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Abstract—Users’ addiction to online social networks is discov-
ered to be highly correlated with their social connections in the
networks. Dense social connections can effectively help online
social networks retain their active users and improve the social
network services. Therefore, it is of great importance to make
a good prediction of the social links among users. Meanwhile,
to enjoy more social network services, users nowadays are usu-
ally involved in multiple online social networks simultaneously.
Formally, the social networks which share a number of common
users are defined as the “aligned networks”. With the information
transferred from multiple aligned social networks, we can gain
a more comprehensive knowledge about the social preferences of
users in the pre-specified target network, which will benefit the
social link prediction task greatly. However, when transferring
the knowledge from other aligned source networks to the target
network, there usually exists a shift in information distribution
between different networks, namely domain difference. In this
paper, we study the social link prediction problem of the target
network, which is aligned with multiple social networks concur-
rently. To accommodate the domain difference issue, we project
the features extracted for links from different aligned networks
into a shared lower-dimensional feature space. Moreover, users
in social networks usually tend to form communities and would
only connect to a small number of users. Thus, the target
network structure has both the low-rank and sparse properties.
We propose a novel optimization framework, SLAMPRED, to
combine both these two properties aforementioned of the target
network and the information of multiple aligned networks with
nice domain adaptations. Since the objective function is a linear
combination of convex and concave functions involving non-
differentiable regularizers, we propose a novel optimization
method to iteratively solve it. Extensive experiments have been
done on real-world aligned social networks, and the experimental
results demonstrate the effectiveness of the proposed model.

I. INTRODUCTION

Online social networks (OSNs) have achieved a tremendous
success in recent years, and a large number of online social
networks have appeared and provided services for the public.
In all kinds of OSNs, the social connections among users play
an important role in steering their online social activities and
network service usages. As proposed in [10], users’ social
network addiction and usage frequency are highly correlated
to their friendship in the networks, and users who have more
friends in the OSNs generally tend to use social network
services more frequently. Thus, inferring the potential social

connections among users is very crucial for the development
of OSNs.

Formally, given a screen-shot of an OSN, the social link
prediction problem aims at inferring the potential social con-
nections that will be formed among users in the near future
[11]. The link prediction problem has been studied for many
years, and dozens of papers have been published so far.
Depending on the supervision information used to train the
models, existing link prediction methods can be generally
divided into three main categories: (1) traditional unsupervised
link predictors [11], [31], which infer the potential social
connections among users merely by calculating their closeness
scores; (2) supervised link prediction methods [5], [29], [28],
[30], [27], which treat the existing and non-existing links as
positive and negative instances respectively and build clas-
sification/regression models to infer the labels/scores of the
potential links; and (3) semi-supervised link prediction models
[37], [33], in which the existing and non-existing links are
treated as positive and unlabeled instances respectively, and
the link prediction problem is further transformed into a PU
(Positive and Unlabeled instance) learning problem.

In recent years, the social network studies have developed
into a new dimension. To enjoy different kinds of social
network services, users nowadays are usually involved in
multiple OSNs at the same time [28], and these shared users
can act like anchors aligning these different OSNs together.
According to the existing works [37], the common users shared
by different networks are named as the anchor users, while the
OSNs aligned by the anchor users are formally defined as the
aligned social networks. The modeling of the multiple aligned
social networks provides the opportunity for researchers to
study users’ social behaviors from a global perspective. With
the abundant information about the users from multiple sites,
we can gain a more comprehensive understanding about users’
social activity patterns, which can greatly help the link pre-
diction task of social networks.

Problem Studied: In this paper, we will study the link pre-
diction problem for the target network, which is aligned with
multiple source networks concurrently. Formally, the problem
is named as the “Social Link Transfer” (SLT) problem. An
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Fig. 1. An example of the SLT problem (Regions of different background colors: different social networks, Network G

t: the target network, Solid black line:
existing social connections, Red dashed lines: links to be predicted).

example to illustrate the SLT problem is provided in Figure 1.
In Figure 1, network G

t is the target network, and G

1
, · · · , G4

are the other aligned source networks, which share a number of
common users with G

t. With the information across networks
{Gt

, G

1
, · · · , G4}, the objective of SLT is to infer potential

social links (i.e., the red dashed lines) to be formed in the
target network G

t.

The SLT problem studied in this paper is based on the same
setting as those in [28], [37], but we propose a new model to
address the problem. We summarize the differences of this
work from these existing works as follows. Firstly, the link
prediction model proposed in this paper is based on the matrix
estimation, which is totally different from the classification
based models proposed in [28], [37] and will not suffer
from the class imbalance problem. Secondly, considering the
connections among users in the networks are usually very
sparse and users tend to form densely connected local com-
munities, a sparse regularizer and a low-rank regularizer are
incorporated in the objective function. Thirdly, these existing
works [28], [37] transfer information across different networks
without considering the domain differences. Meanwhile, based
on the known anchor and social link information, our model
overcomes the domain difference problem by mapping the
feature vectors extracted for links from the aligned networks
to a shared lower-dimensional latent feature space instead.

The SLT studied in this paper is very hard to solve due to
the following challenges:

• Heterogeneity of Networks: The networks studied in this
paper are all heterogeneous, involving both structure and
various types of attribute information. Incorporating all
these different categories of information in effective link
prediction can be a great challenge.

• Multiple Aligned Networks: Inferring links in the target
with information from multiple aligned networks simulta-
neously would suffer from the domain difference greatly,
which makes the problem more challenging.

• Sparse and Low-Rank Property: The social networks are
usually of a sparse and low-rank structure [38], [15],
where the formed social links usually only occupy a
small proportion of all potential social links and users
tend to densely connect to local communities. Preserving
and utilizing such properties in link prediction render the
problem tougher.

• Objective Function: The objective function is a linear
combination of convex and concave functions involving
non-differentiable regularizers. How to effectively resolve
the objective function is technically challenging .

To overcome these challenges, a novel link prediction
model named SLAMPRED (Sparse Low-rAnk Matrix estima-
tion based Prediction) is proposed in this paper. SLAMPRED
formulates the link prediction problem as a sparse and low-
rank matrix estimation problem. Heterogeneous information is
used to calculate the similarity among users, and similar users
tend be linked. With the existing anchor and social link infor-
mation, SLAMPRED proposes to map the feature vectors of the
social links extracted from the target and other aligned source
networks to a common low-dimensional latent feature space.
Two regularizers are introduced in the objective function of
SLAMPRED to preserve the sparse and low-rank properties.
Furthermore, SLAMPRED solves the objective function with
the iterative CCCP (convex concave procedure), and in each
iteration the involved non-differentiable sparsity and low-rank
regularizers are effectively handled by the proximal operators.

