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Abstract: Nowadays, people are usually involved in multiple heterogeneous social networks
simultaneously. Discovering the anchor links between the accounts owned by the same users across
different social networks is crucial for many important inter-network applications, e.g., cross-network
link transfer and cross-network recommendation. Many different supervised models have been
proposed to predict anchor links so far, but they are effective only when the labeled anchor links are
abundant. However, in real scenarios, such a requirement can hardly be met and most anchor links
are unlabeled, since manually labeling the inter-network anchor links is quite costly and tedious.
To overcome such a problem and utilize the numerous unlabeled anchor links in model building,
in this paper, we introduce the active learning based anchor link prediction problem. Different from
the traditional active learning problems, due to the one-to-one constraint on anchor links, if an unlabeled
anchor link a = (u, v) is identified as positive (i.e., existing), all the other unlabeled anchor links
incident to account u or account v will be negative (i.e., non-existing) automatically. Viewed in such
a perspective, asking for the labels of potential positive anchor links in the unlabeled set will be
rewarding in the active anchor link prediction problem. Various novel anchor link information gain
measures are defined in this paper, based on which several constraint active anchor link prediction
methods are introduced. Extensive experiments have been done on real-world social network
datasets to compare the performance of these methods with state-of-art anchor link prediction
methods. The experimental results show that the proposed Mean-entropy-based Constrained Active
Learning (MC) method can outperform other methods with significant advantages.

Keywords: multiple heterogeneous social networks; anchor link prediction; Constrained
Active Learning

1. Introduction

Online social networks have become more and more popular in recent years, and are
often represented as heterogeneous information networks containing abundant information about:
who, where, when and what [1]. Different social networks may have different functionalities, so it is
natural for individuals to use multiple social networks for different purposes at the same time [2,3].
For example, an individual may use Facebook to share funny posts with his/her friends, use Twitter to
follow the latest news and events, and use Foursquare to search for the places of interest in his/her
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surrounding area. However, the accounts owned by the same user in different social sites are mostly
isolated without any correspondence connections to each other.

Linking the accounts of the same person across different social networks is of great value for many
concrete real-world inter-network applications [4–7]. For example, after aligning Facebook and Twitter,
we can recommend new friends or new topics to a new Twitter user according to the social relationship
or personal interest information from his/her existing Facebook account. Meanwhile, if we can
effectively align Twitter and Foursquare, we can also recommend new places to a new Foursquare user
by analyzing the location check-in records about him/her in Twitter. The correspondence relationships
connecting common users’ accounts across different social networks are called the “anchor links” [4].

In order to predict anchor links between multiple social networks, many different supervised
methods have been proposed so far. However, these existing methods can achieve good performance
only when sufficient labeled anchor links can be collected to train the models [1,8–12]. In these
supervised anchor link prediction methods, the anchor link prediction is modeled as a classification
problem, where the existing and non-existing anchor links are labeled as positive and negative instances
respectively. In the scenarios when users’ personal profile information (e.g., email, phone number and
address) is available on the social networks, by directly searching and matching these information,
manually labeling the anchor links as the training set will not be a problem. However, in most cases,
social network data available for research is usually anonymized for privacy concerns [13], where users’
profile information is either removed or replaced with meaningless unique identifiers. Therefore,
the majority of the anchor links between social networks are actually unknown and can be extremely
time-consuming for manually labeling (e.g., manually ask the user of a given account u1 that whether
an account u2 in another network also belongs to him/her, and if he/she says “yes”, then label the link
between u1 and u2 as a positive anchor link) [2]. With such limited labeled anchor links, none of the
existing classification-based methods (training of which requires lots of labeled instances) can perform
well. One way to solve this challenging problem is to exploit the active learning technique to utilize
a reasonable-sized labeled anchor links together with the numerous unlabeled anchor links to improve
the model building.

In contrast to using randomly selected labeled data to induce a model, active learning gives
the learners the flexibility to select which instances to be labeled and added to the training set [14].
In this way, the active learner aims to achieve high accuracy using as few labeled instances as possible,
and thereby minimizing the cost of obtaining labeled data [15]. However, many existing active learning
methods [16–19] just focus on data that is assumed to be independent and identically distributed,
where the objects either do not have explicit relationships with one another, or the relationships
have been ignored [20]. Some link-based active learning methods have been proposed to deal with
intra-network links [20–22]. However, the problems explored by them are very different from the
active anchor link prediction problem: (1) anchor links are the links that connect different networks.
Compared with the intra-network links, they are often very hard to collect and contain the information
between multi-source networks; (2) most of the intra-network links have no cardinality constraint,
but anchor links normally follow the one-to-one constraint [1], i.e., each user can have at most one
account in each social network. (The case that users have multiple accounts in one network is a different
problem [23]. However, in the problem of anchor link prediction, it can be resolved with method
introduced in [24], where these duplicated accounts can be aggregated in advance to form one unique
virtual account and the constraint on anchor links connecting these virtual accounts will still be
“one-to-one”.)

As a result, to apply active learning on anchor link prediction, there are several challenges to
be solved:

• one-to-one constraint on anchor links: anchor links have an inherent one-to-one constraint [1], which has
never been considered in traditional active learning methods at all. Via the one-to-one constraint,
when identifying one positive anchor link, a group of negative anchor links incident to its nodes
can be discovered from the networks. Viewed in such a perspective, identifying positive anchor
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links and using the one-to-one constraint to infer their related negative links will be very important
for the active anchor link prediction problem.

