
Contaminant Removal for Android Malware Detection Systems

Lichao Sun∗, Xiaokai Wei†, Jiawei Zhang‡, Lifang He§, Philip S. Yu∗ and Witawas Srisa-an¶
∗University of Illinois at Chicago, Chicago, IL †Facebook, Menlo Park, CA

‡IFM Lab, Florida State University, FL §Cornell University, New York City, NY
¶University of Nebraska - Lincoln, Lincoln, NE

Email: {lsun29, xwei2, psyu}@uic.edu, {jwzhanggy, lifanghescut}@gmail.com, witty@cse.unl.edu

Abstract—A recent report indicates that there is a new
malicious app introduced every 4 seconds. This rapid malware
distribution rate causes existing malware detection systems
to fall far behind, allowing malicious apps to escape vetting
efforts and be distributed by even legitimate app stores. When
trusted downloading sites distribute malware, several negative
consequences ensue. First, the popularity of these sites would
allow such malicious apps to quickly and widely infect devices.
Second, analysts and researchers who rely on machine learning
based detection techniques may also download these apps and
mistakenly label them as benign since they have not been
disclosed as malware. These apps are then used as part of
their benign dataset during model training and testing. The
presence of contaminants in benign dataset can compromise the
effectiveness and accuracy of their detection and classification
techniques.

To address this issue, we introduce PUDROID (Positive
and Unlabeled learning-based malware detection for Android)
to automatically and effectively remove contaminants from
training datasets, allowing machine learning based malware
classifiers and detectors to be more effective and accurate.
To further improve the performance of such detectors, we
apply a feature selection strategy to select pertinent features
from a variety of features. We then compare the detection
rates and accuracy of detection systems using two datasets;
one using PUDROID to remove contaminants and the other
without removing contaminants. The results indicate that once
we remove contaminants from the datasets, we can significantly
improve both malware detection rate and detection accuracy.

Keywords-Mobile Security; Malware Detection; Noise Detec-
tion; Android Malware; PU Learning;

I. INTRODUCTION

Android is currently the most used smart-mobile device
platform in the world, occupying 87.6% of market share
and over 1.4 billion Android devices in deployment [1].
Unfortunately, the popularity of Android also makes it a pop-
ular target for cyber-criminals to create malicious apps that
can steal sensitive information and compromise systems [2].
During the first three months of 2016, Kaspersky Lab
uncovered over 2 million malware samples including trojans,
worms, exploits, and viruses. On average, a malicious app
is introduced in every 3.79 seconds [3]. Some types of
malicious apps have more than 50 variants, making detecting
all of them very challenging [4].

There have been several approaches to detect these mali-
cious Android apps. Most approaches focus on the attack be-

haviors, and use static or dynamic analysis to build detection

Dataset w/o Malicious Contaminants Dataset with Malicious Contaminants

: Malware : Benign App : Malicious Contaminants

: Hyperplane
Figure 1. Left figure shows machine learning can classify malware
and benign apps well without malicious contaminants. Right figure shows
that the machine learning cannot work well for malware detection with
malicious contaminants
tools that rely on approaches known to work well for desktop
environments [5]. However, static analysis approaches in
general can produce a large number of false positives while
dynamic analysis approaches need adequate input suites to
sufficiently exercise execution paths. Therefore, neither of
them will work well for Andriod malicious app detection.
Another emerging approach is to build detection techniques
based on data mining and machine learning techniques [6],
[7], [8].

For example, DREBIN [6] utilizes multi-view features
by combining static analysis and supervised learning to
accurately detect malware. SIGPID [7] improves upon
DREBIN [6] by using many more features for training and
detection. DROIDCLASSIFIER [8] uses traffic flow informa-
tion and unsupervised learning to detect the malware and
classify the family of each malicious app.

When machine learning techniques are used to help with
malware detection, the detection effectiveness and accu-
racy are highly dependent on the quality of the training
datasets. To create such dataset, researchers typically label
a set of malicious apps and a set of benign apps. To
build the malicious dataset, researchers manually label these
malicious apps one by one based on known information
from various malware analysis and collection sources (e.g.,
virusshare.com). To build the benign dataset, researchers
download apps from trusted distribution sources such as
Play Store and verify that those apps have not been recently
disclosed as malware. However, as previously mentioned,

ar
X

iv
:1

71
1.

02
71

5v
2

 [
cs

.C
R

]
 1

4
N

ov
 2

01
7

Detected Malware

Benign Apps & Zero-Attack Malware

APKs

Permissions

APIs

IP Address

Malware & Unlabeled Data Sets
Feature Selection

Malware Matrix

Unlabeled Matrix

Matrix with Ensemble Features

PU Learning

Support
Vector

Machine

Random
Forest

Decision
Tree

PU Learning Framework

PU Learning
Evaluation

Large Scale
Zero Attacks
Evaluation

Unknown
Malware Attack

Evaluation

Evaluation

Figure 2. An Overview of PUDroid Approach

malicious apps are created every few seconds so malware
detection sites often fall behind in disclosing new malware.
As such, trusted distribution sites have been known to
distributed repackaged malware [9].

Currently, repackaging benign apps with existing mali-
cious components is the leading approach employed by
cybercriminals to create Android malware [1]. Thus, it is
quite common for undisclosed malware to have previously
known basic attack behaviors. However, the sheer volume of
recently created malware also makes it possible for benign
dataset to contain undisclosed malware as illustrated in
the right side of Fig. 1. The presence of these malicious
apps in a benign dataset (we refer to these malicious apps
as contaminants) can negatively affect the accuracy and
effectiveness of machine learning-based detection tools. As
such, we need a mechanism to effectively remove such
contaminants from benign dataset.