The remaining part of this paper is organized as follows.
In Section II, we will introduce the definitions of several
important concepts and the formulation of the SLT problem.
More detailed information about the link prediction model,
SLAMPRED, will be introduced in Section III. Extensive
experiments will be done to evaluate the performance of
SLAMPRED in Section IV. Finally, in Section V, we will talk
about the related works and conclude this paper in Section VI.



II. PROBLEM FORMULATION

In this section, we will introduce the definitions of some
important concepts used in this paper, and then provide the
formulation of the SLT problem.

A. Terminology Definition

The networks studied in this paper all contain heterogeneous
information involving various types of nodes and complex
links among the modes, which can be represented as the
heterogeneous information networks formally.

Definition 1 (Heterogeneous Information Network): A het-
erogeneous information network can be defined as graph
G = (V, E), where V and E denotes the union of different
types of nodes and edges respectively.

More specifically, for the networks studied in this paper, the
node set V can be represented as V = U [ P [ W [ T [ L
involving the nodes about the users, posts, words, timestamps,
and location checkins. Meanwhile, the edge set E can be
represented as E = Eu [ Ep [ Ew [ Et [ El, which contains
the links among users, between users and posts, as well as
those between posts and words, timestamps and locations
respectively. Furthermore, as mentioned in Section I, the
networks studied in this paper may share some common users,
which can be represented as the multiple aligned networks
formally.

Definition 2 (Multiple Aligned Networks): To differenti-
ate the target network from the other external aligned
source networks, we indicate the target network specifi-
cally and define the multiple aligned networks as G =

({Gt
, G

1
, G

2
, · · · , GK}, {At,1

,At,2
, · · · ,AK�1,K}), where

G

t is the target network, G1
, G

2
, · · · , GK are the K aligned

source networks, and At,1
,At,2

, · · · ,AK�1,K denote the sets
of undirected anchor links among these networks respectively.

In this paper, we will follow the definitions about the anchor
users and anchor links concepts proposed in [37], which are
not introduced here due to the limited space.

B. Problem Definition

Definition 3 (The SLT Problem): Given the multiple
aligned online social networks G = ({Gt

, G

1
, G

2
, · · · , GK},

{At,1
,At,2

, · · · ,AK�1,K}), the SLT problem studied in this
paper aims at inferring the potential social connections among
users in the target network G

t with information across all these
networks. Formally, based on information available in G, the
objective of SLT is to build a social link prediction function
S : U t ⇥ U t \ Et

u ! [0, 1] to infer the confidence scores of all
the potential social connections among the users in the target
network G

t, where U t and Et
u represent the existing users and

social links in G

t respectively.

III. PROPOSED METHOD

In this section, we will first introduce the link prediction
model built with the observed network connection informa-
tion and other heterogeneous attribute information available
in the target network. After that, we will talk about the
target network link prediction problem with information across
multiple aligned networks, where the features extracted from
different networks are projected to a lower-dimensional feature
space to accommodate the domain differences. Finally, we will
introduce the joint optimization objective function, which can
be resolved by the proximal operator based iterative CCCP
algorithm effectively.

A. Notation

At the beginning of this section, we will first set some
notations used in this paper. Throughout this paper, we will
use lower case letters (e.g., x) to denote scalars, lower case
bold letters (e.g., x) to denote column vectors, upper case
letters (e.g., X) to denote elements of matrices, upper case
calligraphic letters (e.g., X ) to denote sets, and bold-face upper
case letters (e.g., X) to denote matrices and high-order tensors.
In the sequel, the projection of a matrix X onto domain S is
denoted by PS(X). The matrix (X)+ denotes the component-
wise positive part of the matrix X, and sgn(X) is the sign
matrix associated to X with the convention sgn(0) = 0. For a
matrix X, we denote X(i, :) (and X(:, j)) as the ith row (and
the jth column) of X; while for a 3-way tensor X, we denote
X(k, :, :) as the kth 2-way tensor slice (i.e., matrix) along the
1st dimension and so forth. We use superscript > to denote the
transpose of a vector or a matrix. The notations k·k, k·kF , k·kp
and k·k⇤ define the Euclidean norm, Frobenius norm, entry-
wise lp norm and trace norm respectively. More specifically,
given a matrix X 2 Rm⇥n, the entry-wise lp norm of X can
be represented as kXkp = (

P
i,j |Xi,j |p)1/p; while the trace

norm of X can be represented as kXk⇤ =

Prank(X)
i=1 �i, where

rank(X) denotes the rank and �i is the ith singular value of
matrix X. In addition, we use Tr(X) to denote the trace of
matrix X.

B. Intra-Network Link Prediction

Users’ diverse online social activities may generate het-
erogeneous information in the online social networks, which
include both the network structure information as well as
different categories of attribute information about the users. In
this subsection, we will introduce the link prediction method
with the heterogeneous information available in the target
network.

1) Intra-Network Link Prediction with Link Information:
Give the target network G

t involving users U t, we can
represent the observed social connection among the users
with the binary social adjacency matrix A

t 2 {0, 1}|Ut|⇥|Ut|,
where entry A

t
(i, j) = 1 iff the corresponding social link

(u

t
i, u

t
j) exists between users u

t
i and u

t
j in G

t. In the SLT
problem, our objective is to infer the potential unobserved
social links for the target network, which can be achieved by



finding a sparse and low-rank predictor matrix S 2 S from
some convex admissible set S ⇢ R|Ut|⇥|Ut|. Meanwhile, the
inconsistency between the inferred matrix S and the observed
social adjacency matrix A

t can be represented as the loss
function l(S,A

t
). The optimal social link predictor for the

target network can be achieved by minimizing the loss term,
i.e.,

argmin

S2S
l(S,A

t
).

The loss function l(S,A

t
) can be defined in many different

ways, and, in this paper, we propose to approximate the loss
function by counting the loss introduced by the existing social
links in Et

u, i.e.,

l(S,A

t
) =

1

|Et
u|

X

(ut
i,u

t
j)2Et

u

⇣�
A

t
(i, j)� 1

2

�
· S(i, j)  0

⌘
.

2) Intra-Network Link Prediction with Heterogeneous At-
tribute Information: Besides the connection information, there
also exists a large amount of attribute information available in
the target network, e.g., location checkin records, online social
activity temporal patterns, and text usage patterns, etc. Based
on the attribute information, a set of features can be extracted
for all the potential user pairs to denote their closeness, which
are called the intimacy features formally. For instance, given
user pair (u

t
i, u

t
j) in the target network, we can represent

its intimacy features as vector x

t
i,j 2 Rdt

(dt denotes the
extracted intimacy feature number). According to the existing
works [5], [28], different intimacy features can be extracted
from the attribute information, and we will briefly introduce
the extracted features in Section IV later.

