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Abstract—In large-scale learning problem, the scalability of
learning algorithms is usually the key factor affecting the algo-
rithm practical performance, which is determined by both the
time complexity of the learning algorithms and the amount of
supervision information (i.e., labeled data). Learning with label
proportions (LLP) is a new kind of machine learning problem
which has drawn much attention in recent years. Different
from the well-known supervised learning, LLP can estimate a
classifier from groups of weakly labeled data, where only the
positive/negative class proportions of each group are known. Due
to its weak requirements for the input data, LLP presents a
variety of real-world applications in almost all the fields involving
anonymous data, like computer vision, fraud detection and spam
filtering. However, even through the required labeled data is of a
very small amount, LLP still suffers from the long execution
time a lot due to the high time complexity of the learning
algorithm itself. In this paper, we propose a very fast learning
method based on inversing output scaling process and extreme
learning machine, namely Inverse Extreme Learning Machine
(IELM), to address the above issues. IELM can speed up the
training process by order of magnitudes for large datasets,
while achieving highly competitive classification accuracy with
the existing methods at the same time. Extensive experiments
demonstrate the significant speedup of the proposed method. We
also demonstrate the feasibility of IELM with a case study in
real-world setting: modeling image attributes based on ImageNet
Object Attributes dataset.

Keywords—Learning with label proportions, semi-supervised
learning, extreme learning machine, attribute modeling, classifier
calibration.

I. INTRODUCTION

In recent years, a rapid growth of visual data have seen
produced by social media, large-scale surveillance cameras,
biometrics sensors, and mass media content providers. In such
large-scale setting, the visual data requires a large amount of
supervision to make machine learning methods effective. To be
more specific, in standard supervised learning problem, a set

Fig. 1. Illustration of learning with label proportions (LLP). In this example,
the training data are provided in 4 bags, each with its label proportion. The
learned model is a hyperplane to classify each individual instance.

of certainly labeled instances is given to produce a classifier.
The goal is to accurately predict its class label given a new
unlabeled example [1]. However, in many real-world cases,
it is not always feasible to obtain the labels of instances. In
the past few decades, researchers have made great efforts to
reduce the effort on manually labeling the training dataset.
In these learning frameworks, such a certainly labeled dataset
for training a classifier is not provided. Specific techniques
have been proposed recently in order to deal with such weakly
labeled datasets, such as the popular semi-supervised learning
(SSL) [2], [3], multi-instance learning (MIL) [4], [5] and
learning with label proportions (LLP) [6], [7]. In this paper,
we focus on the problem of learning with label proportions,
in which the training data is provided in groups and only the
proportion of each class in each group is known.

Recently many algorithms have been proposed to address
the problem of LLP [8], [9], [10], [11], [12], [13], [14] and
achieve encouraging results. The feasibility of LLP setting has
also been verified from a theoretical perspective [15]. Fig.
1 provides an illustration of learning with label proportions.
Compared to supervised learning, where the exact labels of all
the training instances are known, only the label proportions
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Fig. 2. Here gives a large set of images and many bags. Each bag represents
a scenery, such as living room, bathroom, kitchen, and so on. We can easily
obtain the proportions of “has sofa” in these scenarios, which is reasonable in
real-world cases. However, we don’t know whether each image contains sofa
or not. By using the proposed model, we can induce such information based
on the input images and the proportion information.

for the bags are given in LLP.

This learning problem has many interesting applications,
where only the proportion label is provided [16], [17], [18],
[19], [20], [21], [22]. An example comes from visual attribute
modeling. Attributes often refer to the visual property of an
object that human has the ability to decide whether it is
presented or not such as color, texture and shape, which are
shared by different categories [23]. Most conventional attribute
modeling methods require the concrete label of the attribute
on each image. However, it is more straightforward to estimate
the proportions based on human common sense rather than to
assign a concrete attribute for each instance [23], [24]. For
example, it is easy to know things like “25% cats are white”,
“nearly every living room has window” and “90% Asians are
with dark brown eyes”. Fig. 2 illustrates the framework by a
conceptual example of modeling the attribute “has sofa”. In
this example, a large set of images and many bags are given.
Each bag represents a scenery, such as living room, bathroom,
kitchen and so on. We can easily obtain the proportion of
“has sofa” in these scenarios, which is reasonable in real-world
cases. And we don’t know whether each image contains sofa or
not. By using the LLP model, we can induce such information
based on the input images and the proportion information.

To give another example, in client purchasing behaviors
analysis, it is common practice to apply machine learning
to client transaction data. Although it seems straight-forward,
but in practice, revealing client’s transaction data may cause
serious legal dispute, especially when this data is provided to
a third party for analysis. Overall, storing only the proportion
labels over different groups may be a legally advisable way in
the above case.

As only the instance feature and proportion label are
provided, the key challenge to this research is how to use
the existing supervised learning methods to solve the LLP
problem. Max-margin based frameworks [7], [25] have been
proposed successively. They first assign the labels randomly
or by using geometric information, then adjust the labels
gradually through the proportion information iteratively. In ad-
dition, as the optimization procedure in each iteration is time-
consuming, the overall runtime is hard to endure, especially
on large datasets. So, in this paper, we will solve the following
questions:

• How do we exploit the proportion label in order to

fit the LLP problem into existing supervised learning
framework?

• How do we deal with the many-to-one relationship
where the feature is instance-level and the label is bag-
level?

• How do we use an efficient method to accelerate the
solving procedure especially on large dataset?

