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Abstract Looking from a global perspective, the landscape of online social net-
works is highly fragmented. A large number of online social networks have ap-
peared, which can provide the users with various types of services. Generally, the
information available in the these online social networks is of diverse categories,
which can be represented as heterogeneous information networks (HIN) formally.
Meanwhile, in such an age of online social media, users usually participate in mul-
tiple online social networks simultaneously to enjoy more social networks services,
who can act as bridges connecting different networks together. Formally, the online
social networks sharing common users are named as the aligned social networks,
and these shared users who act like anchors aligning the networks are called the
anchor users. The heterogeneous information generated by users’ social activities
in the multiple aligned social networks provides social network practitioners and
researchers with the opportunities to study individual user’s social behaviors across
multiple social platforms simultaneously.

1 Network Alignment

1.1 Overview

Heterogeneous information networks (HIN) is a very general network representa-
tion in the real world and lots of network structured data can be represented as HINs
formally, like collaboration networks, online social networks, knowledge base. Meta
path first proposed by Sun et al. for heterogeneous information networks in [36] is
a powerful tool, which can be applied in link prediction problems [34, 35], clus-

Jiawei Zhang
IFM Lab, Department of Computer Science, Florida State University, FL, USA.
e-mail: jiawei@ifmlab.org

1



2 Jiawei Zhang

tering problems [36, 33], searching and ranking problems [38, 17] as well as col-
lective classification problem [12] in HINs. However, most of these applications
are within one single network only, meta path extracted from which are called the
intra-network meta path.

Meanwhile, to enjoy the social network services from multiple online social net-
works simultaneously, users nowadays are usually involved in multiple online social
networks at the same time. Formally, the online social networks sharing common
users are named as the aligned social networks, and these shared users who act
like anchors aligning the networks are called the anchor users. Social activity anal-
ysis across aligned social networks has become a hot research topic in recent years
and many pioneer works have been done on this topic. Zhang et al. propose to study
the network alignment problem between pairwise fully aligned networks [13], pair-
wise partially aligned networks [45, 47, 50] and multiple partially aligned networks
[49].

Based on the aligned networks, various kinds of application problems have been
studied across multiple social platforms, including friend recommendation and so-
cial link prediction for new users[43] and emerging networks [44, 52, 47], location
recommendation [44], community detection for emerging networks [46] and syn-
ergistic clustering across networks [9, 48, 29], information diffusion [40, 41], viral
marketing [40], and tipping user identification [41]. To handle the heterogeneous
information available across the aligned social networks, the meta path concept is
firstly extended to inter-network scenario [52, 45] and applied to address various
synergistic knowledge discovery problems across partially aligned heterogeneous
social networks, which include network alignment [45], link recommendation [52],
community detection [48] and information diffusion [40, 41].

Network alignment problem has been well studied in bioinformatics, e.g., protein-
protein interaction (PPI) network alignment [10, 31, 32, 15, 11, 18]. Most net-
work alignment approaches focus on finding approximate isomorphism between
two graphs [32, 15, 11]. Because of the intractability of the problem, existing
methods usually rely on practical heuristics to solve the problem [11, 18]. Mean-
while, in recent years, some works have been done on aligning social networks
[13, 14, 23]. Various network alignment models have been proposed to address
the problem, which include the supervised classification based network alignment
methods [13, 45], PU (positive and unlabeled) classification based method [47], and
unsupervised matrix estimation based methods [49, 50].

In this chapter, we will take heterogeneous social network as an example and
introduce the network alignment problem and UNICOAT model studied in [50]. In
the network alignment problem, we aim at identifying the common users’ accounts
(i.e., the anchor links) across different social platforms based on the heterogeneous
information available in the networks, which includes both the network structure
information and various types of attribute information.
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Fig. 1 An example of HIN and the corresponding network schema.

1.2 Terminology Definition and Social Meta Path

Before introducing the proposed framework for the network alignment problem, we
will first introduce a set of terminologies that will be used both in this section and
throughout this chapter, including heterogeneous information networks, multiple
aligned social networks, anchor links as well as the intra-network meta path
and inter-network meta path. A set of intra-network and inter-network meta paths
will also be introduced, whose notations, representation and physical meanings will
be illustrated as follows.

1.2.1 Terminology Definition

As shown in Fig. 1(a), online social networks usually contain heterogeneous infor-
mation involving different types of nodes, e.g., users, posts, words, timestamps and
location checkins, as well as complex links among the nodes, e.g., friendship links
among users, write links between users and posts, and the contain/attach links be-
tween posts and words, timestamps and checkins. Formally, such a kind of online
social network can be represented as the heterogeneous information networks.

Definition 1. (Heterogeneous Information Networks): A heterogeneous infor-
mation network can be represented as G = (V ,E ), where the nodes in set V =⋃

i Vi and the links in set E =
⋃

i Ei are of different categories respectively.

Users nowadays are usually involved in multiple online social networks simulta-
neously to enjoy more social network services. Formally, the online social networks
sharing common users can be defined as the multiple aligned social networks [13],
which are connected by the anchor links [43] between the accounts of shared users,
i.e., the anchor users [52].

Definition 2. (Multiple Aligned Social Networks): The multiple aligned social
networks can be represented as G = ({Gi}i,{A (i, j)}i, j), where Gi = (V i,E i) de-
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notes the ith heterogeneous information network and A (i, j) represents the set of
undirected anchor links between networks Gi and G j.

Definition 3. (Anchor Link): Between networks Gi and G j, the set of undirected
anchor links A (i, j) can be represented as A (i, j)= {(ui

m,v
j
n)|ui

m ∈U i,v j
n ∈U i,ui

m and v j
n

are the accounts of the same user}, where U i ⊂ V i and U j ⊂ V j are the user node
sets in networks Gi and G j respectively.

One way to model the heterogeneous information available across the multiple
aligned social networks is meta path [33, 52, 48], which abstracts the connections
among the different categories of nodes as sequences of link types connected by the
node types. For instance, given the social network with its schema shown in Fig. 1,
a summary of the intra-network social meta paths extracted from the network is
provided in Table 1.

Definition 4. (Intra-Network Meta Path): Given a heterogeneous information
network Gi =(V i,E i), we can represents its networks schema as S(Gi)= (T i,R i),
where T i denotes the types of nodes in V i and R i denotes the types of links in E i.
Formally, based on the network schema, we can define the meta path as a sequence

P : T i
1

Ri
1−→ T i

2
Ri

2−→ ·· · Ri
m−→ T i

m+1, where T i
m ∈ T i and Ri

n ∈R i are the node and link
types available in network Gi respectively.

Besides the intra-network meta paths, via the anchor links and other shared
information entities, nodes across different networks can also get connected by the
inter-network meta paths.

Definition 5. (Inter-Network Meta Path): Given a meta path P consisting of se-
quences of link types, P is an inter-network meta path between networks Gi and
G j iff P involves the node types and link types from the schema of both network Gi

and network G j.

The simplest inter-network meta path between networks Gi and G j will be the
anchor meta path [45, 52] involving the user node types from Gi and G j and the
anchor link type between Gi and G j. Some inter-network meta path examples are
summarized in Table 2.

1.2.2 Social Meta Paths

Meta paths can actually connect various categories of node types from the net-
work, and those starting and ending with user node types are formally named as
the social meta paths [48] specifically. In this chapter, we will use the Foursquare
and Twitter networks as the example of multiple aligned social networks, which
actually share a large amount of common users. As shown in Fig. 1(a), both the
Foursquare and Twitter networks can be represented as a heterogeneous informa-
tion network G = (V ,E ), where the node set V = U ∪P ∪L ∪T ∪W in-
volves the nodes of users, posts, locations, timestamps and words, while the link



Fusion Learning on Heterogeneous Social Networks 5

Table 1 Summary of Intra-Network Social Meta Paths.
ID Notation Intra-Network Social Meta Path Semantics

1 U→ U User
f ollow−−−→ User Follow

2 U→ U→ U User
f ollow−−−→ User

f ollow−−−→ User Follower of Follower

3 U→ U← U User
f ollow−−−→ User

f ollow←−−− User Common Out Neighbor

4 U← U→ U User
f ollow←−−− User

f ollow−−−→ User Common In Neighbor

5 U→ P→W← P← U User write−−→ Post contain−−−−→Word contain←−−−− Post write←−− User Posts Containing Common Words
6 U→ P→ T← P← U User write−−→ Post contain−−−−→ Time contain←−−−− Post write←−− User Posts Containing Common Timestamps
7 U→ P→ L← P← U User write−−→ Post attach−−−→ Location attach←−−− Post write←−− User Posts Attaching Common Location Check-ins

Table 2 Summary of Inter-Network Social Meta Paths.
ID Notation Intra-Network Social Meta Path Semantics

1 Ui→ Ui↔ U j ← U j Useri f ollow−−−→ Useri Anchor←−−→ User j f ollow←−−− User j Inter-Network Common Out Neighbor

2 Ui← Ui↔ U j → U j Useri f ollow←−−− Useri Anchor←−−→ User j f ollow−−−→ User j Inter-Network Common In Neighbor

3 Ui→ Ui↔ U j → U j Useri f ollow−−−→ Useri Anchor←−−→ User j f ollow−−−→ User j Inter-Network Common Out In Neighbor

4 Ui← Ui↔ U j ← U j Useri f ollow←−−− Useri Anchor←−−→ User j f ollow←−−− User j Inter-Network Common In Out Neighbor

5 Ui→ Pi→ L← P j ← U j Useri write−−→ Posti checkin at−−−−−→ Location checkin at←−−−−− Post j write←−− User j Inter-Network Common Location Checkins
7 Ui→ Pi→ T← P j ← U j Useri write−−→ Posti at−→ Time at←− Post j write←−− User j Inter-Network Common Timestamps
8 Ui→ Pi→W← P j ← U j Useri write−−→ Posti contain−−−−→Word contain←−−−− Post j write←−− User j Inter-Network Common Words

set E = Eu,u∪Eu,p∪Ep,l ∪Ep,t ∪Ep,w contains the links among users, between users
and posts, and those between posts and locations, timestamps, words respectively.
The corresponding network schema of the HIN is shown in Fig. 1(b). Based on the
network schema, a set of intra-network social meta paths can be extracted and
defined from the network, which are shown in Table 1.