More generally, we can represent the feature vectors ex-
tracted for user pairs as a 3-way tensor X

t 2 Rdt⇥|Ut|⇥|Ut|,
where slice X

t
(k, :, :) denote all the kth intimacy features

among all the user pairs. In online social networks, homophily
principle [12] has been observed to widely structure the users’
online social connections, and users who are close to each
other are more likely to be friends. Based on such an intuition,
we can infer the potential social connection matrix S by
maximizing the overall intimacy scores of the inferred new
social connections, i.e.,

argmax

S2S
int(S,X

t
).

In this paper, we propose to define the intimacy score term
int(S,X

t
) by enumerating and summing the intimacy scores

of the inferred social connections, i.e.,

int(S,X

t
) =

dtX

k=1

��
S �Xt

(k, :, :)

��
1
,

where operator � denotes the Hadamard product (i.e., entry-
wise product) of matrices.

3) Joint Optimization Function for Intra-Network Link Pre-
diction: By considering the link and attribute information in

the target network at the same time, we can represent the joint
optimization for link prediction in the target network to be

argmin

S2S
l(S,A

t
)� ↵

t · int(S,Xt
) + � · kSk1 + ⌧ · kSk⇤ .

Considering that the social connections in online social net-
works are usually very sparse and of low-rank, the regularizers
kSk1 and kSk⇤ are added to preserve the sparse and low rank
properties of the inferred predictor matrix S. Parameters ↵

t,
�, ⌧ denote the importance scalars of different terms in the
objective function.

C. Inter-Network Link Prediction

Besides the information available in the target network, a
large amount of information about the users’ social activities
is available in other external source networks as well, which
can be transferred to the target network to help improve the
link prediction results, especially when the target network
suffers from information sparsity problem. To be general, we
can represent the intimacy features extracted for user pairs
in source network G

i (i 2 {1, 2, · · · ,K}) as a 3-way tensor
X

i 2 Rdi⇥|Ui|⇥|Ui|, where U i denotes the user set in G

i and
d

i is the extracted feature number.
Meanwhile, different online social networks are constructed

for different purposes, information from which may follow
totally different distributions actually. To adopt the information
domains of these different aligned networks, in this paper, we
propose to project the extracted feature vectors from different
networks (both G

t and aligned source networks G

1
, · · · , GK)

to a common lower-dimensional feature space instead. Given
the K +1 partially aligned social networks, we formulate the
information domain adaption problem as a mapping function
inference problem instead. Our objective is to construct K+1

mapping functions, f t
: Rdt ! Rc

, · · · , fK
: RdK ! Rc to

map the K + 1 input features to a new c-dimensional latent
space, where certain properties about the networks are still
preserved.

In this paper, we propose achieve the objective by utilizing
the existing anchor links and social links across the networks.
As shown in Figure 2, the links in different social networks
are first categorized into different sets: (1) social links aligned
by anchor links (i.e., the aligned social links to be introduced
later), (2) similar social links (i.e., connected user pairs or
unconnected user pairs), and (3) dissimilar social links (i.e.,
the connected user pairs vs. the unconnected ones). Based
on the categorization information about the links, in the link
embedding process, we aim at placing aligned social links and
similar social links closely in the common latent feature space,
while placing the dissimilar ones far away from each other in
the feature space. More information about these concepts and
the embedding process will be introduced in the following
parts in great details.

1) Anchor Link based Feature Space Projection: Before
introducing the anchor link based feature space projection
method, we first introduce the concept of aligned social link
in this paper.
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Definition 4 (Aligned Social Link): Given two social links
(u

t
i, u

t
j) and (u

k
m, u

k
n) in networks G

t and G

k respectively,
if u

t
i, u

k
m and u

t
j , u

k
n are both aligned by the anchor links

(i.e., (ut
i, u

k
m) 2 At,k and (u

t
j , u

k
n) 2 At,k), then (u

t
i, u

t
j) and

(u

k
m, u

k
n) are called the aligned social links.

Let sets Lt and Lk denote all the potential social links in
networks G

t and G

k respectively, where Lt
= U t ⇥ U t \

{(u, u)}u2Ut and Lk
= Uk ⇥ Uk \ {(u, u)}u2Uk . Based on

the anchor links between networks G

t and G

k (i.e., At,k),
we can denote all the aligned social links with the aligned
social link indicator matrix W

t,k
A 2 {0, 1}|Lt|⇥|Lk|, where

entry W

t,k
A (i, j) = 1 iff the corresponding social links l

t
i 2 Lt

and l

k
j 2 Lk are aligned social links.

Generally, the aligned social links are actually connecting
the accounts of the same users, and the feature vectors
extracted for them from different networks should be mapped
to close areas in the lower-dimensional latent feature space.
Based on such an intuition, we can define the inconsistency
introduced in projecting the features for aligned social links
between networks G

t and other external source networks as
term CostA:

CostA = µ

KX

m=t

KX

n=t

|Lm|X

i=1

|Ln|X

j=1

���fm(xm
lmi

)� f

n(xn
lnj
)
���
2
W

m,n
A (i, j),

where notation
PK

m=t denotes the enumeration of all the
networks in {Gt

, G

1
, · · · , GK}, and µ is the scalar.

Minimizing of the cost term will encourage the features ex-
tracted for social links corresponding to the aligned social links
being mapped to similar locations in the latent feature space.
Furthermore, for all the pairwise networks, we can group all
the aligned social link indicator matrices together as the big
joint aligned social link indicator matrix WA 2 {0, 1}|L|⇥|L|,
where L = Lt [L1 [ · · ·[LK . Formally, matrix WA can be
represented as

W

A

=

2

66664

W

t,t

A

W

t,1
A

· · · W

t,K

A

W

1,t
A

W

1,1
A

· · · W

1,K
A

...
...

. . .
...

W

K,t

A

W

K,1
A

· · · W

K,K

A

3

77775
.

In addition, we can represent its Laplacian matrix as LA =

DA �WA, where matrix DA denotes the diagonal row sum
matrix of WA with entries DA(i, i) =

P
j WA(i, j) on the

diagonal. Matrix LA will be used in the projection function
inference to be introduced in the following parts.

2) Existing Social Link based Feature Space Projection:
Besides the anchor link information, we also propose to utilize
the existing social connections among the users to help infer
the feature mapping functions. Before introducing the detailed
method, we propose to define the concept of link existence
label y(·) first as follows:

Definition 5 (Link Existence Label): Given a link l

k
i 2 Lk

in network G

k
, k 2 {t, 1, 2, · · · ,K}, if link l

k
i exists in the

network then its corresponding link existence label y(lki ) = 1,
otherwise y(l

k
i ) = 0.