To address the above issues, we first regard proportion
label of each bag as conditional class probability. In traditional
conditional class probability estimation, a classifier is trained
first, and then a scaling function is applied. In stead we apply
the inverse scaling function to the given probability and train a
regression model. Then, we define Bag-level Super-instance to
accord the bag-level label. The size of the dataset need to be
trained is decreased at the same time. Also, instead of using
max-margin based methods, we extend the extreme learning
machine concept to solve a novel optimization problem in its
dual form efficiently.

Based on the remarks aforementioned, in this paper, we
propose a fast LLP method called IELM. IELM can alleviate
the need for optimizing each instance iteratively and accelerate
the training time. It is approximately hundreds times faster
than the existing method and achieves equivalent accuracy at
the same time. Extensive experiment evaluations demonstrate
the superior performance of the proposed IELM method. To
our best knowledge, our work is the first to extend extreme
learning machine into the LLP problem. In addition, we apply
our method to the attribute modeling problem.

The rest of this paper is structured as follows. In section
II, we review the existing methods proposed for LLP in
recent years and then present some techniques of classifier
calibration that will be used to formulate our model. The model
formulation, its solving strategy and discussions are presented
in section III while the experimental results are shown in
section IV. Finally, section V concludes this paper.

II. RELATED WORK

During the past decades, many approaches have been
developed for LLP. In the following, we first give some brief
review on the existing methods proposed for LLP including
InvCal and ∝SVM. Then, we present the existing work on
the techniques of classifier calibration, which will be used to
formulate our model.

A. Learning with Label Proportions

In recent years, numerous papers have been published
on the problem of learning with label proportions. Interested
readers can refer to [26], [27] for a comprehensice survey of
these various proportion learning methods.

Chen et al. [28] first introduced a new class of data mining
problem called learning from aggregate views, which is to
learn from multiple aggregate views of the underlying data.
Quadrianto et al. [9] proposed a method called MeanMap,
which can reconstruct the correct labels with high probability
in a uniform convergence sense by using empirical mean of
each bag to approximate expectations with respect to the bag
distribution. However, to predict the unknown labels in the
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testing set, the distribution of the labels is required. This
assumption does not hold for many real world applications.
Rueping et al. [6] presented a popular method called InvCal,
which can learn a classifier from group probabilities based on
support vector regression. In this learning setting, the mean
of each bag is treated as a super-instance that is assumed to
have a soft label corresponding to the label proportion. Stolpe
et al. [10] contributed a developmental solution based on the
clustering with label proportions. This method can adjust its
current hypothesis based on the average loss on the training
set. Kück et al. [29] introduced a principled probabilistic
model to estimate the unknown binary labels of individuals
from knowledge of group statistics. Another effective LLP
algorithm is ∝SVM proposed by Yu et al. [7], which is based
on the large margin framework. It recursively optimizes over
the unknown instance labels and the known label proportions
until the objective converges. Qi et al. [25] proposed a brand
new algorithm, called LLPs via nonparallel support vector
machine (LLP-NPSVM), to harness satisfactory data adaption,
which can be interpreted as an alternative competitive method
benefiting from large margin clustering.

However, the main drawback of current methods is the time
cost. LLP methods aim to solve the problem in which sufficient
labels are not obtained. But in some existing methods, it takes
more time to estimate the classifier with group probabilities
than to label the instances manually. Although existing meth-
ods have shown promising results, the execution time is not
taken into consider.

B. Classifier Calibration Techniques

Given unknown probability distribution P (X,Y ), where
X is the instance space and Y ∈ {−1,+1} is set of labels.
For a probabilistic classification task, we aim to find a function
f : X → [0, 1], which can return an estimate of the conditional
class probability through

f(x) ≈ P (y = 1|x) (1)

Calibrating classifiers is an effective approach to the prob-
abilistic classification problem. The key of calibration is to
find an appropriate scaling function σ : R → [0, 1] that can
transform the decision values to the probabilities:

σ(f(x)) ≈ P (y = 1|x) (2)

According to [30], Platt Calibration and Isotonic Regres-
sion are two effective probabilistic calibration techniques for a
wide range of learning methods. Specifically, Platt Calibra-
tion [31] is a method for transforming SVM outputs from
[−∞,+∞] to posterior probabilities, which has proven its
efficiency for many other numerical decision functions as well
[30]. Here, suppose f(x) is the output of a learning method, it
suggests to get the calibrated probabilities by using the sigmoid
function as the scaling function:

σ(f(x)) =
1

1 + exp(Af(x) +B)
(3)

where A and B are the parameters optimized using maximum
likelihood estimation.

Isotonic Regression [32] is a method used to calibrate
predictions from boosted naive Bayes, SVM, and decision

tree models. The basic assumption is a monotonic dependency
existed between the decision function and the conditional
class probabilities, which means the only restriction of this
method is that the mapping function should be monotonically
increasing. In detail, let f(x) be the predication of one model
and y be the corresponding ground truth label, the basic
assumption in Isotonic Regression is that

y = g(f(x)) + ε (4)

where g(·) is the monotonically increasing function that used
as the scaling function, which is learned from the training set
(f(x), y) by minimizing the quadratic loss.

Various calibration techniques including parametric and
non-parametric methods have also been studied in the lit-
erature, for example quantile binning and ensemble of near
isotonic regression. Interested readers are referred to [33], [34]
for a comprehensive survey of these techniques.