• sparsity of anchor links: unlike other kinds of social network link, due to the one-to-one constraint,
the positive anchor links between two given networks are extremely sparse, and only account for
a small proportion among all the potential inter-network user pairs. As a result, when collecting
the training set, acquiring enough positive anchor links under a limited cost is very challenging.

• heterogeneity of social networks: anchor links in online social networks can be associated with
heterogeneous information, like various types of attributes and complex connections [1]. How to
properly apply such heterogeneous information to the active learning for anchor link prediction is
quite different from traditional active learning and link prediction problems.

This paper is the first work to introduce several active learning methods to tackle the anchor
link prediction issues. In this paper, we propose our Constrained Active Learning methods. Different
from the existing active learning methods, when identifying one positive anchor link, our methods
can discover a group of negative anchor links that incident to its nodes via the one-to-one constraint,
thus the challenge of one-to-one constraint on anchor links is solved. Besides, several mechanisms have
been designed to ensure that enough informative positive anchor links can be queried by our methods,
in this way to overcome the bad effects caused by the challenge of sparsity of anchor links. Meanwhile,
we choose MNA [1], which is a state-of-art supervised method based on heterogeneous features, as the
basic anchor link prediction method, so that to enable our approaches to deal with the challenge of
heterogeneity of social networks very well.

The rest of the paper is organized as follows: We firstly make a simple introduction to the related
works of our study in Section 2. Secondly, we formulate the problem in Section 3. In Section 4,
we introduce the basic anchor link prediction method. Then we discuss some classical active learning
methods, and propose our Constrained Active Learning methods. In Section 5, we run extensive
experiments on real-world heterogeneous social networks, and discuss the experiment results. Finally,
we conclude this paper.

2. Related Works

Social network link prediction problems have been explored for several years [25,26], and many
different works on supervised social network link prediction have been studied [27–29]. Among them,
Hasan et al. [27] are the first to study social link prediction as a supervised problem.

Different from traditional social network link prediction problems, anchor link prediction,
focuses on predicting the existing anchor links between multiple networks. In addition, in recent
years, many different supervised methods have been proposed to solve the anchor link prediction
problems [1,7–12,30]. Among them, Vosecky et al. [12] propose a method to connect users between
Facebook and StudiVZ baseed on web profile matching. Zafarani and Liu [9] first introduce a
methodology for connecting identities across social networks based on multiple behavioral patterns of
username creation. Liu et al. [11] propose a framework to connect user accounts across heterogeneous
social media platforms by using multiple user features. Kong et al. [1] extract heterogeneous features
from multiple heterogeneous networks for anchor link prediction, including user’s social, spatial,
temporal and text information, and formulate the inference problem for anchor links as a stable
matching problem. Goga et al. [30] conduct a systematic and detailed investigation of the reliably of
matching user profiles across real-world online social networks, and propose a matching scheme that
is able to mitigate impersonation attacks and reduce the number of false matches. In addition, Zhang
et al. [7] develop a general cross-network user alignment model which can support the integration of a
number of networks.

Since anchor links connect user accounts across two different network sources, and follow the
one-to-one constraint, the information of two different networks can be directly transferred via these links.
As a result, how to apply anchor links to cross-network applications becomes a new problem, and is
explored by several works recently, for example: Zhang et al. [4,31] explore the ways of using anchor
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links to integrate the relation information from multiple networks to conduct social link prediction.
Pan et al. [32] propose a matrix factorization method to transfer one network’s user latent factors to
help the recommendation task in the other network to achieve better performances. Yan et al. [33,34]
transfer users’ rich social and content information in Twitter network to help recommend the videos
in YouTube.

Active learning, which sometimes is also called “query learning” or “optimal experimental design”
in the statistics literature, has been researched by many works [15], and used in many applications.
For example, image classification [35,36], biomedicine [37], system monitoring [38–40]. Most of
the existing active learning methods [16–19] focus on data that is assumed to be independent and
identically distributed, where the objects either do not have explicit relationships with one another,
or the relationships have been ignored. Different from these methods, Bilgic et al. [20,21] utilize the
relationships between the intra-network objects, and propose their link-based active learning theories.
Xu et al. [22] apply the active learning to the area of preference learning by taking the information
of pairwise judgments into consideration. Isele et al. [41] use active learning to help generate
expressive linkage rules for entities, so that to solve the data integration problem. Xiong et al. [42]
study the active learning problem of selecting pairwise must-link and cannot-link constraints for
semi-supervised clustering. However, how to properly apply active learning to help predict the anchor
links, which follow the one-to-one constraint and are not identically distributed, is still a new problem
that remains to be explored.

3. Problem Formulation

Suppose there are a source network Gs = (V s,Ls) and a target network G t = (V t,Lt), which are
both heterogeneous social networks. The set of nodes in Gs contains 4 kinds of nodes, and can
be represented as V s = U s ∪ C ∪ T ∪W . U s = {us