Since our ultimate goal is to infer the potential feature
vector mappings to the latent feature space to transfer infor-
mation for the link prediction tasks, the social link existence
information will plan a very important role in identifying the
potential feature space mappings. Based on the known social
connections in a pair of aligned networks G

t and G

k (k 2
{1, 2, · · · ,K}), we can construct the similar link existence
label indicator matrix W

t,k
S 2 {0, 1}|Lt|⇥|Lk| and dissimilar

link existence label indicator matrix W

t,k
D 2 {0, 1}|Lt|⇥|Lk|

between networks G

t and G

K . For any link instances l

t
i 2 Lt

and l

k
j 2 Lk, if l

t
i and l

s
j share the same link existence

label, we will assign the corresponding entry in W

t,k
S with

value 1 (and the corresponding entry in W

t,k
D with value 0);

otherwise, we will assign the corresponding entry in W

t,k
S

with value 0 (and the corresponding entry in W

t,k
D with value

1). Therefore, matrices W

t,k
S and W

t,k
D store all the link

existence information in the networks G

t and G

k.
As pointed out in [21], the instances which share common

labels tend to be projected together in the latent feature space,
while those having different labels will be projected to be
apart from each other instead. Based on such an intuition,
we propose to define terms CostS and CostD to denote
the mapping costs introduced by the link existence label



information (for the links having similar and different labels)
respectively:

Cost

S

=
KX

m=t

KX

n=t

|Lm|X

i=1

|Ln|X

j=1

���fm(xm

l

m
i
)� f

n(xn

l

n
j
)
���
2
W

m,n

S

(i, j),

Cost

D

=
KX

m=t

KX

n=t

|Lm|X

i=1

|Ln|X

j=1

���fm(xm

l

m
i
)� f

n(xn

l

n
j
)
���
2
W

m,n

D

(i, j).

If link instances l

t
i and l

k
j in networks G

t and G

k share
the same link existence label (i.e., W

t,k
S (i, j) = 1), but

their embeddings are far away from each other, then CostS

will be larger. Meanwhile, if link instances l

t
i and l

k
j have

different link existence labels (i.e., W t,k
D (i, j) = 1), and their

embeddings are close to each other, the introduced CostD

will be small. Therefore, minimizing CostS and maximizing
CostD simultaneously will encourage the link instances of
the same label to be projected to similar areas, while those of
different labels to be projected separately instead.

What’s more, in a similar way, we can also group all
the network pairwise similar link existence label indicator
matrices and dissimilar link existence label indicator matrices
together in the same order as matrix WA, which can be
represented as WS and WD. Their corresponding Laplacian
matrices can be denoted as LS and LD respectively.

3) Joint Mapping Function Inference: We may want to
ensure the mapping functions can achieve the above three
objectives at the same time, which can be achieved by mini-
mizing the overall cost function

minCost(f

t
, f

1
, f

2
, · · · , fK

) =

CostA + CostS

CostD
.

The projection mappings can be of different forms, and we
will take the linear mapping as an example in this paper.
In other words, the mappings f

t, f

1, f

2, · · · , f

K can be
represented as K +1 matrices F

t 2 Rdt⇥c, F1 2 Rd1⇥c, · · · ,
F

K 2 RdK⇥c respectively, where d

t
, d

1
, · · · , dK denote the

length of features from networks Gt
, G

1
, · · · , GK and c is the

dimension of the projected feature space.
Formally, given all the feature vectors extracted for potential

user pairs in the networks G

t, G1, · · · , GK , we can group
them together and represent it as matrix

Z =

2

66664

Z

t

0 · · · 0

0 Z

1 · · · 0

...
...

...
...

0 · · · 0 Z

K

3

77775
,

where submatrix Z

k
= (z

k
1 , z

k
1 , · · · , zk|Lk|⇥|Lk|) and vector

z

k
i 2 Rdk⇥1 represents the feature vector extracted for the

ith social link in network G

k. Furthermore, we can group
all the projection function together and represent it as a
(d

t
+ d

1
+ · · ·+ d

K
)⇥ c dimensional matrix

F =

�
(F

t
)

>
, (F

1
)

>
, · · · , (FK

)

>�>
,

which can be effectively inferred with the following Theorem
1.

Theorem 1. The projection functions that minimize the overall
cost function are given by the eigenvectors corresponding to
the smallest non-zero eigenvalues of the generalized eigen-
value decomposition

Z(µLA + LS)Z
>
x = �ZLDZ

>
x.

Proof. Depending on the specific value of c, we propose to
prove the theorem by considering two cases:
Case 1: if c > 1, with the above defined matrices, we can
rewrite the introduced cost terms CostA, CostS and CostD

in the linear algebra representation:

CostA = Tr(F>
ZµLAZ

>
F),

CostS = Tr(F>
ZLSZ

>
F),

CostD = Tr(F>
ZLDZ

>
F).

Furthermore, the objective function can be represented as

argmin

F

Tr(F>
Z(µLA + LS)Z

>
F)

Tr(F>
ZLDZ

>
F)

.

According to [21], [22], the matrix F which can mini-
mize the objective function are actually the c eigenvectors
corresponding to the c smallest non-zero eigenvalues of the
following generalized eigenvalue decomposition function:

Z(µLA + LS)Z
>
x = �ZLDZ

>
x.

Case 2: if c = 1, then matrix F to be inferred is actually a
vector and the cost terms can be simply represented as

CostA = F

>
ZµLAZ

>
F,

CostS = F

>
ZLSZ

>
F,

CostD = F

>
ZLDZ

>
F.

The optimization objective function can be rewritten with
the new cost representations as

argmin

F

F

>
Z(µLA + LS)Z

>
F

F

>
ZLDZ

>
F

,

which is actually the Rayleigh quotient of (µLA+LS) relative
to LD. According to the existing books on linear algebra and
related works [19], [16], the optimal solution to the objective
function can be represented as the eigenvectors corresponding
to the c small non-zero eigenvalues of the generalized eigen-
value problem:

Z(µLA + LS)Z
>
x = �ZLDZ

>
x.

Therefore, we can formally represent the feature tensors
of network G

k (including both the target and aligned source
networks) after the domain adaption as ˆ

X

k 2 R|Uk|⇥|Uk|⇥c

(8k 2 {t, 1, 2, · · · ,K}), where feature vector

ˆ

X

k
(i, j, :) = (F

k
)

>
X

k
(i, j, :).