III. INVERSE EXTREME LEARNING FOR LLP

In this section, we first introduce the extreme learning ma-
chine and the LLP problem formulation respectively. Next, we
generate the IELM model by inversing the scaling function. Al-
though exploiting the concept of extreme learning machine, the
IELM model leads to a very different optimization problem,
which fortunately can be solved in its dual form efficiently. The
optimization procedure of the proposed IELM is presented.
Finally, we will discuss the feasibility and scalability of IELM.

A. Traditional Extreme Learning Machine

In this section, we give a brief review of the traditional
extreme learning problem, which was firstly studied by Huang
et al. [35].

Given the training set {xi, yi}Ni=1, where xi =
[xi1 , xi2 , ..., xin ]

T ∈ R
n represents the input feature vectors

and n is the number of features, and yi ∈ R is the correspond-
ing label, a standard single hidden feedforward neural network

(SLFN) with ˜N hidden nodes and activation function g(x) can
be mathematically modeled as

˜N
∑

j=1

βjgj(xi) =

˜N
∑

j=1

βjg(wj · xi + bj) = oi, i = 1, 2, ..., N (5)

where wj = [wj1 , wj2 , ..., wjn ]
T is the weight vector connect-

ing the j-th hidden node and the input nodes, βj is the weight
connecting the j-th hidden node and the output nodes, and bj
is the threshold of the j-th hidden node, and wj · xi denotes
the inner product of wj and xi.

According to [36], the standard SLFN can approximate

these N samples with zero error, which means
∑N

i=1 ||oi −
yi|| = 0. Then, we have

Hβ = Y (6)

where

H =

⎡

⎢

⎣

g(w1 · x1 + b1) · · · g(w
˜N · x1 + b

˜N )
... · · · ...

g(w1 · xN + b1) · · · g(w
˜N · xN + b

˜N )

⎤

⎥

⎦

N× ˜N
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β =

⎡

⎢

⎣

β1

...
β

˜N

⎤

⎥

⎦

˜N×1

and Y =

⎡

⎢

⎣

y1
...
yN

⎤

⎥

⎦

N×1

in which H is called the hidden layer output matrix of the
neural network whose j-th column is the j-th hidden node
output with respect to inputs x1,x2, ...,xN .

In order to train a SLFN, it needs to find the correct
ŵj , b̂j , β̂ by solving the following optimization problem

min
wj ,bj ,β

||H(w1, ...,w ˜N , b1, ..., b ˜N )β −Y|| (7)

To effectively solve the optimization problem above, the ex-
treme learning machine (ELM) was proposed [35]. In the ELM
setting, the input weights wj and the hidden layer biases bj are
in fact not necessarily tuned and the hidden layer output matrix
H can actually remain unchanged once random values have
been assigned to these parameters in the beginning of learning.
For the fixed wj and bj , training an SLFN is equivalent to find

the smallest norm least squares solution β̂ of the linear system
Hβ = Y, which is given by

β̂ = H†Y (8)

where where H† is the Moore-Penrose generalized inverse of
matrix H [37], [38].

B. Inverse Extreme Learning Machine

In learning from label proportions, although the proportion
of each bag is given, the label of each instance is unknown.

Suppose we are given training set {xi, yi}Ni=1 in K bags
{Sk, Pk}Kk=1, where each bag Sk consists of Nk instances

{xi, y
∗
i }Nk

i=1 in which xi is the feature vector of the i-th
instance in bag Sk and y∗i ∈ {−1, 1} denotes the unknown
ground truth label of xi. Since the training set is grouped into
K bags, the conditional probability of the k-th bag Sk can be
defined as

Pk =
|{i|xi ∈ Sk, y

∗
i = 1}|

|Sk| (9)

As pointed out previously, for some cases, the concrete
label of each instance is unknown, while only the label
proportion is provided. The goal is to learn a classification
model f : x → y with minimal error according to the ground
truth proportions, such that the label y for any instance x can
be predicted.

Assume the instance labels are explicitly modeled as

{yi}Ni=1, where yi ∈ {−1, 1}, and N =
∑K

k=1 Nk is the total
number of training instances. The modeled label proportion of
the k-th bag can be obtained by

pk =
|{i|xi ∈ Sk, yi = 1}|

|Sk| (10)

which can be regarded as the estimate of the conditional class
probability Pk.

To simplify notation, we use P , S, x and y instead of Pk,
Sk, xi and yi in the following. In conditional class probability
estimation, a classifier f is trained first, and then a scaling
function σ is applied to estimate P . Instead, we start with

given probability estimates p, fix a scaling function σ, apply
this inverse scaling function and train an ELM to predict the
values σ−1(p), which is shown in Fig. 3.

In our algorithm, we use the scaling function

P = σ(y) =
1

1 + e−y
(11)

This scaling function was first introduced by Platt et al.
[31] for scaling support vector machine, which can formulate
the results of the decision values to a fixed range, e.g. [0, 1].

As our approach is to invert the process of estimating prob-
abilities from classifier calibration, here we give the definition
of Inversion of Probability Estimation.

Definition 3.1. (Inversion of Probability Estimation). We
can derive y from p by inversing the scaling function

y = σ−1(P ) = −log(
1

P
− 1) (12)

We want to find a mapping function f(x) = H(x)β. In
order to construct this function, we require σ(y) to be a good
estimate of P . However, in this problem setting, estimates
of P for each instance x are not given, but only for sets S
of instances. Here we give the definition of Bag-level Super-
instance.