1, us
2, · · · , us

N} is the set of user accounts in Gs.
C = {c1, c2, · · · , c|C|} is the set of locations. T = {t1, t2, · · · , t|T |} represents a set of time slots that
users have published posts at. W = {w1, w2, . . . , w|W|} is the set of words people have used in their
posts. Ls ⊂ V s ×V s is the intra-network links of different types in Gs. We define the target network G t

in the similar way. U t denotes the set of user accounts in G t. Without loss of generality, we assume Gs

and G t share the same sets of locations C, time slots T and wordsW .
Supervised Anchor Link Prediction Problem: Given Gs and Gt, this problem aims at using the

prediction model to infer the existing anchor links which connect users across these two networks. And in
this paper, we define the set of anchor links between Gs and Gt as A = {a(us

i , ut
j)|us

i ∈ U s, ut
j ∈ U t},

where a(us
i , ut

j) represents the anchor link between two user accounts us
i and ut

j. If we are sure that
a(us

i , ut
j) is an existing anchor link, we label it as “positive” and set its value as a(us

i , ut
j) = 1. However,

if it is a non-existing anchor link, we label it as “negative” and set the its value as a(us
i , ut

j) = 0.
Since anchor links are one-to-one relationships between user accounts in U s and U t, we can present this
constraint as ∀i,∀j(∑k a(us

i , ut
k) ≤ 1, ∑k a(us

k, ut
j) ≤ 1). Let Al and Au denote the labeled and unlabeled

anchor link set in A respectively, and At ⊂ Al denote the training set which is used to train the
prediction model. Thus the task of supervised anchor link prediction is to train a prediction model
from At and use it to predict the value of a given unlabeled anchor link a(us

i , ut
j) ∈ Au.

4. The Constrained Active Learning for Anchor Link Prediction

Active learning aims at minimizing the labeling cost of training set by letting the learner choose
which examples to label. To anchor link prediction, the first thing that needs to be done by the active
learner is to select a query pool P of unlabeled anchor links, whose links are randomly collected
from the unlabeled anchor link set Au ⊂ A. Thus we can present P as: P = {a(us

i , ut
j)|us

i ∈ U s
sub, ut

j ∈
U t

sub, a(us
i , ut

j) ∈ Au}, where U s
sub and U t

sub is the selected subset of U s and U t separately. Then the active
learner will train an anchor link prediction model θ from the training set At. Finally, the active learner
will begin a round of query, which is to identify the label(s) of the most valuable link(s) in P according
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to the values computed by conducting θ on P , and add the identified link(s) toAt. The training process
and query process will be repeated until the limit of query cost has been reached.

In this paper, instead of focusing on how to predict the existing anchor links, we focus on the active
learning strategies. So in this section, we will just briefly introduce the basic anchor link prediction
method, which can extract heterogeneous features from multiple heterogeneous networks and use
them to predict anchor link. Then we will design several Constrained Active Learning methods for
anchor link prediction, where these methods can be divided into the Normal Constrained Active Learning
methods and the Biased Constrained Active Learning methods.

4.1. The Basic Anchor Link Prediction Method

A basic building block of our approach is Multi-Network Anchoring (MNA) which was proposed
in [1]. It is a supervised method based on heterogeneous features and outperforms several famous
classical methods on the anchor link prediction between Twitter and Foursquare. For the sake of
completion, we now present the main idea of this approach in this subsection.

MNA firstly extracts 4 kinds of heterogeneous features from the source network Gs and the target
network Gt, including:

• Multi-Network Social Features: extracted by evaluating the similar social links of two user accounts
from different social networks, to represent the social similarity between two user accounts.

• Spatial Distribution Features: extracted by comparing the location information of two user accounts
in different ways, to represent people’s location similarities.

• Temporal Distribution Features: extracted by using different ways to compare the distribution of
different users’ activities in the given time slots, to represent people’s temporal similarities.

• Text Content Features: extracted by evaluating the similarity of words used by two user accounts
from different social networks, to represent the similarity of text contents posted by two
user accounts.

Then MNA trains an SVM classifier on these extracted features, and uses it to predict the label of
the unknown anchor links. Lastly, MNA uses a matching algorithm (referred to as One-to-one Matching
Algorithm) to ensure the one-to-one constraint on anchor links, so that to make the predicted results more
accurate and reasonable. The detailed description can be seen in [1].

4.2. The Constrained Active Learning Methods

In each round of query process, traditional active learning methods usually just add the newly
identified samples to the training set. However, via the one-to-one constraint, the Constrained Active
Learning methods can infer the labels of some unlabeled links after identifying a positive anchor link,
and thus the samples added to the training set can be more than the identified samples. As shown in
Figure 1, there are 4 unlabeled anchor links in the query pool. After link3 is identified as a positive
anchor link in a round of query, a traditional active learner just adds link3 to the positive training set.
However, a constrained active learner will firstly infer that link2 and link4 are “negative” according
to the one-to-one constraint, and then add link3 to the positive training set and add link2, link4 to the
negative training set. In this way, the Constrained Active Learning methods can label more samples than
the traditional active learning methods under the same query cost (where the query cost means the
cost of identifying the selected unlabeled anchor link a(us

i , ut
j) in a round of query).

In this subsection, we will design several Constrained Active Learning methods, which can be
divided into the Normal Constrained Active Learning methods and the Biased Constrained Active Learning
methods. The former kind of methods treat the positive links and the negative links equally, while the
later kind of methods pay more attention to the potential positive links when querying.
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Figure 1. An example of active learning for anchor link prediction.

4.2.1. The Normal Constrained Active Learning Methods

All active learning methods involve evaluating the informativeness of unlabeled instances.
However, as mentioned in Section 1, due to the existing challenges, many query methods of active
learning do not apply very well to anchor link prediction.

Among the existing query methods, the simplest and most commonly used query framework
is uncertainty sampling, where the learner queries the instance about which it is least certain on how
to label [15]. There are mainly 3 kinds of sampling strategies in uncertainty sampling, e.g., the least
confidence sampling [14], the margin sampling [16] and the entropy-based sampling [14]. Compared with
the former two sampling strategies, the entropy-based sampling generalizes more easily to complex
structured instances. This is because by computing the entropies, we can compare the amount of
information contained in different multi-structured samples in an uniform metric. So our Constrained
Active Learning methods are based on the entropy theory, and aim to calculate the potential entropy
Hp(a) for each unlabeled link a ∈ P . Here we define Hp(a) as the evaluated amount of information
that the constraint active learner can gain by identifying the label of a.