4) Inter-Network Link Prediction Objective Function: With
the information from the external source networks, we can ob-
tain more knowledge about the users and their social patterns.
Based on the adapted feature tensors ˆ

X

1
, · · · , ˆXK , we can

represent the intimacy scores of the potential social links as

int(S,

ˆ

X

1
, · · · , ˆXK

) =

KX

k=1

↵

i · int(S, ˆXk
)

where term int(S,

ˆ

X

k
) =

���S � ˆ

X

k
���
1
, and users in ˆ

X

k are
organized in the same order as X

t. Parameters ↵

i denotes
the importance of the information transferred from the source
network G

i. Furthermore, by adding the intimacy terms about
the source networks into the objective function, we can rewrite
it as follows:

argmin

S2S
l(S,A

t
)� ↵

t · int(S, ˆXt
)�

KX

k=1

↵

i · int(S, ˆXk
))

+ � · kSk1 + ⌧ · kSk⇤

D. Proximal Operator based CCCP Algorithm

By studying the objective function, we observe that the inti-
macy terms are convex while the empirical loss term l(S,A

t
)

is non-convex. We propose to approximate it with other
classical loss functions (e.g., the hinge loss and the Frobenius
norm) instead, and the convex squared Frobenius norm loss
function is used in this paper (i.e., l(S,At

) = kS�A

tk2F ).
Therefore, the above objective function can be represented as
a convex loss term minus another convex term together with
two convex non-differentiable regularizers, which actually
renders the objective function non-trivial. According to the
existing works [23], [17], this kind of objective function can
be addressed with the concave-convex procedure (CCCP).
CCCP is a majorization-minimization algorithm that solves
the difference of convex functions problems as a sequence
of convex problems. Meanwhile, the regularization terms can
be effectively handled with the proximal operators in each
iteration of the CCCP process.

1) CCCP Algorithm: Formally, we can decompose the
objective function into two convex functions:

u(S) = l(S,A

t
) + � · kSk1 + ⌧ · kSk⇤ ,

v(S) = ↵

t · int(S, ˆXt
) +

KX

k=1

↵

i · int(S, ˆXk
),

With u(S) and v(S), we can rewrite the objective function
to be

argmin

S2S
u(S)� v(S).

The CCCP algorithm can address the objective function with
an iterative procedure that solves the following sequence of
convex problems:

S

(h+1)
= argmin

S2S
u(S)� S

>rv(S

(h)
)

It is easy to show that function v(S) differentiable, and the
derivative of function v(S) is actually a constant term

rv(S) =

KX

k=t

↵

i
cX

i=1

ˆ

X

k
(i, :, :).

By relying on the Zangwill’s global convergence theory [24]
of iterative algorithms, it is theoretically proven in [17] that
as such a procedure continues, the generated sequence of the
variables {S(h)}1h=0 will converge to some stationary points
S⇤ in the inference space S .

2) Proximal Operators: Meanwhile, in each iteration of
the CCCP updating process, objective function is not easy
to address due to the non-differentiable regularizers. Some
works have been done to deal with the objective function
involving non-smooth functions. The Forward-Backward split-
ting method proposed in [2] can handle such a kind of
optimization function with one single non-smooth regularizer
based on the introduced proximal operators. More specifically,
as introduced in [2], we can represent the proximal operators
for the trace norm and L1 norm as follows

prox⌧k·k⇤
(S) = Udiag((�i � ⌧)+)iV

>
,

prox�k·k1
(S) = sgn(S) � (|S|� �)+,

where S = Udiag(�i)iV
> denotes the singular decomposition

of matrix S, and diag(�i)i represents the diagonal matrix with
values �i on the diagonal.

Recently, some works have proposed the generalized
Forward-Backward algorithm to tackle the case with q(q � 2)

non-differentiable convex regularizers [13]. These methods
alternate the gradient step and the proximal steps to update
the variables. For instance, given the above objective function
in iteration h of the CCCP, we can represent the alternative
updating equations in step k to address the objective function
as follows:

8
><

>:

S

(k)
= S

(k�1) � ✓ ·rS

�
l(S,A)� S

>rv(S

(h)
)

�
,

S

(k)
= prox✓⌧k·k⇤

(S

(k)
),

S

(k)
= prox✓�k·k1

(S

(k)
),

where the parameter ✓ denotes the learning rate and it is
assigned with a very small value to ensure the converge of
the above functions [15]. We will also give the convergence
analysis about the model in the experiment section.

The pseudo-code of the Proximal Operators based CCCP
algorithm is available in Algorithm 1.

IV. EXPERIMENTS

To test the effectiveness of the proposed model, we have
conducted extensive experiments on real-world aligned net-
works. In this section, we will first introduce the datasets
and the detailed experiment settings. After that we will show
the experimental results together with the analysis about the
parameters and convergence.



Algorithm 1 Proximal Operator Based CCCP Algorithm
Input: social adjacency matrix A

projected feature tensors ˆ

X

t, ˆ

X

1, · · · , ˆ

X

K

Output: link predictor matrix S

1: Initialize matrix S

cccp

= A

2: Initialize CCCP convergence CCCP-tag = False
3: while CCCP-tag == False do
4: Initialize Proximal convergence Proximal-tag = False
5: Solve optimization function minS2S u(S)� S

>rv(S
cccp

)
6: Initialize S

po

= S

cccp

7: while Proximal-tag == False do
8: S

po

= S

po

� ✓rS

�
l(S

po

,A)� S

>
po

rv(S
cccp

)
�

9: S

po

= prox
✓⌧k·k⇤

(S
po

)
10: S

po

= prox
✓�k·k1

(S
po

)
11: if S

po

converges then
12: Proximal-tag = True
13: S

cccp

= S

po

14: end if
15: end while
16: if S

cccp

converges then
17: CCCP-tag = True
18: end if
19: end while
20: Return S

cccp

A. Dataset Description

The data used in the experiments include two aligned social
networks Foursquare and Twitter simultaneously.

• Foursquare: The Foursquare network is a famous loca-
tion based social network(LBSN), which provides users
with various kinds of location-related services. Generally,
users in Foursquare can perform various categories of
social activities, like make friends with other users, write
posts/reviews, check in at locations, etc.

• Twitter: The Twitter network is a famous micro-blogging
sites that allows users to write, read, like, and share posts
with their friends online. Formally, the short posts in
Twitter is called the tweets, which can involve 140 char-
acters (at most), images, hashtags, timestamps, location
checkins, etc.

The basic statistical information about the Foursquare and
Twitter datasets is available in Table I. We have crawled
about 5, 223 Twitter users, and all the 164, 920 social follow
connections among them. These crawled Twitter users have
posted 9, 490, 707 tweets, among which 615, 515 pieces of
tweets are attached with geo-spatial location checkins. Among
the 5, 223 Twitter users, 3, 388 of them are aligned by anchor
links with users in Foursquare. From Foursquare, we have
crawled 5, 392 users together with 76, 972 friendship links
among them. These Foursquare users have written 48, 756

posts which are all attached with location checkins.

B. Experimental Setting

In this section, we will introduce the experimental settings,
which include the detailed experiment setups, the comparison
methods and the metrics used to evaluate the performance of
the methods.

1) Experiment Setup: In the experiments, we use Twitter as
the target network and use Foursquare as the source network.