Definition 3.2. (Bag-level Super-instance). Suppose Xk is
the bag-level instance of k-th bag, which can reflect the overall
instance-level feature xi ∈ Sk. The k-th Bag-level Super-
instance Xk can be defined as

Xk =
1

|Sk|
∑

xi∈Sk

xi (13)

Depending on the construction of S, the optimal class
probability estimates of the individual instances in S may be
very closed to their average P . To address this issue, we only
require that f predicts y well over each bag.

H(Xk)β ≈ yk, k = 1, · · · ,K (14)

in which H(Xk) = [g(w1 · Xk + b1), ..., g(w ˜N · Xk + b
˜N )].

Now we manage to formally define the learning task formally
in the spirit of Extreme Learning Regression.

Based on the prediction of yk for each bag Sk, the
proportion learning model can be derived as (15), where the
output weight vectors in optimization are sample-based and
should be normalized in their own relevant subspaces.

min
β

1

2
||β||2 + C

K
∑

k=1

||ξk + ξ∗k||2

s.t.∀Kk=1 : H(Xk)β ≥ yk − ξk

∀Kk=1 : H(Xk)β ≤ yk + ξ∗k
∀Kk=1 : ξk, ξ

∗
k ≥ 0

(15)

where C > 0 is a penalty parameter, ξk and ξ∗k are the vectors
of appropriate dimension. We name this model as Inverse
Extreme Learning Machine (IELM).
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Fig. 3. Estimating a classifier by inverting the calibration process

C. Optimizing the IELM Problem

To estimate the model parameters in IELM, we consider to
transfer it into the dual form which can be easily and efficiently
solved. Firstly, the optimization problem (15) can be rewritten
as

min
β

1

2
||β||2 + C

K
∑

k=1

ξ2k

s.t.∀Kk=1 : H(Xk)β = yk − ξk

(16)

Then, based on the Karush-Kuhn-Tucker (KKT) theorem [39],
the Lagrangian function of problem (16) is given by

L(β, ξ,α) =
1

2
||β||2 + C

K
∑

k=1

ξ2k

−
K
∑

k=1

αk(H(Xk)β − yk + ξk)

(17)

where αk is the Lagrange multiplier corresponding to the k-
th bag. We can then obtain the KKT sufficient and necessary
optimality conditions of the problem (16) as follows

β −
K
∑

k=1

αkH(Xk)
T = 0

(18)

αk − Cξk = 0
(19)

H(Xk)β − yk + ξk = 0
(20)

Therefore, the dual form of the primal problem (16) can be
achieved as follows:

min
α

1

2
αTHHTα+

1

C
αTα (21)

in which α = [α1, α2, · · · , αK ]T , H = [H1;H2; ...;HK ] is
the concatenation of Hk by column, and Hk = [g(w1 ·Xk +
b1), ..., g(w ˜N · Xk + b

˜N )]. By solving this dual optimization
problem above, the classification model f(x,β) can be ob-
tained.

Algorithm 1 IELM

Input: Training datasets in bags {Sk, Pk}Kk=1, activation

function g(x) and number of hidden nodes ˜N .
Output: Classification model f(x,β).
Begin
• Randomly assign input weight wj and bias bj for the j-th

node, j = 1, 2, ..., ˜N .
• For each bag Sk, compute Hk = [g( 1

|Sk|
∑

xi∈Sk
(w1 ·

xi + b1)), ..., g(
1

|Sk|
∑

xi∈Sk
(w

˜N ·xi + b
˜N ))], k = 1, ...,K.

• Compute Y = [y1, ..., yK ]T by inversing the scaling
function.
• Solve the dual problem to obtain α = ( 1

C +HHT )−1Y,
where H = [H1;H2; ...;HK ].
• Achieve the weight vector β̂ = HTα.
• Construct instance-level classification model f(x, β̂) =
H(x)β̂ based on the randomly assigned input weight wj

and bias bj to predict the label y for each instance x.
End

According to [36], the optimization problem can be effec-
tively solved based on the ELM regression algorithm, which
has been proved that the norm least squares solution is unique
and the smallest training error can be reached. Therefore,
we proposed the following algorithm called IELM, which is
presented in Algorithm 1.

Following the above steps, (15) can be solved in a lower
computational complexity since the learning time of IELM
is mainly spent on calculating the Moore-Penrose generalized
inverse of the hidden layer output matrix. In fact, the proposed
method can achieve fast speed because 1) it randomly assigns
the hidden-layer parameters, thus saves a great amount of
computation time and 2) training an IELM is a linear least
squares problem whose solution can be directly generated by
the generalized inverse of the hidden layer output matrix. The
SVD is used to calculate Moore-Penrose generalized inverse
of H in our case and the computation complexity of IELM is

O(K2
˜N + K ˜N2). Here K is the number of bags and ˜N is

the number of hidden nodes.

In addition, the goal of most machine learning algorithms
is to minimize the loss. But many may get stuck in a local
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minima, even with infinite iterations. In contrast, it is easier
to get the smallest norm of weights by using extreme learning
machine, in which the solution is unique.

D. Discussion

1) Feasibility of IELM: IELM provides a powerful
complexity-reduction learning paradigm through adjusting the
output layer connections only while randomly fixing the hidden
parameters. In fact, even IELM adjusts partial connections
in FNN, it does not degrade the generalization capability
by selecting the appropriate active functions. Since [40] has
proved that ELM can achieve the almost optimal generalization
error bound for the polynomial, Nadaraya-Watson and sigmoid
activation functions, the selection of sigmoid active function
for IELM is feasible.

