectious diseases, which consider a fixed pop-
ulation with three main categories: susceptible (S), infected (I), and
recovered (R). As the disease propagates, the individual status can
change among {S, I, R} following flow:

S → I → R. (81)

In other words, the individuals who are susceptible to the disease
can get infected, while those infected individuals also have the
chance to recover from the disease as well.
In this part, we will use the SIR model to describe the information
cascading process in online social networks. Let V denote the set
of users in the network. We introduce the following notations to
represent the number of users in different categories:
• S(t): the number of users who are susceptible to the infor-

mation at time t, but have not gotten infected yet.
• I(t): the number of users who are currently infected by the

information, and can spread the information to others in the
susceptible catetory.
• R(t): the number of users who have been infected and al-

ready recovered from the information infection. The users
are immune to the information will not be infected again.

Based on the above notations, we have the following equations hold
in the SIR model.

S(t) + I(t) +R(t) = |V|, (82)

dS(t)

dt
+

dI(t)

dt
+

dR(t)

dt
= 0, (83)

where, 
dS(t)

dt
= −βS(t)I(t),

dI(t)
dt

= βS(t)I(t)− γI(t),
dR(t)

dt
= γI(t).

(84)

Other Epidemic Diffusion Model
In some cases, the users cannot get immune to the information and
don’t exist the recovery status actually. For the users, who get in-
fected, they can go to the susceptible status and can get infected
again in the future. To model such a phenomenon, another diffu-
sion model very similar to the SIR model has been proposed, which
is called the Susceptible-Infected-Susceptible (SIS) model.

Furthermore, in another variant of SIR, the individuals in the recov-
ery category can lose the immunity and transit to the susceptible
category and have the potential to be infected again. Therefore, the
individual status flow will be

S → I → R→ S. (85)

And the model is also named as the SIRS diffusion model.
Besides these epidemic diffusion models introduced in this subsec-
tion, there also exist many different version of the epidemic diffu-
sion models, which considers many other factors in the diffusion
process, like the birth/death of individuals. It is also very common
in the real-world online social networks, since new users will join
in the social network, and existing users will also delete their ac-
count and get removed from the social network. Involving such
factors will make the diffusion model more complex, and we will
not introduce them here due to the limited space. More information
about these epidemic diffusion models is available in [49; 51].

7.1.4 Heat Diffusion Models
Heat diffusion is a well observed physical phenomenon. Gener-
ally, in a medium, heat will always diffuses from regions with a
high temperature to the region with a lower temperature. Recently,
many works have applied the heat diffusion to model the informa-
tion propagation in online social networks. In this subsection, we
will talk about the heat diffusion model and introduce how to adapt
it to model the information diffusion in online social networks.
General Heat Diffusion: Throughout a geometric manifold, let
function f(x, t) denote the temperature at location x at time t, and
we can represent the initial temperature at different locations as
f0(x). The heat flows with initial conditions can be described by
the following second order differential equation{

∂f(x,t)
∂t

−∆f(x, t) = 0

f(x, 0) = f0(x),
(86)

where ∆f(x, t) is a Laplace-Beltrami operator on function f(x, t).
Many existing works on the heat diffusion studies are mainly fo-
cused on the heat kernel matrix. Formally, let Kt denote the heat
kernel matrix at timestamp t, which describes the heat diffusion
among different regions in the medium. In the matrix, entryKt(x, y)
denotes the heat diffused from the original position y to position x
at time t. However, it is very difficult to represent the medium as a
regular geometry with a known dimension. In the next part, we will
introduce how to apply the heat diffusion observations to model the
information diffusion in the network-structured graph data.
Heat Diffusion Model: Given a homogeneous networkG = (V, E),
for each node u ∈ V in the network, we can represent the informa-
tion at u in timestamp t as f(u, t). The initial information available
at each of the node can be denoted as f(u, 0). The information can
be propagated among the nodes in the network if there exists a pipe
(i.e., a link) between them. For instance, with a link (u, v) ∈ E in
the network, information can be propagated between u and v.
Generally, in the diffusion process, the amount of information prop-
agated between different nodes in the network depends on (1) the
difference of information available at them, and (2) the thermal
conductivity-the heat diffusion coefficientα. For instance, at times-
tamp t, we can represent the amount of information reaching nodes
u, v ∈ V as f(u, t) and f(v, t). If f(u, t) > f(v, t), information
tends to propagate from u to v in the network, and the amount of
information propagated is α · (f(u, t)− f(v, t)), and the propaga-
tion direction will be reversed if f(u, t) < f(v, t). The informa-
tion amount changes at node u at timestamps t and t + ∆t can be



represented as

f(u, t+ ∆t)− f(u, t)

∆t
= −

∑
v∈Γ(u)

α·(f(u, t)− f(v, t)) . (87)

Let’s use vector f(t) to represent the amount of information avail-
able at all the nodes in the network at timestamp t. The above
information amount changes can be rewritten as

f(t+ ∆t)− f(t)

∆t
= αHf(t), (88)

where in the matrix H ∈ R|V|×|V|, entry H(u, v) has value

H(u, v) =


1, if (u, v) ∈ E ∨ (v, u) ∈ E ,
−D(u), if u = v,

0, otherwise,
(89)

where D(u) denotes the degree of node u in the network.
In the limit case ∆t→ 0, we can rewrite the equation as

df(t)

dt
= αHf(t). (90)

Solving the function, we can represent the amount of information
at each node in the network as

f(t) = exptαH f(0) (91)

=

(
I + αtH +

α2t2

2!
H2 +

α3t3

3!
H3 + · · ·

)
f(0), (92)

where term exptαH is called the diffusion kernel matrix, which can
be expanded according to Taylor’s theorem.