Here, we use R(a(us
i , ut

j)) to represent the related link set of a given anchor link a(us
i , ut

j), and define
it as the set of all the other anchor links in P that incident to node us

i or ut
j. For example, in Figure 1,

the related linked set of link3 is formed by link2 and link4. Thus we can formulate R(a(us
i , ut

j)) as:

R(a(us
i , ut

j)) = Rs(a(us
i , ut

j))∪ Rt(a(us
i , ut

j)) (1)

where Rs(a(us
i , ut

j)) = {a(us
m, ut

j)|∀us
m ∈ U s, a(us

m, ut
j) ∈ P, m 6= i} and Rt(a(us

i , ut
j)) = {a(us

i , ut
n)|∀ut

n ∈
U t, a(us

i , ut
n) ∈ P , n 6= j}.

The common main idea of the Normal Constrained Active Learning methods is to predict
Hp(a(us

i , ut
j)) for each unlabeled anchor link a(us

i , ut
j) ∈ P , then identify the label of link ah(us

i , ut
j),

which has the highest potential entropy among all links in P . If the label of ah(us
i , ut

j) is “negative”,
then add ah(us

i , ut
j) to the training set At; otherwise, in addition to adding ah(us

i , ut
j) to At, the learner

should find its related link set R(ah(us
i , ut

j)) from P , then set the labels of all links in R(ah(us
i , ut

j)) as
“negative” and add this set to At.
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By designing different ways to evaluate the potential entropy of each unlabeled anchor link
a(us

i , ut
j) ∈ P , we present two kinds of Normal Constrained Active Learning methods as follows:

• The Basic-entropy-based Constrained Active Learning (BC): Using this method, the active learner
calculates Hp(a) of an unlabeled link a by its basic entropy HB(a). Here, the basic entropy can also
be viewed as the amount of information contained in the link. To a given unlabeled anchor link a,
the basic entropy of it is as follows:

HB(a) = −
1

∑
y=0

Pθ(y|a) log Pθ(y|a) (2)

Here, Pθ(y|a) is the posterior probability of link a’s value to be y under the prediction model θ.
• The Mean-entropy-based Constrained Active Learning (MC): different from BC, MC calculates Hp(a)

for an unlabeled anchor link a not only by its own entropy, but also by the mean entropy of all the
links in a’s related link set R(a).

Now we present the details for Mean-entropy-based Constrained Active Learning (MC):
In real scenarios, if the value of the newly identified link a is 0, the amount of information the

learner can acquire is:

Ha(a−) = HB(a)

However, if the value of a is 1, the acquired amount of information will be:

Ha(a+) = HB(a) +
R(a)

∑
ar

HB(ar)

Since the learner will find the a’s related link set R(a), and label each link ar ∈ R(a) as “negative”
according to the one-to-one constraint. As a result, the new information that will be finally acquired by
the learner after identifying an unlabeled link a can be more than HB(a). Thus, to an unlabeled link a,
one way to calculate Ha(a) is to combine Ha(a−) and Ha(a+) by a’s probability to be 0 and 1, which is
as follows:

Ha(a) = PM(0|a)Ha(a−) + PM(1|a)Ha(a+)

= HB(a) + PM(1|a)
R(a)

∑
ar

HB(ar)
(3)

where PM(y|a) is the probability of a’s value to be predicted as y by the trained MNA model M, thus we
can make sure that ∑1

y=0 PM(y|a) = 1.
Although the Platt scaling can be used to evaluating the outputs of SVM into a probability

distribution over classes, however, since the outputs of MNA are just predicted positive links without
any of the classifier scores [1], the Platt scaling can not be used to compute PM(y|a). In order to compute
PM(y|a), we should firstly select a labeled anchor link set Av, and use it as the validation set to test the
values of PM(0|a) and PM(1|a). Thus we formulate Av as follows:

Av = {a(us
i , ut

j)|a(us
i , ut

j) ∈ Asl, a(us
i , ut

j) /∈ At}

where Asl ⊂ Al , and Al is original labeled anchor link set which is collected before the active learning
process. Each time, after training the classifier of MNA (To MNA, only its classifier need to be trained
before we use it [1].) and before computing the entropy of the links in P , we should firstly pretend
that we do not know the labels of all the links in Av, and use the trained MNA’s model M to predict
the labels for these links. Thus we can get two link sets A+

v and A−v , which consist of the predicted
positive links and negative links separately. Supposing that N(A) is the number of links in a link
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set A, and N+(A) is the number of links in Awhose real labels are “positive”, we can compute two
probabilities PYY and PNY as follows:

PYY =
N+(A+

v )

N(A+
v )

, PNY =
N+(A−v )
N(A−v )

(4)

Finally, in the querying process, if the predicted value of link a ∈ P is 1, set PM(1|a) = PYY,
PM(0|a) = 1− PYY; if the predicted value of link a is 0, set PM(1|a) = PNY, PM(0|a) = 1− PNY.

