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Abstract
To enjoy more social network services, users nowadays are usually involved in multiple online social
networks simultaneously. Networks that involve some common users are named as multiple “partially
aligned networks”. In this paper, we want to detect communities of multiple partially aligned networks
simultaneously, which is formally defined as the “Mutual Community Detection” problem. To solve
the mutual community detection problem, a novel community detection method, MCD (Mutual
Community Detector), is proposed in this paper. MCD can detect social community structures of users
in multiple partially aligned networks at the same time with full considerations of (1) characteristics of
each network, and (2) information of the shared users across aligned networks. In addition, to handle
large scale aligned networks, we extend method MCD and propose MCD-SCALE. MCD-SCALE applies
a distributed multilevel k-way partitioning method to divide the networks into k partitions sequentially.
Extensive experiments conducted on two real-world partially aligned heterogeneous social networks
demonstrate that MCD and MCD-SCALE can solve the “Mutual Community Detection” problem very
well.
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1. Introduction

Nowadays, online social networks which can
provide users with various services have become
ubiquitous in our daily life. The services provided
by social networks are very diverse, e.g., make
new friends online, read and write comments on
recent news, recommend products and locations,
etc. Real-world social networks which can provide
these services usually have heterogeneous infor-
mation, involving various kinds of information
entities (e.g., users, locations, posts) and complex
connections (e.g., social links among users, pur-
chase links between users and products). Mean-
while, among these services provided by social
networks, community detection techniques play a
very important role. For example, organizing on-
line friends into different categories (e.g., “family
members”, “celebrities”, and “classmates”) in Face-
book and group-level recommendations of prod-
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ucts in e-commerce sites are all based on com-
munity structures of users detected from the net-
works.

Meanwhile, as proposed in Kong et al. (2013);
Zhang et al. (2013, 2014a,b), to enjoy more social
network services, users nowadays are usually in-
volved in multiple online social networks simul-
taneously, e.g., Facebook, Twitter and Foursquare.
Furthermore, some of these networks can share
common information either due to the common
network establishing purpose or because of simi-
lar network features Zhang & Yu (2015a). Across
these networks, the common users are defined as
the anchor users, while the remaining non-shared
users are named as the non-anchor users. Connec-
tions between anchor users’ accounts in different
networks are defined as the anchor links. The net-
works partially aligned by anchor links are called
multiple partially aligned networks.

In this paper, we want to detect the commu-
nities of each network across multiple partially
aligned social networks simultaneously, which is for-
mally defined as the Mutual Community Detection
problem. The goal is to distill relevant informa-
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tion from another social network to compliment
knowledge directly derivable from each network
to improve the clustering or community detection,
while preserving the distinct characteristics of each
individual network. The mutual community detec-
tion problem is very important for online social
networks and can be the prerequisite for many
concrete social network applications: (1) network
partition: Detected communities can usually rep-
resent small-sized subgraphs of the network, and
(2) comprehensive understanding of user social behav-
iors: Community structures of the shared users in
multiple aligned networks can provide a comple-
mentary understanding of their social interactions
in online social networks.

Besides its importance, the mutual community
detection problem is a novel problem and differ-
ent from existing clustering problems, including:
(1) consensus clustering, Goder & Filkov (2008); Li
et al. (2007); Nguyen & Caruana (2007); Lourenço
et al. (2013); Lock & Dunson (2013) which aims at
achieving a consensus result of several input clus-
tering results about the same data; (2) multi-view
clustering, Bickel & Scheffer (2004); Cai et al. (2013)
whose target is to partition objects into clusters
based on their different representations, e.g., clus-
tering webpages with text information and hyper-
links; (3) multi-relational clustering, Yin et al. (2007);
Bhattacharya & Getoor (2005) which focuses on
clustering objects in one relation (called target re-
lation) using information in multiple inter-linked
relations; and (4) co-regularized multi-domain graph
clustering Cheng et al. (2013), which relaxes the
one-to-one constraints on node correspondence re-
lationships between different views in multi-view
clustering to “uncertain” mappings. In Cheng et al.
(2013), prior knowledge about the weights of map-
pings is required and each view is actually a ho-
mogeneous network (more differences are summa-
rized in Section 7). Unlike these existing clustering
problems, the mutual community detection problem
aims at detecting the communities for multiple
networks involving both anchor and non-anchor
users simultaneously and each network contains
heterogeneous information about users’ social ac-
tivities.

In addition, in recent years, social network size
drastically increases. A recent report from Busi-
ness Insider1 indicates that, among the largest so-

1http://www.businessinsider.com

cial networks, Facebook has the largest user popu-
lation at 1.16 billion monthly active users, which
is followed by YouTube with 1 billion. China’s
social media network, Qzone, takes the third posi-
tion with 712 million monthly active users. Mutual
community detection of multiple partially aligned
large-scale online social networks has never been
studied before.

Despite its importance and novelty, the mutual
community detection problem is very challenging to
solve due to:

• Closeness Measure: Users in heterogeneous
social networks can be connected with each
other by various direct and indirect connec-
tions. A general closeness measure among
users with such connection information is the
prerequisite for addressing the mutual commu-
nity detection problem.
• Network Characteristics: Social networks usu-

ally have their own characteristics, which
can be reflected in the community structures
formed by users. Preservation of each net-
work’s characteristics (i.e., some unique struc-
tures in each network’s detected communities)
is very important in the mutual community de-
tection problem.
• Mutual Community Detection: Information in

different networks can provide us with a more
comprehensive understanding about the an-
chor users’ social structures. For anchor users
whose community structures are not clear
based on in formation in one network, utiliz-
ing the heterogeneous information in aligned
networks to refine and disambiguate the com-
munity structures about the anchor users.
However, how to achieve such a goal is still
an open problem.
• Large Scale Networks: Network size implies

that it is difficult for stand-alone programs
to apply traditional partitioning methods and
it is a difficult task to parallelize the exist-
ing stand-alone network partitioning algo-
rithms. For distributed algorithms, load bal-
ance should be taken into consideration and
how to generate balanced partitions is another
challenge.

To solve all these challenges, a novel cross-
network community detection method, MCD (Mu-
tual Community Detector), is proposed in this pa-
per. MCD maps the complex relationships in the
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social network into a heterogeneous information
network Sun et al. (2011) and introduces a novel
meta-path based closeness measure, HNMP-Sim, to
utilize both direct and indirect connections among
users in closeness scores calculation. With full con-
siderations of the network characteristics, MCD
exploits the information in aligned networks to
refine and disambiguate the community structures
of the multiple networks concurrently. In addition,
to deal with the large-scale aligned networks, we
extend MCD and propose the distributed version
MCD-SCALE in this paper.

This paper is organized as follows: In Section 2,
we formulate the problem. Sections 3-4 introduce
the mutual community detection methods MCD and
MCD-SCALE. Section 5-6 show the experiment
results. In Sections 7 and 8, we give the related
works and conclude this paper.

2. Problem Formulation

The networks studied in this paper are
Foursquare and Twitter. Users in both Foursquare
and Twitter can follow other users, write
tips/tweets, which can contain timestamps, text
content and location check-ins. As a result, both
Foursquare and Twitter can be modeled as hetero-
geneous information networks G = (V, E), where
V = U ∪ P ∪ L ∪ T ∪ W is the set of different
types of nodes in the network and U , P , L, T ,W
are the node sets of users, posts, location check-
ins, timestamps and words respectively, while
E = Es ∪ Ep ∪ El ∪ Et ∪ Ew is set of directed links in
the network and Es, Ep, El , Et and Ew are the sets
of social links among users, links between users
and posts and those between posts and location-
checkins, timestamps as well as words respectively.
To illustrate the structure of the heterogeneous
network studied in this paper, we also give an ex-
ample in Figure 1. As shown in the figure, users
in the network can be extensively connected with
each other by different types of links (e.g., social
links, co-location checkins connections).

The multiple aligned networks can be mod-
eled as G = (Gset, Aset), where Gset =

{G(1), G(2), . . . , G(n)}, |Gset| = n is the set of n
heterogeneous information networks and Aset =

{A(1,2), . . . , A(1,n), A(2,3), . . . , A((n−1),n)} is the set
of undirected anchor links between different het-
erogeneous networks in Gset. In this paper, we will
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Figure 1: Heterogeneous online social networks.

follow the definitions about “anchor user”, “non-
anchor user”, “anchor link”, etc. proposed in Kong
et al. (2013); Zhang et al. (2013, 2014a,b) and the
constraint on anchor links is “one-to-one”, i.e., each
user can have one account in on network. The case
that users have multiple accounts in online social
networks can be resolved with method introduced
in Tsikerdekis & Zeadally (2014), where these du-
plicated accounts can be aggregated in advance to
form one unique vitural account in advance and
the anchor links connecting these vitural accounts
will be still “one-to-one”. Different from Kong et al.
(2013); Zhang et al. (2013), networks studied in this
paper are all partially aligned Zhang et al. (2014a,b).
Mutual Community Detection Problem: For
the given multiple aligned heterogeneous net-
works G, the Mutual Community Detection prob-
lem aims to obtain the optimal communities
{C(1), C(2), · · · , C(n)} for {G(1), G(2), · · · , G(n)} si-
multaneously, where C(i) = {U(i)

1 , U(i)
2 , . . . , U(i)

k(i)
}

is a partition of the users set U (i) in G(i), k(i) =∣∣∣C(i)∣∣∣, U(i)
l ∩U(i)

m = ∅, ∀ l, m ∈ {1, 2, . . . , k(i)} and⋃k(i)
j=1 U(i)

j = U (i). Users in each detected cluster
are more densely connected with each other than
with users in other clusters. In this paper, we fo-
cus on studying the hard (i.e., non-overlapping)
clustering of users in online social networks.