In this paper, we present PUDROID, an approach that
leverages the Positive and Unlabeled (PU) learning to
remove contaminants as part of building benign dataset
for robust malware detection in Android. Specifically, we
assume that the positive group contains malicious apps,
and the unlabeled group contains benign apps and some
contaminants consisting of unlabeled malicious apps. We
make use of a feature selection strategy to build the desired
input for PU learning. In a nutshell, PUDROID works as an
additional validator to ensure that presumably benign apps
downloaded from trusted distribution channels are indeed
benign. That is, they do not contain any undisclosed but
detectable malicious components due to repackaging. We
then conduct empirical evaluation of PUDROID and find
that it allows to remove nearly 100% of all contaminants
as part of building benign dataset.

An overview of our PUDROID approach is illustrated in
Fig. 2. The main contributions are summarized as follows:

(1) To the best of our knowledge, PUDROID is the first
attempt to use PU learning to remove contaminants as part
of building benign dataset for robust malware detection in
Android.

(2) We introduce a feature selection strategy to analyze and
select “explainable” features that are useful for effective
malware detection. Our strategy reduces the number of
embedding features by 93% when we compare to those used
by existing approaches, while yielding nearly the same level
of effectiveness in malware detection.

(3) We evaluate PUDROID using a large dataset containing
5,560 malware samples with 2,200 features. We also investi-
gate a scenario in which PUDROID needs to detect different
magnitudes and types of contaminants. The results show that
PUDROID is very effective in such situations.

(4) We also evaluate PUDROID with different classification
methods to fine tune the accuracy of PUDROID. The results
indicate that the performance of a classification model is
sensitive to the number of malware samples present in a
dataset.

II. BACKGROUND AND MOTIVATION

In this section we briefly introduce common machine
learning approaches employed by researchers to build mal-
ware detection frameworks for Android. These techniques
employ many features ranging from static information such
as permissions to dynamic information such as network
traffics.

A. Permission-Based Learning

Android security system offers permission control mech-
anisms as one of most important components. Android app
developers need to declare the permissions for each app to
have access to resources such as text messaging and address
book. The declaration can be found in the manifest file.
When users try to install apps, they can choose to approve
or decline the requested permissions.

In the case of installing apps from third party stores, users
may need to root their devices, making their systems more
vulnerable. Furthermore, we have also seen that developers
tend to request more permissions than the apps actually
need. These behaviors make Android security mechanism
vulnerable to malicious attacks. To help a user determine

if requested permissions can make a system vulnerable
to attacks, Android provides ”protection Level” to help
characterize the potential risks of these permissions [10].
The four protection levels are “normal”, “dangerous”, “sig-
nature”, and “signature or system”. Permissions such as
”WAKE LOCK” which keep processor from sleeping or
screen from dimming are considered as low risk. However,
some permissions such as ”WRITE SMS” are considered
dangerous due to its ability to leak information and cause
financial damages such as texting to premium services. Work
by Sun et al. [7] finds that normal permissions, in addition
to those classified as “dangerous” can also significantly
contribute to malicious behaviors.

B. API-Based Learning

Previously, we introduced the Android permission system
and how it can be used to detect the potential malware. How-
ever, permission-based approaches may not always yield
accurate results as many permissions are commonly used by
both benign and malicious apps. To improve accuracies of
these approaches, API (Application Programming Interface)
information can also be used to add context that can help
distinguishing between benign and malicious apps [6]. For
example, my analyzing calling contexts leading to dangerous
APIs such as WRITE_SMS, one can compare benign calling
contexts and malicious calling contexts.

C. Network Information Based Learning

Dynamic information such as network traffic can be used
as learning feature to detect the malware. To do so, input
generation techniques such as Monkey are used to generate
inputs to execute benign and malicious programs. The net-
work traffic is then recorded and then analyzed as features
for machine learning. For example, Shabtai et al. [11]
present a Host-based Android malware detection system to
target the repackaging attacks. They conclude that deviations
of some benign behaviors can be regarded as malicious ones.
Narudin et al. [12] introduce a TCP/HTTP based malware
detection system. They extracted basic information, (e.g. IP
address), content based, time based and connection based
features to build the detection system. Their approach can
determine if an app is malicious or not.

D. Motivation

In this paper, we propose a PU learning-based approach
(named as PUDROID) that aims to remove contaminants as
part of building benign dataset for robust malware detection
in Android. We show that PUDROID can protect the sys-
tem when the benign dataset are infected by malware. To
improve the performance of the PUDROID and to prevent
various malicious behavior, we also use embedding features
including permissions, APIs, and network information to
efficiently detect the malware.

III. PUDROID APPROACH

In this section, we introduce the main steps of our
PUDROID approach including feature selection and PU
learning. First, we present a feature selection strategy to help
us find the informative features from a variety of Android
features. Then, we use the resulted features to leverage PU
learning process along with different classifiers to remove
contaminants for robust malware detection.

A. Feature Selection for Android Data Generation
Android apps can collect malicious and benign datasets,

which usually contain various types of features such as
permissions, APIs, IP address, activities, requested URLs,
and services. However, not all of these features are effective
for malware detection and many features such as activities,
requested URLs, and services are difficult to explain due
to large variability in these features. We need to perform
feature selection to find the informative features from these
available features. By using domain acknowledge of security,
our feature selection strategy only uses explainable and
helpful features to detect malware. In particular, we only
focus on permissions, APIs, IP address and URLs. We first
convert the URLs into IP address, and then introduce our
feature selection strategy on how to select features from
permissions, APIs and IP address features.