TABLE I
PROPERTIES OF THE HETEROGENEOUS NETWORKS

network

property Twitter Foursquare

# node
user 5,223 5,392
tweet/tip 9,490,707 48,756
location 297,182 38,921

# link
friend/follow 164,920 76,972
write 9,490,707 48,756
locate 615,515 48,756

Therefore, the two aligned networks used in the experiments
can be represented as G = ({Gt

, G

s}, {At,s}). From the target
network G

t, we extract the existing links, which are partitioned
into 5 folds where 4 folds are used as the training set and 1

fold is used as the test set. We hide the test set as the ground
truth, and try to build the model based on the training set to
identify these hidden links from the network.

For our model SLAMPRED, we construct the social adja-
cency matrix based on the training set in the target network,
and we use the same set of features introduced in [28] to
denote the intimacy scores among the users in the target net-
work and aligned source network respectively. After adapting
the domain differences, we define and resolve the objective
function for the inter-network link prediction. Based on the
inferred link prediction matrix S, we can obtain confidence
scores of the corresponding links in the test set, which will be
outputted as the inference results of the SLAMPRED model.
In model SLAMPRED, the parameters µ = 1.0 (weight of the
anchor link based cost term), learning rate ✓ = 0.001, weight
of the regularization terms ⌧ = 1.0 and � = 1.0. Analysis
about weights of the attribute intimacy terms (i.e., ↵t and ↵s)
is available in Section IV-D1.

2) Comparison Methods: Depending on the specific learn-
ing setting, the comparison methods used in the experiments
can be divided into 4 main categories, and each category of
methods also have several different variants. More detailed in-
formation about the comparison methods are listed as follows:

Sparse Low-Rank Matrix Estimation based Methods
• SLAMPRED: Method SLAMPRED is the link prediction

method proposed in this paper. SLAMPRED is built based
on sparse and low-rank matrix estimation model with
both the social structure and other attribute information
available in both target and other aligned source networks.

• SLAMPRED-T (SLAMPRED-Target): Method
SLAMPRED-T is a variant of SLAMPRED, which
is built based on the social structure information and
attribute information in the target network only.

• SLAMPRED-H (SLAMPRED-Homogeneous): Similar to
method SLAMPRED-T, the method SLAMPRED-H is
built merely based on the social structure information in
the target network without using other information.

PU Classification based Link Prediction
• PL [37]: Method PL is the PU link prediction method

from the existing work [37] with the features extracted
based on meta paths from both the target and the source



networks simultaneously (Different from the method in
[37], no feature selection is used to resolve the domain
differences here).

• PL-T: Method PL-T is a variant of PL, and it is also
a PU link prediction model built based on the features
extracted from the target network only.

• PL-S: Different from PL-T, the PU link prediction
method PL-S (a variant of PL) is built merely with the
features extracted from the source network.

Supervised Classification based Link Prediction
• SCAN [28]: Supervised classification based link predic-

tion method SCAN [28] is built based on the features
extracted from both the target and other aligned source
networks. SCAN labels the existing and non-existing
links as the positive and negative instances, which are
used to build the classifiers.

• SCAN-T: Method SCAN-T is a variant of SCAN,
which utilizes the features extracted from the target
network only.

• SCAN-S: Different from SCAN-T, the classification
based link prediction method SCAN-S is built merely
with the features from other aligned source networks.

Unsupervised Link Prediction
For completeness, we also compare the above link predic-

tion methods with many other unsupervised link predictors,
which include PA, CN and JC. Given the user paris (u, v)

(with neighbor set �(u) and �(v) respectively), these methods
calculate the following scores as the output.

• PA (Preferential Attachment Index) [1]: The PA predictor
calculates the product of the u’s and v’s degrees as the
confidence score, i.e., |�(u)| · |�(v)|.

• CN (Common Neighbor) [6]: Link predictor CN counts
the number of shared neighbors by u and v as the
confidence score of user pair (u, v), i.e., |�(u) \ �(v)|.

• JC (Jaccard’s Coefficient) [6]: JC calculates the Jaccard’s
Coefficient of the neighborhood information as the confi-
dence score for potential user pair (u, v), i.e., |�(u)\�(v)|

|�(u)[�(v)| .
3) Evaluation Metrics: The comparison link prediction

methods can output the confidence scores of potential social
links among users in the target network, whose performances
are evaluated with the well-used evaluation metrics, like AUC
and Precision@100, in the experiments.

C. Experimental Result

The experimental results obtained by the different com-
parison methods evaluated by AUC and Precision@100 are
shown in Table II. In the table, the anchor link sampling rate
denotes the proportion of anchor links connection the Twitter
and Foursquare networks, where the ratio 0 denotes these two
networks are unaligned and ratio 1.0 represents the networks
are fully aligned. Generally, from the result, we can observe
that as the anchor link sampling ratio increases, the perfor-
mance achieved by the methods utilizing information from
the source networks (i.e., SLAMPRED, PL, PL-S, SCAN,

SCAN-S) will change accordingly, while the performance of
the methods merely using information in the target network
will stay the same.

Compared with SLAMPRED-T and SLAMPRED-H, with the
heterogeneous information from both the target network and
other aligned source networks, SLAMPRED can outperform
these methods with one single kind of information (i.e.,
social structure information) or one single information source
(i.e., the target network). It supports the motivation of using
information from multiple aligned social networks to improve
the link prediction results.

By comparing SLAMPRED with PL, SCAN as well as the
unsupervised link predictors JC, CN and PA, method SLAM-
PRED proposed in this paper can overcome these comparison
methods with great advantages. For instance, at anchor ratio
1.0, the AUC score obtained by SLAMPRED is 0.941, which is
about 13% larger than that gained by PL; and over 46% greater
than that achieved by SCAN, JC, CN and PA. Meanwhile, the
Precision@100 obtained by SLAMPRED is almost the twice
even three times larger than that obtained by PL, SCAN, JC,
CN and PA. The comparison results demonstrate the effec-
tiveness of SLAMPRED in predicting links across networks.
With the sparse and low-rank regularization, SLAMPRED can
also overcome the class imbalance problem encountered by
the classification based models, like PL and SCAN.

For method SLAMPRED, which fuses information from
multiple aligned networks in the link inference with domain
accommodation, adding more available anchor links will im-
prove the performance of SLAMPRED steadily and outperform
the other baseline methods consistently. Meanwhile, for the
methods without domain adaptions, e.g., PL and SCAN,
adding more anchor links may not necessary leads to better
performance. For instance, by comparing the AUC score
achieved by PL and PL-T at anchor ratios 0.0 and 0.1, we
observe that with more anchor links, the performance of PL
will degrade a lot which is even worse than that of PL-T (using
information merely in the target network) at anchor ratio 0.1.
Similar results can be observed for methods SCAN, SCAN-
T and SCAN-S. It can demonstrate the effectiveness of the
feature projection step used in SLAMPRED in accommodating
the domain difference.