7.2 Random Walk based Diffusion Model
Different online social networks usually have their own character-
istics, and users tend to have different status regarding the same
information. For instance, information about personal entertain-
ments (like movies, pop stars) can be widely spread among users in
Facebook, and users interested in them will be activated very eas-
ily and also share the information to their friends. However, such
a kind of information is relatively rare in the professional social
network LinkedIn, where people seldom share personal entertain-
ment to their colleagues, even though they may have been activated
already in Facebook. What’s more, the structures of these online
social networks are usually heterogeneous, containing many differ-
ent kinds of connections. Besides the direct follow relationships
among the users, these diverse connections available among the
users may create different types of communication channels for in-
formation diffusion. To model such an observation in information
diffusion across multiple heterogeneous online social sites, in this
part, we will introduce a new information diffusion model, IPATH
[80], based on random walk.

7.2.1 Intra-Network Propagation
In a heterogeneous network, multi-typed and interconnected enti-
ties, such as images, videos and locations, can create various in-
formation propagation relations among users. We can represent
the information diffusion routes among users via other information
entities, which can be formally represented as the diffusion route
set R = {r1, r2, . . . , rm}, where m is the route number. Let’s
take the source network G(s) = (V(s), E(s)) as an example. For
any diffusion route ri ∈ R, the adjacency matrix of ri will be
A

(s)
i ∈ R|V

(s)|×|V(s)|, where A(s)
i (u, v) is a binary-value variable

and A(s)
i (u, v) = 1 iff u and v are connected with each other via

relation ri. The weighted diffusion matrix can be represented as

|V
s|

|V
t|

αWs

αWt(1-α)Wt→s

(1-α)Ws→t

|Vs| |Vt|

πs

πt

π

Figure 3: The weight matrix and the information distribution vector

the normalization of W(s)
i = A

(s)
i D−1, where D−1 is a diagonal

matrix with D(u, u) =
∑|V(s)|
v A

(s)
i (v, u), denoting the in-degree

of u. In a similar way, we can represent the weighted diffusion
matrices for other relations, which altogether can be represented as
{W(s)

1 ,W
(s)
2 , . . . ,W

(s)
m }. To fuse the information diffused from

different relations, IPATH will linearly combine these weighted ma-
trices as follows:

Ws = λ1 ×W
(s)
1 + λ2 ×W

(s)
2 + · · ·+ λm ×W(s)

m , (93)

where λi denotes the aggregation weight of matrix corresponding
to relation ri. In a similar way, we can define the weight matrix
W(t) of the target network G(t).

7.2.2 Inter-Network Propagation
Across the aligned networks, information can propagate not only
within networks but also across networks. Based on the known
anchor links between networks G(t) and G(s), i.e., set A(s,t), we
can define the binary adjacency matrix A(s→t) ∈ R|V

(s)|×|V(t)|,
where A(s→t)(u, v) = 1 if (u(s), v(t)) ∈ A(s,t). IPATH assumes
that each anchor user inG(s) only has one corresponding account in
G(t). Therefore A(s→t) has been normalized and the weight matrix
W(s→t) = A(s→t), denoting the chance of information propagat-
ing fromG(s) toG(t). Furthermore, we can represent the weighted
diffusion matrix from networksG(t) toG(s) as W(t→s) = (W(s→t))>,
considering that the anchor links are undirected.
Both the intra-network propagation relations, represented by weight
matrices W(s) and W(t) in networks G(s) and G(t) respectively,
and the inter-network propagation relations, represented by weight
matrix W(s→t) and W(t→s), have been constructed already in the
previous subsection. As shown in Figure 3, to model the cross-
network information diffusion process involving both the intra- and
inter-network relations simultaneously, IPATH proposes to com-
bine these weighted diffusion matrices to build an integrated matrix
W ∈ R(|V(s)|+|V(t)|)2 . In the integrated matrix W, the parameter
α ∈ [0, 1] denotes the probability that the message stay in the orig-
inal network, thus 1−α represents the chance of being transmitted
across networks (i.e., the probability of activated anchor user pass-
ing the influence to the target network).

7.2.3 The IPATH Information Propagation Model
Let vector πk ∈ R(|V(s)|+|V(t)|) represent the information that
users in G(s) and G(t) can receive after k steps. As shown in Fig-
ure 3, vector πk consists of two parts πk = [π

(s)
k , π

(t)
k ], where

π
(s)
k ∈ R|V

(s)| and π(t)
k ∈ R|V

(t)|. The initial state of the vector
can be denoted as π0, which is defined based on the seed user set
Z with function g(·) as follows:

π0 = g(Z),where π0[u] =

{
1 if u ∈ Z,
0 otherwise.