However, in real-world anchor link prediction problem, data samples are usually imbalanced,
which means the negative anchor links can be much more than the positive anchor links. So it is
important to make sure the identified positive links contain enough information in the query process.
When we set Hp(a) = Ha(a), for a positive link a ∈ P , if it has a large PM(1|a) and an informative
related link set formed by many negative links, the value of Ha(a) can be very large. In addition, thus
a is likely to be identified in the query process, no matter whether it contains enough information.
As a result, many positive links with little information in them but have informative related link sets
are likely to be identified in the query process. This is contrary to our goal of making sure the identified
positive links contain enough information. Our MC method overcomes this problem by modifying
Ha(a) to HM(a). HM(a) aims to calculate Hp(a) for an unlabeled anchor link a according to its basic
entropy and the mean entropy of the links in R(a). The formulation is as follows:

HM(a) = HB(a) + PM(1|a)∑
R(a)
ar HB(ar)

N(R(a))
(5)

where ∑
R(a)
ar HB(ar)
N(R(a)) denotes the mean entropy of all the links in R(a). In addition, we can notice that for

HM(a), the basic entropy of a is as important as the mean entropy of all the links in R(a). So HM(a) is
more suitable for dealing with the data imbalance problem: (1) No matter how imbalance the data is,
the active leaner can always pay attention to find the positive links which contain enough information.

Because the value of ∑
R(a)
ar HB(ar)
N(R(a)) doesn’t increase with the number of links in R(a), and thus for a large

R(a), the computation of ∑
R(a)
ar HB(ar)
N(R(a)) still cannot dominate the evaluation of the potential entropy of

a. In addition, since basic entropy of a is as important as ∑
R(a)
ar HB(ar)
N(R(a)) , we can pay enough attention to

identify the informative positive links; (2) No matter how imbalance the data is, the active learner
can always ensure that for any identified positive link a, the negative links in R(a) are likely to be
informative. Because the value of R(a) is evaluated by the mean entropy of all the links in R(a), and is
not directly influenced by the imbalance degree of the data samples.

According to the definition of Equation (5), the validation set should contain sufficient labeled
anchor links to make MC perform well. If the labeled anchor links in the validation set are not sufficient,
the sample distribution of it can hardly represent the real world sample distribution, which is similar
to the sample distribution of the query pool. As a result, the computed PM(1|a) can hardly adapt to the
query pool, and thus when using MC to query samples in the query pool, the computed HM(a) values
are not precise enough, which can result in the bad performances of MC.

The proposed framework of the Normal Constrained Active Learning is shown in Algorithm 1, if we
set Hp = HB, then the algorithm is BC; and if we set Hp = HM, then the algorithm is MC.
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Algorithm 1 The framework of Normal Constrained Active Learning

Input: Two heterogeneous social networks: Gs and Gt. Two sets of labeled anchor link: The training

set At and the validation set Av. The query pool P . The max number of queries nq. The potential

entropy computation method Hp.
Output: The new training set At and the new query pool P

1: Initialize n← 0
2: For each a(us

i , ut
j) in At and P , extract four types of features.

3: while n < nq do
4: Train an SVM model θ on At according to the training part in MNA;
5: For each unlabeled anchor link a in P , use θ to predict the probabilities of its value to be 0 and

1, which is presented as Pθ(0|a) and Pθ(1|a).
6: if Hp is HB then for each link a in P , compute Hp(a) by Equation (2)
7: else
8: Use θ as the trained classifier in MNA, and use MNA to predict the labels of all the links

in Av.
9: Compute the probabilities PYY and PNY by Equation (4).

10: For each a in P , find R(a), and compute Hp(a) by Equation (5).
11: end if
12: Select the link ah which has the highest potential entropy in P , and identify its real label.
13: if the real label of ah is “negative” then
14: ah ← 0, At ← At ∪ {ah}, P ← P −{ah}
15: else
16: ah ← 1
17: Find R(ah) from P , for each link in ar in R(ah), set ar ← 0
18: At ← At ∪ {ah} ∪ R(ah), P ← P −{ah}− R(ah)
19: end if
20: n← n + 1
21: end while

4.2.2. The Biased Constrained Active Learning Methods

As we discussed before, due to the sparsity of anchor links, acquiring enough informative positive
anchor links under a limited cost is very important. However, in the Normal Constrained Active Learning
methods, there may not be enough mechanisms to increase the probability of each identified link to
be positive. So if we explore such a mechanism, and integrate it into the Normal Constrained Active
Learning methods, we may achieve better results. Thus we present our Biased Constrained Active
Learning methods, which prefer the potential positive links over the potential negative links in the
query process.

According to the experiments in [1], in different circumstances, when predicting the existing
anchor links, the MNA model can achieve higher accuracy than the SVM model contained in it by
using the one-to-one constraint. So to our Biased Constrained Active Learning methods, the learner should
firstly use the trained MNA model to predict the potential positive anchor links in P , and collect them
in the set A+

p . Then in each round of query, the link to be identified will be selected from A+
p .
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However,A+
p may also contain some links with low Pθ(1|a), since the current method doesn’t have

a mechanism to filter out this kind of links. That is contrary to the goal of acquiring positive links. One
way to solve this problem is to apply a threshold δ, and to any link a ∈ A+

p , if Pθ(1|a) < δ, then delete a
from A+

p . However, since the SVM model θ changes after each time of query, the value of δ should
also be updated with it. As a result, a novel entropy-based δ adjusting method is integrated in our
Biased Constrained Active Learning methods. The main idea of it is: (1) Reducing the value of δ when the
newly queried links have improved the effects of θ, so that in the next round of query, some links with
smaller Pθ(1|a) but larger Hp(a) can be identified; (2) Enlarging the value of δ when the newly queried
links have not increased the effects of θ, so that to improve the probability of identifying positive links
in the next round of query. At the beginning of each round of query, this δ adjusting method evaluates
the effects of θ by computing HPnew, which is the sum of all links’ entropies in P . If HPnew is smaller than
the sum of these links’ entropies in the former round of query (which is represented by HPold), it means
the uncertainty of θ to these links has decreased, i.e., the effects of θ have increased. In addition, in
each round of query, the value of δ is updated by pulsing/deducting a number ∆δ ∈ (0, 1). However,
we can notice that if HPnew ≥ HPold (i.e., the effects of θ haven’t been improved), the value of θ−∆δ can
be smaller than P+