3. Mutual Community

Detection Framework for

Small-Sized Aligned Networks

A co-regularization based multi-view cluster-
ing model was proposed in Cheng et al. (2013),
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Table 1: Summary of HNMPs.

ID Notation Heterogeneous Network Meta Path Semantics

1 U→ U User
f ollow−−−→ User Follow

2 U→ U→ U User
f ollow−−−→ User

f ollow−−−→ User Follower of Follower

3 U→ U← U User
f ollow−−−→ User

f ollow−1

−−−−−→ User Common Out Neighbor

4 U← U→ U User
f ollow−1

−−−−−→ User
f ollow−−−→ User Common In Neighbor

5 U→ P→ W P← U User write−−→ Post contain−−−−→ Word Posts Containing
contain−1
−−−−−→ Post write−1

−−−−→ User Common Words

6 U→ P→ T← P← U User write−−→ Post contain−−−−→ Time Posts Containing
contain−1
−−−−−→ Post write−1

−−−−→ User Common Timestamps

7 U→ P→ L← P← U User write−−→ Post attach−−−→ Location Posts Attaching Common
attach−1
−−−−→ Post write−1

−−−−→ User Location Check-ins

which achieves the clustering results of nodes
across multi-view by minimizing absolute clus-
tering disagreement of all nodes (both shared and
non-shared nodes). It cannot be applied to ad-
dress the Mutual Community Detection problem, as
in mutual community detection, we only exploit
information across networks to refine the social
community structures of anchor users only, while
non-anchor users social community structures are
not affected and can preserve their characteristics.
To solve the Mutual Community Detection problem,
a novel community detection method, MCD, will
be proposed in this section. By mapping the social
network relations into a heterogeneous informa-
tion network, we use the concept of social meta
path to define closeness measure among users
in Section 3.1. Based on this similarity measure,
we introduce the network characteristics preserva-
tion independent clustering method in Section 3.2
and normalized discrepancy based co-clustering
method in Section 3.3. To preserve network charac-
teristics and use information in other networks to
refine community structures mutually at the same
time, we study the mutual community detection
problem in Section 3.4.

1. HNMP-Sim

Many existing similarity measures, e.g., “Com-
mon Neighbor” Hasan & Zaki (2011), “Jaccard’s
Coefficient” Hasan & Zaki (2011), defined for ho-
mogeneous networks cannot capture all the con-

nections among users in heterogeneous networks.
To use both direct and indirect connections among
users in calculating the similarity score among
users in the heterogeneous information network,
we introduce meta path based similarity measure
HNMP-Sim in this section.

1.1 Meta Paths in Heterogeneous Networks

In heterogeneous networks, pairs of nodes can
be connected by different paths, which are se-
quences of links in the network. Meta paths Sun
et al. (2011, 2009) in heterogeneous networks, i.e.,
heterogeneous network meta paths (HNMPs), can cap-
ture both direct and indirect connections among
nodes in a network. The length of a meta path
is defined as the number of links that constitute
it. Meta paths in networks can start and end with
various node types. However, in this paper, we are
mainly concerned about those starting and end-
ing with users, which are formally defined as the
social HNMPs. The notation, definition and seman-
tics of 7 different social HNMPs used in this paper
are listed in Table 1. To extract the social meta
paths, prior domain knowledge about the network
structure is required.

1.2 HNMP-based Similarity

These 7 different social HNMPs in Table 1 can
cover lots of connections among users in networks.
Some meta path based similarity measures have
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been proposed so far, e.g., the PathSim proposed in
Sun et al. (2011), which is defined for undirected
networks and considers different meta paths to
be of the same importance. To measure the social
closeness among users in directed heterogeneous
information networks, we extend PathSim to pro-
pose a new closeness measure as follows.
Definition 1 (HNMP-Sim): Let Pi(x  y) and
Pi(x ·) be the sets of path instances of HNMP #
i going from x to y and those going from x to other
nodes in the network. The HNMP-Sim (HNMP
based Similarity) of node pair (x, y) is defined as

HNMP-Sim(x, y) = ∑
i

ωi

(
|Pi(x y)|+ |Pi(y x)|
|Pi(x ·)|+ |Pi(y ·)|

)
,

where ωi is the weight of HNMP # i and ∑i ωi = 1.
In this paper, the weights of different HNMPs can
be automatically adjusted by applying the tech-
nique proposed in Zhang & Yu (2015a).

Let Ai be the adjacency matrix corresponding to
the HNMP # i among users in the network and
Ai(m, n) = k iff there exist k different path in-
stances of HNMP # i from user m to n in the
network. Furthermore, the similarity score ma-
trix among users of HNMP # i can be repre-
sented as Si = (Di + D̄i)

−1 (Ai + AT
i
)
, where AT

i
denotes the transpose of Ai, diagonal matrices
Di and D̄i have values Di(l, l) = ∑m Ai(l, m) and
D̄i(l, l) = ∑m(AT

i )(l, m) on their diagonals respec-
tively. The HNMP-Sim matrix of the network
which can capture all possible connections among
users is represented as follows:

S = ∑
i

ωiSi = ∑
i

ωi

(
(Di + D̄i)

−1
(

Ai + AT
i

))
.

2. Network Characteristic

Preservation Clustering

Clustering each network independently can pre-
serve each networks characteristics effectively as
no information from external networks will in-
terfere with the clustering results. Partitioning
users of a certain network into several clusters will
cut connections in the network and lead to some
costs inevitably. Optimal clustering results can be
achieved by minimizing the clustering costs.

For a given network G, let C = {U1, U2, . . . , Uk}
be the community structures detected from G.
Term Ui = U −Ui is defined to be the complement

Algorithm 1 Curvilinear Search Method (CSM)

Input: Xk Ck, Qk and function F
parameters ffl = {ρ, η, δ, τ, τm, τM}

Output: Xk+1, Ck+1, Qk+1

1: Y(τ) =
(
I + τ

2 A
)−1 (I− τ

2 A
)

Xk
2: while F (Y(τ)) ≥ Ck + ρτF ′ ((Y(0))) do
3: τ = δτ
4: Y(τ) =

(
I + τ

2 A
)−1 (I− τ

2 A
)

Xk
5: end while
6: Xk+1 = Yk(τ)

Qk+1 = ηQk + 1
Ck+1 = (ηQkCk +F (Xk+1)) /Qk+1
τ = max (min(τ, τM), τm)

of set Ui in G. Various cost measure of partition
C can be used, e.g., cut Wu & Leahy (1993) and
normalized cut Shi & Malik (2000):

cut(C) = 1
2

k

∑
i=1

S(Ui, Ui) =
1
2

k

∑
i=1

∑
u∈Ui ,v∈Ui

S(u, v),

Ncut(C) = 1
2

k

∑
i=1

S(Ui, Ui)

S(Ui, ·)
=

k

∑
i=1

cut(Ui, Ui)

S(Ui, ·)
,

where S(u, v) denotes the HNMP-Sim between u, v
and S(Ui, ·) = S(Ui,U ) = S(Ui, Ui) + S(Ui, Ui).

For all users in U , their clustering result can
be represented in the result confidence matrix H,
where H = [h1, h2, . . . , hn]T, n = |U |, hi =
(hi,1, hi,2, . . . , hi,k) and hi,j denotes the confidence
that ui ∈ U is in cluster Uj ∈ C. The optimal H that
can minimize the normalized-cut cost can be ob-
tained by solving the following objective function
von Luxburg (2007):

min
H

Tr(HTLH),

s.t. HTDH = I.

where L = D− S, diagonal matrix D has D(i, i) =
∑j S(i, j) on its diagonal, and I is an identity ma-
trix.

3. Discrepancy based Clustering of

Multiple Networks

Besides the shared information due to common
network construction purposes and similar net-
work features Zhang & Yu (2015a), anchor users
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Algorithm 2 Mutual Community Detector (MCD)

Input: aligned network: G = {{G(1), G(2)}, {A(1,2),
A(2,1)}};

number of clusters in G(1) and G(2): k(1) and
k(2);

HNMP Sim matrices weight: !;
parameters: ffl = {ρ, η, δ, τ, τm, τM};
function F and consensus term weight θ

Output: H(1), H(2)

1: Calculate HNMP Sim matrices, S(1)
i and S(2)

i

2: S(1) = ∑i ωiS
(1)
i , S(2) = ∑i ωiS

(2)
i

3: Initialize X(1) and X(2) with Kmeans clustering re-
sults on S(1) and S(2)

4: Initialize C(1)
0 = 0, Q(1)

0 = 1 and C(2)
0 = 0, Q(2)

0 = 1
5: converge = False
6: while converge = False do
7: /* update X(1) and X(2) with CSM */

X(1)
k+1, C(1)

k+1, Q(1)
k+1 = CSM(X(1)

k , C(1)
k , Q(1)

k ,F , ffl)

X(2)
k+1, C(2)

k+1, Q(2)
k+1 = CSM(X(2)

k , C(2)
k , Q(2)

k ,F , ffl)

8: if X(1)
k+1 and X(2)

k+1 both converge then
9: converge = True

10: end if
11: end while
12: H(1) =

(
(D(1))−

1
2

)T
X(1), H(2) =

(
(D(2))−

1
2

)T
X(2)

can also have unique information (e.g., social struc-
tures) across aligned networks, which can pro-
vide us with a more comprehensive knowledge
about the community structures formed by these
users. Meanwhile, by maximizing the consensus
(i.e., minimizing the “discrepancy”) of the cluster-
ing results about the anchor users in multiple
partially aligned networks, we refine the clus-
tering results of the anchor users with informa-
tion in other aligned networks mutually. We can
represent the clustering results achieved in G(1)

and G(2) as C(1) = {U(1)
1 , U(1)

2 , · · · , U(1)
k(1)
} and

C(2) = {U(2)
1 , U(2)

2 , · · · , U(2)
k(2)
} respectively.