(94)

Seed set Z can also be represented as Z = g−1(π0). Users from
G(s) and G(t) both have the chance of being selected as seeds, but
when the structure information of G(t) is hard to obtain, the seed



users will be only chosen from G(s). In IPATH, the information
diffusion process is modeled by random walk, because it is widely
used in which the total probability of the diffusing through different
relations remains constant 1 [68; 20]. Therefore, in the information
propagation process, vector π will be updated stepwise with the
following equation:

π(k+1) = (1− α)×Wπk + α× π0, (95)

where constant α denotes the probability of returning to the initial
state. By keeping updating π according to (95) until convergence,
we can present the stationary state of vector π to be π∗,

π∗ = α[I− (1− α)W]−1π0, (96)

where matrix I ∈ {0, 1}(|V
(s)|+|V(t)|)×(|V(s)|+|V(t)|) is an iden-

tity matrix. The value of entry π∗[u] denotes the activation prob-
ability of u, and user u will be activated if π∗[u] ≥ θ, where θ
denotes the threshold of accepting the message. In IPATH, param-
eter θ is randomly sampled from range [0, θbound]. The threshold
bound θbound is a small constant value, as the amount of informa-
tion each user can get at the stationary state in IPATH can be very
small (which is set as 0.01 in the experiments). In addition, we can
further represent the activation status of user u as vector π′, where

π′[u] =

{
1 if π∗[u] ≥ θ,
0 otherwise.

(97)

8. NETWORK EMBEDDING
In the concrete applications, great challenges exist in handling the
network structured data with traditional machine learning algorithms,
which usually take feature vector representation data as the input.
A general representation of heterogeneous networks as feature vec-
tors is desired for knowledge discovery from such complex network
structured data. In recent years, many research works propose to
embed the online social network data into a lower-dimensional fea-
ture space, in which the user node is represented as a unique fea-
ture vector, and the network structure can be reconstructed from
these feature vectors. With the embedded feature vectors, classic
machine learning models can be applied to deal with the social net-
work data directly, and the storage space can be saved greatly.
In this section, we will talk about the network embedding problem,
aiming at projecting the nodes and links in the network data in low-
dimensional feature spaces. Depending on the application setting,
existing graph embedding works can be categorized into the em-
bedding of homogeneous networks, heterogeneous networks, and
multiple aligned heterogeneous networks. Meanwhile, depending
on the models being applied, current embedding works can be di-
vided into the matrix factorization based embedding, translation
based embedding, and deep learning based embedding.
In the following parts in this section, we will first introduce the
translation based graph embedding models in Section 8.1, which
are mainly proposed for the multi-relational knowledge graphs, in-
cluding TransE [9], TransH [73] and TransR [40]. After that, in
Section 8.2, we will introduce three homogeneous network embed-
ding models, including DeepWalk [52], LINE [67] and node2vec
[22]. Finally, we will talk about the model proposed for the mul-
tiple aligned heterogeneous network [93] in Section 8.3, where the
anchor links are utilized to transfer information across different
sites for mutual refinement of the embedding results mutually.

8.1 Translation based Network Embedding
Multi-relational data refers to the directed graphs whose nodes cor-
respond to entities and links denote the relationships. The multi-
relational data can be represented as a graph G = (V, E), where V

denotes the node set and E represents the link set. For the link in
the graph, e.g., r = (h, t) ∈ E , the corresponding entity-relation
can be represented as a triple (h, r, t), where h denotes the link
initiator entity, t denotes the link recipient entity and r represents
the link. The embedding problem studied in this section is to learn
a feature representation of both entities and relations in the triples,
i.e., h, r and t.

8.1.1 TransE
The TransE [9] model is an energy-based model for learning low-
dimensional embeddings of entities and relations, where the rela-
tions are represented as the translations of entities in the embedding
space. Given a entity-relation triple (h, r, t), the embedding feature
representation of the entities and relations can be represented as
vectors h ∈ Rk, r ∈ Rk and t ∈ Rk (k denotes the objective vec-
tor dimension). If the triple (h, r, t) holds, i.e., there exists a link r
starting from h to t in the network, the corresponding embedding
vectors h + r should be as close to vector t as possible.
Let S+ = {(h, r, t)}r=(h,t)∈E represents the set of positive train-
ing data, which contains the triples existing in the networks. The
TransE model aims at learning the embedding features vectors of
the entities h, t and the relation r, i.e., h, r and t. For the triples
in the positive training set, we want to ensure the learnt embedding
vectors h+r is very close to t. Let d(h+r, t) denotes the distance
between vectors h + r and t. The loss introduced for the triples in
the positive training set can be represented as

L(S+) =
∑

(h,r,t)∈S+

d(h + r, t). (98)

Here the distance function can be defined in different ways, like the
L2 norm of the difference between vectors h + r and t, i.e.,

d(h + r, t) = ‖h + r− t‖2 . (99)

By minimizing the above loss function, the optimal feature rep-
resentations of the entities and relations can be learnt. To avoid
trivial solutions, like 0s for h, r and t, additional constraints that
the L2-norm of the embedding vectors of the entities should be 1
will be added in the function. Furthermore, a negative training set
is also sampled to differentiate the learnt embedding vectors. For a
triple (h, r, t) ∈ S+, the corresponding sampled negative training
set can be denoted as S−(h,r,t), which contains the triples formed by
replacing the initiator entity h or the recipient entity t with random
entities. In other words, the negative training set S−(h,r,t) can be
represented as

S−(h,r,t) = {(h′, r, t)|h′ ∈ V} ∪ {(h, r, t′)|t′ ∈ V}. (100)

The loss function involving both the positive and negative training
set can be represented as

L(S+
,S−) = (101)∑

(h,r,t)∈S+

∑
(h′,r,t′)∈S−

(h,r,t)

max
(
γ + d(h + r, t)− d(h′ + r, t

′
), 0
)
, (102)

where γ is a margin hyperparameter and max(·, 0) will count the
positive loss only.
The optimization is carried out by stochastic gradient descent (in
minibatch mode). The embedding vectors of entities and relation-
ships are initialized with a random procedure. At each iteration of
the algorithm, the embedding vectors of the entities are normalized
and a small set of triplets is sampled from the training set, which
will serve as the training triplets of the minibatch. The parameters
are then updated by taking a gradient step.