Besides the intra-network social meta paths, in Table 2, we also show a list of
inter-network social meta paths connecting user node types in networks Gi and
G j respectively. These inter-network social meta paths connect user nodes across
networks via either the anchor links or other common information entities, e.g.,
location checkins, words and timestamps.

1.3 Cross-Network Network Alignment

Formally, given networks G1,G2, · · · ,Gn together with information available in
them, the network alignment problem aims at identifying the anchor link sets
A (1,2),A (1,3), · · · ,A (n−1,n) between pairwise networks. The set of anchor links to
be inferred between networks Gi and G j can be represented as A (i, j), which aligns
users between networks Gi and G j. Considering that users in different social net-
works are associated with both links and attribute information, the quality of the
inferred anchor links A (i, j) can be measured by the costs introduced by such map-
pings calculated with users’ link and attribute information, i.e.,

cost(A (i, j)) = cost in links (A (i, j))+α · cost in attributes(A (i, j)), (1)
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where α denotes the weight of the cost obtained from the attribute information.

1.3.1 Social Structure Information based Network Alignment

Based on the social links among users in both Gi and G j (i.e., E i
u,u and E j

u,u re-

spectively), we can construct the binary social adjacency matrices Si ∈ R|U i|×|U i|

and S j ∈ R|U j |×|U j | for networks Gi and G j respectively. Entries in Si and S j (e.g.,
Si(p,q) and S j(l,m)) will be assigned with value 1 iff the corresponding social links
(ui

p,u
i
q) and (u j

l ,u
j
m) exist in Gi and G j, where ui

p,u
i
q ∈U i and u j

l ,v
j
m ∈U j are users

in networks Gi and G j.
Via the inferred anchor links A (i, j), users as well as their social connections can

be mapped between networks Gi and G j. We can represent the inferred anchor links
A (i, j) with binary user transitional matrix P∈R|U i|×|U j |, where the (ith, jth) entry
P(p,q) = 1 iff link (ui

p,u
j
q) ∈A (i, j). Considering that the constraint on anchor links

is one-to-one, each column and each row of P can contain at most one entry being
assigned with value 1, i.e.,

P1|U
j |×1 ≤ 1|U

i|×1, P>1|U
i|×1 ≤ 1|U

j |×1, (2)

where P1|U j |×1 and P>1|U i|×1 can get the sum of rows and columns of matrix P
respectively. Eq. P1|U j |×1 ≤ 1|U i|×1 denotes that every entry of the left vector is no
greater than the corresponding entry in the right vector.

Matrix P is an equivalent representation of anchor link set A (i, j). Next, we will
infer the optimal user transitional matrix P, from which we can obtain the optimal
anchor link set A (i, j).

The optimal anchor links are those which can minimize the inconsistency of
mapped social links across networks and the cost introduced by the inferred anchor
link set A (i, j) with the link information can be represented as

cost in link(A (i, j)) = cost in link(P) =
∥∥∥P>SiP−S j

∥∥∥2

F
, (3)

where ‖·‖F denotes the Frobenius norm of the corresponding matrix and P> is the
transpose of matrix P.

1.3.2 Social Attribute Information based Network Alignment

With these different attribute information (i.e., username, temporal activity and text
content), we can calculate the similarities between users across networks Gi and
G j based on the inter-network social meta paths. To measure the social closeness
among users across directed heterogeneous information networks, we propose a new
closeness measure named INMP-Sim (Inter-Network Meta Path based Similarity)
as follows.
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Definition 6. (INMP-Sim): Let Pi(x y) and Pi(x ·) be the sets of path in-
stances of inter-network meta paths # i going from x to y and those going from x
to other nodes in the network. The INMP-Sim of node pair (x,y) is defined as

INMP-Sim(x,y) = ∑
i

ωi

(
|Pi(x y)|+ |Pi(y x)|
|Pi(x ·)|+ |Pi(y ·)|

)
, (4)

where ωi is the weight of inter-network meta paths # i and ∑i ωi = 1.

Formally, we represent such similarity matrix as Λ ∈ R|U i|×|U j |, where entry
Λ(p,q) is the similarity between ui

p and u j
q. Similar users across social networks

are more likely to be the same user and anchor links A
(i, j)

u that align similar users
together should lead to lower cost. In this chapter, the cost function introduced by
the inferred anchor links A

(i, j)
u in attribute information is represented as

cost in attribute(A (i, j)
u ) = cost in attribute(P) =−‖P◦Λ‖1 , (5)

where ‖·‖1 is the L1 norm of the corresponding matrix, entry (P ◦Λ)(i, l) can be
represented as P(i, l) ·Λ(i, l) and P ◦Λ denotes the Hadamard product of matrices
P and Λ .

1.3.3 Joint Objective Function for Network Alignment

Both link and attribute information is important for anchor link inference. By tak-
ing these two categories of information into consideration simultaneously, we can
represent the optimal user transitional matrix P∗ which can lead to the minimum
cost as follows:

P∗ = argmin
P

cost(A (i, j)
u ) (6)

= argmin
P

∥∥∥P>SiP−S j
∥∥∥2

F
−α · ‖P◦Λ‖1 (7)

s.t. P ∈ {0,1}|U i|×|U j |, (8)

P1|U
j |×1 ≤ 1|U

i|×1,P>1|U
i|×1 ≤ 1|U

j |×1. (9)

The objective function is an constrained 0− 1 integer programming problem,
which is hard to address mathematically. Many relaxation algorithms have been
proposed so far. For more information about how to resolve the objective function,
please refer to [50].
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Table 3 Properties of the Heterogeneous Networks

network

property Twitter Foursquare

# node
user 5,223 5,392
tweet/tip 9,490,707 48,756
location 297,182 38,921

# link
friend/follow 164,920 76,972
write 9,490,707 48,756
locate 615,515 48,756

1.4 Experiments

To test the effectiveness of the proposed UNICOAT model, in this section, extensive
experiments have been done on two real-world partially co-aligned online social
networks: Foursquare and Twitter.

1.4.1 Dataset

The social networks dataset used in this chapter are Foursquare and Twitter, which
are co-aligned by both users and locations shared between these two networks.
These two social network datasets are crawled during November, 2012, whose sta-
tistical information is available in Table 3. More detailed descriptions and the crawl-
ing method is available in [44, 52].

1.4.2 Performance Evaluation Results

To show the advantages of UNICOAT in addressing the NETWORK ALIGNMENT
problem, we compare UNICOAT with many different baseline methods. Consider-
ing that no known anchor links are available actually in the NETWORK ALIGNMENT
problem, as a result, no existing supervised network alignment methods (e.g., MNA
[13]) can be applied. All the comparison methods are based on unsupervised learn-
ing settings, which can be divided into 4 categories:
Co-Alignment Methods

• UNICOAT: Method UNICOAT can align two online social networks based on the
shared users and locations simultaneously, which consists of two steps: (1) unsu-
pervised potential anchor links inference; (2) co-matching of social networks to
prune redundant anchor links to maintain the one-to-one constraint.

Bipartite Graph Alignment Methods
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Table 4 Performance comparison of different methods for inferring user anchor links (UNICOAT
here denotes the first step of UNICOAT only).

measure θ

methods 1 2 3 4 5

A
U

C

UNICOAT 0.868 0.831 0.814 0.804 0.799

BIGALIGNEXT 0.813 0.779 0.759 0.752 0.749
BIGALIGN 0.568 0.557 0.555 0.552 0.550

ISOEXT 0.818 0.782 0.762 0.754 0.61
ISO 0.547 0.529 0.52 0.518 0.516

RDD 0.531 0.530 0.523 0.514 0.508
Pr

ec
@

10
0

UNICOAT 0.705 0.688 0.657 0.640 0.556

BIGALIGNEXT 0.587 0.507 0.472 0.434 0.327
BIGALIGN 0.347 0.284 0.265 0.228 0.220

ISOEXT 0.427 0.391 0.373 0.352 0.301
ISO 0.301 0.253 0.225 0.216 0.208

RDD 0.234 0.228 0.207 0.172 0.127

• BIGALIGN: Method BIGALIGN is a bipartite network alignment method intro-
duced in [14], which can align two bipartite graphs (e.g., user-product bipartite
graph) simultaneously with link information only.

• BIGALIGNEXT: Method BIGALIGNEXT is a bipartite network alignment method.
BIGALIGNEXT can align user-location bipartite networks with both location
links between users and locations as well as attribute information about users
and locations across networks.

Isolated Alignment Methods

• ISO: Method ISO is an unsupervised network alignment method introduced in
[14]. ISO merely infers the anchor links only based on the friendship information
among users.

• ISOEXT: Method ISOEXT is an unsupervised network alignment method, which
is identical to ISO but utilizes both friendship links among users and attribute in-
formation of users.