Let ui and uj be two anchor users in the net-

work, whose accounts in G(1) and G(2) are u(1)
i ,

u(2)
i , u(1)

j and u(2)
j respectively. If users u(1)

i and

u(1)
j are partitioned into the same cluster in G(1)

but their corresponding accounts u(2)
i and u(2)

j are

partitioned into different clusters in G(2), then it
will lead to a discrepancy between the clustering re-

sults of u(1)
i , u(2)

i , u(1)
j and u(2)

j in aligned networks

G(1) and G(2).
Definition 2 (Discrepancy): The discrepancy be-
tween the clustering results of ui and uj across
aligned networks G(1) and G(2) is defined as the
difference of confidence scores of ui and uj be-
ing partitioned in the same cluster across aligned
networks. Considering that in the clustering re-
sults, the confidence scores of u(1)

i and u(1)
j (u(2)

i

and u(2)
j ) being partitioned into k(1) (k(2)) clus-

ters can be represented as vectors h(1)
i and h(1)

j

(h(2)
i and h(2)

j ) respectively, while the confidences

that ui and uj are in the same cluster in G(1) and

G(2) can be denoted as h(1)
i (h(1)

j )T and h(2)
i (h(2)

j )T .
Formally, the discrepancy of the clustering results
about ui and uj is defined to be dij(C(1), C(2)) =(

h(1)
i (h(1)

j )T − h(2)
i (h(2)

j )T
)2

if ui, uj are both an-

chor users; and dij(C(1), C(2)) = 0 otherwise. Fur-
thermore, the discrepancy of C(1) and C(2) will
be:

d(C(1), C(2)) =
n(1)

∑
i

n(2)

∑
j

dij(C(1), C(2)),

where n(1) = |U (1)| and n(2) = |U (2)|. In the def-
inition, non-anchor users are not involved in the
discrepancy calculation, which is totally different
from the clustering disagreement function (all the
nodes are included) introduced in Cheng et al.
(2013)

However, considering that d(C(1), C(2)) is highly
dependent on the number of anchor users and
anchor links between G(1) and G(2), minimizing
d(C(1), C(2)) can favor highly consented clustering
results when the anchor users are abundant but
have no significant effects when the anchor users
are very rare. To solve this problem, we propose to
minimize the normalized discrepancy instead, which
significantly differs from the absolute clustering
disagreement cost used in Cheng et al. (2013).
Definition 3 (Normalized Discrepancy) The nor-
malized discrepancy measure computes the differ-
ences of clustering results in two aligned networks
as a fraction of the discrepancy with regard to the
number of anchor users across partially aligned
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Figure 2: An example to illustrate the clustering discrepancy.

networks:

Nd(C(1), C(2)) = d(C(1), C(2))(∣∣A(1,2)
∣∣) (∣∣A(1,2)

∣∣− 1
) .

Optimal consensus clustering results of G(1) and
G(2) will be ˆC(1), ˆC(2):

Ĉ(1), Ĉ(2) = arg min
C(1),C(2)

Nd(C(1), C(2)).

Similarly, the normalized-discrepancy objective
function can also be represented with the clus-
tering results confidence matrices H(1) and H(2) as
well. Meanwhile, considering that the networks
studied in this paper are partially aligned, ma-
trices H(1) and H(2) contain the results of both
anchor users and non-anchor users, while non-
anchor users should not be involved in the dis-
crepancy calculation according to the definition
of discrepancy. We propose to prune the results
of the non-anchor users with the following anchor
transition matrix first.
Definition 4 (Anchor Transition Matrix): Binary
matrix T(1,2) (or T(2,1)) is defined as the anchor
transition matrix from networks G(1) to G(2) (or
from G(2) to G(1)), where T(1,2) = (T(2,1))T ,
T(1,2)(i, j) = 1 if (u(1)

i , u(2)
j ) ∈ A(1,2) and 0 other-

wise. The row indexes of T(1,2) (or T(2,1)) are of the
same order as those of H(1) (or H(2)). Considering
that the constraint on anchor links is “one-to-one”
in this paper, as a result, each row/column of T(1,2)

and T(2,1) contains at most one entry filled with 1.
In Figure 2, we show an example about the

clustering discrepancy of two partially aligned
networks G(1) and G(2), users in which are

grouped into two clusters {{u1, u3}, {u2}} and
{{uA, uC}, {uB, uD}} respectively. Users u1, uA
and u3, uC are identified to be anchor users, based
on which we can construct the “anchor transition
matrices” T(1,2) and T(2,1) as shown in the upper
right plot. Furthermore, based on the community
structure, we can construct the “clustering confi-
dence matrices” as shown in the lower left plot. To
obtain the clustering results of anchor users only,
the anchor transition matrix can be applied to prune
the clustering results of non-anchor users from
the clustering confidence matrices. By multiplying
the anchor transition matrices (T(1,2))T and (T(2,1))T

with clustering confidence matrices H(1) and H(2) re-
spectively, we can obtain the “pruned confidence
matrices” as show in the lower right plot of Fig-
ure 2. Entries corresponding anchor users u1, u3,
uA and uC are preserved but those corresponding
to non-anchor users are all pruned.

In this example, the clustering discrepancy of
the partially aligned networks should be 0 accord-
ing to the above discrepancy definition. Mean-
while, networks G(1) and G(2) are of different sizes
and the pruned confidence matrices are of dif-
ferent dimensions, e.g., (T(1,2))TH(1) ∈ R4×2 and
(T(2,1))TH(2) ∈ R3×2. To represent the discrepancy
with the clustering confidence matrices, we need
to further accommodate the dimensions of differ-
ent pruned clustering confidence matrices. It can
be achieved by multiplying one pruned clustering
confidence matrices with the corresponding anchor
transition matrix again, which will not prune entries
but only adjust the matrix dimensions. Let H̄(1) =

(T(1,2))TH(1) and H̄(2) = (T(1,2))T(T(2,1))TH(2). In
the example, we can represent the clustering dis-
crepancy to be

∥∥∥∥H̄(1)
(

H̄(1)
)T
− H̄(2)

(
H̄(2)

)T
∥∥∥∥2

F
= 0,

where matrix H̄H̄T indicates whether pairs of an-
chor users are in the same cluster or not.

Furthermore, the objective function of inferring
clustering confidence matrices, which can mini-
mize the normalized discrepancy can be repre-
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sented as follows

min
H(1),H(2)

∥∥∥∥H̄(1)
(

H̄(1)
)T
− H̄(2)

(
H̄(2)

)T
∥∥∥∥2

F∥∥T(1,2)
∥∥2

F

(∥∥T(1,2)
∥∥2

F − 1
) ,

s.t. (H(1))TD(1)H(1) = I, (H(2))TD(2)H(2) = I.

where D(1), D(2) are the corresponding diagonal
matrices of HNMP-Sim matrices of networks G(1)

and G(2) respectively.

4. Joint Mutual Community

Detection of Multiple Networks

Normalized-Cut objective function favors clus-
tering results that can preserve the characteristic
of each network, however, normalized-discrepancy
objective function favors consensus results which
are mutually refined with information from other
aligned networks. Taking both of these two is-
sues into considerations, the optimal mutual com-
munity detection results Ĉ(1) and Ĉ(2) of aligned
networks G(1) and G(2) can be achieved as follows:

arg min
C(1),C(2)

α · Ncut(C(1)) + β · Ncut(C(2))

+ θ · Nd(C(1), C(2))

where α, β and θ represents the weights of these
terms and, for simplicity, α, β are both set as 1 in
this paper.

By replacing Ncut(C(1)), Ncut(C(2)),
Nd(C(1), C(2)) with the objective equations
derived above, we can rewrite the joint objective
function as follows:

min
H(1),H(2)

αTr((H(1))TL(1)H(1)) + βTr((H(2))TL(2)H(2))

+ θ

∥∥∥∥H̄(1)
(

H̄(1)
)T
− H̄(2)

(
H̄(2)

)T
∥∥∥∥2

F∥∥T(1,2)
∥∥2

F

(∥∥T(1,2)
∥∥2

F − 1
) ,

s.t. (H(1))TD(1)H(1) = I, (H(2))TD(2)H(2) = I,

where L(1) = D(1) − S(1), L(2) = D(2) − S(2) and
matrices S(1), S(2) and D(1), D(2) are the HNMP-
Sim matrices and their corresponding diagonal
matrices defined before.