D. Experimental Analysis

In this part, we will show the convergence analysis and
parameter analysis about the proposed link prediction model.

1) Convergence Analysis: In building the model, we pro-
pose to apply the iterative CCCP to resolve the objective
function, which calculates a series of the inferred social link
prediction matrix S until convergence. To show that such a
procedure will converge, we give the L1 norm of the variable
S in each iteration (i.e.,

��
S

h
��
1
) as well as the L1 norm of the

matrix changes (i.e.,
��
S

h � S

h�1
��
1
) in Figure 3. From the

plots, we can observe that the variable matrix S will converge
in about 300 rounds of the iteration, where the changes of both
the variable S

h itself as well as the updates of the variable



TABLE II
PERFORMANCE COMPARISON OF DIFFERENT METHODS FOR INFERRING SOCIAL LINKS FOR TWITTER WITH DIFFERENT ANCHOR LINK SAMPLING RATIOS.

Different Ratios of Anchor Link between the Aligned Networks.

measure methods 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

A
U

C

SLAMPRED 0.828±0.009 0.898±0.019 0.9±0.019 0.907±0.019 0.911±0.019 0.918±0.019 0.921±0.019 0.928±0.019 0.929±0.019 0.937±0.019 0.941±0.019
SLAMPRED-T 0.828±0.009 0.828±0.009 0.828±0.009 0.828±0.009 0.828±0.009 0.828±0.009 0.828±0.009 0.828±0.009 0.828±0.009 0.828±0.009 0.828±0.009
SLAMPRED-H 0.776±0.03 0.776±0.03 0.776±0.03 0.776±0.03 0.776±0.03 0.776±0.03 0.776±0.03 0.776±0.03 0.776±0.03 0.776±0.03 0.776±0.03

PL 0.706±0.018 0.637±0.115 0.687±0.068 0.699±0.103 0.795±0.013 0.779±0.022 0.796±0.023 0.795±0.013 0.819±0.024 0.817±0.011 0.834±0.015
PL-T 0.706±0.018 0.706±0.018 0.706±0.018 0.706±0.018 0.706±0.018 0.706±0.018 0.706±0.018 0.706±0.018 0.706±0.018 0.706±0.018 0.706±0.018
PL-S 0.5±0.0 0.48±0.023 0.462±0.047 0.649±0.075 0.724±0.021 0.768±0.012 0.776±0.021 0.79±0.022 0.802±0.015 0.813±0.008 0.843±0.005

SCAN 0.730±0.009 0.730±0.009 0.738±0.005 0.725±0.01 0.73±0.01 0.719±0.013 0.717±0.017 0.725±0.014 0.722±0.009 0.673±0.02 0.643±0.024
SCAN-T 0.730±0.009 0.730±0.009 0.730±0.009 0.730±0.009 0.730±0.009 0.730±0.009 0.730±0.009 0.730±0.009 0.730±0.009 0.730±0.009 0.730±0.009
SCAN-S 0.5±0.0 0.529±0.038 0.628±0.018 0.649±0.015 0.69±0.003 0.697±0.012 0.693±0.011 0.661±0.039 0.674±0.038 0.586±0.016 0.565±0.026

JC 0.624±0.014 0.624±0.014 0.624±0.014 0.624±0.014 0.624±0.014 0.624±0.014 0.624±0.014 0.624±0.014 0.624±0.014 0.624±0.014 0.624±0.014
CN 0.631±0.017 0.631±0.017 0.631±0.017 0.631±0.017 0.631±0.017 0.631±0.017 0.631±0.017 0.631±0.017 0.631±0.017 0.631±0.017 0.631±0.017
PA 0.557±0.02 0.557±0.02 0.557±0.02 0.557±0.02 0.557±0.02 0.557±0.02 0.557±0.02 0.557±0.02 0.557±0.02 0.557±0.02 0.557±0.02

Pr
ec

is
io

n@
10

0

SLAMPRED 0.35±0.042 0.41±0.035 0.42±0.035 0.43±0.035 0.42±0.035 0.46±0.035 0.42±0.035 0.44±0.035 0.47±0.035 0.48±0.035 0.48±0.035
SLAMPRED-T 0.35±0.042 0.35±0.042 0.35±0.042 0.35±0.042 0.35±0.042 0.35±0.042 0.35±0.042 0.35±0.042 0.35±0.042 0.35±0.042 0.35±0.042
SLAMPRED-H 0.28±0.012 0.28±0.012 0.28±0.012 0.28±0.012 0.28±0.012 0.28±0.012 0.28±0.012 0.28±0.012 0.28±0.012 0.28±0.012 0.28±0.012

PL 0.20±0.008 0.17±0.029 0.27±0.029 0.18±0.038 0.3±0.035 0.19±0.021 0.2±0.025 0.19±0.008 0.26±0.015 0.28±0.029 0.23±0.012
PL-T 0.20±0.008 0.20±0.03 0.20±0.017 0.20±0.03 0.20±0.02 0.20±0.031 0.0±0.025 0.20±0.026 0.20±0.015 0.20±0.028 0.20±0.015
PL-S 0.0±0.0 0.01±0.008 0.0±0.004 0.05±0.019 0.11±0.012 0.08±0.024 0.11±0.019 0.08±0.024 0.12±0.015 0.12±0.017 0.15±0.033

SCAN 0.27±0.055 0.23±0.032 0.24±0.026 0.25±0.05 0.24±0.058 0.23±0.023 0.24±0.052 0.26±0.028 0.26±0.035 0.27±0.027 0.26±0.029
SCAN-T 0.27±0.055 0.27±0.041 0.27±0.055 0.27±0.028 0.27±0.033 0.27±0.026 0.27±0.024 0.27±0.023 0.27±0.021 0.27±0.043 0.27±0.023
SCAN-S 0.0±0.0 0.1±0.044 0.18±0.032 0.21±0.033 0.17±0.036 0.21±0.032 0.24±0.036 0.22±0.029 0.23±0.024 0.24±0.029 0.26±0.033

JC 0.12±0.029 0.12±0.029 0.12±0.029 0.12±0.029 0.12±0.029 0.12±0.029 0.12±0.029 0.12±0.029 0.12±0.029 0.12±0.029 0.12±0.029
CN 0.12±0.014 0.12±0.014 0.12±0.014 0.12±0.014 0.12±0.014 0.12±0.014 0.12±0.014 0.12±0.014 0.12±0.014 0.12±0.014 0.12±0.014
PA 0.07±0.033 0.07±0.033 0.07±0.033 0.07±0.033 0.07±0.033 0.07±0.033 0.07±0.033 0.07±0.033 0.07±0.033 0.07±0.033 0.07±0.033

(a)
��
S

h

��
1

(b)
��
S

h � S

h�1
��
1

Fig. 3. Convergence Analysis of the iterative CCCP.