Traditional Unsupervised Link Prediction Methods

• Relative Degree Distance based Network Alignment: RDD is the heuristics
based unsupervised network alignment method introduced in [14] to fill in the
initial values of the cross-network transitional matrices, e.g., P. For any two
users/location u(i)l and u( j)

m in networks G(i) and G( j), the relative degree distance

between them can be represented as RDD(u(i)l ,u( j)
m )=

(
1+ |deg(u(i)l )−deg(u( j)

m )|
(deg(u(i)l )+deg(u( j)

m ))/2

)−1

.

High relative degree distance denotes lower confidence score of anchor link
(u(i)l ,u( j)

m ).
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Fig. 2 Performance of methods without matching in inferring anchor links (UNICOAT here de-
notes the first step of UNICOAT only).

Methods UNICOAT (the first step), BIGALIGN, BIGALIGNEXT ISO, ISOEXT
and RDD can output the confidence scores of potential inferred links but no labels
are available, whose performance can be evaluated by metrics like AUC and Pre-
cision@100, etc. As to method UNICOAT, links selected finally in the matching
are assumed to achieve confidence score 1.0 and label +1, while the remaining can
achieve confidence score 0.0 and label −1. As a result, UNICOAT can also output
the labels of potential anchor links, whose performance can be evaluated by various
metrics, e.g., AUC, Precision@100, Precision, Recall, F1 and Accuracy simultane-
ously.

The experiment results of addressing the NETWORK ALIGNMENT problem are
available in Table 4 and Fig. 2. In Fig. 2, we fix θ = 1 and show the results achieved
by comparison methods without matching step (i.e., methods UNICOAT (the first
step), BIGALIGN, BIGALIGNEXT, ISO, ISOEXT and RDD) evaluated by AUC
and Precision@100. Methods ISO and ISOEXT can only be applied to align net-
works via user generated information. In Fig. 2, we can observe that (1) UNICOAT
performs the best among all the comparison methods in inferring anchor links eval-
uated by both AUC and Precision@100. For example, in Fig. 2, UNICOAT can
achieve AUC score of 0.87, which is over 6% better than BIGALIGNEXT and
ISOEXT, and 50% higher than the AUC score achieved by BIGALIGN, ISO and
RDD. Similar performance of UNICOAT is available in other plots. It demonstrates
that utilizing the heterogeneous information in the network to infer anchor links si-
multaneously can improve the results a lot. (2) BIGALIGNEXT and ISOEXT can
achieve better performance than BIGALIGN and ISO. Recalling that methods BI-
GALIGNEXT and ISOEXT use both the link and attribute information, while BI-
GALIGN and ISO use the link information. It justifies that the attribute information
of both users is helpful for inferring anchor links across networks. (3) By comparing
UNICOAT with RDD (i.e., the initialization method of matrices P in UNICOAT),
we observe that UNICOAT can outperform RDD with significant advantages. It
proves the effectiveness of the proposed network co-alignment model, which can
obtain better results than the initial value.
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Fig. 3 Performance of methods with matching in inferring anchor links (UNICOAT here includes
both two steps of UNICOAT).

1.4.3 Sensitivity Analysis

In Fig. 2, parameter θ is fixed as 1. In Table 4, we further change it with values
in {1,2,3,4,5} by adding more non-anchor users into the network. Generally, with
more non-anchor users, the NETWORK ALIGNMENT will become more difficult
and the performance of all the methods will degrade, but UNICOAT can achieve the
best performance consistently. For example, when θ = 5, the AUC score achieved
by UNICOAT in inferring social links is 0.799, which is 6.7%, 45%, 31%, 54.8%
and 57.2% higher than that gained by BIGALIGNEXT, BIGALIGN, ISOEXT, ISO
and RDD respectively. Similar observations can be obtained from the anchor links
inference results evaluated by Precision@100 in Table 4.

In the previous part, we have shown the performance of methods without match-
ing step, while anchor links inferred by which cannot meet the one-to-one con-
straint. Next, we will test the effectiveness of the matching step in pruning the non-
existing anchor links and the results achieved by UNICOAT (the second step) are
shown in Fig. 3. Parameter θ are assigned with values in {1,2,3,4,5}. The anchor
links inferred by UNICOAT can all meet the one-to-one constraint and are of high
quality. For example, when θ = 1, the Precision, Recall, F1 and Accuracy achieved
by UNICOAT are 0.73, 0.54, 0.62 and 0.75 respectively in inferring anchor links. As
θ increases, Recall and F1 scores achieved by UNICOAT will decrease as it will be
more hard to identify the real anchor links among larger number of potential ones.
Meanwhile, the Precision and Accuracy of UNICOAT will increase. The potential
reason can be due to the class imbalance problem. By adding more non-anchor users
to the network, more non-existing anchor links (i.e., the negative class links) will be
introduced and UNICOAT can achieve higher Precision and Accuracy by predicting
more negative instances correctly.

2 Link Transfer across Aligned Networks

To investigate users’ social activities and the propagation of information across dif-
ferent social platforms, several application problems will also be introduce in this
chapter after aligning the networks. One important work will be the link prediction
problems, which aims at infer potential connections among the information entities
in the networks. Link prediction across the multiple aligned social networks is
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not an easy task, and the heterogeneity of the social networks renders the problem
more challenging to solve.

2.1 Overview

Link prediction in social networks first proposed by Liben-Nowell [19] has been a
hot research topic and many different methods have been proposed. Liben-Nowell
[19] proposes many unsupervised link predicators to predict the social connections
among users. Later, Hasan [7] proposes to predict links by using supervised learning
methods. An extensive survey of link prediction works is available in [8, 6]. Most
existing link prediction works are based on one single network but many researchers
start to shift their attention to multiple networks. Dong et al. [4] propose to do link
prediction with multiple information sources. Zhang et al. introduce the link pre-
diction problem across aligned networks for new users [43] and emerging networks
[44, 47] based on supervised classification models [43] and PU classification models
[44, 47] respectively. Depending on the specific application settings, the links to be
predicted are usually subject to different cardinality constraints, like one-to-one
[13], one-to-many [51] and many-to-many [52]. For links with each type of the
cardinality constraints, different link prediction models have been proposed already.
Zhang et al. propose to unify these different link prediction tasks into a general link
prediction problem, and introduce a general model for the problem [42].

In this chapter, we will briefly introduce the multi-network synergistic PU link
prediction framework MLI as follows. Given a network screenshot, MLI labels the
existing and non-existing social links among users as positive and unlabeled in-
stances respectively, where the unlabeled links involve both positive and negative
links at the same time. Therefore, the link prediction prediction task can be trans-
ferred into a PU learning task.

2.2 Cross-Network Link Prediction

Formally, given multiple aligned networks G = ({G1,G2, · · · ,Gn},{A (1,2),A (1,3),
· · · ,A (n−1,n)}), the objective of the cross-network link prediction problem is to
infer the potential social connections which will be formed in the near future in
networks G1,G2, · · · ,Gn respectively.

2.2.1 PU Link Prediction Feature Extraction

Meta paths introduced in the previous sections can actually cover a large number
of path instances connecting users across the network. Formally, we denote that
node n (or link l) is an instance of node type T (or link type R) in the network as



Fusion Learning on Heterogeneous Social Networks 13

n ∈ T (or l ∈ R). Identity function I(a,A) =

{
1, if a ∈ A
0, otherwise,

can check whether

node/link a is an instance of node/link type A in the network. To consider the effect
of the unconnected links when extracting features for social links in the network,
we formally define the Social Meta Path based Features to be:

Definition 7. (Social Meta Path based Features): For a given link (u,v), the fea-

ture extracted for it based on meta path P = T1
R1−→ T2

R2−→ ·· ·
Rk−1−−−→ Tk from the

networks is defined to be the expected number of formed path instances between u
and v across the networks:

x(u,v) = I(u,T1)I(v,Tk) ∑
n1∈{u},n2∈T2,··· ,nk∈{v}

k−1

∏
i=1

p(ni,ni+1)I((ni,ni+1),Ri), (10)

where p(ni,ni+1) = 1.0 if (ni,ni+1) ∈ Eu,u and otherwise, p(ni,ni+1) denotes the
formation probability of link (ni,ni+1) to be introduced in Sec. 2.2.3.

Based on the above social meta path based feature definition and the extracted
intra-network and inter-network meta paths, a set of features can be extracted for
user pairs with the information across the aligned networks.

2.2.2 Meta Path based Feature Selection

Meanwhile, information transferred from aligned networks via the features ex-
tracted based on the inter-network social meta path can be helpful for improv-
ing link prediction performance in a given network but can be misleading as well,
which is called the network difference problem. To solve the network difference
problem, we propose to rank and select top K features from the feature vector ex-
tracted based on the intra-network and inter-network social meta paths, x, from
the multiple partially aligned heterogeneous networks.

Let variable Xi ∈ x be a feature extracted based on meta paths #i and variable Y
be the label. P(Y = y) denotes the prior probability that links in the training set
having label y and P(Xi = x) represents the frequency that feature Xi has value x.
Information theory related measure mutual information (mi) is used as the ranking
criteria:

mi(Xi) = ∑
x

∑
y

P(Xi = x,Y = y) log
P(Xi = x,Y = y)

P(Xi = x)P(Y = y)
(11)

Let x̄ be the features of the top K mi score selected from x. In the next subsection,
we will use the selected feature vector x̄ to build a novel PU link prediction model.
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2.2.3 PU Link Prediction Method

As introduced at the beginning of this section, from a given network, e.g., G, we
can get two disjoint sets of links: connected (i.e., formed) links P and unconnected
links U . To differentiate these links, we define a new concept “connection state”,
z, to show whether a link is connected (i.e., formed) or unconnected in network
G. For a given link l, if l is connected in the network, then z(l) = +1; otherwise,
z(l) = −1. As a result, we can have the “connection states” of links in P and U
to be: z(P) = +1 and z(U ) =−1.