8.1.2 TransH
TransE is a promising method proposed recently, which is very
efficient while achieving state-of-the-art predictive performance.
However, in the embedding process, TransE fail to consider the car-
dinality constraint on the relations, like one-to-one, one-to-many
and many-to-many. The TransH model [73] to be introduced in this
part considers such properties on relations in the embedding pro-
cess. Different from the other complex models, which can handle
these properties but sacrifice efficiency, TransH achieves compa-
rable time complexity as TransE. TransH models the relation as a
hyperplane together with a translation operation on it, where the
correlation among the entities can be effectively preserved.
In TransH, different from the embedding space of entities, the rela-
tions, e.g., r, is denoted as a transition vector dr in the hyperplane
wr (a normal vector). For each of the triple (h, r, t), the embed-
ding vector h, t are fist projected to the hyperplane wr , whose
corresponding projected vectors can be represented as h⊥ and t⊥
respectively. The vectors h⊥ and t⊥ can be connected by the trans-
lation vector dr on the hyperplane. Depending on whether the
triple appears in the positive or negative training set, the distance
d(h⊥ + dr, t⊥) should be either minimized or maximized.
Formally, given the hyperplane wr , the projection vectors h⊥ and
t⊥ can be represented as

h⊥ = h−w>r hwr, (103)

t⊥ = t−w>r twr. (104)

Furthermore, the L2 norm based distance function can be repre-
sented as

d(h⊥ + dr, t⊥) = ‖(h−wrhwr) + dr − (t−wrtwr)‖22 . (105)

The variables to be learnt in the TransH model include the em-
bedding vectors of all the entities, the hyperplane and translation
vectors for each of the relations. To learn these variables simulta-
neously, the objective function of TransH can be represented as

L(S+
,S−) = (106)∑

(h,r,t)∈S+

∑
(h′,r′,t′)∈S−

(h,r,t)

max
(
γ + d(h⊥ + dr, t⊥)− d(h′⊥ + d

′
r, t
′
⊥), 0

)
,

(107)

where S−(h,r,t) denotes the negative set constructed for triple (h, r, t).
Different from TransE, TransH applies a different to sample the
negative training triples with considerations of the relation cardi-
nality constraint. For the relations with one-to-many, TransH will
give more chance to replace the initiator node; and for the many-to-
one relations, TransH will give more chance to replace the recipient
node instead.
Besides the loss function, the variables to be learnt are subject to
some constraints, like the embedding vector for entities is a normal
vector; wr and dr should be orthogonal, and wr is also a normal
vector. We summarize the constraints of the TransH model as fol-
lows

‖h‖2 ≤ 1, ‖t‖2 ≤ 1, ∀h, t ∈ V, (108)

|w>r dr|
‖dr‖2

≤ ε, ∀r ∈ E , (109)

‖wr‖2 ≤ 1,∀r ∈ E . (110)

The constraints can be relaxed as some penalty terms, which can be
added to the objective function with a relatively large weight. The
final objective function can be learnt with the stochastic gradient
descent, and by minimizing the loss function, the model variables
can be learned and we will get the final embedding results.

8.1.3 TransR
Both TransE and TransH introduced in the previous subsections as-
sume embeddings of entities and relations within the same space
Rk. However, entities and relations are actually totally different
objects, and they may be not capable to be represented in a com-
mon semantic space. To address such a problem, TransR [40] is
proposed, which models the entities and relations in distinct spaces,
i.e., the entity space and relation space, and performs the translation
in relation space.
In TransR, given a triple (h, r, t), the entities h and t are embedded
as vectors h, t ∈ Rke , and the relation r is embedded as vector r ∈
Rkr , where the dimension of the entity space and relation space are
not the same, i.e., ke 6= kr . To project the entities from the entity
space to the relation space, a projection matrix Mr ∈ Rke×kr is
defined in TransR. With the projection matrix, the projected entity
embedding vectors can be defined as

hr = hMr, (111)
tr = tMr. (112)

The loss function is defined as

d(hr + r, tr) = ‖hr + r− tr‖22 . (113)

The constraints involved in TransR include

‖h‖2 = 1, ‖t‖2 = 1,∀h, t ∈ V, (114)
‖hMr‖2 = 1, ‖tMr‖2 = 1, ∀h, t ∈ V, (115)
‖wr‖2 ≤ 1,∀r ∈ E . (116)

The negative training set S− in TransR can be obtained in a similar
way as TransH, where the variables can be learnt with the stochastic
gradient descent. We will not introduce the information here to
avoid content duplication.

8.2 Homogeneous Network Embedding
Besides the translation based network embedding models, in this
section, we will introduce three embedding models for network
data, including DeepWalk, LINE and node2vec. Formally, the net-
works studied in this part are all homogeneous networks, which is
represented as G = (V, E). Set V denotes the set of nodes in the
homogeneous network, and E represents the set of links among the
nodes inside the network.