IP address can provide similar information as URLs but
with fewer variability. For example, multiple URLs can point
to the same IP address if they are alias. Part of IP address,
e.g., the three most significant bytes, can also provide
company information (e.g., 216.59.192.xx tells us that the IP
address in this range belong to Google). Additionally, note
that both IP address and URLs can suffer from spoofing but
IP address provides the same information with much fewer
data points. Therefore, it is beneficial to convert the URLs
to a more effective representation (IP address). To achieve
this goal, we remove the invalid URLs as they tend not to
have corresponding IP address, and use the socket API to
acquire IP address.

Based on the above results, we define an unbalanced fea-
ture selection strategy for malicious and benign datasets. A
large difference between the numbers of malware and benign
samples can lead to unbalanced removal of less contributing
features. To overcome this issue, our feature removal process
biases the criteria based on the ratio between the number
of benign samples and malware samples. For example, if
there are twice as many benign samples as malware samples,
we then remove a seldom occurring feature from malware
dataset based on a threshold tm. For example, if feature
occurs 5 times when we consider the entire malware dataset,
we would then set tb for removal for the benign dataset to
two (i.e., twice as many as tm or 10 times). This can be
formulated as:

tm

tb
= η · #benign samples

#malware samples
(1)

Table I
LIST OF BASIC SYMBOLS

Symbol Definition and description
P positive group/marked malware set
U unlabeled group/mixed malware and benign apps
1 a vector of all ones

x(s) resulted feature vector of an app s
z(s) 1 means the app s is labeled, 0 otherwise
y(s) 1 means the app s is true malware, 0 otherwise
p(·) the probability of an app
f(·) malicious probability of an app without PU learning
g(·) malicious probability of an app with PU learning

Md
classifier model without PU learning, if f(·)>0.5,
the app is malicious, otherwise is benign

Mh
classifier model with PU learning,if g(·)>0.5,
the app is malicious, otherwise is benign

∼ denotes the equivalent relation

where η is the coefficient that controls threshold selection
and it is usually at least 2. Here we set η = 2, which means
any feature must be used at least two malware and tm/tb
benign apps will not be removed after feature selection.

After applying above feature selection strategy, we use
x1, x2, and x3 to represent the selected feature subsets of
permissions, APIs, and IP address, respectively. Our final
resulted feature set is:

x := x1 ∪ x2 ∪ x3

B. PU Learning For Malware Detection

As mentioned earlier, unreliable negative examples (or
contaminants) can be unknowingly included in training
dataset due to the prolific rate of malware creation [9]. We
leverage PU learning to detect and remove these contami-
nants from training datasets. Table I lists the basic symbols
that will be used throughout this section.

PU learning is a semi-supervised technique for building
a binary classifier on the basis of positive and unlabeled
samples only. It is useful when we have not determined if
an app is malicious or benign. In small collections of apps,
labeling an app as malicious or benign can be done manually
without too much effort. In large collections, however,
manual identification may not be feasible. In this case, PU
learning can be applicable. In addition, in a scenario that
the identification process may produce inaccurate results
(e.g., mistakenly identifying malicious apps as benign apps),
PU learning can also help to identify and remove these
unreliable negative samples.

In order to use PU learning for malware detection, we
divide our dataset into the positive group (P) and the
unlabeled group (U), where the positive group contains ma-
licious apps, and the unlabeled group contains benign apps
and some contaminants consisting of unlabeled malicious
apps. To differentiate positive and unlabeled apps, we define
“discovery state” (z) to indicate whether an app is labeled or
not in the dataset. For a given app s in the group P, if s is
marked as malicious, then z(s) = 1; otherwise, z(s) = 0. As

a result, the “discovery states” of apps in groups P and U
are: z(P) = 1 and z(U) = 0. Besides, each app has another
label called “hidden malware state” (y), which can expose
whether an app is actually malicious or benign. Here an app
with 1 is a known malware app, and 0 is a benign app. For
example, if an app s has been detected as malware, then
y(s) = 1; otherwise y(s) = 0. Based on this, we can check
the “hidden malware state” of each app in group P and
group U. Since every app in group P is a known malware
app, y(P) = 1. However, y(U) can be either 1 or 0 as both
malicious contaminants and benign apps can be in U. As
such, we have:

p(z(s) = 1|x(s), y(s) = 0) = 0. (2)

where p(·) is the probability, and x(s) is the feature vector
extracted for app s (i.e., [0, 1, 0, 0,..., 1], 1 denotes that the
app requests the permission and 0 otherwise).

The goal of malware detection is to build a malware
discovery model Md ∼ f(x(s)) : Rd → {1, 0} from
P and U, where d is the dimension of the x(s), which
represents the number of the features. 1 means s is identified
as malware, 0 means s is not identified as malware. Given an
app s, by applying Md ∼ f(x(s)), the discovery probability
of s as a malware is: p(z(s) = 1|x(s)). While our ultimate
goal is to infer the true label of a given malicious app s
(i.e., y(s)). Besides the discovery probability, we also need
to build a hidden malware detection model Mh ∼ g(x(s))
based on the detected malware and the unlabeled app sets.
Formally, we define the probability that an app s is indeed
malicious (i.e., y(s) = 1) as: p(y(s) = 1|x(s)). In the
following, we discuss the details.