Besides the “connection state”, links in the network can also have their own
“labels”, y, which can represent whether a link is to be formed or will never be
formed in the network. For a given link l, if l has been formed or to be formed, then
y(l) = +1; otherwise, y(l) =−1. Similarly, we can have the “labels” of links in P
and U to be: y(P) = +1 but y(U ) can be either +1 or −1, as U can contain both
links to be formed and links that will never be formed.

By using P and U as the positive and negative training sets, we can build a link
connection prediction model Mc, which can be applied to predict whether a link
exists in the original network, i.e., the connection state of a link. Let l be a link to
be predicted, by applying Mc to classify l, we can get the connection probability
of l to be:

Definition 8. (Connection Probability): The probability that link l’s connection
states is predicted to be connected (i.e., z(l) = +1) is formally defined as the con-
nection probability of link l: p(z(l) = +1|x̄(l)).

Meanwhile, if we can obtain a set of links that “will never be formed”, i.e., “-1”
links, from the network, which together with P (“+1” links) can be used to build
a link formation prediction model, M f , which can be used to get the formation
probability of l to be:

Definition 9. (Formation Probability): The probability that link l’s label is pre-
dicted to be formed or will be formed (i.e., y(l) = +1) is formally defined as the
formation probability of link l: p(y(l) = +1|x̄(l)).

However, from the network, we have no information about “links that will never
be formed” (i.e., “-1” links). As a result, the formation probabilities of potential
links that we aim to obtain can be very challenging to calculate. Meanwhile, the
correlation between link l’s connection probability and formation probability has
been proved in existing works [5] to be:

p(y(l) = +1|x̄(l)) ∝ p(z(l) = +1|x̄(l)). (12)

In other words, for links whose connection probabilities are low, their forma-
tion probabilities will be relatively low as well. This rule can be utilized to extract
links which can be more likely to be the reliable “-1” links from the network. We
propose to apply the the link connection prediction model Mc built with P and
U to classify links in U to extract the reliable negative link set. Formally, such a
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Fig. 4 PU Link Prediction Framework across Multiple Aligned Networks.

kind of negative link extraction method is called the spy technique based reliable
negative link extraction. For more detailed information about method, please refer
to [52].

With the extracted reliable negative link set RN , we can solve the PU link
prediction problem with classification based link prediction methods, where P
and RN are used as the positive and negative training sets respectively. Meanwhile,
when applying the built model to predict links in L i, the optimal labels, Ŷ i, of L i,
should be those which can maximize the following formation probabilities:

Ŷ i = argmax
Y i

p(y(L i) = Y i|G1,G2, · · · ,Gk) (13)

= argmax
Y i

p(y(L i) = Y i|x̄(L i)) (14)

where y(L i) = Y i represents that links in L i have labels Y i.

2.2.4 Multi-Network Link Prediction Framework

Method proposed in [52] is a general link prediction framework and can be applied
to predict social links in n partially aligned networks simultaneously. When it
comes to n partially aligned network, the optimal labels of potential links {L 1,L 2, · · · ,L n}
of networks G1,G2, · · · ,Gn will be:

Ŷ 1, Ŷ 2, · · · , Ŷ n (15)

= arg max
Y 1,Y 2,··· ,Y n

p(y(L 1) = Y 1,y(L 2) = Y 2, · · · ,y(L n) = Y n|G1,G2, · · · ,Gn)

(16)

The above target function is very complex to solve and we propose to ob-
tain the solution by updating one variable, e.g., Y 1, and fix other variables, e.g.,
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Y 2, · · · ,Y n, alternatively with the following equation [44]:
(Ŷ 1)(τ) = argmaxY 1 p(y(L 1) = Y 1|G1, · · · ,Gn,(Ŷ 2)(τ−1),(Ŷ 3)(τ−1), · · · ,(Ŷ n)(τ−1))

(Ŷ 2)(τ) = argmaxY 2 p(y(L 2) = Y 2|G1, · · · ,Gn,(Ŷ 1)(τ),(Ŷ 3)(τ−1), · · · ,(Ŷ n)(τ−1))

· · · · · ·
(Ŷ n)(τ) = argmaxY n p(y(L n) = Y n|G1, · · · ,Gn,(Ŷ 1)(τ),(Ŷ 2)(τ), · · · ,(Ŷ (n−1))(τ))

(17)
The structure of the link prediction framework is shown in Fig. 4(b). When

predicting social links in network Gi, we can extract features based on the intra-
network social meta path extracted from Gi and those extracted based on the inter-
network social meta path across G1, G2, · · · , Gi−1, Gi+1, · · · , Gn for links in P i,
U i and L i. Feature vectors x(P) and x(P) as well as the labels, y(P), y(U ),
of links in P and U are passed to the PU link prediction model M i and the meta
path selection model MS i. The formation probabilities of links in L i predicted by
model M i will be used to update the network by replace the weights of L i with the
newly predicted formation probabilities. The initial weights of these potential links
in L i are set as 0 (i.e., the formation probability of links mentioned in Definition
11). After finishing these steps on Gi, we will move to conduct similar operations
on Gi+1. We iteratively predict links in G1 to Gn alternatively in a sequence until the
results in all of these networks converge.

2.3 Experiments

To test the effectiveness of the proposed MLI framework, in this section, extensive
experiments have been done on two real-world partially co-aligned online social
networks dataset introduced in the previous section.

2.3.1 Performance Evaluation Results

To show the advantages of MLI, we compare MLI with many other baseline meth-
ods, which include:

• MLI: Method MLI is the multi-network link prediction framework, which can
predict social links in multiple online social networks simultaneously. The fea-
tures used by MLI are extracted based on the meta paths selected from Φ and Ψ

across aligned networks.
• LI: Method LI (Link Identifier) is identical to MLI except that LI predict the

formation of social links in each network independently.
• SCAN: Method SCAN (Cross Aligned Network link prediction) proposed in

[43, 44] is similar to MLI except that (1) SCAN predicts social links in each
network independently; (2) features used by SCAN are those extracted based on
meta paths Φ and Ψ1 without meta path selection.
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Table 5 Performance comparison of different methods for inferring social links for Foursquare
and Twitter of different remaining information rates. The anchor link sample rate ρA is set as 1.0.

Remaining information rates ρF of Foursquare.

network measure methods 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fo
ur

sq
ua

re

A
U

C

MLI 0.677±0.023 0.776±0.011 0.844±0.008 0.887±0.005 0.906±0.003 0.912±0.005 0.912±0.003 0.916±0.004
LI 0.573±0.019 0.68±0.023 0.806±0.01 0.853±0.004 0.866±0.003 0.874±0.007 0.881±0.003 0.878±0.005

SCAN 0.549±0.009 0.56±0.009 0.662±0.03 0.745±0.009 0.786±0.014 0.804±0.01 0.812±0.005 0.82±0.004
SCANT 0.5±0.083 0.503±0.007 0.613±0.012 0.739±0.008 0.764±0.013 0.787±0.007 0.8±0.006 0.81±0.007
SCANS 0.524±0.013 0.524±0.017 0.524±0.012 0.524±0.005 0.524±0.002 0.524±0.01 0.524±0.003 0.524±0.005

A
cc

ur
ac

y MLI 0.632±0.01 0.692±0.007 0.755±0.005 0.769±0.004 0.779±0.002 0.798±0.006 0.799±0.004 0.797±0.005
LI 0.568±0.013 0.624±0.053 0.699±0.004 0.722±0.006 0.761±0.01 0.782±0.01 0.789±0.005 0.791±0.006

SCAN 0.558±0.007 0.6±0.006 0.683±0.071 0.714±0.009 0.721±0.007 0.736±0.007 0.75±0.008 0.765±0.009
SCANT 0.491±0.019 0.568±0.004 0.65±0.008 0.685±0.007 0.714±0.007 0.727±0.009 0.736±0.012 0.747±0.003
SCANS 0.548±0.011 0.548±0.055 0.548±0.007 0.548±0.008 0.548±0.007 0.548±0.01 0.548±0.003 0.548±0.006

F1

MLI 0.644±0.01 0.695±0.022 0.722±0.013 0.742±0.005 0.761±0.005 0.789±0.006 0.783±0.005 0.786±0.006
LI 0.63±0.017 0.635±0.015 0.66±0.007 0.684±0.01 0.715±0.016 0.753±0.014 0.764±0.007 0.766±0.009

SCAN 0.6±0.02 0.609±0.006 0.614±0.031 0.632±0.018 0.645±0.018 0.676±0.016 0.701±0.01 0.726±0.013
SCANT 0.534±0.196 0.559±0.004 0.565±0.016 0.584±0.011 0.645±0.011 0.674±0.016 0.696±0.019 0.712±0.01
SCANS 0.56±0.016 0.56±0.041 0.56±0.015 0.56±0.015 0.56±0.013 0.56±0.013 0.56±0.005 0.56±0.01

Tw
itt

er

A
U

C

MLI 0.884±0.004 0.891±0.003 0.915±0.003 0.917±0.003 0.923±0.002 0.929±0.003 0.927±0.003 0.937±0.003
LI 0.841±0.003 0.847±0.002 0.852±0.003 0.862±0.002 0.873±0.002 0.884±0.003 0.894±0.003 0.904±0.003