8.2.1 DeepWalk
The DeepWalk [52] algorithm consists of two main components:
(1) a random walk generator, and (2) an update procedure. In the
first step, the DeepWalk model randomly selects a node, e.g., u ∈
V , as the root of a random walk Wu from the nodes in the network.
Random walkWu will sample the neighbors of the node last visited
uniformly until the maximum length l is met. In the second step,
the sampled neighbors are used to update the representations of the
nodes inside the graph, where SkipGram [46] is applied here.
Random Walk Generator: The random walk model has been in-
troduced in Section 5.1.1. Formally, the random walk starting at
node u ∈ V can be represented as Wu, which actually denotes a
stochastic process with random status W 0

u , W 1
u , · · · , W k

u . For-
mally, at the very beginning, i.e., step 0, the random walk is at the
initial node, i.e., W 0

u = u. The status variable W k
u denotes the

node where the node is at step k.
Random walk can capture the local network structures effectively,
where the neighborhood and social connection closeness can affect
the next nodes that the random walk will move to in the next step.
Therefore, in the DeepWalk, random walk is applied to sample a



stream of short random walks as the tool for extracting informa-
tion from a network. Random walk can provide two very desir-
able properties, besides the ability to capture the local community
structures. Firstly, the random walk based local exploration is easy
to parallelize. Several random walks can simultaneously explore
different parts of the same network in different threads, processes
and machines. Secondly, with the information obtained from short
random walks, it is possible to accommodate small changes in the
network structure without the need for global recomputation.
SkipGram Technique: The updating procedure used in DeepWalk
is very similar to the word appearance prediction in language mod-
eling. SkipGram is a language model that maximize the co-occurrence
probability of words appearing in the time window s in a sentence.
Here, when applying the SkipGram technique to the DeepWalk
model, the nodes u ∈ V in the network can be regarded as the
words w denoted in the equations aforementioned. Meanwhile, for
the nodes sampled by the random walk model within the window
size s before and after node v, they will be treated as the words
appearing ahead of and after node v. Furthermore, SkipGram as-
sumes the appearance of the words (or nodes for networks) to be
independent, and the above probability equations can be rewritten
as follows:

P ({un−s, un−s+1, · · · , un+s} \ {un}|xun ) =

n+s∏
i=n−s,i 6=n

P (ui|xun ), (117)

where un−s, un−s+1, · · · , un+s denotes the sequence of nodes
sampled by the random walk model.
The learning process of the SkipGram algorithm is provided in Al-
gorithm ??, where we will enumerate all the co-locations of nodes
in the sampled node series un−s, un−s+1,
· · · , un+s by a random walk Wu (starting from node u in the net-
work). With gradient descent, the representation of nodes with their
neighbors representations can be updated with stochastic gradient
descent. The derivatives are estimated with the back-propagation
algorithm. However, in the equation, we need to have the condi-
tional probabilities of the nodes and their representations. A con-
crete representation of the probability can be a great challenging
problem. As proposed in [46], such a distribution can be learnt with
some existing models, like logistic regression. However, since the
labels used here denote the nodes in the network, it will lead to a
very large label space with |V| different labels, which renders the
learning process extremely time consuming. To solve such a prob-
lem, some techniques, like Hierarchical Softmax, have been pro-
posed which represents the nodes in the network as a binary tree
and can lower done the probability computation time complexity
from O(|V|) to O(log |V|).
Hierarchical Softmax: In the SkipGram algorithm, calculating
probability P (ui|xun) is infeasible. Therefore, in the DeepWalk
model, hierarchical softmax is used to factorize the conditional
probability. In hierarchical softmax, a binary tree is constructed,
where the number of leaves equals to the network node set size,
and each network node is assigned to a leaf node. The prediction
problem is turned into a path probability maximization problem. If
a path (b0, b1, · · · , bdlog |V|e) is identified from the tree root to the
node uk, i.e., b0 = root and bdlog |V|e = uk, then the probability
can be rewritten as

P (ui|xun) =

dlog |V|e∏
l=1

P (bl|xun), (118)

where P (bl|xun) can be modeled by a binary classifier denoted as

P (bl|xun) =
1

1 + e−xbl
·xun

. (119)

Here the parameters involved in the learning process include the
representations for both the nodes in the network as well as the
nodes in the constructed binary trees.

8.2.2 LINE
To handle the real-world information networks, the embedding mod-
els need to have several requirements: (1) preserve the first-order
and second-order proximity between the nodes, (2) scalable to large
sized networks, and (3) able to handle networks with different links:
directed and undirected, weighted and unweighted. In this part, we
will introduce another homogeneous network embedding model,
named LINE [67].
First-order Proximity: In the network embedding process, the
network structure should be effectively preserved, where the node
closeness is defined as the node proximity concept in LINE. The
first-order proximity in a network denotes the local pairwise prox-
imity between nodes. For a link (u, v) ∈ E in the network, the first-
order proximity denotes the weight of link (u, v) in the network (or
1 if the network is unweighted). Meanwhile, if link (u, v) doesn’t
exist in the network, the first-order proximity between them will
be 0 instead. To model the first-order proximity, for a given link
(u, v) ∈ E in the network G, LINE defines the joint probability
between nodes u and v as

p1(u, v) =
1

1 + e−xu·xv
, (120)

where xu,xv ∈ Rd denote the vector representations of nodes u
and v respectively.
Function p1(·, ·) defines the proximity distribution in the space of
V × V . Meanwhile, given a network G, the empirical proximity
between nodes u and v can be denoted as

p̂1(u, v) =
w(u,v)∑

(u,v)∈E w(u,v)

. (121)

To preserve the first-order proximity, LINE defines the objective
function for the network embedding as

J1 = d(p1(·, ·), p̂1(·, ·)), (122)

where function d(·, ·) denotes the distance between between the
introduced proximity distribution and the empirical proximity dis-
tribution. By replacing the distance function d(·, ·) with the KL-
divergence and omitting some constants, the objective function can
be rewritten as