Assumption: (Malware Discovered at Random): Assume
malware samples are randomly detected by analysis, the
probability of detection is not relevant with the features
created, then it has:

p(z(s) = 1|x(s); y(s) = 1) = p(z(s) = 1|y(s) = 1). (3)

To build the proposed hidden malware detection model
Mh, we should ideally know which apps are actually mal-
ware. For this purpose, we first prove Lemma 1 [13].

Lemma 1: Suppose the “Malware Discovered at Ran-
dom” assumption holds, then

p(y(s) = 1|x(s)) = p(z(s) = 1|x(s))
p(z(s) = 1|y(s) = 1)

. (4)

Proof: By holding the assumption, we have:

p(z(s) = 1|x(s))
= p(z(s) = 1|x(s)) · p(y(s) = 1|x(s), z(s) = 1)

= p(y(s) = 1, z(s) = 1|x(s))
= p(y(s) = 1|x(s)) · p(z(s) = 1|y(s) = 1,x(s))

= p(y(s) = 1|x(s)) · p(z(s) = 1|y(s) = 1). (5)

Positive Samples
(Malware Only)

Unlabeled Samples
(Malware & Benign Apps)

Classification Boundary

Figure 3. An Overview of Our PU Learning Process

Then, by dividing both sides of Eq. (5) by p(z(s) =
1|y(s) = 1), we arrive at Lemma 1.

From Eq. (4), if we want to build Mh by calculating the
hidden malware probability, we can use f(x(s))/p(z(s) =
1|y(s) = 1), where f(x(s)) is the malware probability of
the an app s of Md. Specifically, we have:

f(x(s)) = p(z(s) = 1|x(s)). (6)

On the other hand, p(z(s) = 1|y(s) = 1) can be
calculated by a validation set with applying Md. First, we
randomly select apps from P ∪U to be the validation set
V, and choose the subset P′ from V with the positive label,
i.e. z(P′) = 1. The estimator of p(z(s) = 1|y(s) = 1) is
the average value of g(x(s)) for x(s) in P′, then we have:

p(z(s) = 1|y(s) = 1) ∼ e = 1/n ·
∑
x∈P′

f(x(s)). (7)

where n is the cardinality of P′ and the estimator e is the
average value of f(x(s)) for x in P′. Since e is based on
a certain number of data instances, it has a low variance
and is preferable in practice [13]. Notice that to compute e,
we need to specify the size of the set P′ and the size of
the validation set V. We explain how to set the size and
evaluate our system in Section IV.

With e and the classifier model Md ∼ f(x(s)) on labels
z(s), we can adjust to a classifier Mh ∼ g(x(s)) on relation
labels y(s) as follows:

Mh ∼ g(x(s)) = p(y(s) = 1|x(s))

=
f(x(s))

e
. (8)

Fig. 3 shows an overview of our PU learning process.
Discussion: Here we give an example to show how the

Eq. (8) works for positive and unlabeled datasets. If all
apps can be clearly separated into malicious and benign
groups, (i.e., no malicious apps in the unlabeled group) the
malicious probability (g(x(m))) of most random malware
m in positive group should be close to 1. However, when
the unlabeled group contains a large number of malicious
contaminants, the malicious probability of most random

malware m in positive group will decrease. The worst case
is that the g(x(m)) close or even less than 0.5. We know
that if g(x(m)) < 0.5, the malware m will be classified as
a benign app by the detector.

To address this problem, when we first use a training set
to build the detector, we select a subset PM from positive
group where y(PM) = 1. Then we calculate the average
malicious probability of PM by using g(x(PM)). If we
find the average malicious probability of PM is close to
0.5 rather than 1.0, we increase the malicious probability
for each app in the training set. Then more malicious
contaminants will be detected from the unlabeled group.
If the system is faced with malicious contaminants, the
malicious probability of every app will decrease including
benign apps by the detector. So most benign apps will
still be classified as benign after we increase the malicious
probability for them. This is the framework of PU learning
to prevent the malicious contaminants.

In order to apply PU learning for the dataset with group P
and group U, we need to implement the learning algorithms
to build the malware detection system. Various learning
algorithms have been used in mobile security before [7],
we choose three most frequently used learning algorithms:
Support Vector Machine, Decision Tree and Random Forest.

IV. EVALUATION

We conducted experiments to evaluate the performance of
PUDROID in identifying contaminants in Android datasets.
We conducted our experiments using a large-scale real-world
collection of apps. Our experiments were done to answer
four research questions (RQs).
RQ 1: How effective is PUDROID in removing malicous
contaminants from benign dataset? In this experiment, we
create contaminated benign dataset and then compare the
performances between a system with PUDROID and without
PUDROID.
RQ 2: How do changes in the number of malicious con-
taminants in benign data sets affect the performance of PU-
DROID? In this experiment, we systematically increased the
number of malicious contaminants in our benign datasets.
RQ 3: How effective is PUDROID in removing unknown
malicious contaminants from benign dataset? In this exper-
iment, we include a family of malware into each benign
dataset and evaluate if PUDROID can detect these contam-
inants.
RQ 4: How effective is PUDROID in removing benign
contaminants from malicious dataset? Our first two focuses
were on building accurate benign dataset. In this experiment,
we reverse the contamination pattern by including benign
apps in the malicious dataset and observe the performance
of PUDROID to detect these benign contaminants.
In all experiments, we then compared our results with those
from several state-of-the-art detection methods.