SCAN 0.801±0.003 0.814±0.002 0.819±0.003 0.817±0.002 0.819±0.002 0.823±0.003 0.831±0.002 0.837±0.003
SCANT 0.802±0.002 0.802±0.002 0.802±0.002 0.802±0.002 0.802±0.002 0.802±0.002 0.802±0.002 0.802±0.002
SCANS 0.508±0.002 0.543±0.002 0.584±0.003 0.631±0.001 0.653±0.002 0.666±0.003 0.673±0.003 0.686±0.003

A
cc

ur
ac

y MLI 0.92±0.003 0.927±0.002 0.927±0.003 0.929±0.004 0.93±0.003 0.932±0.003 0.936±0.003 0.936±0.004
LI 0.899±0.004 0.904±0.004 0.908±0.004 0.913±0.002 0.916±0.003 0.918±0.003 0.918±0.003 0.92±0.004

SCAN 0.831±0.005 0.835±0.003 0.837±0.006 0.842±0.001 0.844±0.002 0.848±0.004 0.848±0.002 0.849±0.004
SCANT 0.827±0.003 0.827±0.003 0.827±0.003 0.827±0.003 0.827±0.003 0.827±0.003 0.827±0.003 0.827±0.003
SCANS 0.568±0.004 0.577±0.003 0.585±0.002 0.587±0.002 0.591±0.003 0.594±0.003 0.596±0.003 0.598±0.004

F1

MLI 0.804±0.002 0.808±0.002 0.809±0.003 0.811±0.003 0.812±0.003 0.818±0.003 0.826±0.003 0.826±0.004
LI 0.776±0.005 0.785±0.005 0.792±0.005 0.8±0.003 0.804±0.003 0.808±0.003 0.809±0.003 0.811±0.004

SCAN 0.682±0.006 0.686±0.004 0.69±0.006 0.699±0.001 0.703±0.003 0.707±0.004 0.709±0.002 0.711±0.005
SCANT 0.683±0.003 0.683±0.003 0.683±0.003 0.683±0.003 0.683±0.003 0.683±0.003 0.683±0.003 0.683±0.003
SCANS 0.53±0.006 0.546±0.006 0.559±0.004 0.564±0.004 0.571±0.004 0.575±0.004 0.581±0.004 0.583±0.005

• SCAN-S: Method SCAN-S (SCAN with Source Network) proposed in [43, 44]
is identical to SCAN except that the features used by SCAN-S are those ex-
tracted based on Ψ1 without meta path selection.

• SCAN-T: Method SCAN-T (SCAN with Target Network) proposed in [43, 44])
is identical to SCAN except that the features used by SCAN-S are those ex-
tracted based on Φ without meta path selection.

The social links in both Foursquare and Twitter are used as the ground truth to
evaluate the prediction results. SVM [3] with linear kernel and optimal parameters
is used as the base classifier of all comparison methods. Accuracy, AUC and F1
score are used as the evaluation metrics in the experiments.

To denote different degrees of network newness, in Table 5, we fix ρT as 0.8
but changes ρF within {0.1,0.2, · · · ,0.8}. Table 5 has two parts: the upper part is
the link prediction results in Foursquare and the lower part is that in Twitter, as
MLI is an integrated PU link prediction framework. The link prediction results in
each part are evaluated by different metrics: AUC, Accuracy and F1. As shown in
Table 5, MLI can outperform all other comparison methods consistently for ρF ∈
{0.1,0.2, · · · ,0.8} in both Foursquare network and Twitter network. For example,
in Foursquare when ρF = 0.5, the AUC achieved by MLI is about 5% better than
LI, 15% better than SCAN, 19% better than SCAN-T and 73% better than SCAN-
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Table 6 Performance comparison of different methods for inferring social links for Foursquare
and Twitter of different remaining information rates. The anchor link sample rate ρA is set as 1.0.

Remaining information rates ρT of Twitter

network measure methods 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fo
ur

sq
ua

re

A
U

C

MLI 0.862±0.003 0.867±0.004 0.87±0.003 0.873±0.005 0.885±0.003 0.891±0.003 0.895±0.004 0.916±0.004
LI 0.831±0.005 0.834±0.004 0.846±0.004 0.853±0.005 0.855±0.005 0.867±0.004 0.868±0.005 0.87±0.005

SCAN 0.81±0.007 0.81±0.008 0.812±0.005 0.817±0.007 0.816±0.01 0.815±0.007 0.822±0.006 0.82±0.004
SCANT 0.81±0.007 0.81±0.007 0.81±0.007 0.81±0.007 0.809±0.007 0.809±0.007 0.81±0.007 0.81±0.007
SCANS 0.504±0.007 0.51±0.003 0.511±0.005 0.516±0.005 0.522±0.004 0.53±0.005 0.53±0.004 0.53±0.005

A
cc

ur
ac

y MLI 0.78±0.003 0.786±0.005 0.789±0.004 0.794±0.005 0.793±0.004 0.789±0.004 0.796±0.005 0.797±0.005
LI 0.745±0.011 0.762±0.005 0.768±0.007 0.772±0.007 0.777±0.008 0.783±0.008 0.789±0.006 0.791±0.006

SCAN 0.749±0.007 0.754±0.006 0.754±0.007 0.757±0.006 0.758±0.007 0.761±0.008 0.763±0.009 0.765±0.009
SCANT 0.748±0.003 0.748±0.003 0.747±0.003 0.748±0.003 0.748±0.003 0.748±0.003 0.748±0.003 0.747±0.003
SCANS 0.692±0.011 0.717±0.008 0.725±0.008 0.746±0.008 0.741±0.006 0.746±0.004 0.75±0.007 0.758±0.006

F1

MLI 0.768±0.004 0.774±0.005 0.778±0.006 0.784±0.006 0.785±0.005 0.777±0.004 0.785±0.006 0.786±0.006
LI 0.721±0.02 0.734±0.01 0.734±0.012 0.736±0.012 0.744±0.012 0.755±0.011 0.764±0.01 0.766±0.009

SCAN 0.717±0.01 0.718±0.007 0.714±0.009 0.715±0.009 0.718±0.011 0.72±0.012 0.721±0.013 0.726±0.013
SCANT 0.713±0.01 0.712±0.01 0.712±0.01 0.713±0.01 0.713±0.01 0.712±0.01 0.713±0.01 0.712±0.01
SCANS 0.509±0.02 0.514±0.014 0.524±0.014 0.529±0.013 0.54±0.009 0.542±0.007 0.559±0.012 0.559±0.01

Tw
itt

er

A
U

C

MLI 0.837±0.004 0.858±0.004 0.905±0.005 0.926±0.003 0.924±0.002 0.932±0.003 0.934±0.002 0.937±0.003
LI 0.772±0.009 0.829±0.008 0.871±0.009 0.887±0.002 0.887±0.002 0.897±0.003 0.899±0.003 0.904±0.003

SCAN 0.706±0.008 0.771±0.012 0.799±0.009 0.817±0.002 0.819±0.002 0.829±0.003 0.83±0.003 0.834±0.003
SCANT 0.555±0.133 0.678±0.006 0.753±0.044 0.754±0.019 0.764±0.014 0.781±0.004 0.794±0.003 0.802±0.002
SCANS 0.687±0.008 0.687±0.002 0.687±0.005 0.687±0.002 0.687±0.002 0.687±0.004 0.687±0.003 0.687±0.003

A
cc

ur
ac

y MLI 0.821±0.005 0.864±0.001 0.892±0.008 0.914±0.004 0.925±0.002 0.926±0.004 0.936±0.002 0.936±0.004
LI 0.706±0.002 0.834±0.011 0.877±0.003 0.898±0.005 0.912±0.001 0.92±0.004 0.924±0.002 0.92±0.004

SCAN 0.594±0.006 0.716±0.009 0.781±0.005 0.801±0.003 0.823±0.002 0.831±0.004 0.842±0.002 0.849±0.004
SCANT 0.547±0.062 0.645±0.038 0.723±0.048 0.786±0.004 0.8±0.002 0.815±0.005 0.824±0.002 0.827±0.003
SCANS 0.59±0.009 0.59±0.007 0.59±0.004 0.59±0.004 0.59±0.002 0.59±0.004 0.59±0.003 0.59±0.004

F1

MLI 0.713±0.009 0.762±0.005 0.791±0.006 0.81±0.004 0.81±0.002 0.819±0.004 0.821±0.002 0.826±0.004
LI 0.651±0.006 0.671±0.023 0.749±0.014 0.779±0.007 0.801±0.003 0.813±0.005 0.818±0.003 0.811±0.004

SCAN 0.6±0.017 0.633±0.023 0.657±0.013 0.684±0.004 0.703±0.004 0.714±0.005 0.716±0.002 0.711±0.005
SCANT 0.552±0.113 0.574±0.016 0.604±0.031 0.618±0.003 0.63±0.001 0.641±0.004 0.67±0.002 0.686±0.003
SCANS 0.575±0.025 0.575±0.016 0.575±0.005 0.575±0.006 0.575±0.004 0.575±0.004 0.575±0.003 0.575±0.005

S; the Accuracy achieved by MLI is about 2.3% better than LI, 8% better than
SCAN, 9.1% higher than SCAN-T and over 40% higher than SCAN-S; the F1
of MLI is 6.4% higher than LI, 18% higher than SCAN and SCAN-T and 36%
higher than SCAN-S. When ρF = 0.5, the link prediction results of MLI in Twitter
are also much better than all other baseline methods. For instances, in Twitter the
AUC of MLI is 0.923± 0.002, which is about 6% better than LI, over 13% better
than SCAN, SCAN-T and over 40% better than SCAN-S. Similar results can be
obtained when evaluated by Accuracy and F1.