J1 = −
∑

(u,v)∈E

w(u,v) log p1(u, v). (123)

By minimizing the objective function, LINE can learn the feature
representation xu for each node u ∈ V in the network.
Second-order Proximity: In the real-world social networks, the
links among the nodes can be very sparse, where the first-order
proximity can hardly preserve the complete structure information of
the network. LINE introduce the concept of second-order proxim-
ity, where denotes the similarity between the neighborhood struc-
ture of nodes. Given a user pair (u, v) in the network, the more
common neighbors shared by them, the closer users u and v are
in the network. Besides the original representation xu for node
u ∈ V , the nodes are also associated with a feature vector repre-
senting its context in the network, which is denoted as yu ∈ Rd.
Formally, for a given link (u, v) ∈ E , the probability of context yv
generated by node u can be represented as

p2(v|u) =
ex
>
u ·yv∑

v′∈V e
x>u ·yv′

. (124)



Slightly different from first-order proximity, the second-order em-
pirical proximity is denoted as

p̂2(v|u) =
w(u,v)

D(u)
. (125)

By minimizing the difference between the introduced proximity
distribution and the empirical proximity distribution, the objective
function for the second-order proximity can be represented as

J2 =
∑
u∈V

λud(p2(·|u), p̂2(·|u)), (126)

where λu denotes the prestige of node u in the network. Here, by
replacing the distance function d(·|·) with the KL-divergence and
setting λu = D(u), the second-order proximity based objective
function can be represented as

J2 = −
∑

(u,v)∈E

w(u,v) log p2(v|u). (127)

Model Optimization: Instead of combining the first-order prox-
imity and second-order proximity into a joint optimization func-
tion, LINE learns the embedding vectors based on Equations 123
and 127 respectively, which will be further concatenated together
to obtain the final embedding vectors.
In optimizing objective function 127, LINE needs to calculate the
conditional probability P (·|u) for all nodes u ∈ V in the network,
which is computational infeasible. To solve the problem, LINE
uses the negative sampling approach instead. For each link (u, v) ∈
E , LINE samples a set of negative links according to some noisy
distribution.
Formally, for link (u, v) ∈ E , the set of negative links sampled for
it can be represented as L−(u,v) ⊂ V × V . The objective function
defined for link (u, v) can be represented as

log σ(y>v · xu) +
∑

(u,v′)∈L−
(u,v)

log σ(−y>v′ · xu), (128)

where σ(·) is the sigmoid function. The first term in the above
equation denotes the observed links, and the second term represents
the negative links drawn from the noisy distribution. Similar ap-
proach can also be applied to solve the objective function in Equa-
tion 123 as well. The new objective function can be solved with the
asynchronous stochastic gradient algorithm (ASGD), which sam-
ples a mini-batch of links and then update the parameters.

8.2.3 node2vec
In LINE, the closeness among nodes in the networks is preserved
based on either the first-order proximity or the second-order prox-
imity. In a recent work, node2vec [22], the authors propose to pre-
serve the proximity between nodes with a sampled set of nodes in
the network.
node2vec Framework: Model node2vec is based on the SkipGram
in language modeling, and the objective function of node2vec can
be formally represented as

max
∑
u∈V

logP (Γ(u)|xu). (129)

where xu denotes the latent feature vector learnt for node u and
Γ(u) represents the neighbor set of node u in the network.
To simplify the problem and make the problem solvable, some as-
sumptions are made to approximate the objective function into a
simpler form.
• Conditional Independence Assumption: Given the latent fea-

ture vector xu of node u, by assuming the observation of

node in set Γ(u) to be independent, the probability equation
can be rewritten as

P (Γ(u)|xu) =
∏

v∈Γ(u)

P (v|xu). (130)

• Symmetric Node Effect: Furthermore, by assuming the source
and neighbor nodes have a symmetric effect on each other in
the feature space, the conditional probability P (v|xu) can be
rewritten as

P (v|xu) =
ex
>
v ·xu∑

v′∈V e
x>
v′ · xu

. (131)

Therefore, the objective function can be simplified as

max
X

∑
u∈V

[− logZu +
∑

v′∈Γ(u)

x>v′ · xu], (132)

where Zu =
∑
v′∈V e

x>
v′ ·xu . Term Zu will be different for differ-

ent nodes u ∈ V , which is expensive to compute for large networks,
and node2vec proposes to apply the negative sampling technique
instead. The main issue discussed in node2vec is about sampling
the neighborhood set Γ(u) from the network.
To overcome the shortcomings of BFS and DFS, node2vec pro-
poses to apply random walk to sample the neighborhood set Γ(u)
instead. Given a random walk W , the node W resides at in step i
can be represented as variable si ∈ V . The complete sequence of
nodes that W has resides at can be represented as s0, s1, · · · , sk,
where s0 denotes the initial node starting the walk. The transitional
probability from node u to v inW in the ith step can be denoted as

P (si = v|si−1 = u) =

{
w(u,v) if (u, v) ∈ E ,
0, otherwise,

(133)

where w(u,v) denotes the normalized weight of link (u, v) in the
network (w(u,v) = 1 if the network is unweighted).
Traditional random walk model doesn’t take account for the net-
work structure and can hardly explore different network neighbor-
hoods. node2vec adapts the random walk model and introduce the
2nd order random walk model with parameters p and q, which will
help guide the walk. In node2vec, let’s assume the walk just tra-
versed link (t, u) and can go to node v in the next step. Formally,
the transitional probability of link (u, v) is adjusted with parameter
αp,q(t, v) (i.e., w(u,v) = αp,q(t, v) · w(u,v)), where

αp,q(t, v) =


1
p
, if dt,v = 0,

1, if dt,v = 1,
1
q
, if dt,v = 2,

(134)

where dt,v denotes the shortest distance between nodes t and v in
the network. Since the walk can go from t to u, and then from u to
v, the distance from t to v will be at most 2.
Parameters p and q control the walk transition sequence effectively,
where parameter p is also called the return parameter and q is
called the in-out parameter in node2vec.