A. Data Sets

We used the dataset based on prior work by Arp et
al. [6]. The dataset includes 5,560 malware and 123,453
benign apps. We then extracted relevant features using a
strategy that differs from theirs. In their work, they used
many features including permission and API information.
However, not all features that they used are effective for
malware detection and many features such as activities,
requested URLs, and services are difficult to explain due
to large variability in these features (e.g., there are over
10,000 activities and services and 200,000 URLs in the
dataset). Having too many features can result in very sparse
matrix, leading to high machine learning overhead and over-
fitting issues. Then we can apply feature selection to select
informative features.

After feature selection, our system kept 2,200 features.
Drebin, on the other hand, used over 300,000 features. Even
with the reduced number of features, our dataset contains
too many dimensions. To address this problem, we use PCA
to project the whole dataset to 2-dimension representation
of the dataset, Fig. 4 shows the distribution of our whole
dataset. We can find most malware and benign apps can be
separated even with low dimension representation with our
features. That’s the reason the machine learning can help
to sepearate the malware and benign apps when dataset is
without any contaminants.

Figure 4. PCA Distribution of Whole Dataset

V. RESULTS

In this section, we report the experimental results to
answer the four proposed research questions. We used three
measures, accuracy, AUC and F-measure to evaluate the
performance of PUDROID.

A. RQ 1: Effectiveness of PUDroid

In order to evaluate PUDROID, we first choose 1/3 of
all malware samples and 1/3 of benign apps as the testing
set. We then use the remaining malware and benign apps
as the training set. To create an unlabeled group, we also
include malware into the benign apps in multiple iterations
using the following process. Initially, we have no malicious

contaminants, meaning there is no unlabeled samples in
this case. Every sample is negative in the unlabeled group,
which indicates benign sample. In the next iteration, we
randomly select 100 malware samples from the training set
as the malicious contaminants. We then add these malware
samples to the benign portion of the training set and remove
them from the malware portion of the training set. That is,
we make these samples negative. Now, we have a positive
group and unlabeled group which contains both malware
and benign apps. We then repeat above step and randomly
select more malware samples in the subsequent iterations. In
summary, to build unlabeled dataset, we randomly include
in the benign dataset, 100 ·N malware samples as malicious
contaminants in the Nth iteration.

We report the performance of PUDROID using our dataset
in Fig. 5. Note that, due to limited space, we only report
AUC values, but the conclusion is consistent across other
measures. Our evaluation is based on the comparison of
the performance of PUDROID and a classification method
(denoted as PU in the figure) with that of using the same
classification method alone (denoted in the figure as No PU
or NPU). We used all three classification learning methods.
Based on the results, we can make the following conclusions.

• As shown in Fig. 5, PUDROID can work well with all
three classification methods.

• If there are no malicious contaminants in the testing
dataset, PUDROID yields the same performance as
using methods without PU learning.

• The performance of PUDROID with Support Vector
Machine (SVM) is initially stable but degrades quickly
when the training dataset contains a large number of
malicious contaminants.

• The performance of Random forest is slightly better
than that of Decision Tree.

• When the dataset contains only a small number of
malicious contaminants, both of PUDROID system and
methods without PU learning work well.

B. RQ 2: Variable Levels of Contaminants

In this section, we evaluate the malware detection per-
formance of PUDROID when the benign dataset contains
a large portion of contaminants. To do so, we apply the
following method to create the unlabeled dataset.

In Nth case, we set the number of malicious contaminants
in the training dataset to be N times the number of malware
in the training dataset. For example, in the first case, we
set the ratio of the number of malicious contaminants and
the number of malware in the training set to be 1:1. In the
Nth case, the ratio becomes N : 1. The resulting unlabeled
dataset should test our system’s ability to deal with a large
number of unlabeled malware samples.

In previous section, we showed that PUDROID with SVM
can work well when the number of malicious contaminants

0.48

0.58

0.68

0.78

0.88

0.98

0 500 1000 1500 2000 2500 3000 3500 4000

AU
C

The	Number	of	Zero-Attack	Malware

PU NPU

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500 2000 2500 3000 3500 4000

AU
C

The	Number	of	Malicious Contaminants

PU NPU

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500 2000 2500 3000 3500 4000

AU
C

The Number of Malicious Contaminants

PU NPU

Figure 5. AUC of PUDroid with SVM (left), Decision Tree (center), Random Forest (right)

Table II
EVALUATION OF HIGHLY CONTAMINATED DATASETS

Scale Rate Random Forest/PU Random Forest/NPU Difference Decision Tree/PU Decision Tree/NPU Difference
100% 83.32% 44.25% 39.07% 73.18% 47.06% 26.12%
200% 76.39% 14.30% 62.10% 62.81% 16.46% 46.36%
300% 71.51% 8.69% 62.82% 57.15% 11.83% 45.32%
400% 64.91% 6.19% 58.72% 51.07% 7.97% 43.10%
500% 64.74% 3.32% 61.42% 49.70% 5.86% 43.85%
600% 59.70% 3.47% 56.24% 47.23% 4.79% 42.44%
700% 54.22% 2.50% 51.71% 44.32% 4.66% 39.65%
800% 52.14% 2.14% 50.00% 43.54% 3.82% 39.72%

is small to moderate. However, it does not work well when
the number of malware is large. As such, we only evaluate
Random Forest and Decision Tree in this scenario.

From Table II, we evaluate the ratios from 1:1 to 8:1, and
report the malware detection rate (also referred to as True
Positive Rate or Recall). Based on the results, we have the
following observations:
• Random Forest or Decision Tree alone cannot work

well when they face a large number of malicious
contaminants. For example, when the ratio is 3:1, the
detection rate of Random Forest and Decision Tree
are 8.69% and 11.83%, respectively. However, when
we applied PUDROID, the detection rates increases to
71.51% and 57.15%, respectively.