The objective function is a complex optimization
problem with orthogonality constraints, which can

be very difficult to solve because the constraints are
not only non-convex but also numerically expen-
sive to preserve during iterations. Meanwhile, by

substituting
(

D(1)
) 1

2 H(1) and
(

D(2)
) 1

2 H(2) with

X(1), X(2), we can transform the objective function
into a standard form of problems solvable with
method proposed in Wen & Yin (2010):

min
X(1),X(2)

α(Tr((X(1))TL̃(1)X(1)) + βTr((X(2))TL̃(2)X(2))

+ θ

∥∥∥∥T̃(1)X(1)
(

T̃(1)X(1)
)T
− T̃(2)X(2)

(
T̃(2)X(2)

)T
∥∥∥∥2

F∥∥T(1,2)
∥∥2

F

(∥∥T(1,2)
∥∥2

F − 1
) ),

s.t. (X(1))TX(1) = I, (X(2))TX(2) = I.

where L̃(1) = ((D(1))−
1
2 )TL(1)((D(1))−

1
2 ),

L̃(2) = ((D(2))−
1
2 )TL(2)((D(2))−

1
2 ) and

T̃(1) = (T(1,2))T(D(1))−
1
2 , T̃(2) =

(T(1,2))T(T(2,1))T(D(2))−
1
2 .

Wen et al. Wen & Yin (2010) propose a feasible
method to solve the above optimization problems
with a constraint-preserving update scheme. They
propose to update one variable, e.g., X(1), while fix-
ing the other variable, e.g., X(2), alternatively with
the curvilinear search with Barzilai-Borwein step
method until convergence. For example, when X(2)

is fixed, we can simplify the objective function into

min
X
F (X), s.t.(X)TX = I,

where X = X(1) and F (X) is the objective function,
which can be solved with the curvilinear search
with Barzilai-Borwein step method proposed in
Wen & Yin (2010) to update X until convergence
and the variable X after the (k + 1)th iteration will
be

Xk+1 = Y(τk), Y(τk) =
(

I +
τk
2

A
)−1 (

I− τk
2

A
)

Xk,

A =
∂F (Xk)

∂X
XT

k − Xk(
∂F (Xk)

∂X
)T ,

where let τ̂ =

(
Tr((Xk−Xk−1)

T(Xk−Xk−1))
|Tr((Xk−Xk−1)T(∇F (Xk)−∇F (Xk−1)))|

)
,

τk = τ̂δh, δ is the Barzilai-Borwein step size and h
is the smallest integer to make τk satisfy

F (Y(τk)) ≤ Ck + ρτkF ′τ (Y(0)) .
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Algorithm 3 Edge Weight based Matching
(EWM)

Input: Network Gh
Maximum weight of a node maxVW =

n/k
Output: A coarser network Gh+1

1: map() Function:
2: for node i in current data bolck do
3: if match[i] == −1 then
4: maxIdx = −1
5: sortByEdgeWeight(NN(i))
6: for vj ∈ NN(i) do
7: if match[j] == −1 and VW(i) +

VW(j) < maxVW then
8: maxIdx = j
9: end if

10: match[i] = maxIdx
11: match[maxIdx] = i
12: end for
13: end if
14: end for
15: reduce() Function:
16: new newNodeID[n + 1]
17: new newVW[n + 1]
18: set idx = 1
19: for i ∈ {1, 2, · · · , n} do
20: if i < match[i] then
21: set newNodeID[match[i]] = idx
22: set newNodeID[i] = idx
23: set newVW[i] = newVW[match[i]] =

VW(i) + VW(match[i[)
24: idx ++
25: end if
26: end for

Terms C, Q are defined as Ck+1 =
(ηQkCk +F (Xk+1)) /Qk+1 and Qk+1 =
ηQk + 1, Q0 = 1. More detailed derivatives
of the curvilinear search method (i.e., Algorithm 1)
with Barzilai-Borwein step is available in Wen
& Yin (2010). Meanwhile, the pseudo-code of
method MCD is available in Algorithm 2. Based
on the achieved solutions X(1) and X(2), we can get

H(1) =
(

D(1)
)− 1

2 X(1) and H(2) =
(

D(2)
)− 1

2 X(2).

Algorithm 4 Synergistic Partitioning (SP)

Input: Network Gh
Anchor Link Map Map < anidx, pidx >
Maximum weight of a node maxVW =

n/k
Output: A coarser network Gh+1

1: Call Synergistic Partitioning-Map Function
2: Call Synergistic Partitioning-Reduce Function

4. Mutual Community

Detection Framework for

Large-Scale Aligned Networks

For large-sized networks, Data processing in
MCD-SCALE can be roughly divided into two
stages: datum generation stage and network align-
ment stage.

When got the anchor node set A(1,2), the frame-
work will apply a distributed multilevel k-way
partitioning method onto the datum network to
generate k balanced partitions. During this process,
the anchor nodes are ignored and all the nodes
are given the same treatment. We call this process
datum generation stage. When finished, partition
result of anchor nodes will be generated, we store
them in a set-Map〈anidx, pidx〉, where anidx is an-
chor node ID and pidx represents the partition ID
the anchor node belongs to.

After the datum generation stage, synergistic
networks will be partitioned into k partitions ac-
cording to the Map〈anidx, pidx〉 to make the syn-
ergistic networks to align to the datum network,
and during this process discrepancy and cut are the
objectives to be minimized. We call this process
network alignment stage.

1. Distributed Multilevel k-way

Partitioning

Algorithms guaranteed to find out near-optimal
partitions in a single network have been studied for
a long period. But most of the methods are stand-
alone, and performance is limited by the server’s
capacity. Inspired by the multilevel k− way parti-
tioning (MKP) method proposed by Karypis and
Kumar Karypis & Kumar (1998, 1996) and based
on our previous work Aggarwal et al. (2009), we
try to use MapReduce Dean & Ghemawat (2008)
to speedup the MKP method. As the same with
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other multilevel methods, MapReduce based MKP
also includes three phases: coarsening, initial par-
titioning and un-coarsening.

Coarsening phase is a multilevel process and a
sequence of smaller approximate networks Gi =
(Vi, Ei) are constructed from the original network
G0 = (V, E), where |Vi| < |Vi−1|, i ∈ {1, 2, · · · , n}.
To construct coarser networks, node combination
and edge collapsing should be performed. The
task can be formally defined in terms of match-
ing Bui & Jones (1993). A matching is a set of
node pairs M = List〈i, j〉, i 6= j and ei,j ∈ E, in
which each node can only appear for no more than
once. For a network Gi with a matching Mi, if
〈j, k〉 ∈ Mi then v(j) and v(k) will form a new
node v(q) ∈ Vi+1. The weight of v(q) equals to the
sum of weight v(j) and v(k), besides, all the links
connected to v(j) or v(k) in Gi will be connected
to v(q) in Gi+1. The total weight of nodes will
remain unchanged during the coarsening phase
but the total weight of edges and number of nodes
will be reduced. Define W(T) to be the sum of
edge weight in T and N(T) to be the number of
components in T. It will be that:

W(Ei+1) = W(Ei)−W(Mi),
N(Vi+1) = N(Vi)− N(Mi).

Analysis in Karypis & Kumar (1995a) shows that
for the same coarser network, smaller edge-weight
corresponds to smaller edge-cut. With the help
of MapReduce framework, we use a local search
method to implement an edge-weight based match-
ing (EWM) scheme to collect larger edge weight
during the coarsening phase. For the convenience
of MapReduce, we design a new network repre-
sentation format: each line contains essential infor-
mation about a node and all its neighbors (NN),
such as node ID, vertex weight (VW), edge weight
(W), et al. The whole network data are distributed
in distributed file system, such as HDFS Shvachko
et al. (2010), and each data block only contains
part of node set and corresponding connection
information. Function map() takes a data block
as input and search locally to find node pairs to
match according to the edge weight, reduce() is in
charge of node combination, renaming and sorting.
With the new node IDs and matching, a simple
MapReduce job will be able to update the edge in-
formation and write the coarser network back onto
HDFS. The complexity of EWM is O(|E|) in each

Algorithm 5 Synergistic Partitioning-Map
Input: Network Gh

Anchor Link Map Map < anidx, pidx >
Maximum weight of a node maxVW = n/k

Output: A coarser network Gh+1
1: map() Function:
2: for node i in current data bolck do
3: if match[i] == −1 then
4: set f lag = f alse
5: sortByEdgeWeight(NN(i))
6: if vi ∈ Map < anidx, pidx > then
7: for vj ∈ NN(i) & match[j] == −1 do
8: if vj ∈ Map < anidx, pidx > & Map.get(vi) ==

Map.get(vj) & VW(i) + VW(j) < maxVW then
9: match[i] = j, match[j] = i

10: f lag = true, break
11: end if
12: end for
13: if f lag == f alse, no suitable anchor node then
14: for vj ∈ NN(i) & match[j] == −1 & VW(vi) +

VW(vj) < maxVW do
15: indirectNeighbor = NN(vj)
16: sortByEdgeWeight(NN(i))
17: for vk ∈ indirectNeighbor do
18: if vk ∈ Map < anidx, pidx > & Map.get(vi) ==

Map.get(vk) then
19: match[i] = j, match[j] = i
20: f lag = true, break
21: end if
22: end for
23: if f lag == true then
24: break
25: end if
26: end for
27: end if
28: else
29: sortByEdgeWeight(NN(i))
30: for vj ∈ NN(vi) & vj /∈ Map < anidx, pidx > & VW(i) +

VW(j) < maxVW & match[j] == −1 do
31: match[i] = j, match[j] = i, break
32: end for
33: end if
34: end if
35: end for

iteration and pseudo code about EWM is shown
in Algorithm 3.