In Table 6, we fix ρF = 0.8 but change ρT with values in {0.1,0.2, · · · ,0.8}.
Similar to the results obtained in Table 5 where ρF varies, MLI can beat all other
methods in both Twitter and Foursquare when the degree of newness of the Twitter
network changes.

MLI can perform better than LI in both Foursquare and Twitter, which shows
that predicting social links in multiple networks simultaneously in MLI framework
can do enhance the results in both networks; the fact that LI can beat SCAN shows
that features extracted based on cross network meta paths can do transfer useful
information for both anchor and non-anchor users; SCAN works better than both
SCAN-T and SCAN-S denotes that link prediction with information in two net-
works simultaneously is better than that with information in one single network.
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Fig. 5 Effects of anchor link ratio ρA on prediction results in different networks evaluated by
different metrics.

2.3.2 Parameter Analysis

An important parameter that can affect the performance of all these methods is the
rate of anchor links existing across networks. In this part, we will analyze the effects
of the anchor link rate, ρA ∈ [0,1.0]. To exclude other parameters’ interference, we
fix ρF and ρT as 0.8 but change ρA with values in {0.1,0.2, · · · ,1.0} and study the
link prediction results in both Foursquare and Twitter under the evaluation of AUC,
Accuracy and F1. The results are shown in Fig. 5.

As shown in Fig. 5, where Fig. 5(a)-5(c) are the link prediction results in
Foursquare and the Fig. 5(d)-5(f) are those in Twitter, almost all the methods can
perform better as ρA increases, except SCAN-T as it only utilizes information in
the target network only. It shows that with more anchor links, MLI, LI, SCAN and
SCAN-S can transfer much more information from other aligned source networks
to the target network to enhance the results. In addition, MLI can work better than
LI consistently as ρA varies, which can show the effectiveness of MLI in dealing
with networks with different ratios of anchor links

2.3.3 Convergence Analysis

MLI need to predict the links in all the aligned networks alternatively and iteratively
until convergence. In this part, we will analyze whether MLI can converge as this
process continues. We show the link prediction results achieved by MLI in both
Foursquare and Twitter under the evaluation of AUC, Accuracy and F1 when ρF ,
ρT and ρA are all set as 0.8 in Fig. 6. Fig. 6(a)-6(c) are the results in Foursquare
network from iteration 1 to iteration 30 and Fig. 6(d)-6(f) are those in Twitter net-
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Fig. 6 Convergence analysis in different networks under the evaluation of different metrics.

work. As shown in these figures, results achieved by MLI can converge in less than
10 iterations in both Foursquare and Twitter evaluated by all these three metrics.

3 Synergistic Network Community Detection

3.1 Overview

Clustering is a very broad research area, which includes various types of clustering
problems, e.g., consensus clustering [22, 21], multi-view clustering [1, 2], multi-
relational clustering [37], co-training based clustering [16], at the same time. Clus-
tering based community detection in online social networks is a hot research topic
and many different models have already been proposed to optimizing certain evalua-
tion metrics, e.g., modularity function [26], and normalized cut [30]. A detailed sur-
vey about existing community detection works is available in [25, 24]. Meanwhile,
based on the information available in multiple aligned networks, Jin [9], Zhang et
al. [48] and Shao et al. [29] propose to do synergistic community detection across
multiple aligned social networks. Via the anchor links, Zhang et al. also propose to
transfer information from developed networks to detect social community structures
in emerging networks in [46].

The goal of cross-network community detection is to distill relevant informa-
tion from another social network to compliment knowledge directly derivable from
each network to improve the clustering or community detection, while preserving
the distinct characteristics of each individual network. To solve the Mutual Clus-
tering problem, a novel community detection method, MCD, is proposed in [48].
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By mapping the social network relations into a heterogeneous information, the pro-
posed method in [48] uses the concept of social meta path to define closeness mea-
sure among users. Based on this similarity measure, the proposed method [48] can
preserve the network characteristics and utilize the information in other networks
to refine community structures mutually at the same time. In this section, we will
introduce the mutual community detection framework proposed in [48] briefly.

3.2 Cross-Network Community Detection

Given multiple aligned networks G =({G1,G2, · · · ,Gn},{A (1,2),A (1,3), · · · ,A (n−1,n)}),
the cross-network community detection problem aims at detecting the community
structures of networks G1,G2, · · · ,Gn respectively.

3.2.1 Network Characteristic Preservation Clustering

Clustering each network independently can preserve each networks characteristics
effectively as no information from external networks will interfere with the clus-
tering results. Partitioning users of a certain network into several clusters will cut
connections in the network and lead to some costs inevitably. Optimal clustering
results can be achieved by minimizing the clustering costs.

Let Ai be the adjacency matrix corresponding to the intra-network meta path
# i among users in the network and Ai(m,n) = k iff there exist k different path
instances of intra-network meta path # i from user m to n in the network. Further-
more, the similarity score matrix among users of meta path # i can be represented as
Si =

(
Di + D̄i

)−1 (Ai +AT
i
)
, where AT

i denotes the transpose of Ai, diagonal ma-
trices Di and D̄i have values Di(l, l) = ∑m Ai(l,m) and D̄i(l, l) = ∑m(AT

i )(l,m) on
their diagonals respectively. The meta path based similarity matrix of the network
which can capture all possible connections among users is represented as follows:

S = ∑
i

ωiSi = ∑
i

ωi

((
Di + D̄i

)−1 (Ai +AT
i
))

. (18)

For a given network G, let C = {U1,U2, . . . ,Uk} be the community structures
detected from G. Term Ui = U −Ui is defined to be the complement of set Ui in G.
Various cost measure of partition C can be used, e.g., cut and normalized cut:

cut(C ) =
1
2

k

∑
i=1

S(Ui,Ui) =
1
2

k

∑
i=1

∑
u∈Ui,v∈Ui

S(u,v), (19)

Ncut(C ) =
1
2

k

∑
i=1

S(Ui,Ui)

S(Ui, ·)
=

k

∑
i=1

cut(Ui,U i)

S(Ui, ·)
, (20)



22 Jiawei Zhang

where S(u,v) denotes the similarity between u,v and S(Ui, ·)= S(Ui,U )= S(Ui,Ui)+
S(Ui,U i).

For all users in U , their clustering result can be represented in the result con-
fidence matrix H, where H = [h1, h2, . . . , hn]

T, n = |U |, hi = (hi,1,hi,2, . . . ,hi,k)
and hi, j denotes the confidence that ui ∈ U is in cluster U j ∈ C . The optimal H
that can minimize the normalized-cut cost can be obtained by solving the following
objective function:

min
H

Tr(HT LH), (21)

s.t. HT DH = I. (22)

where L = D−S, diagonal matrix D has D(i, i) = ∑ j S(i, j) on its diagonal, and I is
an identity matrix.

3.2.2 Discrepancy based Clustering of Multiple Aligned Networks

Besides the shared information due to common network construction purposes
and similar network features [46], anchor users can also have unique information
(e.g., social structures) across aligned networks, which can provide us with a more
comprehensive knowledge about the community structures formed by these users.
Meanwhile, by maximizing the consensus (i.e., minimizing the “discrepancy”) of
the clustering results about the anchor users in multiple partially aligned networks,
we refine the clustering results of the anchor users with information in other aligned
networks mutually. We can represent the clustering results achieved in Gi and G j as
C i = {U i

1,U
i
2, · · · , U i

ki} and C j = {U j
1 ,U

j
2 , · · · ,U

j
k j} respectively.

Let up and uq be two anchor users in the network, whose accounts in Gi and G j

are ui
p, u j

p, ui
q and u j

q respectively. If users ui
p and ui

q are partitioned into the same
cluster in Gi but their corresponding accounts u j

p and u j
q are partitioned into different

clusters in G j, then it will lead to a discrepancy between the clustering results of
ui

p, u j
p, ui

q and u j
q in aligned networks Gi and G j.

Definition 10. (Discrepancy): The discrepancy between the clustering results of
up and uq across aligned networks Gi and G j is defined as the difference of con-
fidence scores of up and uq being partitioned in the same cluster across aligned
networks. Considering that in the clustering results, the confidence scores of ui

p

and ui
q (u j

p and u j
q ) being partitioned into ki (k j) clusters can be represented as

vectors hi
p and hi

q (h j
p and h j

q) respectively, while the confidences that up and uq

are in the same cluster in Gi and G j can be denoted as hi
p(hi

q)
T and h j

p(h j
q)

T .
Formally, the discrepancy of the clustering results about up and uq is defined

to be dp,q(C i,C j) =
(

hi
p(hi

q)
T −h j

p(h j
q)

T
)2

if up,uq are both anchor users; and

dp,q(C i,C j) = 0 otherwise. Furthermore, the discrepancy of C i and C j will be:
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d(C i,C j) =
ni

∑
p

n j

∑
q

dp,q(C
i,C j), (23)

where ni = |U i| and n j = |U j|.

However, considering that d(C i,C j) is highly dependent on the number of an-
chor users and anchor links between Gi and G j, minimizing d(C i,C j) can favor
highly consented clustering results when the anchor users are abundant but have no
significant effects when the anchor users are very rare. To solve this problem, we
propose to minimize the normalized discrepancy instead.