old. Here P+
old is the equal to Pθ(1|ah), which represents the probability of the identified

link ah in the former round to be evaluated as positive by θ in the former round. In addition, since
the effects of θ haven’t been improved in this round, the identified ah of the former round is likely
to be a negative link which is wrongly predicted as “positive”. In addition, a good way to alleviate
it is to make sure the value of Pθ(1|ah) in this round is bigger than P+

old, in this way to improve the
probability of the identified link ah in this round to be “positive”. So if HPnew ≥ HPold, we can to set
δ = Max{P+

old, δ + ∆δ} to improve the effects of the δ adjusting method.
After creatingA+

p , we should decide which potential positive anchor link to be identified fromA+
p .

A simple way is to identify the link with the largest related link set, in this way to label as many links
as possible in each round of query. However, by using this way, many of the identified positive links
may contain little information with large related link sets, that is contrary to our goal of making sure
the identified positive links containing enough information. As a result, here we firstly compute the
potential entropy of each link in A+

p , then identify the one with the highest potential entropy. Since in
each round of query, the potential positive anchor link is identified from A+

p , when δ is big enough,
A+

p can be empty, and thus no link can be identified. So in order to ensure that a potential positive link
can be identified fromA+

p in each round of query, whenA+
p is empty, we can use δ = δ− d to decrease

the value of δ and then recreate A+
p until A+

p is not empty. Here d ∈ (0, 1), and in our experiments
we find that when setting d = 0.1, the active learning methods can achieve good performances. So to
simplify the process of parameter setting, we finally set d = 0.1 in our algorithm. The proposed
framework of the Biased Constrained Active Learning is shown in Algorithm 2. If we set Hp = HB,
then the algorithm is the Biased Basic-entropy-based Constrained Active Learning (BBC); and if we set
Hp = HM, then the algorithm is the Biased Mean-entropy-based Constrained Active Learning (BMC).
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Algorithm 2 The framework of Biased Constrained Active Learning

Input: Two heterogeneous social networks: Gs and Gt. Two sets of labeled anchor link: The training

set At and the validation set Av. The query pool P . The max number of queries nq. The potential

entropy computation method Hp. The threshold adjusting pace ∆δ

Output: The new training set At and the new query pool P
1: Initialize n← 0, δ← 0.5, HPold ← +∞, P+

old ← 0.5, d← 0.1
2: For each a in At and P , extract four types of features.
3: while n < nq do
4: Train a SVM model θ on At according to the training part in MNA.
5: For each a in P , use θ to predict Pθ(0|a) and Pθ(1|a).
6: HPnew ← ∑P

a HB(a)
7: if HPnew < HPold and δ > 0 then δ← δ−∆δ

8: else if HPnew ≥ HPold then δ← Max{P+
old, δ + ∆δ}

9: end if
10: Use θ as the trained classifier in MNA, and use MNA to predict the labels of all links in P ,

and collect all of the predicted positive links into the setA+
p . Then set Â+

p ← {a|a ∈ A+
p , Pθ(1|a) ≥ δ}.

11: while Â+
p is ∅ do

12: δ← δ− d, Â+
p ← {a|a ∈ A+

p , Pθ(1|a) ≥ δ}
13: if δ < 0 then Â+

p ← P
14: end if
15: end while
16: A+

p ← Â+
p

17: if Hp is HB then
18: For each a in A+

p , compute Hp(a) by Equation (2)
19: else
20: Use MNA to predict the labels of all links in Av, and compute PYY and PNY by Equation (4)
21: For each a in A+

p , find R(a) and compute Hp(a) by Equation (5)
22: end if
23: Select the link ah which has the highest Hp(a) in A+

p , and identify its real label, and set

P+
old ← Pθ(1|ah)

24: if the real label of ah is “negative” then
25: ah ← 0, At ← At ∪ {ah}, P ← P −{ah}
26: HPold ← HPnew − HB(ah)
27: else
28: ah ← 1
29: Find R(ah) from P . For each ar in R(ah), set ar ← 0
30: At ← At ∪ {ah} ∪ R(ah) ,P ← P −{ah}− R(ah)
31: HPold ← HPnew − HB(ah)−∑

R(ah)
a HB(a)

32: end if
33: n← n + 1
34: end while

5. Experimental Section

5.1. Data Preparation

In this paper, we collect two datasets according to the way in [1]. One is from Foursquare,
a popular location-based online social network, and the other is from Twitter, one of the hottest
microblogging social networks. A more detailed comparison of these two datasets is available in
Table 1. In order to conduct experiments, we pre-process these raw data to obtain the ground-truth of
users’ anchor links. In Foursquare network, we can collect some users’ Twitter IDs in their account
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pages. We use these information to build the ground-truth of anchor links between user accounts
across the two networks. If a Foursquare user has shown his/her Twitter ID in the website, we treat it
as an anchor link between this user’s Foursquare account and Twitter account. In this way, we obtain
600 anchor links. For more information about the datasets and the crawling method, please refer to [1].

Table 1. Properties of the Heterogeneous Social Networks.