After several iterations, a coarsest weighted net-
work G(1) consisting of only hundreds of nodes
will be generated. For the network size of G(1),
stand-alone algorithms with high computing com-
plexity will be acceptable for initial partitioning.
Meanwhile, the weights of nodes and edges of
coarser networks are set to reflect the weights of
the finer network during the coarsening phase, so
G(1) contains sufficient information to intelligently
satisfy the balanced partition and the minimum
edge-cut requirements. Plenty of traditional bi-
section methods are quite qualified for the task.
In this paper, we adopt the KL method with an
O(|E|3) computing complexity to divide G(1) into
two partitions and then take recursive invocations
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of KL method on the partitions to generate bal-
anced k partitions.

Un-coarsening phase is inverse processing of
coarsening phase. With the initial partitions and
the matching of the coarsening phase, it is easy to
run the un-coarsening process on the MapReduce
cluster.

2. Distributed Synergistic

Partitioning Process

In this section we talk about the synergistic par-
titioning process on the synergistic networks with
the knowledge of partition results of anchor nodes
from datum network. The synergistic partition-
ing is also a MKP process but quite different from
general MKP methods.

In the coarsening phase, anchor nodes are en-
dowed with higher priority than non-anchor nodes.
When choosing nodes to pair, we assume that an-
chor nodes and non-anchor nodes have different
tendencies. Let G(2) be the datum network and
G(1) = G(1)

1 , G(1)
2 , · · · , G(1)

(t−1) be the synergistic net-
work set.

For an anchor node v(i), it would prefer to com-
bine with another anchor node v(j) which has
the same partition ID in the datum network, i.e.,
pidx(Gd, v(i)) = pidx(Gd, v(j)) where v(i) ∈ A,
v(j) ∈ A and i 6= j. Second, if there is no appropri-
ate anchor node, it would try to find a non-anchor
node to pair. When planing to find a non-anchor
node to pair, the anchor node, assuming to be v(i),
would like to find a correct direction, and it would
prefer to match with the non-anchor node v(j),
which has lots of anchor nodes as neighbors with
the same pidx with v(i). When combined together,
the new node will be given the same pidx as the
anchor node. To improve the accuracy of synergis-
tic partitioning among multiple social networks,
an anchor node will never try to combine with
another anchor node with different pidx.

For a non-anchor node, it would prefer to make a
pair with an anchor node neighbor which belongs
to the dominant partition in the non-anchor node’s
neighbors. Here, dominant partition in a node’s
neighbors means the number of anchor nodes with
this partition ID is largest. Next, a non-anchor
node would choose a general non-anchor node to
pair. At last, a non-anchor node would not like
to combine with an anchor node being part of the
partitions which are in subordinate status. After

Algorithm 6 Synergistic Partitioning-Reduce

Input: Network Gh
Anchor Link Map Map < anidx, pidx >
Maximum weight of a node maxVW =

n/k
Output: A coarser network Gh+1

1: reduce() Function:
2: new newNodeID[n + 1]
3: new newVW[n + 1]
4: set idx = 1
5: for i ∈ newNodeID[] do
6: if i < match[i] then
7: set newNodeID[match[i]] = idx
8: set newNodeID[i] = idx
9: set newVW[i] = newVW[match[i]] =

VW(i) + VW(match[i[)
10: idx ++
11: end if
12: end for
13: new newPurity[idx + 1]
14: new newPidx[idx + 1]
15: for i ∈ [1, idx] do
16: newPurity[i] = purity[i]∗VW(i)+purity[j]∗VW(j)

VW(i)+VW(j)
17: newPidx[i] = max{pidx[i], pidx[match[i]]}
18: end for

combined together, the new node will be given
the same pidx as the anchor node. To ensure the
balance among the partitions, about 1

3 of the nodes
in the coarsest network are unlabeled.

In addition to minimizing both the discrepancy
and cut discussed at the beginning of Section 4,
we also try to balance the size of partitions are
the objectives in synergistic partitioning process.
However, when put together, it is impossible to
achieve them simultaneously. So, we try to make a
compromise among them and develop a heuristic
method to tackle the problems. First, according to
the conclusion smaller edge-weight corresponds
to smaller edge-cut and the pairing tendencies, we
propose a modified EWM (MEWM) method to
find a matching in the coarsening phase, of which
the edge-weight is as large as possible. At the end
of the coarsening phase, there is no impurity in
any node, meaning that each node contains no
more than one type of anchor nodes. Besides, a
“purity” vector attribute and a pidx attribute are
added to each node to represent the percentage
of each kind of anchor nodes swallowed up by it
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and the pidx of the new node, respectively. Then,
during the initial partitioning phase, we treat the
anchor nodes as labeled nodes and use a modified
label propagation algorithm to deal with the non-
anchor nodes in the coarsest network. At the end
of the initial partitioning phase, we will be able
to generate balanced k partitions and to maximize
the number of same kind of anchor nodes being
divided into same partitions. Finally, we project
the coarsest network back to the original network,
which is the same as traditional MKP process. The
pseudo code of coarsening phase in synergistic
partitioning process is available in Algorithm 4.

5. Experiments on Small-Sized

Aligned Networks

To demonstrate the effectiveness of MCD, we
will conduct extensive experiments on two real-
world partially aligned heterogeneous networks:
Foursquare and Twitter, in this section.

1. Dataset Description

As mentioned in the Section 2, both Foursquare
and Twitter used in this paper are heterogeneous
social networks, whose statistical information is
given in Table 2. These two networks were crawled
with the methods proposed in Kong et al. (2013)
during November, 2012. The number of anchor
links obtained is 3, 388. Some basic descriptions
about datasets are as follows:

• Foursquare: Users together with their posts
are crawled from Foursquare, whose number
are 5, 392 and 48, 756 respectively. The num-
ber of social link among users is 76, 972. All
these posts written by these users and can at-
tach locations checkins and, as a result, the
numbers of write link and locate link are both
48, 756. 38, 921 different locations are crawled
from Foursquare.
• Twitter: 5, 223 users and all their tweets,

whose number is 9, 490, 707, are crawled from
Twitter and, on average, each user has about
1, 817 tweets. Among these tweets, about
615, 515 have location check-ins, which ac-
counts for about 6.48% of all tweets. The
number of locations crawled from Twitter is
297, 182 and the number of social links among
users is 164, 920.

Table 2: Properties of the Heterogeneous Social Networks

network

property Twitter Foursquare

# node
user 5,223 5,392
tweet/tip 9,490,707 48,756
location 297,182 38,921

# link
friend/follow 164,920 76,972
write 9,490,707 48,756
locate 615,515 48,756

For more information about the datasets and
crawling methods, please refer to Kong et al. (2013);
Zhang et al. (2013, 2014a,b).

2. Experiment Settings

2.1 Comparison Methods

The comparison methods used in the experi-
ments can be divided into three categories,
Mutual Community Detection Methods

• MCD: MCD is the mutual community detec-
tion method proposed in this paper, which can
detect the communities of multiple aligned
networks with consideration of the connec-
tions and characteristics of different net-
works. Heterogeneous information in mul-
tiple aligned networks are applied in building
MCD.

Multi-Network Clustering Methods

• SIclus: the clustering method proposed in
Zhou & Liu (2013); Zhang & Yu (2015a) can
calculate the similarity scores among users
by propagating heterogeneous information
across views/networks. In this paper, we ex-
tend the method proposed in Zhou & Liu
(2013); Zhang & Yu (2015a) and propose
SIclus to calculate the intimacy scores among
users in multiple networks simultaneously,
based on which, users can be grouped into dif-
ferent clusters with clustering models based
on intimacy matrix factorization as introduced
in Zhang & Yu (2015a). Heterogeneous in-
formation across networks is used to build
SIclus.

Isolated Clustering Methods, which can detect
communities in each isolated network:
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Table 3: Community Detection Results of Foursquare and Twitter Evaluated by Quality Metrics.

remaining anchor link rates σ

network metric method 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fo
ur

sq
ua

re

ndbi

MCD 0.927 0.924 0.95 0.969 0.966 0.961 0.958 0.954 0.971 0.958
SIclus 0.891 0.889 0.88 0.877 0.894 0.883 0.89 0.88 0.887 0.893
Ncut 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863 0.863

Kmeans 0.835 0.835 0.835 0.835 0.835 0.835 0.835 0.835 0.835 0.835

ent.

MCD 1.551 1.607 1.379 1.382 1.396 1.382 1.283 1.552 1.308 1.497
SIclus 4.332 4.356 4.798 4.339 4.474 4.799 4.446 4.658 4.335 4.459
Ncut 2.768 2.768 2.768 2.768 2.768 2.768 2.768 2.768 2.768 2.768

Kmeans 2.369 2.369 2.369 2.369 2.369 2.369 2.369 2.369 2.369 2.369

den.

MCD 0.216 0.205 0.196 0.163 0.239 0.192 0.303 0.198 0.170 0.311
SIclus 0.116 0.121 0.13 0.095 0.143 0.11 0.13 0.12 0.143 0.103
Ncut 0.154 0.154 0.154 0.154 0.154 0.154 0.154 0.154 0.154 0.154

Kmeans 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182 0.182

sil.