In addition, there is a close connection between the number
of hidden layer nodes and the number of training samples is
necessary to realize the almost optimal generalization error
bound. Moreover, the induced hidden layer output matrix in
IELM is full column rank when the active function is algebraic
polynomial, which means the well-known generalized inverse
technique can be applied effectively.

2) Scalability of IELM: For the case where the number of
training bags is not huge, we compute α by substituting (18)
and (19) into (20):

(
1

C
+HHT )α = Y (22)

where Y = [y1, ..., yK ]T and HHT ∈ R
K×K . Then, the

solution of IELM can be obtained by

β = HT (
1

C
+HHT )−1Y (23)

Furthermore, for the large-scale applications, from Eq. (18)
and (19), we can get

β = CHT ξ

ξ =
1

C
(HT )†β

(24)

By substituting (24) into (20), we have

HT (H+
1

C
(HT )†)β = HTY (25)

Thus, IELM can get the solution based on

β = (
1

C
+HTH)−1HTY (26)

where HTH ∈ R
˜N× ˜N .

In most applications, since the number of hidden nodes
˜N can be much smaller than the number of training bags K:
˜N 
 K, the computational cost can be reduced dramatically.

Therefore, IELM has much better computational scalability
with regard to the number of training bags K.

TABLE I. THE UCI DATASETS USED IN OUR EXPERIMENTS

Dataset #Size #Feature

sonar 208 60
heart 270 13
vote 435 16
credit-a 690 15
diabetes 768 8
pima 768 8
splice 1,000 60
Musk 6,598 166
Magic 19,020 10
cod-rna 59,535 8

IV. EXPERIMENTAL RESULTS

To validate the performance of our proposed method, in
this section, experiment comparisons with InvCal [6], ∝SVM1

[7] and pNPSVM [41] are designed. In the following, we first
evaluate the performance on the UCI repository in section 4.1,
and then present the experimental results on the ImageNet in
section 4.2.

A. Results on the UCI Repository

In this section, performance of the proposed IELM algo-
rithm is compared with the popular algorithms InvCal [6],
∝SVM [7] and pNPSVM [41] on the UCI datasets2 shown
in Table I. In order to avoid scaling issues in the learning
process, the features of each dataset are scaled to [−1,+1].
All the experiments for these four algorithms including IELM,
InvCal, ∝SVM and pNPSVM are carried out in MATLAB 8.4
environment running in a 2.5 GHz Intel Core i7 CPU.

To formulate the LLP classification problems, the training
data is randomly partitioned into a particular fold of bags with
fixed size σ. We test various bag size σ: 2, 4, 8, 16, 32, 64
for the first seven datasets in Table I and 210, 211, 212 for the
others (with the last bag smaller than σ, if necessary). In each
single experiment, the accuracy has been assessed by five-fold
cross-validation. Furthermore, we repeat the above process five
times and report the mean accuracy.

The parameters of each algorithm are tuned through the
following rules: For InvCal, the parameters are tuned from
Cp ∈ {0.1, 1, 10} and ε ∈ {0, 0.01, 0.1}. For ∝SVM, the
parameters are tuned from C ∈ {0.1, 1, 10} and Cp ∈
{1, 10, 100}. For pNPSVM , the parameters ci(i = 1, 2, 3, 4)
are tuned for the best classification accuracy in the range 0.1
to 10 and cp ∈ {0.1, 1, 10}. Linear kernel is taken for InvCal,
∝SVM and pNPSVM in our experiments. For IELM, the
number of hidden nodes is gradually increased by an increment
of 5 and the nearly optimal number of nodes for IELM is
then selected based on the cross-validation method. In our
experiments, the outputs (targets) have been normalized into
[−1, 1]. The results of numerical experiments are summarized
in the following tables, where the best accuracy is shown by
bold figures.

As observed from Table II and Table III, where the clas-
sification accuracy and its standard deviations are presented,
IELM can achieve highly competitive or even better accuracy
than InvCal, ∝SVM and pNPSVM on all the datasets. In detail,

1https://github.com/felixyu/pSVM.
2http://archive.ics.uci.edu/ml/datasets.html.
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TABLE II. ACCURACY OF DIFFERENT METHODS ON SMALL DATASETS WITH DIFFERENT BAG SIZE σ. IN THIS TABLE, THE BEST ACCURACY IS SHOWN

BY BOLD FIGURES.

Dataset Method 2 4 8 16 32 64
Average

Rank

sonar

IELM
InvCal
∝SVM
pNPSVM

73.55±0.02 (2)
73.09±0.08 (3)
72.65±0.08 (4)
78.85±0.08 (1)

71.21±0.05 (1)
70.69±0.06 (2)
68.72±0.07 (3)
63.94±0.08 (4)

72.17±0.08 (1)
65.37±0.11 (2)
54.77±0.06 (4)
63.54±0.10 (3)

70.16±0.12 (1)
64.94±0.10 (2)
55.76±0.09 (4)
57.12±0.10 (3)

64.89±0.07 (2)
67.29±0.13 (1)
51.99±0.12 (3)

48.04±13.76 (4)

63.04±0.12 (1)
50.02±0.07 (4)
59.16±0.11 (2)
51.92±0.12 (3)

1.33
2.33
3.34
3.00

heart

IELM
InvCal
∝SVM
pNPSVM

82.59±0.04 (1)
81.85±0.06 (2)
78.52±0.04 (3)
70.74±0.25 (4)