Definition 11. (Normalized Discrepancy) The normalized discrepancy measure
computes the differences of clustering results in two aligned networks as a frac-
tion of the discrepancy with regard to the number of anchor users across partially
aligned networks:

Nd(C i,C j) =
d(C i,C j)(∣∣A(i, j)
∣∣)(∣∣A(i, j)

∣∣−1
) . (24)

Optimal consensus clustering results of Gi and G j will be Ĉ i, Ĉ j:

Ĉ i, Ĉ j = arg min
C i,C j

Nd(C i,C j). (25)

Similarly, the normalized-discrepancy objective function can also be represented
with the clustering results confidence matrices Hi and H j as well. Meanwhile,
considering that the networks studied in this chapter are partially aligned, matrices
Hi and H j contain the results of both anchor users and non-anchor users, while non-
anchor users should not be involved in the discrepancy calculation according to the
definition of discrepancy. After pruning the non-anchor users from the confidence
matrices, we can represent the pruned confidence matrices as H̄i and H̄ j.

Furthermore, the objective function of inferring clustering confidence matrices,
which can minimize the normalized discrepancy can be represented as follows

min
Hi,H j

∥∥∥H̄i
(
H̄i
)T − H̄ j

(
H̄ j
)T
∥∥∥2

F∥∥T(i, j)
∥∥2

F

(∥∥T(i, j)
∥∥2

F −1
) , (26)

s.t. (Hi)T DiHi = I,(H j)T D jH j = I. (27)

where Di, D j are the corresponding diagonal matrices of similarity matrices of net-
works Gi and G j respectively.
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3.2.3 Joint Optimization Objective Function

Taking both of these two issues into considerations, the optimal mutual clustering
results Ĉ i and Ĉ j of aligned networks Gi and G j can be achieved as follows:

arg min
C i,C j

α ·Ncut(C i)+β ·Ncut(C j)+θ ·Nd(C i,C j) (28)

where α , β and θ represents the weights of these terms and, for simplicity, α , β are
both set as 1.

By replacing Ncut(C i), Ncut(C j), Nd(C i,C j) with the objective equations de-
rived above, we can rewrite the joint objective function as follows:

min
Hi,H j

α·Tr((Hi)T LiHi)+β ·Tr((H j)T L jH j)+θ ·

∥∥∥H̄i
(
H̄i
)T − H̄ j

(
H̄ j
)T
∥∥∥2

F∥∥T(i, j)
∥∥2

F

(∥∥T(i, j)
∥∥2

F −1
) ,
(29)

s.t. (Hi)T DiHi = I,(H j)T D jH j = I, (30)

where Li = Di−Si, L j = D j−S j and matrices Si, S j and Di, D j are the similarity
matrices and their corresponding diagonal matrices defined before.

The objective function is a complex optimization problem with orthogonality
constraints, which can be very difficult to solve because the constraints are not only
non-convex but also numerically expensive to preserve during iterations. Please re-
fer to [48] for more information about the solution to the objective function.

3.3 Experiments

To test the performance of the MCD model in detecting the communities across
multiple aligned social networks, extensive experiments have been done on the
aligned social networks data set: Foursquare and Twitter. The experimental results
will be illustrated as follows.

3.4 Performance Evaluation Results

The comparison methods used in the experiments can be divided into three cate-
gories,
Mutual Clustering Methods

• MCD: MCD is the mutual community detection method, which can detect the
communities of multiple aligned networks with consideration of the connections
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and characteristics of different networks. Heterogeneous information in multiple
aligned networks are applied in building MCD.

Multi-Network Clustering Methods

• SICLUS: the clustering method proposed in [39, 46] can calculate the sim-
ilarity scores among users by propagating heterogeneous information across
views/networks. We extend the method proposed in [39, 46] and propose SICLUS
to calculate the intimacy scores among users in multiple networks simultane-
ously, based on which, users can be grouped into different clusters with clustering
models based on intimacy matrix factorization as introduced in [46]. Heteroge-
neous information across networks is used to build SICLUS.

Isolated Clustering Methods, which can detect communities in each isolated net-
work:

• NCUT: NCUT is the clustering method based on normalized cut proposed in [30].
Method NCUT can detect the communities in each social network merely based
on the social connections in each network in the experiments.

• KMEANS: KMEANS is a traditional clustering method, which can be used to
detect communities [28] in social networks based on the social connections only
in the experiments.

The evaluation metrics applied can be divided into two categories: Quality Met-
rics and Consensus Metrics.
Quality Metrics: 4 widely and commonly used quality metrics are applied to mea-
sure the clustering result, e.g., C = {Ui}K

i=1, of each network.

• normalized-dbi [39]:

ndbi(C ) =
1
K ∑

i
min
j 6=i

d(ci,c j)+d(c j,ci)

σi +σ j +d(ci,c j)+d(c j,ci)
, (31)

where ci is the centroid of community Ui ∈ C , d(ci,c j) denotes the distance
between centroids ci and c j and σi represents the average distance between ele-
ments in Ui and centroid ci. (Higher ndbi corresponds to better performance).

• entropy [39]: H(C ) = −∑
K
i=1 P(i) logP(i), where P(i) = |Ui|

∑
K
i=1 |Ui|

. (Lower en-

tropy corresponds to better performance).
• density [39]: dens(C ) = ∑

K
i=1
|Ei|
|E| , where E and Ei are the edge sets in the net-

work and Ui. (Higher density corresponds to better performance).
• silhouette [20]:

sil(C ) =
1
K

K

∑
i=1

(
1
|Ui| ∑

u∈Ui

b(u)−a(u)
max{a(u),b(u)}

), (32)

where a(u) = 1
|Ui|−1 ∑v∈Ui,u6=v d(u,v) and b(u) = min j, j 6=i

(
1
|U j | ∑v∈U j d(u,v)

)
.

(Higher silhouette corresponds to better performance).
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Consensus Metrics: Given the clustering results C (1) = {U (1)
i }K(1)

i=1 and C (2) =

{U (2)
i }K(2)

i=1 , the consensus metrics measuring the how similar or dissimilar the an-
chor users are clustered in C (1) and C (2) include:

• rand [27]: rand(C (1),C (2)) = N01+N10
N00+N01+N10+N11

, where N11(N00) is the numbers
of pairwise anchor users who are clustered in the same (different) commu-
nity(ies) in both C (1) and C (2), N01(N10) is that of anchor users who are clus-
tered in the same community (different communities) in C (1) but in different
communities (the same communities) in C (2). (Lower rand corresponds to better
performance).

• variation of information (vi) [27]: vi(C (1),C (2))=H(C (1))+H(C (2))−2mi(C (1),C (2)).
(Lower vi corresponds to better performance).

• mutual information [27]: mi(C (1),C (2)) = ∑
K(1)

i=1 ∑
K(2)

j=1 P(i, j) log P(i, j)
P(i)P( j) , where

P(i, j) =
|U(1)

i ∩A U(2)
j |

|A | and |U (1)
i ∩A U (2)

j |=
∣∣∣{u|u ∈U (1)

i ,∃v ∈U (2)
i ,(u,v) ∈A }

∣∣∣
[13]. (Higher mi corresponds to better performance).

• normalized mutual information [27]: nmi(C (1),C (2))= mi(C (1),C (2))√
H(C (1))H(C (2))

. (Higher

nmi corresponds to better performance).

The experiment results are available in Tables 7-8. To show the effects of the
anchor links, we use the same networks but randomly sample a proportion of anchor
links from the networks, whose number is controlled by σ ∈ {0.1,0.2, · · · ,1.0},
where σ = 0.1 means that 10% of all the anchor links are preserved and σ = 1.0
means that all the anchor links are preserved.

Table 7 displays the clustering results of different methods in Foursquare and
Twitter respectively under the evaluation of ndbi, entropy, density and silhouette.
As shown in these two tables, MCD can achieve the highest ndbi score in both
Foursquare and Twitter for different sample rate of anchor links consistently. The en-
tropy of the clustering results achieved by MCD is the lowest among all other com-
parison methods and is about 70% lower than SICLUS, 40% lower than NCUT and
KMEANS in both Foursquare and Twitter. In each community detected by MCD,
the social connections are denser than that of SICLUS , NCUT and KMEANS. Sim-
ilar results can be obtained under the evaluation of silhouette, the silhouette score
achieved by MCD is the highest among all comparison methods. So, MCD can
achieve better results than modified multi-view and isolated clustering methods un-
der the evaluation of quality metrics.