MCD -0.137 -0.114 -0.148 -0.156 -0.117 -0.11 -0.035 -0.125 -0.148 -0.044
SIclus -0.168 -0.198 -0.173 -0.189 -0.178 -0.181 -0.21 -0.195 -0.167 -0.18
Ncut -0.34 -0.34 -0.34 -0.34 -0.34 -0.34 -0.34 -0.34 -0.34 -0.34

Kmeans -0.297 -0.297 -0.297 -0.297 -0.297 -0.297 -0.297 -0.297 -0.297 -0.297

Tw
it

te
r

ndbi

MCD 0.962 0.969 0.955 0.969 0.97 0.958 0.952 0.96 0.946 0.953
SIclus 0.815 0.843 0.807 0.83 0.826 0.832 0.835 0.808 0.812 0.836
Ncut 0.759 0.759 0.759 0.759 0.759 0.759 0.759 0.759 0.759 0.759

Kmeans 0.761 0.761 0.761 0.761 0.761 0.761 0.761 0.761 0.761 0.761

ent.

MCD 2.27 2.667 2.48 2.381 2.43 2.372 2.452 2.459 2.564 2.191
SIclus 4.780 5.114 5.066 4.961 4.904 4.866 5.121 4.629 4.872 5.000
Ncut 3.099 3.099 3.099 3.099 3.099 3.099 3.099 3.099 3.099 3.099

Kmeans 3.245 3.245 3.245 3.245 3.245 3.245 3.245 3.245 3.245 3.245

den.

MCD 0.14 0.097 0.142 0.109 0.15 0.158 0.126 0.149 0.147 0.164
SIclus 0.055 0.017 0.044 0.026 0.04 0.062 0.016 0.044 0.045 0.02
Ncut 0.107 0.107 0.107 0.107 0.107 0.107 0.107 0.107 0.107 0.107

Kmeans 0.119 0.119 0.119 0.119 0.119 0.119 0.119 0.119 0.119 0.119

sil.

MCD -0.137 -0.179 -0.282 -0.175 -0.275 -0.273 -0.248 -0.269 -0.266 -0.286
SIclus -0.356 -0.322 -0.311 -0.347 -0.346 -0.349 -0.323 -0.363 -0.345 -0.352
Ncut -0.424 -0.424 -0.424 -0.424 -0.424 -0.424 -0.424 -0.424 -0.424 -0.424

Kmeans -0.406 -0.406 -0.406 -0.406 -0.406 -0.406 -0.406 -0.406 -0.406 -0.406

• Ncut: Ncut is the clustering method based
on normalized cut proposed in Shi & Malik
(2000). Method Ncut can detect the commu-
nities in each social network merely based on
the social connections in each network in the
experiments.
• Kmeans: Kmeans is a traditional clustering

method, which can be used to detect com-
munities Qi et al. (2012) in social networks
based on the social connections only in the
experiments.

2.2 Evaluation Methods

The evaluation metrics applied in this paper can
be divided into two categories: Quality Metrics
and Consensus Metrics.
Quality Metrics: 4 widely and commonly used
quality metrics are applied to measure the cluster-
ing result, e.g., C = {Ui}K

i=1, of each network.

• normalized-dbi Zhou & Liu (2013):

ndbi(C) = 1
K ∑

i
min
j 6=i

d(ci, cj) + d(cj, ci)

σi + σj + d(ci, cj) + d(cj, ci)
,

where ci is the centroid of community Ui ∈ C,
d(ci, cj) denotes the distance between cen-
troids ci and cj and σi represents the average
distance between elements in Ui and centroid
ci. (Higher ndbi corresponds to better perfor-
mance).
• entropy Zhou & Liu (2013):

H(C) = −
K

∑
i=1

P(i) log P(i),

where P(i) = |Ui |
∑K

i=1 |Ui |
. (Lower entropy corre-

sponds to better performance).
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Table 4: Community Detection Results of Foursquare and Twitter Evaluated by Consensus Metrics.

remaining anchor link rates σ

measure methods 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

rand

MCD 0.095 0.099 0.107 0.138 0.116 0.121 0.132 0.106 0.089 0.159
SIclus 0.135 0.139 0.144 0.148 0.142 0.14 0.132 0.132 0.144 0.141
Ncut 0.399 0.377 0.372 0.4 0.416 0.423 0.362 0.385 0.362 0.341

Kmeans 0.436 0.387 0.4 0.358 0.403 0.363 0.408 0.365 0.35 0.363

vi

MCD 3.309 4.052 4.058 3.902 4.038 4.348 3.973 3.944 4.078 2.911
SIclus 7.56 8.324 8.414 8.713 8.756 8.836 8.832 8.621 8.427 8.02
Ncut 5.384 5.268 5.221 4.855 5.145 5.541 5.909 5.32 5.085 5.246

Kmeans 5.427 5.117 5.355 5.326 5.679 5.944 5.452 5.567 5.513 4.686

nmi

MCD 0.152 0.152 0.149 0.141 0.149 0.156 0.142 0.158 0.147 0.146
SIclus 0.172 0.097 0.081 0.06 0.056 0.069 0.078 0.093 0.105 0.149
Ncut 0.075 0.074 0.111 0.108 0.109 0.099 0.05 0.036 0.042 0.106

Kmeans 0.008 0.047 0.048 0.054 0.048 0.028 0.047 0.014 0.067 0.119

mi

MCD 0.756 0.611 0.4 0.258 0.394 0.431 0.381 0.533 0.697 0.689
SIclus 0.780 0.446 0.367 0.277 0.258 0.325 0.374 0.44 0.489 0.698
Ncut 0.188 0.181 0.261 0.232 0.252 0.243 0.138 0.092 0.111 0.31

Kmeans 0.02 0.112 0.119 0.135 0.127 0.078 0.119 0.038 0.194 0.314

Table 5: Community Detection Results of Foursquare and Twitter Evaluated by IQC Metrics.

remaining anchor link rates σ

measure methods 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

IQCndbi
rand

MCD -1.699 -1.695 -1.691 -1.662 -1.705 -1.676 -1.647 -1.703 -1.738 -1.594
SIclus -1.459 -1.451 -1.44 -1.434 -1.444 -1.45 -1.465 -1.465 -1.442 -1.448
Ncut -0.824 -0.869 -0.878 -0.821 -0.789 -0.776 -0.899 -0.851 -0.897 -0.94

Kmeans -0.724 -0.821 -0.795 -0.88 -0.79 -0.87 -0.779 -0.865 -0.895 -0.869

IQCent.
vi

MCD 10.439 12.379 11.975 11.566 11.902 12.45 11.681 11.897 12.028 9.509
SIclus 24.58 26.107 26.287 26.884 26.971 27.13 27.123 26.7 26.313 25.499
Ncut 16.634 16.403 16.308 15.577 16.156 16.948 17.684 16.506 16.036 16.359

Kmeans 16.468 15.847 16.325 16.267 16.972 17.503 16.519 16.748 16.641 14.986

IQCdens.
nmi

MCD -0.659 -0.606 -0.636 -0.555 -0.686 -0.663 -0.713 -0.664 -0.611 -0.768
SIclus -0.467 -0.317 -0.284 -0.243 -0.235 -0.261 -0.28 -0.309 -0.332 -0.421
Ncut -0.411 -0.409 -0.484 -0.477 -0.478 -0.458 -0.361 -0.333 -0.345 -0.473

Kmeans -0.317 -0.395 -0.397 -0.41 -0.398 -0.357 -0.396 -0.329 -0.436 -0.54

IQCsil.
mi

MCD -1.239 -0.93 -0.371 -0.186 -0.396 -0.479 -0.479 -0.673 -0.979 -1.048
SIclus -1.028 -0.361 -0.202 -0.022 0.016 -0.118 -0.216 -0.347 -0.446 -0.863
Ncut 0.389 0.403 0.242 0.3 0.261 0.278 0.488 0.58 0.542 0.144

Kmeans 0.664 0.479 0.465 0.433 0.45 0.546 0.466 0.628 0.316 0.074

• density Zhou & Liu (2013):

dens(C) =
K

∑
i=1

|Ei|
|E| ,

where E and Ei are the edge sets in the net-
work and Ui. (Higher density corresponds to
better performance).
• silhouette Liu et al. (2010):

sil(C) = 1
K

K

∑
i=1

(
1
|Ui| ∑

u∈Ui

b(u)− a(u)
max{a(u), b(u)} ),

where a(u) = 1
|Ui |−1 ∑v∈Ui ,u 6=v d(u, v) and

b(u) = minj,j 6=i

(
1
|Uj | ∑v∈Uj

d(u, v)
)

. (Higher

silhouette corresponds to better performance).

Consensus Metrics: Given the clustering results
C(1) = {U(1)

i }
K(1)

i=1 and C(2) = {U(2)
i }

K(2)

i=1 , the con-
sensus metrics measuring the how similar or dis-
similar the anchor users are clustered in C(1) and
C(2) include:

• rand Nguyen & Caruana (2007):
rand(C(1), C(2)) = N01+N10

N00+N01+N10+N11
, where

N11(N00) is the numbers of pairwise anchor
users who are clustered in the same (differ-
ent) community(ies) in both C(1) and C(2),
N01(N10) is that of anchor users who are
clustered in the same community (different
communities) in C(1) but in different commu-
nities (the same communities) in C(2). (Lower
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rand corresponds to better performance).
• variation of information Nguyen & Caruana

(2007):

vi(C(1), C(2)) = H(C(1))+ H(C(2))− 2mi(C(1), C(2)).