80.74±0.06 (2)
79.26±0.06 (3)
81.48±0.05 (1)
61.11±0.23 (4)

78.89±0.04 (1)
77.78±0.06 (2)
77.41±0.04 (3)
57.78±0.19 (4)

73.70±0.09 (3)
76.67±0.12 (2)
80.00±0.04 (1)
56.67±0.26 (4)

77.78±0.06 (1)
60.00±0.15 (4)
65.93±0.20 (2)
63.33±0.17 (3)

78.52±0.04 (1)
70.37±0.14 (2)
44.07±0.24 (4)
60.74±0.11 (3)

1.50
2.50
2.33
3.67

vote

IELM
InvCal
∝SVM
pNPSVM

95.63±0.02 (1.5)
95.62±0.01 (3)
94.48±0.03 (4)

95.63±0.01 (1.5)

93.56±0.03 (3)
95.86±0.02 (1)
87.59±0.17 (4)
95.63±0.02 (2)

91.72±0.01 (3.5)
95.63±0.03 (1)
93.56±0.04 (2)

91.72±0.07 (3.5)

91.72±0.04 (3)
95.17±0.01 (1)
94.25±0.03 (2)
76.55±0.13 (4)

94.02±0.02 (1)
92.41±0.02 (3)
92.87±0.04 (2)
87.59±0.06 (4)

91.49±0.02 (1)
90.11±0.03 (2)
87.82±0.04 (3)
59.54±0.22 (4)

2.17
1.83
2.83
3.17

credit-a

IELM
InvCal
∝SVM
pNPSVM

86.09±0.02 (1)
85.51±0.03 (3)
85.94±0.03 (2)
78.41±0.17 (4)

84.78±0.04 (2)
84.64±0.03 (3)
84.49±0.03 (4)
85.51±0.04 (1)

80.29±0.08 (3)
85.80±0.03 (1)
84.20±0.04 (2)
79.86±0.06 (4)

79.71±0.06 (3)
84.35±0.03 (1)
81.59±0.05 (2)
57.83±0.22 (4)

78.55±0.10 (2)
84.49±0.03 (1)
73.48±0.14 (3)
65.36±0.15 (4)

78.84±0.08 (1)
75.07±0.04 (2)
67.97±0.19 (4)
71.74±0.13 (3)

2.00
1.83
2.84
3.33

diabetes

IELM
InvCal
∝SVM
pNPSVM

78.56±0.04 (1)
76.56±0.02 (2)
74.73±0.04 (3)
63.69±0.15 (4)

74.61±0.03 (1)
72.53±0.03 (4)
73.44±0.03 (2)
73.17±0.05 (3)

73.18±0.03 (1)
72.54±0.05 (2)
67.32±0.03 (3)
53.55±0.15 (4)

70.05±0.05 (1)
69.15±0.06 (3)
69.28±0.03 (2)
57.52±0.15 (4)

68.61±0.05 (1)
66.28±0.04 (3)
66.92±0.04 (2)
54.17±0.16 (4)

65.62±0.05 (1)
65.10±0.05 (2)
64.88±0.02 (3)
56.27±0.11 (4)

1.00
2.67
2.50
3.83

pima

IELM
InvCal
∝SVM
pNPSVM

75.92±0.03 (2)
76.43±0.04 (1)
74.86±0.04 (3)
57.16±0.19 (4)

75.39±0.02 (1)
70.69±0.05 (3)
73.19±0.06 (2)
58.30±0.21 (4)

74.34±0.11 (1)
71.62±0.05 (2)
71.36±0.04 (3)
57.40±0.14 (4)

71.49±0.06 (1)
71.09±0.02 (2)
67.31±0.07 (3)
59.11±0.08 (4)

68.62±0.11 (1)
65.76±0.03 (3)
67.31±0.06 (2)
54.44±0.12 (4)

66.80±0.04 (1)
65.10±0.02 (3)
65.89±0.03 (2)
54.30±0.15 (4)

1.17
2.33
2.50
4.00

splice

IELM
InvCal
∝SVM
pNPSVM

75.80±0.04 (4)
78.30±0.03 (2)
76.70±0.02 (3)
81.20±0.01 (1)

71.50±0.02 (3)
74.60±0.03 (1)
73.60±0.03 (2)
70.10±0.06 (4)

66.30±0.04 (3)
67.40±0.05 (2)
68.30±0.05 (1)
53.60±0.04 (4)

64.90±0.02 (2)
64.00±0.02 (3)
66.20±0.05 (1)
53.70±0.03 (4)

65.10±0.04 (1)
64.60±0.07 (2)
56.80±0.14 (3)
56.00±0.09 (4)

62.40±0.06 (1)
62.10±0.08 (2)
59.50±0.09 (3)
51.90±0.05 (4)

2.33
2.00
2.17
3.50

TABLE III. ACCURACY OF DIFFERENT METHODS ON LARGE DATASETS

WITH DIFFERENT BAG SIZE σ. IN THIS TABLE, THE BEST ACCURACY IS

SHOWN BY BOLD FIGURES. ∝SVM DOESN’T RUN ON THE COD-RNA DUE

TO ITS HIGH COMPUTATIONAL COST AND PNPSVM TAKES TOO LONG TO

TEST ON MUSK, MAGIC AND COD-RNA.