Property Network

Twitter Foursquare

# node
user 600 600
user/tip 889,925 9012
location 41,196 7578

# link
friend/follow 6640 3611
write 889,925 9012
locate 48,268 9012

5.2. Experiment Setups

In order to evaluate the effectivenesses of these compared methods on anchor link prediction,
we select three different metrics in terms of F1-measure (F1), Precision (Prec.), Recall (Rec.).

We design several groups of experiments and use all the 600 anchor links as the set of positive
anchor links. Before each experiment, according to the predefined Negative-Positive Rate (RNP,
RNP = #negative_pairs

#positive_pairs ), we randomly sampled a set of non-existing anchor links between these 2 user
sets as the negative anchor link set. These links are partitioned into 4 parts with 6 folds cross validation:
1 fold as the general training set, 2 folds as the query set, 1 fold as the validation set and the remaining
2 folds as the test set.

In each group of experiments, we randomly select links of our training set At from the general
training set. The parameter used to control the percentage of selected links in the general training set
is Rt. In addition, the threshold adjusting pace for BBC and BMC is set as ∆δ = 0.01. The query set is
used as the query pool P , the validation set Av is used to calculate PYY and PNY for MC, BMC.

5.3. Effectiveness Experiments

It is known that our proposed constrained active learning methods are integrated with the MNA
method, in this way to improve its performances on anchor link prediction. So in this subsection,
we will conduct two groups of experiments to analyze the effectiveness of our methods on improving
the performances of MNA.

Here we select four sampling methods as the baseline methods, so in total, there are eight methods
to be compared. The compared methods are summarized as follows:

• The Normal Constrained Active Learning methods: The first kind of proposed methods in this
paper, including the Basic-entropy-based Constrained Active Learning (BC) and Mean-entropy-based
Constrained Active Learning (MC).

• The Biased Constrained Active Learning methods: The second kind of proposed methods in this
paper, including the Biased Basic-entropy-based Constrained Active Learning (BBC) and Biased
Mean-entropy-based Constrained Active Learning (BMC).

• MNA: A state-of-art supervised anchor link prediction method based on heterogeneous features
and outperforms [1], which doesn’t do any query to enlarge its original training set.

• The Entropy-based Active Learning (EA): A method widely used in some state-of-art link query
problems, such as data integration [41], semi-supervised clustering of links [42].

• The Random Query Methods: Two base-line query methods integrated to MNA for better comparison.
One is the Normal Random Query (NRQ) which only adds the randomly queried links to At;
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the other is the Constrained Random Query (CRQ), which adds not only the randomly queried links,
but also the related link set of each queried positive link to At.

For fair comparisons, each of these compared methods uses the same parameter set to train the
MNA model and predicts anchor links by the trained model.

In the first group of experiments, we study the performances of the proposed active learning
methods on anchor link prediction with different numbers of queries when the degree of data imbalance
is given. In addition, in real-world anchor link prediction, the negative anchor links are much more
than the positive anchor links, so in this group of experiments we can set RNP to be a number
which is obviously larger than 1.0. We have done several tests and find that when setting RNP to
different values which are obviously larger than 1.0 (e.g., 5, 10, 15, 20, 40), similar conclusions can be
drew from the performance comparisons. So here we set RNP = 10.0, and conduct the performance
comparisons. In each round of the cross validation, we set Rt = 0.5 and use different methods to query
0, 10, 20, · · · , 60 times in the query pool P , then add the acquired links to the training set At. The
performances of all compared methods under different number of queries are compared in Figure 2a–c.
And each method’s average performance rank, which is averaged over its performance ranks on
different numbers of queries in all of these 3 figures (e.g., in each of these 3 figures, MC’s list of
performance ranks on different numbers of queries is {1, 1, 2, 2, 1, 1}, so its average rank over these 3
figures is (4× 1 + 2× 2)× 3/(6× 3).), is shown in Figure 2d.

(a) (b)

(c) (d)

Figure 2. The comparisons of different query methods’ performances on anchor link prediction. We do
different numbers of queries in the query set. (a) F1-measure; (b) Precision; (c) Recall; (d) Average Rank.
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In the second group of experiments, we set Rt = 0.5 and test the performances of our methods
with different imbalanced datasets. In each round of the cross validation, we sample anchor links as the
experimental data samples according to different imbalance ratios, i.e., Negative-Positive Rates (RNP).
In addition, in each round of experiment, we set the number of queries for each method (except MNA)
as 60. The performances of all compared methods under different imbalance ratios are compared in
Figure 3a–c. In addition, similar to Figure 2d, each method’s average performance rank, which is
averaged over its performance ranks on different Negative-Positive Rates in all of these 3 figures, is
shown in Figure 3d.

(a) (b)

(c) (d)

Figure 3. The comparisons of different query methods’ performances on anchor link prediction. We use
different Negative-Positive Rates in both training and test sets. (a) F1-measure; (b) Precision; (c) Recall;
(d) Average Rank.

According to the results in Figures 2 and 3, we can analyze and conclude as follows:

• Overall, MC outperforms other methods on the anchor link prediction. However, the listed
performances of BBC are not much worse than MC. In addition, compared with BBC, MC needs
a reasonable validation set to do anchor link prediction. So to the anchor link prediction problem,
MC would be the best choice if we have enough labeled anchor links to form a reasonable
validation set. However, when the labeled anchor links in the validation set are not sufficient,
the sample distribution of the validation set can be very different from the sample distribution of
the overall experimental data. In addition, thus according to what we analyzed in the definition
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of Equation (5), the computed potential entropies of MC in the query pool are not precise, which
can result in the bad performances of MC. So in this circumstance, BBC would be a better choice.