• PUDROID with Random Forest yields higher detection
rates than those produced by PUDROID with Decision
Tree. However, if the PU learning process is not used,
Decision Tree performs better than Random Forest. For
example, Decision Tree yields the detection rate of
11.83% while Random Forest only yields 8.69% when
the ratio is 3:1.

• In extreme situations, Random Forest yields a detection
rate of 52.14% when the ratio is 8:1. To put this into
perspective, this result is better than using Random
Forest alone when the ratio is 1:1.

In summary, PUDROID is very effective in identifying
contaminants in highly contaminated datasets.

C. RQ 3: Unknown Contaminants
In the dataset, we have 178 families of malware, but

many families only have one malware sample. We only

found that only 5% of the total families contains more than
100 malware and about 50% of families contain 3 samples
or fewer. Such a distribution pattern indicates that some
families of malware are less likely to be repackaged and
redeployed as new variations while others are popularly
repackaged and redistributed as new variations.

While the focus of this particular investigation is on
PUDROID’s performance when the benign dataset is con-
taminated with unknown malware. we also want the contam-
inants to be representative of the current practice of creating
variations of malicious behaviors to promote rapid infections
of devices. As such, our contaminants are from families
that have more than 300 samples in our malware dataset. In
this case, the families include FakeInstaller, DroidKungFu,
Plankton, Opfake, GinMaster and BaseBridge. Next, we
briefly describe the malicious behaviors of these families.

• FakeInstaller is the malware family with the largest
number of variations in our dataset (925 malware sam-
ples). Malware authors simply repackaged commonly
distributed apps (e.g., Facebook) with malicious func-
tionalities. These malicious apps send SMS messages
to premium rate numbers, without the users consent,
passing itself off as the installer for a legitimate appli-
cation. As previously reported, over 60% of Android
malware samples processed by McAfee belong to this
family [14].

• DroidKungFu family exploits several known but un-
patched vulnerabilities in earlier Android versions to
gain root access to a device and steal sensitive infor-
mation. Stolen information is sent to remote command

0 0.2 0.4 0.6 0.8 1

FakeInstaller

DroidKungFu

Plankton

Opfake

GinMaster

BaseBridge

Accuracy

NPU PU

0 0.2 0.4 0.6 0.8 1

FakeInstaller

DroidKungFu

Plankton

Opfake

GinMaster

BaseBridge

AUC

NPU PU

0 0.2 0.4 0.6 0.8 1

FakeInstaller

DroidKungFu

Plankton

Opfake

GinMaster

BaseBridge

F-Measure

NPU PU

Figure 6. Performance of PUDroid when faced with new malware contaminants

0 0.2 0.4 0.6 0.8 1

RandomForest

DecisionTree

SVM

Accuracy

NPU PU

0 0.2 0.4 0.6 0.8 1

RandomForest

DecisionTree

SVM

AUC

NPU PU

0 0.2 0.4 0.6 0.8 1

RandomForest

DecisionTree

SVM

F-Measure

NPU PU

Figure 7. Performance of PUDroid when faced with contaminated data in malware dataset

and control (C&C) servers.
• Plankton family focuses on to collect every information

on the smartphone, such as International Mobile Equip-
ment Identity (IMEI) number, user ID, and the browser
history. It then posts information via URL. It can also
use remote control to modify browser’s bookmarks and
install downloaded files on devices.

• BaseBridge family sends fake update notifications to
users in hope of fooling them to install malicious soft-
ware components to allow cyber-criminals to remotely
control infected devices.

We included five out of six malware families in the
malicious dataset for training. To create a contaminated
dataset, we mixed samples from the remaining malware
family and benign apps using the ratio of 1:1. Again, 1/3
of our dataset was used for testing and 2/3 was used for
training. We repeated this process so that each of the six
malware families was used as contaminants. We also adopted
SVM classifier in this experiment because our earlier study
indicates that SVM can work very well when the number of
contaminants is moderate. We report the results in Fig. 6.

As shown, we can clearly see that PUDROID shows
much better performance than simply applying SVM without
PU learning when the system face any new malware con-
taminants especially in BaseBridge, GinMaster and Droid-
KungFu. In BaseBridge and GinMaster families, PUDROID
achieves more than 45% accuracy. Moreover, without PU-
DROID achieves 0% in F-measure in families with smallest
samples among the six families (Basebridge and Ginmaster).

In the case of FakeInstallers, SVM alone is effective since
this is a very popular malware with the most common
behavior. With PUDROID, we can achieve 10% higher
accuracy. In general, PUDROID is effective in detecting
repackaged contaminants.

D. RQ 4: Detecting Benign Contaminants in Malicious
Datasets

It is quite possible that benign apps could be also mis-
takenly labeled as malicious and thus, are included in the
malicious datasets. This is because to keep up with new mal-
ware samples, the datasets need to be updated periodically
and this process can result in mislabeling by researchers
(e.g., the number of benign apps is typically much larger
than that of malicious apps). Furthermore, it is also possible
for a malware repository to be intentionally compromised
by someone (e.g., a cyber-attack to weaken training data).
Regardless of the causes, the presence of benign apps in
malicious datasets can make machine learning less effective.

To evaluate this scenario, we again used 1/3 of our
dataset as the testing dataset. We set the ratio of benign
and malicious app as 8:1 to simulate the case of highly
contaminated datasets. In Fig. 7, we report the performances
of PUDROID and using classifier alone. PUDROID with
Random Forest achieves 96.36% accuracy when a malicious
dataset is heavily contaminated with benign apps. PUDROID
with Decision Tree is second. However, the results show that
Random Forest without PU learning can still achieve 55.5%
accuracy, but Decision Tree without PU learning achieves
only about 50%, which is the same as making a random

guess. The results also confirm prior observation that SVM
does not work well when the dataset is highly contaminated.