8.3 Emerging Network Embedding
We have introduce several network embedding models in the previ-
ous sections already. However, when applied to handle real-world
social network data, these existing embedding models can hardly
work well. The main reason is that the network internal social links
are usually very sparse in online soical networks [67], which can
hardly preserve the complete network structure. For a pair of users
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Figure 4: The DIME Framework.

who are not directed connected, these models will not be able deter-
mine the closeness of these users’ feature vectors in the embedding
space. Such a problem will be more severe when it comes to the
emerging social networks [95], which denote the newly created on-
line social networks containing very few social connections.
In this section, we will study the emerging network embedding
problem across multiple aligned heterogeneous social networks si-
multaneously. To solve the problem, in this section, we will in-
troduce a novel aligned heterogeneous social network embedding
framework, named DIME proposed in [93].

8.3.1 Deep DIME-SH Model
DIME is based on the aligned auto-encoder model, which extends
the traditional deep auto-encoder model to the multiple aligned het-
erogeneous networks scenario. In the application of DIME on a
heterogeneous network G(1), multiple node meta proximity matri-
ces will be extracted (i.e., {P(1)

Φ0
,P

(1)
Φ1
, · · · ,P(1)

Φ7
}) based on the

intra-network meta paths. As shown in the architecture in Figure 4
(either the left component for network 1 or the right component for
network 2), about the same instance, DIME-SH (DIME-Single
Heterogeneous Network) takes different feature vectors extracted
from the meta paths {Φ0,Φ1, · · · ,Φ7} as the input. For each meta
path, a series of separated encoder and decoder steps are carried out
simultaneously, whose latent vectors are fused together to calculate
the final embedding vector z(1)

i ∈ Rd
(1)

for user u(1)
i ∈ V(1). In

the DIME-SH model, the input feature vectors (based on meta path
Φk ∈ {Φ0,Φ1, · · · ,Φ7}) of user ui can be represented as x(1)

i,Φk
,

which denotes the row corresponding to users u(1)
i in matrix P

(1)
Φk

defined before. Meanwhile, the latent representation of the instance
based on the feature vector extracted via meta path Φk at different
hidden layers can be represented as {y(1),1

i,Φk
,y

(1),2
i,Φk

, · · · ,y(1),o
i,Φk
}.

One of the significant difference of model DIME-SH from tradi-
tional auto-encoder model lies in the (1) combination of various
hidden vectors {y(1),o

i,Φ0
,y

(1),o
i,Φ1

, · · · ,y(1),o
i,Φ7
} to obtain the final em-

bedding vector z(1)
i in the encoder step, and (2) the dispatch of the

embedding vector z(1)
i back to the hidden vectors in the decoder

step. As shown in the architecture, formally, these extra steps can
be represented as

# extra encoder steps
y

(1),o+1
i = σ(

∑
Φk∈{Φ0,··· ,Φ7}

W
(1),o+1
Φk

y
(1),o
i,Φk

+ b
(1),o+1
Φk

),

z
(1)
i = σ(W(1),o+2y

(1),o+1
i + b(1),o+2).

# extra decoder steps
ŷ

(1),o+1
i = σ(Ŵ(1),o+2z

(1)
i + b̂(1),o+2),

ŷ
(1),o
i,Φk

= σ(Ŵ
(1),o+1
Φk

ŷ
(1),o+1
i + b̂

(1),o+1
Φk

).

(135)

What’s more, since the input feature vectors are extremely sparse
(lots of the entries have value 0s), simply feeding them to the model
may lead to some trivial solutions, like 0 vectors for both z

(1)
i and

the decoded vectors x̂
(1)
i,Φk

. To overcome such a problem, another
significant difference of model DIME-SH from traditional auto-
encoder model lies in the loss function definition, where the loss
introduced by the non-zero features will be assigned with a larger
weight. In addition, by adding the loss function for each of the
meta paths, the final loss function in DIME-SH can be formally
represented as

L(1) =
∑

Φk∈{Φ0,··· ,Φ7}

∑
ui∈V

∥∥∥(x(1)
i,Φk
− x̂

(1)
i,Φk

)
� b

(1)
i,Φk

∥∥∥2

2
, (136)

where vector b(1)
i,Φk

is the weight vector corresponding to feature

vector x(1)
i,Φk

. Entries in vector b(1)
i,Φk

are filled with value 1s except

the entries corresponding to non-zero element in x
(1)
i,Φk

, which will
be assigned with value γ (γ > 1 denoting a larger weight to fit these
features). In a similar way, the loss function for the embedding
result in network G(2) can be formally represented as L(2).