Table 8 shows the clustering results on the aligned networks under the evaluation
of consensus metrics, which include rand, vi, nmi and mi. As shown in Table 8,
MCD can perform the best among all the comparison methods under the evaluation
of consensus metrics. For example, the rand score of MCD is the lowest among
all other methods and when σ = 0.5, the rand score of MCD is 20% lower than
SICLUS, 72% lower than NCUT and KMEANS. Similar results can be obtained for
other evaluation metrics, like when σ = 0.5 , the vi score of MCD is about half of the
the score of SICLUS; the nmi and mi score of MCD is the triple of that ofKMEANS.
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Table 7 Community Detection Results of Foursquare and Twitter Evaluated by Quality Metrics.

remaining anchor link rates σ

network measure methods 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fo
ur

sq
ua

re
ndbi

MCD 0.927 0.924 0.95 0.969 0.966 0.961 0.958 0.954 0.971 0.958
SICLUS 0.891 0.889 0.88 0.877 0.894 0.883 0.89 0.88 0.887 0.893

NCUT 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863
KMEANS 0.835 0.835 0.835 0.835 0.835 0.835 0.835 0.835 0.835 0.835

entropy

MCD 1.551 1.607 1.379 1.382 1.396 1.382 1.283 1.552 1.308 1.497
SICLUS 4.332 4.356 4.798 4.339 4.474 4.799 4.446 4.658 4.335 4.459

NCUT 2.768 2.768 2.768 2.768 2.768 2.768 2.768 2.768 2.768 2.768
KMEANS 2.369 2.369 2.369 2.369 2.369 2.369 2.369 2.369 2.369 2.369

density

MCD 0.216 0.205 0.196 0.163 0.239 0.192 0.303 0.198 0.170 0.311
SICLUS 0.116 0.121 0.13 0.095 0.143 0.11 0.13 0.12 0.143 0.103

NCUT 0.154 0.154 0.154 0.154 0.154 0.154 0.154 0.154 0.154 0.154
KMEANS 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182

silhouette

MCD -0.137 -0.114 -0.148 -0.156 -0.117 -0.11 -0.035 -0.125 -0.148 -0.044
SICLUS -0.168 -0.198 -0.173 -0.189 -0.178 -0.181 -0.21 -0.195 -0.167 -0.18

NCUT -0.34 -0.34 -0.34 -0.34 -0.34 -0.34 -0.34 -0.34 -0.34 -0.34
KMEANS -0.297 -0.297 -0.297 -0.297 -0.297 -0.297 -0.297 -0.297 -0.297 -0.297

Tw
itt

er

ndbi

MCD 0.962 0.969 0.955 0.969 0.97 0.958 0.952 0.96 0.946 0.953
SICLUS 0.815 0.843 0.807 0.83 0.826 0.832 0.835 0.808 0.812 0.836

NCUT 0.759 0.759 0.759 0.759 0.759 0.759 0.759 0.759 0.759 0.759
KMEANS 0.761 0.761 0.761 0.761 0.761 0.761 0.761 0.761 0.761 0.761

entropy

MCD 2.27 2.667 2.48 2.381 2.43 2.372 2.452 2.459 2.564 2.191
SICLUS 4.780 5.114 5.066 4.961 4.904 4.866 5.121 4.629 4.872 5.000

NCUT 3.099 3.099 3.099 3.099 3.099 3.099 3.099 3.099 3.099 3.099
KMEANS 3.245 3.245 3.245 3.245 3.245 3.245 3.245 3.245 3.245 3.245

density

MCD 0.14 0.097 0.142 0.109 0.15 0.158 0.126 0.149 0.147 0.164
SICLUS 0.055 0.017 0.044 0.026 0.04 0.062 0.016 0.044 0.045 0.02

NCUT 0.107 0.107 0.107 0.107 0.107 0.107 0.107 0.107 0.107 0.107
KMEANS 0.119 0.119 0.119 0.119 0.119 0.119 0.119 0.119 0.119 0.119

silhouette

MCD -0.137 -0.179 -0.282 -0.175 -0.275 -0.273 -0.248 -0.269 -0.266 -0.286
SICLUS -0.356 -0.322 -0.311 -0.347 -0.346 -0.349 -0.323 -0.363 -0.345 -0.352

NCUT -0.424 -0.424 -0.424 -0.424 -0.424 -0.424 -0.424 -0.424 -0.424 -0.424
KMEANS -0.406 -0.406 -0.406 -0.406 -0.406 -0.406 -0.406 -0.406 -0.406 -0.406

As a result, MCD can achieve better performance than both modified multi-view
and isolated clustering methods under the evaluation of consensus metrics.

According to the results shown in Tables 7-8, we observe that the performance
of MCD doesn’t varies much as σ changes. The possible reason can be that, in
method MCD, normalized clustering discrepancy is applied to infer the clustering
confidence matrices. As σ increases in the experiments, more anchor links are added
between networks, part of whose effects will be neutralized by the normalization of
clustering discrepancy and doesn’t affect the performance of MCD much.

3.5 Convergence Analysis

MCD can compute the solution of the optimization function with Curvilinear
Search method, which can update matrices X(1) and X(2) alternatively. This pro-
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Table 8 Community Detection Results of Foursquare and Twitter Evaluated by Consensus Met-
rics.

remaining anchor link rates σ

measure methods 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

rand

MCD 0.095 0.099 0.107 0.138 0.116 0.121 0.132 0.106 0.089 0.159
SICLUS 0.135 0.139 0.144 0.148 0.142 0.14 0.132 0.132 0.144 0.141

NCUT 0.399 0.377 0.372 0.4 0.416 0.423 0.362 0.385 0.362 0.341
KMEANS 0.436 0.387 0.4 0.358 0.403 0.363 0.408 0.365 0.35 0.363

vi

MCD 3.309 4.052 4.058 3.902 4.038 4.348 3.973 3.944 4.078 2.911
SICLUS 7.56 8.324 8.414 8.713 8.756 8.836 8.832 8.621 8.427 8.02

NCUT 5.384 5.268 5.221 4.855 5.145 5.541 5.909 5.32 5.085 5.246
KMEANS 5.427 5.117 5.355 5.326 5.679 5.944 5.452 5.567 5.513 4.686

nmi

MCD 0.152 0.152 0.149 0.141 0.149 0.156 0.142 0.158 0.147 0.146
SICLUS 0.172 0.097 0.081 0.06 0.056 0.069 0.078 0.093 0.105 0.149

NCUT 0.075 0.074 0.111 0.108 0.109 0.099 0.05 0.036 0.042 0.106
KMEANS 0.008 0.047 0.048 0.054 0.048 0.028 0.047 0.014 0.067 0.119

mi

MCD 0.756 0.611 0.4 0.258 0.394 0.431 0.381 0.533 0.697 0.689
SICLUS 0.780 0.446 0.367 0.277 0.258 0.325 0.374 0.44 0.489 0.698

NCUT 0.188 0.181 0.261 0.232 0.252 0.243 0.138 0.092 0.111 0.31
KMEANS 0.02 0.112 0.119 0.135 0.127 0.078 0.119 0.038 0.194 0.314
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Fig. 7
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and
∥∥∥X(2)

∥∥∥
1

in each iteration.

cess will continue until convergence. To check whether this process can stop or not,
in this part, we will analyze the convergence of X(1) and X(2). In Fig. 7, we show
the L1 norm of matrices X(1) and X(2),

∥∥∥X(1)
∥∥∥

1
and

∥∥∥X(2)
∥∥∥

1
, in each iteration of

the updating algorithm, where the Lp norm of matrix X is ‖X‖p = (∑i ∑i Xi j
p)

1
p . As

shown in Fig. 7, both
∥∥∥X(1)

∥∥∥
1

and
∥∥∥X(2)

∥∥∥
1

can converge in less than 200 iterations.

3.6 Parameter Analysis

In method MCD, we have three parameters: k(1), k(2) and θ , where k(1) and k(2)

are the numbers of clusters in Foursquare and Twitter networks respectively, while
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Fig. 8 Analysis of parameters k(1) and k(2).
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Fig. 9 Analysis of parameter θ .

θ is the weight of the normalized discrepancy term in the object function. In the
pervious experiment, we set k(1) = 50, k(2) = 50 and θ = 1.0. Here we will analyze
the sensitivity of these parameters in details.

To analyze k(1), we fix k(2) = 50 and θ = 1.0 but assign k(1) with values in
{10,20,30,40,50,60,70,80,90,100}. The clustering results of MCD with different
k(1) evaluated by ndbi and rand metrics are given in Fig. 8(a)-8(c). As shown in the
figures, the results achieved by MCD are very stable for k(1) with in range [40,100]
under the evaluation of ndbi in both Foursquare and Twitter. Similar results can be
obtained in Fig. 8(c), where the performance of MCD on aligned networks is not
sensitive to the choice of k(1) for k(1) in range [40,100] under the evaluation of both
rand. In a similar way, we can study the sensitivity of parameter k(2), the results
about which are shown in Fig. 8(d)-8(f).

To analyze the parameter θ , we set both k(1) and k(2) as 50 but assign θ with
values in {0.001, 0.01, 0.1, 1.0, 10.0, 100.0, 1000.0}. The results are shown in
Fig. 9, where when θ is small, e.g., 0.001, the ndbi scores achieved by MCD in
both Foursquare and Twitter are high but the rand score is not good (rand is in-
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versely proportional). On the other hand, large θ can lead to good rand score but
bad ndbi scores in both Foursquare and Twitter. As a result, (1) large θ prefers con-
sensus results, (2) small θ can preserve network characteristics and prefers high
quality results.

4 Conclusion and Future Works

In this chapter, we have introduced several research works across multiple aligned
social networks, including the network alignment problem, link transfer problem
and community detection problem. The problems introduced in this chapter are all
very important for many concrete real-world social network applications and ser-
vices. Several nontrivial algorithms have been proposed to resolve these problems
respectively, whose performance are evaluated with several real-world datasets

Besides the works introduced in this chapters, many other research problems
have been studied across the aligned social networks, like network embedding,
information diffusion, viral marketing and tipping user detection.

There are also several interesting directions for further research in the domain of
social network fusion learning studies:

• Multiple Aligned Social Sites: Existing aligned network studies mainly focus on
studying two aligned networks. Meanwhile, when it comes to multiple aligned
networks (more than two), many of the studied problems will encounter many
new challenges, e.g., the balance of information from different sites, constraints
introduced by the multiple sources (e.g., on anchor links).

• Large Scale Networks: Most of the introduced methods and models work very
well for small-sized social networks, but when it comes to the large scale net-
works they will suffer from the high time complexity problem a lot. Extending
and generalize the existing models to the scalable version will be an interesting
direction.

• Domain Difference Problem: Many of the existing cross-network studies tackle
the domain difference problem in a very simple way, e.g., the meta path selection
in link prediction, and meta path weighting in community detection and infor-
mation diffusion. A more general and effective method to handle the domain
difference problem is still an open problem so far.
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