VI. RELATED WORK

In this work, we combine several concepts and techniques
to construct PUDROID, a framework to detect the malicious
contaminants to increase accuracy of any machine-learning
based detector. The framework performs feature selection
and feature embedding techniques to increase robustness and
efficiency of our proposed system.

Machine learning techniques have been used to build
several robust and effective malware detection systems [6],
[7]. For example, SIGPID [7] applies 67 machine learning
algorithms to find which algorithm is better at classification
based on permission features to detect the malware. Huang
el al. [15] explore the use of machine learning of permission
to detect malicious applications. Their detector is based on
four common machine learning techniques. As these prior
efforts have shown, different machine learning algorithms
perform differently on different dataset, however, in general,
machine learning has been effective in performing malware
detection especially when datasets are properly labeled.

Typically, more features can help to improve the accuracy
and detection rate, but also incur more time and space. Many
advanced techniques, i.e. tensor, factorized machine [16],
[17], [18], improve the performance by leveraging multi-
view datasets. These techniques are frequently applied in
many areas, such as nature language [19], recommendation
[20], bio-medical [21], images [22], influence networks [23],
behavioral detection [24].

Others have also used feature selection in different ar-
eas [7], [25], [26], [27]. By finding important or significant
patterns, feature selection can improve the overall perfor-
mance of a system. For example, SIGPID [7] proposes a
multi-level mining technique to do feature selection, which
ends up using only 22 of 135 permissions to detect malware.

In this work, we apply PU learning to help detect contam-
inants. PU learning is one kind of semi-supervised learning
have been used to perform link prediction in the social
network [28], and images [29]. MLI [28] uses the PU
learning to help them deal with unlabeled link prediction
in social networks. To use these unlabeled link information,
MLI [28] use PU learning to identify reliable negative
instances from the unlabeled set with the spy technique
[30]. Our work, on the other hand, proposes to model the
hidden malware probability based on the identified positive
and unlabeled sets. We propose a non-parametric learning
framework to detect malicious contaminants.

VII. CONCLUSION

In this paper, we introduce PUDROID, a framework to
detect and remove contaminants from training datasets used
in machine learning based malware detection systems. We
experimented with using a corpus of over 5,500 malware

and mixed them with benign apps to create various sizes
of unlabeled datasets. We then evaluate the performance of
PUDROID under four realistic settings. First, we evaluate the
effectiveness of PUDROID using three commonly used clas-
sification techniques (SVM, Decision Trees, and Random
Forest). Second, we evaluate PUDROID using highly con-
taminated benign datasets. Third, it is used to detect benign
datasets contaminated with unknown malware. Fourth, we
also consider a case in which benign apps are intentionally
or accidentally included in the malware datasets.

We then compare the detection performances of a system
with PUDROID and one without when contaminated datasets
are used for training. The results indicate that PUDROID is
effective at detecting malicious contaminants. PUDROID can
improve malware detection rate by 62.82% over detectors
that use only classifiers and no PU learning. We also observe
that the detection accuracy is improved by 45% when a
dataset is contaminated. To improve performance of PU-
DROID, we also apply feature selection and embedding fea-
tures. For future work, we plan to explore other techniques to
further improve the feature selection and embedding process.

ACKNOWLEDGEMENTS

This work is supported in part by NSF through grants
IIS-1526499 and CNS-1626432, NSFC through grants
61503253, 61672357 and 61672313, NIH through grant
R01-MH080636, and the Science Foundation of Shenzhen
through grant JCYJ20160422144110140.

REFERENCES

[1] I. IDC Research, “Smartphone os market share, 2016 q2,” in
IDC Research Report, 2016.

[2] G. Kelly, “Report: 97% of mobile malware is on android. this
is the easy way you stay safe,” in Forbes Tech, 2014.

[3] I. Kaspersky Lab, “Statistics of mobile threats,” in IT
THREAT EVOLUTION IN Q1 2016, 2016.

[4] Symantec, “Latest intelligence for march 2016,” in Symantec
Official Blog, 2016.

[5] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang,
“Riskranker: scalable and accurate zero-day android malware
detection,” in Proceedings of the 10th international confer-
ence on Mobile systems, applications, and services. ACM,
2012, pp. 281–294.

[6] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon, K. Rieck,
and C. Siemens, “Drebin: Effective and explainable detec-
tion of android malware in your pocket,” in Proceedings of
the Annual Symposium on Network and Distributed System
Security (NDSS), 2014.

[7] L. Sun, Z. Li, Q. Yan, W. Srisa-an, and Y. Pan, “Sigpid:
significant permission identification for android malware de-
tection,” in 2016 11th International Conference on Malicious
and Unwanted Software (MALWARE). IEEE, 2016, pp. 1–8.

[8] Z. Li, L. Sun, Q. Yan, W. Srisa-an, and Z. Chen, “Droidclassi-
fier: Efficient adaptive mining of application-layer header for
classifying android malware,” in International Conference on
Security and Privacy in Communication Systems. Springer,
2016, pp. 597–616.

[9] S. Acharya, “Google Removes 13 Android Apps
from Play Store Infected with Brain Test Malware,”
http://www.ibtimes.co.uk/google-removes-13-android-apps-
play-store-infected-brain-test-malware-1537049, January
2016.