(Lower vi corresponds to better performance).
• mutual information Nguyen & Caruana (2007):

mi(C(1), C(2)) =
K(1)

∑
i=1

K(2)

∑
j=1

P(i, j) log
P(i, j)

P(i)P(j)
,

where P(i, j) =
|U(1)

i ∩AU(2)
j |

|A| and |U(1)
i ∩A

U(2)
j | =

∣∣∣{u|u ∈ U(1)
i , ∃v ∈ U(2)

i , (u, v) ∈ A}
∣∣∣

Kong et al. (2013). (Higher mi corresponds to
better performance).
• normalized mutual information Nguyen & Caru-

ana (2007):

nmi(C(1), C(2)) = mi(C(1), C(2))√
H(C(1))H(C(2))

.

(Higher nmi corresponds to better perfor-
mance).

Definition 9 (Proportional and Inversely Propor-
tional Metrics): Depending on relationship be-
tween the metric value and the clustering results,
all the above metrics can be either proportional or
inversely proportional. Metric M is proportional iff
better clustering results corresponds to higher M
value; M is inversely proportional iff better clus-
tering result corresponds lower M value.

In the metrics introduced above, normalized-dbi,
density, silhouette, mutual information and normalized
mutual information are proportional metrics, entropy,
rand, and variation of information are inversely pro-
portional metrics.

To consider both the quality and consensus si-
multaneously, we introduce a new clustering met-
ric, IQC metrics, in this paper, which is inversely
proportional.
Definition 10 (IQC metrics): IQC is a linear combi-
nation of quality metrics Q and consensus metrics
C.

IQC(C(1), C(2)) = I(Q)(β1Q(C(1)) + β2Q(C(2)))
+ I(C)(β3C(C(1), C(2)) + β4C(C(2), C(1)))
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Figure 3:
∥∥∥X(1)

∥∥∥
1

and
∥∥∥X(2)

∥∥∥
1

in each iteration.

where β1, β2, β3, β4 are weights of different terms,
which are all set as 1 in this paper, and
I(Q), I(C) = −1, if Q/C is proportional and 1,
otherwise.
IQC Metrics used in this paper include:

• IQCent
vi (C(1), C(2)) = H(C(1)) + H(C(2)) +

2vi(C(1), C(2))
• IQCsil

mi(C(1), C(2)) = −sil(C(1)) − sil(C(2)) −
2mi(C(1), C(2))
• IQCndbi

rand(C
(1), C(2)) = −ndbi(C(1)) −

ndbi(C(2))
+ 2rand(C(1), C(2))
• IQCdens

nmi (C(1), C(2)) = −dens(C(1)) −
dens(C(2))
− 2nmi(C(1), C(2))

3. Experiment Results

The experiment results are available in Tables 3-
4. To show the effects of the anchor links, we use
the same networks but randomly sample a pro-
portion of anchor links from the networks, whose
number is controlled by σ ∈ {0.1, 0.2,
· · · , 1.0}, where σ = 0.1 means that 10% of all the
anchor links are preserved and σ = 1.0 means that
all the anchor links are preserved.

Table 3 displays the clustering results of different
methods in Foursquare and Twitter respectively
under the evaluation of ndbi, entropy, density and
silhouette. As shown in these two tables, MCD can
achieve the highest ndbi score in both Foursquare
and Twitter for different sample rate of anchor
links consistently. The entropy of the clustering
results achieved by MCD is the lowest among all
other comparison methods and is about 70% lower
than SIclus, 40% lower than Ncut and Kmeans
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Figure 4: Analysis of parameters k(1) and k(2).

in both Foursquare and Twitter. In each commu-
nity detected by MCD, the social connections are
denser than that of SIclus , Ncut and Kmeans.
Similar results can be obtained under the evalua-
tion of silhouette, the silhouette score achieved by
MCD is the highest among all comparison meth-
ods. So, MCD can achieve better results than mod-
ified multi-view and isolated clustering methods
under the evaluation of quality metrics.

Table 4 shows the clustering results on the
aligned networks under the evaluation of consen-
sus metrics, which include rand, vi, nmi and mi.
As shown in Table 4, MCD can perform the best
among all the comparison methods under the eval-
uation of consensus metrics. For example, the rand
score of MCD is the lowest among all other meth-
ods and when σ = 0.5, the rand score of MCD is
20% lower than SIclus, 72% lower than Ncut and
Kmeans. Similar results can be obtained for other
evaluation metrics, like when σ = 0.5 , the vi score
of MCD is about half of the the score of SIclus;
the nmi and mi score of MCD is the triple of that
ofKmeans. As a result, MCD can achieve better
performance than both modified multi-view and
isolated clustering methods under the evaluation
of consensus metrics.

Table 5 is the clustering results of different meth-
ods evaluated by the IQC metrics. As shown in Ta-
ble 5, the IQCndbi

rand, IQCent.
vi , IQCdens.

nmi , IQCsil.
mi scores

of MCD are all the lowest among all comparison
methods. As mentioned above, lower IQC score

corresponds to better clustering results, MCD can
outperform all other baseline methods consistently
under the evaluation of all IQC metrics. In sum,
MCD can perform better than both modified multi-
view and isolated clustering methods evaluated by
IQC metrics.

According to the results shown in Tables 3-5,
we observe that the performance of MCD doesn’t
varies much as σ changes. The possible reason can
be that, in method MCD, normalized clustering
discrepancy is applied to infer the clustering confi-
dence matrices. As σ increases in the experiments,
more anchor links are added between networks,
part of whose effects will be neutralized by the nor-
malization of clustering discrepancy and doesn’t
affect the performance of MCD much.

4. Convergence Analysis

MCD can compute the solution of the optimiza-
tion function with Curvilinear Search method,
which can update matrices X(1) and X(2) alterna-
tively. This process will continue until convergence.
To check whether this process can stop or not, in
this part, we will analyze the convergence of X(1)

and X(2). In Figure 3, we show the L1 norm of ma-

trices X(1) and X(2),
∥∥∥X(1)

∥∥∥
1

and
∥∥∥X(2)

∥∥∥
1
, in each

iteration of the updating algorithm, where the Lp

norm of matrix X is ‖X‖p = (∑i ∑i Xij
p)

1
p . As
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Figure 5: Analysis of parameter θ.

shown in Figures 3, both
∥∥∥X(1)

∥∥∥
1

and
∥∥∥X(2)

∥∥∥
1

can
converge in less than 200 iterations.

5. Parameter Analysis

In method MCD, we have three parameters: k(1),
k(2) and θ, where k(1) and k(2) are the numbers
of clusters in Foursquare and Twitter networks re-
spectively, while θ is the weight of the normalized
discrepancy term in the object function. In the
pervious experiment, we set k(1) = 50, k(2) = 50
and θ = 1.0. Here we will analyze the sensitivity
of these parameters in details.

To analyze k(1), we fix k(2) = 50 and
θ = 1.0 but assign k(1) with values in
{10, 20, 30, 40, 50, 60, 70, 80, 90, 100}. The clustering
results of MCD with different k(1) evaluated by
ndbi, rand and IQCndbi

rand metrics are given in Fig-
ures 4(a)-4(d). As shown in the figures, the results
achieved by MCD are very stable for k(1) with in
range [40, 100] under the evaluation of ndbi in both
Foursquare and Twitter. Similar results can be ob-
tained in Figures 4(c)-4(d), where the performance
of MCD on aligned networks is not sensitive to
the choice of k(1) for k(1) in range [40, 100] under
the evaluation of both rand and IQCndbi,rand. In
a similar way, we can study the sensitivity of pa-
rameter k(2), the results about which are shown in
Figures 4(e)-4(h).

An interesting phenomenon is that the pre-
defined number of clusters in the Foursquare net-
work can also affect MCD’s performance in the
Twitter network. As shown in Figure 4(b), the
performance of MCD is the best in the Twitter net-
work when k(1) is assigned with 30, as the ndbi
score of MCD is the highest when k(1) = 30. Fig-
ures 4(c)- 4(d) show the performance of MCD un-
der the evaluation of rand and IQCndbi,rand. MCD

performs the best when k(1) = 40 under the eval-
uation of the rand metric and achieves the best
performance when k(1) = 40(or 90) evaluated by
IQCndbi,rand.

To analyze the parameter θ, we set both k(1) and
k(2) as 50 but assign θ with values in {0.001, 0.01,
0.1, 1.0, 10.0, 100.0, 1000.0}. The results are shown
in Figure 5, where when θ is small, e.g., 0.001, the
ndbi scores achieved by MCD in both Foursquare
and Twitter are high but the rand score is not good
(rand is inversely proportional). On the other hand,
large θ can lead to good rand score but bad ndbi
scores in both Foursquare and Twitter. As a result,
(1) large θ prefers consensus results, (2) small θ
can preserve network characteristics and prefers
high quality results. Meanwhile, considering the
clustering quality and consensus simultaneously,
MCD can achieve the best performance when θ =
1, as the IQCndbi

rand is the lowest when θ = 1 in
Figure 5(d).

6. Experiments on Large-Sized

Aligned Networks

MCD works very well for small-sized aligned
networks but cannot be applied to networks in-
volving billions of nodes and links. Meanwhile,
MCD-SCALE is introduced in this paper mainly
for large-sized aligned networks instead. Exten-
sive experiments have been done on large-scale
real-world aligned social networks in this section.