Dataset Method 210 211 212

Musk

IELM
InvCal
∝SVM
pNPSVM

83.80±0.03
80.05±0.04
73.73±0.02

NA

84.69±0.01
84.59±0.01
74.92±0.05

NA

84.65±0.02
84.59±0.01
79.87±0.06

NA

Magic

IELM
InvCal
∝SVM
pNPSVM

74.46±0.07
64.84±0.00
73.92±0.01

NA

70.03±0.03
64.84±0.00
74.05±0.00

NA

72.26±0.15
64.84±0.01
73.55±0.01

NA

cod-rna

IELM
InvCal
∝SVM
pNPSVM

74.72±0.05
66.90±0.00

NA
NA

72.45±0.08
68.90±0.01

NA
NA

70.30±0.12
68.90±0.02

NA
NA

the average classification accuracy of IELM is higher than
InvCal, ∝SVM and pNPSVM on the datasets sonar, heart,
diabetes and pima since it achieves the best accuracy with some
bag size and obtains highly competitive results on the others.
On the datasets vote, credit-a and splice, the average classifica-
tion accuracy of IELM is not worse than 6% compared with the
best result. Due to the high computational cost, ∝SVM doesn’t
run on the dataset cod-rna, and pNPSVM doesn’t run on the
datasets Musk, Magic and cod-rna. Moreover, as seen from
IELM algorithm, the learning time of IELM is mainly spent
on calculating the Moore-Penrose generalized inverse H† of
the hidden layer output matrix H. Specifically, IELM is much
faster than InvCal, ∝SVM and pNPSVM on all the datasets,
which can be seen from Table IV and Table V. As presented
in these two tables, the training time for ∝SVM and pNPSVM
is increasing rapidly with the growth of the amount of training
datasets, which is several to hundreds times slower than InvCal
and IELM. The training time for IELM is several times, even
hundreds times on some datasets, faster compared with InvCal.

TABLE IV. TRAINING TIME COMPARISON (IN SECONDS) ON SMALL

DATASETS. IELM CAN ACHIEVE THE LEAST TRAINING TIME, WHILE

MAINTAINING HIGHLY COMPETITIVE OR EVEN BETTER ACCURACY.

Dataset Method 2 4 8 16 32 64

sonar

IELM
InvCal
∝SVM
pNPSVM

0.02
1.06
5.31
5.90

0.03
0.93
4.00
5.59

0.02
0.92
3.07

11.78

0.02
0.90
2.48
8.84

0.02
0.89
2.01

16.56

0.02
0.86
2.80
5.42

heart

IELM
InvCal
∝SVM
pNPSVM

0.03
1.43
7.50
8.90

0.02
1.06
5.79

11.29

0.02
1.01
4.56
4.73

0.02
1.01
3.84
6.07

0.02
0.97
3.20

13.74

0.02
0.95
2.94
9.94

vote

IELM
InvCal
∝SVM
pNPSVM

0.04
3.53

14.15
12.38

0.03
3.41

11.06
8.89

0.03
3.31
9.67
8.22

0.04
3.28
8.54
7.42

0.04
3.26
7.25

10.18

0.03
3.24
6.62
7.61

credit-a

IELM
InvCal
∝SVM
pNPSVM

0.03
1.21

18.43
39.11

0.02
0.53

14.58
17.54

0.02
0.40

12.36
19.04

0.02
0.35
9.60

27.24

0.02
0.32
8.58

19.28

0.02
0.29
8.16

27.39

diabetes

IELM
InvCal
∝SVM
pNPSVM

0.03
1.31

26.58
16.35

0.02
0.58

22.81
52.04

0.02
0.41

16.79
58.30

0.02
0.34

14.88
15.41

0.02
0.32

13.26
13.00

0.02
0.27
9.92

14.92

pima

IELM
InvCal
∝SVM
pNPSVM

0.03
1.36

29.25
14.32

0.02
0.56

22.01
76.55

0.02
0.41

18.99
27.60

0.02
0.35

12.99
16.83

0.02
0.32

11.20
15.49

0.02
0.27
9.86

14.50

splice

IELM
InvCal
∝SVM
pNPSVM

0.04
3.70

50.04
283.43

0.03
1.17

44.19
212.69

0.03
0.58

36.61
181.38

0.03
0.35

28.47
177.32

0.03
0.30

23.47
175.20

0.03
0.28

18.57
165.46

For example, for the Magic dataset, with σ equals to 210, IELM
takes 0.02 sec, while InvCal takes 300 times more and ∝SVM
takes 135,000 times more. For the cod-rna dataset, with σ
equals to 210, IELM takes 0.19 sec, while InvCal costs around
10,0000 times more, and ∝SVM and pNPSVM do not even
run.

According to the analysis above, it can be concluded that
IELM achieves great performance on the standard weakly la-
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TABLE V. TRAINING TIME COMPARISON (IN SECONDS) ON LARGE

DATASETS. IELM CAN ACHIEVE THE HIGHLY COMPETITIVE OR EVEN

BETTER ACCURACY WITH LESS TRAINING TIME. ∝SVM DOESN’T RUN ON

THE COD-RNA DUE TO ITS HIGH COMPUTATIONAL COST AND PNPSVM
TAKES TOO LONG TO TEST ON MUSK, MAGIC AND COD-RNA.

Dataset Method 210 211 212

Musk

IELM
InvCal
∝SVM
pNPSVM

0.04
0.95

1027.81
NA

0.03
0.95

940.71
NA

0.03
1.03

881.11
NA

Magic

IELM
InvCal
∝SVM
pNPSVM

0.02
6.59

2786.30
NA

0.04
6.92

2766.42
NA

0.03
6.92

2597.34
NA

cod-rna

IELM
InvCal
∝SVM
pNPSVM

0.19
1944.00

NA
NA

0.18
1932.31

NA
NA

0.21
1875.21

NA
NA

beled datasets. Specifically, it can obtain the highly competitive
or even better classification accuracy with much less training
time. IELM shows great application prospects, especially in
the big data era.