[10] Google, “App manifest,” in API Guides, 2016.

[11] A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, and Y. Weiss,
“andromaly: a behavioral malware detection framework for
android devices,” Journal of Intelligent Information Systems,
vol. 38, no. 1, pp. 161–190, 2012.

[12] F. A. Narudin, A. Feizollah, N. B. Anuar, and A. Gani, “Eval-
uation of machine learning classifiers for mobile malware
detection,” Soft Computing, vol. 20, no. 1, pp. 343–357, 2016.

[13] C. Elkan and K. Noto, “Learning classifiers from only pos-
itive and unlabeled data,” in Proceedings of the 14th ACM
SIGKDD international conference on Knowledge discovery
and data mining. ACM, 2008, pp. 213–220.

[14] F. Ruiz, “‘FakeInstaller’ Leads the Attack on An-
droid Phones,” https://securingtomorrow.mcafee.com/mcafee-
labs/fakeinstaller-leads-the-attack-on-android-phones/, Octo-
ber 2012.

[15] C.-Y. Huang, Y.-T. Tsai, and C.-H. Hsu, “Performance eval-
uation on permission-based detection for android malware,”
in Advances in Intelligent Systems and Applications-Volume
2. Springer, 2013, pp. 111–120.

[16] L. He, X. Kong, P. S. Yu, X. Yang, A. B. Ragin, and
Z. Hao, “Dusk: A dual structure-preserving kernel for su-
pervised tensor learning with applications to neuroimages,”
in Proceedings of the 2014 SIAM International Conference
on Data Mining. SIAM, 2014, pp. 127–135.

[17] L. He, C.-T. Lu, G. Ma, S. Wang, L. Shen, S. Y. Philip,
and A. B. Ragin, “Kernelized support tensor machines,” in
International Conference on Machine Learning, 2017, pp.
1442–1451.

[18] L. He, C.-T. Lu, H. Ding, S. Wang, L. Shen, P. S. Yu,
and A. B. Ragin, “Multi-way multi-level kernel modeling
for neuroimaging classification,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
2017, pp. 356–364.

[19] C. Zhang, S. Xie, Y. Li, J. Gao, W. Fan, and P. S. Yu, “Multi-
source hierarchical prediction consolidation,” in Proceedings
of the 25th ACM International on Conference on Information
and Knowledge Management. ACM, 2016, pp. 2251–2256.

[20] L. Zheng, V. Noroozi, and P. S. Yu, “Joint deep modeling
of users and items using reviews for recommendation,” in
Proceedings of the Tenth ACM International Conference on
Web Search and Data Mining. ACM, 2017, pp. 425–434.

[21] B. Cao, L. He, X. Wei, M. Xing, P. S. Yu, H. Klumpp, and
A. D. Leow, “t-bne: Tensor-based brain network embedding.”
SIAM, 2017.

[22] Z. Hao, L. He, B. Chen, and X. Yang, “A linear support
higher-order tensor machine for classification,” IEEE Trans-
actions on Image Processing, vol. 22, no. 7, pp. 2911–2920,
2013.

[23] W. Shao, L. He, and S. Y. Philip, “Clustering on multi-source
incomplete data via tensor modeling and factorization,” in
Pacific-Asia Conference on Knowledge Discovery and Data
Mining. Springer, 2015, pp. 485–497.

[24] L. Sun, Y. Wang, B. Cao, P. S. Yu, W. Srisa-an, and A. D.
Leow, “Sequential keystroke behavioral biometrics for mobile
user identification via multi-view deep learning,” in Joint
European Conference on Machine Learning and Knowledge
Discovery in Databases (ECML/PKDD), 2017.

[25] X. Wei, B. Cao, and P. S. Yu, “Unsupervised feature selection
with heterogeneous side information,” in Proceedings of ACM
International Conference on Information and Knowledge
Management (CIKM), 2017.

[26] B. Cao, L. He, X. Kong, S. Y. Philip, Z. Hao, and A. B. Ragin,
“Tensor-based multi-view feature selection with applications
to brain diseases,” in 2014 IEEE International Conference on
Data Mining. IEEE, 2014, pp. 40–49.

[27] X. Wei, B. Cao, and P. S. Yu, “Multi-view unsupervised
feature selection by cross-diffused matrix alignment,” in
Proceedings of International Joint Conference on Neural
Networks (IJCNN), 2017.

[28] J. Zhang, P. Yu, and Z. Zhou, “Meta-path based multi-network
collective link prediction,” in KDD, 2014, pp. 1286–1295.

[29] L. Cui, J. Zhang, Z. Chen, Y. Shi, and P. S. Yu, “Inverse
extreme learning machine for learning with label propor-
tions,” in Proceedings of IEEE International Conference on
Big Data, 2017.

[30] B. Liu, Y. Dai, X. Li, W. Lee, and P. Yu, “Building text
classifiers using positive and unlabeled examples,” in ICDM,

2003, pp. 179–186.

	I Introduction
	II Background And Motivation
	II-A Permission-Based Learning
	II-B API-Based Learning
	II-C Network Information Based Learning
	II-D Motivation

	III PUDroid Approach
	III-A Feature Selection for Android Data Generation
	III-B PU Learning For Malware Detection

	IV Evaluation
	IV-A Data Sets

	V Results
	V-A RQ 1: Effectiveness of PUDroid
	V-B RQ 2: Variable Levels of Contaminants
	V-C RQ 3: Unknown Contaminants
	V-D RQ 4: Detecting Benign Contaminants in Malicious Datasets

	VI Related Work
	VII Conclusion
	References