• According to the average rank of each compared method, BBC performs better than BC. However,
BMC cannot perform better than MC. To understand this, we can suppose that there exist two
anchor links in P , whose basic entropies are the same, and related link sets contain the same
amount of information. In addition, thus from these two links, the MC prefers to identify the
one with bigger PM(1|a) (See Equation (5)). Furthermore, according to the definition of PM(1|a),
the bigger PM(1|a) is, the more likely a is to be a positive anchor link. So we can see MC already
has a reasonable mechanism to prefer the potentially positive links. As a result, adding a new
mechanism of preferring potential positive links is not easy to make MC perform better. Because
this new mechanism may make MC focus on identifying the links that are easy to be correctly
predicted as positive, but neglect some informative links whose labels are hard to be correctly
predicted. And this may also be the reason why BMC cannot outperform BBC in these experiments.

• All of our proposed Constrained Active Learning methods perform better than EA, it proves the value
of applying the one-to-one constraint to the active learning in anchor link prediction problem.

• In the same experiment, the performance ranks of each method on metrics F1, Prec. and Rec.
are almost the same.

5.4. Portability Experiments

The proposed constrained active learning methods are integrated with the MNA method.
And among them, we have proved that the MC and BBC methods have great values on improving
the performances of MNA in the previous experiments. However, whether our constrained active
learning methods can also work well on other existing anchor link prediction techniques remains to
be proved. So in this subsection, we will firstly change the basic anchor link prediction method of
the proposed approach (Here, we use M to represent it) in different ways: (1) set M = M1 when the
classifier of M is replaced with the one in [10]; (2) set M = M2 when the classifier of M is replaced
with the one in [9]; (3) set M = M3 when the One-to-One matching algorithm of M is changed to the
GUARD algorithm, which is proposed in [30]. Then we will conduct experiments to test the effects of
MC and BBC together with other baseline query methods on improving the performances of M1, M2

and M3, respectively. In this way to analyze their portability to other state-of-art supervised anchor
link prediction techniques.

Similar to 5.3, the compared methods in each group of the portability experiments are as follows:

• M: The basic anchor link prediction method (which can be set as M1, M2 or M3). It will be directly
used as a base-line method.

• MC-M: Integrating the proposed Mean-entropy-based Cons- trained Active Learning (MC) method
to M.

• BBC-M: Integrating the proposed Biased Basic-entropy-based Constrained Active Learning (BBC)
method to M.

• EA-M: Integrating the Entropy-based Active Learning (EA) method to M. It will be used as
a base-line method.

• NRQ-M and CRQ-M: Two base-line query methods integrated to method M for better comparison.
One is the Normal Random Query (NRQ); the other is the Constrained Random Query (CRQ).

In the experiments, we test the performances of these compared methods with different
imbalanced datasets. In each round of cross validation, we sample anchor links as the experimental
data samples according to different imbalance ratios, i.e., Negative-Positive Rates (RNP). In addition,
in each round of experiment, we set Rt = 0.3 and the number of queries for each method (except M)
as 30. From the results, we notice that the performance ranks of each method on metrics F1, Prec. and
Rec. in each experiment are almost the same, that is consistent with what we concluded from the
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experimental results in Subsection 5.3. As a result, in order to save the space, in Figure 4, we only show
the performance comparison results on metric F1.

(a) (b)

(c) (d)

Figure 4. The comparisons of different query methods’ effects on improving the performances of
different anchor link prediction techniques. We use different Negative-Positive Rates in both training
and test sets. (a) M = M1; (b) M = M2; (c) M = M3; (d) Average Rank.

As it shows in Figure 4, the effects of MC and BBC together with other baseline query methods on
improving the performances of M1, M2 and M3 are compared in Figure 4a–c, respectively. In addition,
similar to Figure 2d, each query method’s average performance rank, which is averaged over its
performance ranks on different Negative-Positive Rates in all of these 3 figures, is shown in Figure 4d.
From the results, we can see our MC and BBC methods perform significantly better than other base-line
query methods on improving the performances of other state-of-art supervised anchor link prediction
techniques. In addition, in most cases, MC can achieve better effects than BBC. As a result, we can
convince that our MC and BBC have great values on improving the performances of many different
supervised anchor link prediction techniques, and it is better to choose MC when enough labeled links
can be collected to form a reasonable validation set.

6. Conclusions

This paper is the first to describe and study the problem of applying active learning on anchor
link prediction across multiple heterogeneous social networks. Based on the one-to-one constraint of
the anchor link prediction problem, we design several Constrained Active Learning methods. Different



Sensors 2017, 17, 1786 17 of 19

from the traditional query methods, our constraint active learning methods can label more than one
link after an unlabeled anchor link has been queried. Furthermore, we design different mechanisms,
so that to make sure our methods can acquire more information when the maximum number of queries
and sample set for query have been given. We choose the MNA method as our basic anchor link
prediction method, and conduct our experiments on the anchor links between two real-world social
networks, Foursquare and Twitter. Then we conduct experiments to test the effects of our MC and
BBC methods on improving the performances of other state-of-art anchor link prediction techniques.
The results show that our MC and BBC can adapt to many different supervised anchor link prediction
models, and in general, MC outperforms other compared query methods on anchor link prediction.
However, the BBC method can be a better choice if we do not have enough labeled anchor links to form
a reasonable validation set but want to achieve good enough results. Our future works include the
study on how to select a validation set with a moderate size for the MC method, and the computation
for the optimal value of the parameter ∆δ in Algorithm 2.
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