B. Case Study on ImageNet

In this section, to further evaluate the efficiency of IELM,
we are going to present the experimental results on the
ImageNet [42]. As it is known, ImageNet is an image dataset
organized according to the WordNet hierarchy. In our experi-
ment, we use the Object Attributes dataset. The dataset consists
of 9600 images from 384 synsets and 25 attributes including
color, pattern, shape and texture. In order to obtain the ground
truth data, Russakovsky et al. [42] use workers on Amazon
Mechanical Turk (AMT) to label 25 images randomly chosen
from each synset. An image is considered to be a positive
(negative) example of an attribute if all subjects agree that this
is a positive (negative) example. Each image is presented by
three types of normalized histogram features: 1) RGB color
histogram, 2) texture histogram of quantized SIFT descriptors
and 3) shape histogram of quantized shape-context features
with edges computed using the Pb edge detector [43].

The proposed method IELM can be applied in the image
tagging and image retrieval tasks. With the input image, the
attributes can be easily generated. Also, each image can be
represented through a vector where each dimension represents
an attribute. Images with similar distribution of the attributes
can be matched together in the retrieval task.

Similarly, to formulate the LLP problem, images belonging
to the same synsets can be regarded as a bag. The proportion of
positive attributes such as “is brown” is the bag-level label. We
take 80% images to be the training datasets and the other 20%
as the testing ones. Individual classifiers can be trained for each
attribute on all the testing images and the generalization per-
formance can also be evaluated. Similarly, pNPSVM doesn’t
run on ImageNet due to its high computational cost. Part of the
results is shown in Table VI. As presented in this table, for each
image, the obtained attributes by different methods are shown
in the last three columns, where the correct attribute is marked
in red and the inaccurate one is marked in blue. For example,
for the fifth image, which shows two raccoons, the IELM
predicts its features are black, furry and gray, while InvCal
and ∝SVM predict black, furry and white. Compared with
the ground truth, the IELM obtains all the correct features but

TABLE VI. THE RESULTS ON IMAGENET OBJECT ATTRIBUTES

DATASET. FOR EACH IMAGE, THE ATTRIBUTES ARE DERIVED BY

DIFFERENT METHODS, WHERE THE CORRECT ATTRIBUTES ARE MARKED

IN RED WHILE OTHERS ARE MARKED IN BLUE.

Images Ground
Truth IELM InvCal ∝SVM

black
long
shiny
wet

black
green
red
rough
shiny
wet

black
green
red
rough

black
furry
white

furry
rough
white

furry
rough
white

rough
white

gray
vegetarian
strip

black
furry
smooth

black
furry
green
smooth

black
furry
green
smooth

black
furry
rough
shiny

black
furry
gray
white

black
furry
gray
white

black
gray
white

black
furry
white

black
furry
gray

black
furry
gray

black
furry
white

black
furry
white

black
furry
smooth
red

black
furry
gray
brown
red

rough
furry
strip
smooth

furry
wet
smooth

black
rough
smooth
white

black
smooth

green
shiny
smooth

gray
white

black
long
shiny
wet

black
long
metallic
shiny

black
long
metallic
shiny

black
long
metallic
shiny

black
long
smooth
shiny
wet

black
long
metallic
smooth
wet

black
long
metallic
shiny

black
long
metallic
shiny

InvCal and ∝SVM predict one incorrect feature. In summary,
the IELM achieves the best results in all cases, while InvCal
achieves a draw on two cases.

In addition, the overall accuracy on each attribute on Ima-
geNet Object Attributes dataset is presented in Fig. 4(a). As it
is shown, IELM obtains the best performance at most attributes
and gets highly competitive results on the others compared
with InvCal and ∝SVM. Moreover, all these three methods
get unsatisfying performance on the attributes “brown” and
“furry”, as a result of the great variety of the exemplars (see
Fig. 4(b) and Fig. 4(c) for examples of “brown” and “furry”
images), which makes the features of these attributes hard to
capture effectively.
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Fig. 4. The overall accuracy on ImageNet Object Attributes dataset is shown in (a). For each attribute, we can see the accuracy achieved by different methods.
As it is shown, IELM obtains the best performance at most attribute and gets the highly competitive results on the other compared with InvCal and ∝SVM.
Moreover, all these three methods get poorly performance on the attributes “brown” and “furry”. (b) and (c) shows some example images labeled by the human
subjects as “brown” and “furry” respectively. As it is shown, huge difference exist between different images for the same attribute (i.e. “brown”), which makes
it is hard to capture the effective features to describe the attribute.

V. CONCLUSION

We present a fast attribute modeling method (IELM)
with label proportions that improves performance compared
to previously published methods. It can achieve the highly
competitive or even better classification accuracy compared
with some state-of-the-art LLP algorithms on the standard
weakly labeled UCI datasets. In addition, the proposed IELM
is several to hundreds times faster, which can effectively
alleviate the issue that the labeled data is quite labor-intensive
and time-consuming to be acquired. The IELM is also applied
on an image database to evaluate its efficiency. In conclusion,
the proposed method can be a feasible method for learning
with label proportions, which is conceivable in many practical
applications.

Source codes will be made publicly available.
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