(i.e., Sh �S

h�1) will approach to the stationary states within
a number of iterations respectively.

2) Parameter Analysis: The effects of the weight parame-
ters ↵t and ↵s (i.e., the weights of the intimacy terms from G

t

and G

s) on the performance of SLAMPRED will be studied

in this part. In Figure 4, we fix parameter ↵t but change
parameter ↵s with different values in {0.0, 0.2, · · · , 1.0}. By
assigning ↵t with value 0.0 (i.e., intimacy term of G

t is not
used), increasing the weight of the intimacy term about the
aligned source network will slightly degrade the performance
of SLAMPRED as shown in plots 4(a) and 4(b). The possible
reason can be that the accommodated attribute information
from the source network may still have some differences from
the distribution of links in the target network, and assigning it
with high weights may not necessary improve the performance
of SLAMPRED.

Meanwhile, as shown in plots 4(c) and 4(d), by fixing
parameter ↵t with value 1.0, increasing the value of ↵s

will improve the performance of SLAMPRED first and then
degrade its performance. The reason can be that given the full
consideration of attribute information in the target network,
adding some complementary information from the source
network will improve the inference performance, but assigning
it with a too large weight will make the model overfit the
attribute information from the source network instead.

For completeness, we also propose to fix parameter ↵s but
assign parameter ↵t with values in {0.0, 0.2, · · · , 1.0}. The
results are shown in Figure 5. By discarding the attribute
information from the source network (i.e., fixing ↵s with
value 0.0) or treating it as an important information source
(i.e., fixing ↵s with value 1.0), increasing the weight of
the attribute information term about the target network will
improve its performance first and then worsen its performance.
The potential explanation for such an observation can be that
assigning the attribute information terms with larger weights
will make the model overfit the attribute information in the
target network.
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E. Experimental Discovery Summary

According to the above experimental results and analysis,
we summarize the experimental discoveries as follows:

• Anchor Link: Introducing more anchor links between the
target and other aligned source networks can help transfer
more information from the source networks and improve
the performance of link prediction model SLAMPRED.

• Regularization: The sparse and low-rank regularization
terms works well in improving the performance of SLAM-
PRED, and can help overcome the class imbalance prob-
lem effectively.

• Domain Adaption: The domain adaption method pro-
posed in this paper works well in accommodate the
information distributions between the source and target
domains.

• Convergence of CCCP: The CCCP can help identify so-
lution to the objective function, and the updating process
can converge within a reasonable number of iterations.

• Parameter Selection: Incorporating the attribute informa-
tion from the target and source networks helps build better
model. However, the weights of the attribute information
from the target and source networks need to be selected
carefully, and too large weights will make the model
overfit the attribute information.

V. RELATED WORK

Link prediction and recommendation first proposed in[11]
has become a very important problem in online social net-
works, which provides social network researchers with the
opportunity to study both the network properties from the
individuals social connection perspective. Traditional unsu-
pervised link predictor proposed in [11] mainly calculate the
closeness scores among users, and assume that close users
tend to be friends in the network. Hasan et al. [5] is the first
to study the link prediction problem as a supervised learning
problem, where the existing and non-existing social links are
treated as the positive and negative instances respectively. In

[5], the authors propose to build supervised learning models
to classify the link instances to do the prediction. Today, many
social networks are heterogeneous and to conduct the link
prediction in these networks, Sun et al. [18] propose a meta
path-based prediction model to predict co-author relationship
in the heterogeneous bibliographic network.

Most existing works solve link prediction problem with a
single source of information. Nowadays, the researchers have
pushed the problem boundary further forward by proposing the
link prediction across multiple domains. Tang et al. [20] focus
on inferring the particular type of links over multiple hetero-
geneous networks and develop a framework for classifying the
type of social ties. To deal with the differences in information
distributions of multiple networks, Qi et al. [4] propose to use
biased cross-network sampling to do link prediction across
networks. Meanwhile, some works have also been done on
predicting multiple kinds of links simultaneously. I. Konstas
et al. [9] propose to recommend multiple kinds of links with
collaborative filtering methods. F. Fouss et al. [3] propose to
use a traditional model, random walk, to predict multiple kinds
of links simultaneously in networks.

Since Zhang et al. [8], [28] propose the concept of “aligned
social networks”, “anchor links”, “anchor users”, the so-
cial network studies across multiple aligned social networks
have become a hot research area in recent years. Dozens of
papers have been published around various problems about
the multiple aligned networks, including network alignment
[8], [35], [36], link prediction [29], [28], [37], [33], [27],
community detection [32], [34], [7] and information diffusion
[25], [26] etc. The link prediction models introduced in [29],
[28], [37], [33] propose to combine the information from
different sites by simply merging the extracted feature vectors
together without considerations about the domain differences
at all, which are totally different from the model introduced
in this paper. The recent paper [27] aims at unifying the link
prediction problems subject to different cardinality constraints,
like one-to-one, one-to-many and many-to-many, and introduce



a general scalable link prediction framework to solve the
problem.

The link prediction model proposed in this paper is based on
the sparse and low-rank matrix estimation. Richard et al. [15]
introduce the penalized matrix estimation procedure aiming
at solutions that are sparse and low-rank simultaneously. By
incorporating the regularization terms about the sparsity and
rank of the matrix to be inferred, the authors formulate the
matrix estimation problem into a joint optimization problem.
The model proposed in [15] can be applied in various types
of application problems, which include covariance matrix
estimation, graph denoising, and link prediction. By assuming
the feature vectors to be autoregressive, Richard et al. [14]
propose to study the link prediction problem in time-evolving
graphs. The authors propose to formulate and address the
problem as a sparse and low-rank matrix estimation problem,
and provide the theoretical analysis about the introduced error
bounds. Zhi et al. [38] study the link inference problem
in the link-inconsistent case based on sparse and low-rank
matrix estimation. Given a network and a small number of
labeled nodes, they aim at learning a consistent network with
more consistent and fewer inconsistent links than the original
network.

VI. CONCLUSION

In this paper, we have studied the link prediction problem
with multiple aligned networks by estimating a low-rank and
sparse adjacency matrix. To address the domain difference
issue, we project the feature vector of the users in multiple
networks into a common low-dimensional space. Besides
minimizing the loss function and maximizing the intimacy
terms, two extra regularization terms are added to the objective
function to guarantee the sparsity and low-rank properties. The
objective function can be effectively resolved by the CCCP
iteratively, and the non-differentiable regularization terms in
the objective function are handled with the proximal operators.
Based on two real-world partially aligned social networks
(Foursquare and Twitter), extensive experiments have been
done in this paper, and the experimental results have already
demonstrated the effectiveness of the proposed model.
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