8.3.2 Deep DIME Framework
By accommodating the embedding between the aligned networks,
information can be transferred from the aligned mature network
to refine the embedding result in the emerging network effectively.
The complete architecture of DIME is shown in Figure 4, which in-
volve the DIME-SH components for each of the aligned networks,
where the information transfer component aligns these separated
DIME-SH models together. To be more specific, given a pair of
aligned heterogeneous networks G = ((G(1), G(2)),A(1,2)) (G(1)

is an emerging network and G(2) is a mature network), the embed-
ding results can be represented as matrices Z(1) ∈ R|U

(1)|×d(1)

and
Z(2) ∈ R|U

(2)|×d(2)

for all the user nodes inG(1) andG(2) respec-
tively. The ith row of matrix Z(1) (or the jth row of matrix Z(2))
denotes the encoded feature vector of user u(1)

i in G(1) (or u(2)
j in

G(2)). If u(1)
i and u(2)

j are the same user, i.e., (u
(1)
i , u

(2)
j ) ∈ A(1,2),

by placing vectors Z(1)(i, :) and Z(2)(j, :) in a close region in the
embedding space, information from G(2) can be used to refine the
embedding result in G(1).
Information transfer is achieved based on the anchor links, and we
only care about the anchor users. To adjust the rows of matrices
Z(1) and Z(2) to remove non-anchor users and make the same
rows correspond to the same user, DIME introduces the binary
inter-network transitional matrix T(1,2) ∈ R|U

(1)|×|U(2)|. Entry
T (1,2)(i, j) = 1 iff the corresponding users are connected by an-
chor links, i.e., (u

(1)
i , u

(2)
j ) ∈ A(1,2). Furthermore, the encoded

feature vectors for users in these two networks can be of different
dimensions, i.e., d(1) 6= d(2), which can be accommodated via the
projection W(1,2) ∈ Rd

(1)×d(2)

.
Formally, the introduced information fusion loss between networks
G(1) and G(2) can be represented as

L(1,2) =
∥∥∥(T(1,2))>Z(1)W(1,2) − Z(2)

∥∥∥2

F
. (137)

The complete objective function of framework include the loss terms
introduced by the component DIME-SH for networks G(1), G(2),
and the information fusion loss. The latent embedding vectors
achieved via DIME-SH on network G(1) define the embedding
vectors of user nodes in the emerging network.



9. CONCLUSION AND FUTURE POTEN-
TIAL DEVELOPMENTS

In this paper, we have introduced the current research works on
broad learning and its applications on social media studies. This
paper has covered 5 main research directions about broad learning
based social media studies: (1) network alignment, (2) link pre-
diction, (3) community detection, (4) information diffusion and (5)
network embedding. These problems introduced in this chapter are
all very important for many concrete real-world social network ap-
plications and services. A number of nontrivial algorithms have
been proposed to resolve these problems, which have been talked
about in great detail in this paper respectively.
Both the broad learning and social media mining are very promis-
ing research directions, and some potential future development di-
rections are illustrated as follows.

1. Scalable Broad Learning Algorithms: Data generated nowa-
days is usually of very large scale, and fusion of such big
data from multiple sources together will render the problem
more challenging. For instance, the online social networks
(like Facebook) usually involve millions even billions of ac-
tive users, and the social data generated by these users in
each day will consume more than 600 TB storage space (in
Facebook). One of the major future development about the
broad learning based social media mining is to develop scal-
able data fusion and mining algorithms that can handle such
a large volume (of big data) challenge. One tentative ap-
proach is to develop information fusion algorithms based on
distributed platforms, like Spark and Hadoop [26], and han-
dle the data with a large distributed computing cluster. An-
other method to resolve the scalability challenge is from the
model optimization perspective. Optimizing existing learn-
ing models and proposing new approximated learning algo-
rithms with lower time complexity are desirable in the future
research projects. In addition, applications of the latest deep
learning models to fuse and mine the large-scale datasets can
be another alternative approach for the scalable broad learn-
ing on social networks.

2. Multiple Sources Fusion and Mining: Current research works
on multiple source data fusion and mining mainly focus on
aligning entities in one single pair of data sources (i.e., two
sources), where information exchange between the sources
mainly rely on the anchor links between these aligned en-
tities. Meanwhile, when it comes to fusion and mining of
multiple (more than two) sources, the problem setting will
be quite different and become more challenging. For ex-
ample, in the alignment of more networks, the transitivity
property of the inferred anchor links needs to be preserved
[98]. Meanwhile, in the information transfer from multiple
external aligned sources to the target source, the informa-
tion sources should be weighted differently according to their
importance. Therefore, the diverse variety of the multiple
sources will lead to more research challenges and opportu-
nities, which is also a great challenge in big data studies.
New information fusion and mining algorithms for the multi-
source scenarios can be another great opportunity to explore
broad learning in the future.

3. Broader Learning Applications: Besides the research works
on social network datasets, the third potential future devel-
opment of broad learning and mining lies its broader appli-
cations on various categories of datasets, like enterprise in-
ternal data [100; 88; 103; 102], geo-spatial data [89; 77; 90],
knowledge base data, and pure text data. Some prior research

works on fusing enterprise context information sources, like
enterprise social networks, organizational chart and employee
profile information have been done already [100; 88; 103;
102]. Several interesting problems, like organizational chart
inference [100], enterprise link prediction [88], information
diffusion at workplace [103] and enterprise employee train-
ing [102], have been studied based on the fused enterprise
internal information. In the future, these areas are still open
for exploration. Applications of broad learning techniques in
other application problems, such as employee training, ex-
pert location and project team formation, will be both inter-
esting problems awaiting for further investigation. In addi-
tion, analysis of the correlation of different traveling modal-
ities (like shared bicycles [89; 77; 90], bus and metro train)
with the city zonings in smart city; and fusing multiple knowl-
edge bases, like Douban and IMDB, for knowledge discov-
ery and truth finding are both good application scenarios for
broad learning research works.
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