1. Dataset Description

Data sets used are parts of two real social net-
works: Foursquare and Twitter, which are crawled
from May 7th to June 9th. In Foursquare, we crawl
1, 064, 011 users, among them about 413, 182 have
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Table 6: Properties of the Heterogeneous Social Networks

network

property Twitter Foursquare

user 5,223 5,392

friend/follow 164,920 76,972

radius 75 105

their accounts in Twitter as well. Numbers of fol-
lowers and users of these 413, 182 twitter users fol-
low in Twitter are 1, 030, 855, 018 and 187, 295, 465
respectively. To compare with the baseline method,
we sample a smaller sized subnetwork of Twitter,
which has about the same size with Foursquare, to
perform experiments. The details about data sets
can be found in Table 6.

2. Experiment Settings

The baseline method used to compare with the
MCD-SCALE framework is an independent net-
work partitioning method-Metis Karypis & Kumar
(1995b), which is the state-of-the-art method for
single network partitioning by now. With Metis,
we first partition all the networks independently.
Then for each partition P(2)

i , 1 ≤ i ≤ k in G(2),

we search in each synergistic network G(1)
j ∈ G(1),

1 ≤ j ≤ t− 1, the partition P(1),l
j ⊆ V(1) containing

the largest number of same kind of anchor users
with P(2)

i will be chose to align with P(2)
i .

To evaluate the accuracy and the balance perfor-
mance of the framework MCD-SCALE, we com-
pute the nmi of anchor nodes in the datum network
and synergistic networks. To measure the edge-cut,
we edge-cut ratio to represent the percentage of
edges cut off by the partition boundaries.

In this part, all experiments are running on a
Hadoop-1.1.1 cluster of Antivision Software Ltd.,
which consists of 20 PowerEdge R320 servers (Intel
Xeon CPU E5-1410 @2.80GHz, memory 8GB) with
64-bit NeoKylin Linux OS connected by a Cisco
3750G-48TS-S switch.

3. Experiment Results

In this section, first, we simply test the per-
formance of MCD-SCALE on datum network

(a) (b)

Figure 6: Comparison of SPMN and Metis on Foursquare
network which is chosen as datum network.

Table 7: Synergistic Network for Scalability Tests (×106)

D5 D6 D7 D8 D9

Node 1.5 1.8 2.1 2.4 2.7

Link ≈127.4 ≈152.8 ≈178.0 ≈203.8 ≈230.2

(Foursquare network) and the result is shown in
Figure 6. From Figure 6(a), we can see that MCD-
SCALE consumes more time than Metis when the
partition number k is small. But when k increases,
growth of running time slows down. When k
climbs to 32, Metis becomes slower than MCD-
SCALE. By and large, the increments in both meth-
ods are very small. The reason is as follows. The
first phase consumes the most time in MKP meth-
ods. For MCD-SCALE, time consumption in the
first and last phases have nothing to do with k
and would be constants. Besides, they are running
on MapReduce, so time consumption should be
less than Metis. However, the coarsening phase
depends two jobs (node pairing and edge renam-
ing) and several iterations, and job initialization in
MapReduce would take up great part. The initial
partitioning phase takes recursive iterations to gen-
erate initial partitions and the number of iterations
is linear to k which is about the same with Metis.
For Metis, only the first phase doesn’t concern par-
tition number. If network size increases steadily,
proportion of job initialization will decrease and
the total time consumption in MCD-SCALE will be
less than Metis. From Figure 6(b), we can see that
the edge-cut size in MCD-SCALE is larger than in
Metis, that is because Metis adds a refine process
during the uncoarsening phase to further optimize
the partitions.

Second, we verify the validity and practicability
of MCD-SCALE on synergistic network (Twitter
network). To increase the number of data sets and
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(a) (b) (c) (d)

Figure 7: Performance of SPMN on Synergistic Network. (a) Edge-cut test; (b) NMI test on the partitions of anchor nodes in
datum network and synergistic network; (c) Running time test; (d) Scalability test on synergistic networks.

guarantee the connectedness in all networks, we
deliberately and randomly ignore parts of anchor
nodes and construct another three data sets which
are only different in the number of anchor nodes.
D1 has 413, 182 anchor nodes, D2 has 328, 014 an-
chor nodes, D3 has 203, 491 anchor nodes and D4
has 109, 842 anchor nodes. To test the scalabil-
ity performance of MCD-SCALE, we enlarge the
synergistic network by adding randomly selected
non-anchor node set based on D1, and all the non-
anchor nodes are from our original Twitter data
set which totally contains 1,030,855,018 nodes. The
data sets are described in Table 6. With the par-
tition results of anchor nodes in datum network,
we conduct experiments on D1-D9 (information
about D5-D9 is available in Table 7) and results are
shown in Figure 7.

First, we compare MCD-SCALE with Metis.
From Figure 7(a) and Figure 7(c), we can see that
Metis cuts off less links and runs faster than MCD-
SCALE during the network partitioning process.
As described in previous section, Metis partitions
the datum network and synergistic network inde-
pendently, which means that it treats all the nodes
as non-anchor nodes. MCD-SCALE has to con-
sider the distribution of anchor nodes during the
partitioning process. Moreover, Metis’ extra refin-
ing process during the uncoarsening phase makes
it more effective in controlling the edge-cut size
and MCD-SCALE’s job initialization account for
large proportion of the total time consumption.

From the results of NMI and scalability tests
shown in Figure 7(b) and Figure 7(d), we can see
that MCD-SCALE is more effective than Metis.
Higher NMI means that more anchor nodes are
assigned to correct partitions and the mapping
structure between partitions of different networks

is more distinct. In distributed applications, par-
titions mapped together will be assigned to the
same servers. In this situation, data locality will be
improved and communication traffic among differ-
ent servers will be reduced, both of which are very
important for large scale data analysis. In tradi-
tional MKP methods, coarsening phase consumes
the largest part of total time consumption. Metis
is a stand-alone method and can not effectively
accelerate the coarsening phase. However, MCD-
SCALE, by employing the MapReduce computing
model, is able to finish the process with relatively
less time consumption. So, in terms of scalability,
MCD-SCALE performs more excellent than Metis.

Next, we focus on the performance of MCD-
SCALE itself. In the Figure 7(a), we can see that
for a certain synergistic network, the edge-cut size
increases but the speed slows down as partition
number grows. For the same partition number
k, the more the anchor nodes are, the more the
links would be cut off. Besides, for the same k, no
significant difference in edge-cut ratio is observed
among different synergistic networks. For NMI
in Figure 7(b), the value decreases as k increases.
When k increases, the probability of assigning an
anchor node to incorrect partitions will be higher,
then the NMI value will decrease. When k keeps
increasing, speed of NMI slows, that is because the
other partitions will share responsibility for the
incorrect partition results.

For the running time test, compared with EWM
scheme, taking the anchor nodes distribution into
account in MEWM will add extra workload to
coarsening phase and will consume more time to
finish the coarsening task. Moreover, for a cer-
tain synergistic network, higher k means that more
time is required for the LPA to generate initial



Services Transactions on Big Data (ISSN 2326-442X) Vol.3, No. 2, 2016 20Services Transactions on Big Data (ISSN 2326-442X) Vol.3, No. 2, 2016 20Services Transactions on Big Data (ISSN 2326-442X) Vol.3, No. 2, 2016 20

partitions. For the scalability test shown in Fig-
ure 7(d), we can see that magnitude of increase
in time consumption is negligible as k increases.
This is attributed to two reasons: 1) there are suffi-
cient servers to process workload in the coarsening
phase. 2) the size of the coarsest networks gener-
ated in the coarsening phase are similar, meaning
time consumption in initial partitioning phase of
those networks are close as well. Plus, the uncoars-
ening phase does not distinguish anchor nodes
and non-anchor nodes.

7. Related Work

Clustering is a very broad research area, which
include various types of clustering problems, e.g.,
consensus clustering Lourenço et al. (2013); Lock
& Dunson (2013), multi-view clustering Bickel &
Scheffer (2004); Cai et al. (2013), multi-relational
clustering Yin et al. (2007), co-training based
clustering Kumar & Daumé (2011), and dozens
of papers have been published on these topics.
Lourenco et al. Lourenço et al. (2013) propose
a probabilistic consensus clustering method by
using evidence accumulation. Lock et al. pro-
pose a bayesian consensus clustering method in
Lock & Dunson (2013). Meanwhile, Bickel et
al. Bickel & Scheffer (2004) propose to study
the multi-view clustering problem, where the at-
tributes of objects are split into two independent
subsets. Cai et al. Cai et al. (2013) propose to
apply multi-view K-Means clustering methods to
big data. Yin et al. Yin et al. (2007) propose a user-
guided multi-relational clustering method, Cross-
Clus, to performs multi-relational clustering under
user’s guidance. Kumar et al. propose to address
the multi-view clustering problem based on a co-
training setting in Kumar & Daumé (2011).

A multi-view clustering paper which is corre-
lated to the problem studied in this paper is Cheng
et al. (2013), which relaxes the one-to-one constraint
in traditional multi-view clustering problems to
uncertain mappings. Weights of such mappings
need to be decided by prior domain knowledge
and each view is actually a homogeneous network.
To regularize the clustering results, a cost func-
tion called clustering disagreement is introduced in
Cheng et al. (2013), whose absolute value of all
nodes in multiple views is involved in the opti-
mization. Different from Cheng et al. (2013): (1)

the constraint on anchor links in this paper is one-
to-one and no domain knowledge is required, (2)
each network involves different users and contains
heterogeneous information, (3) we apply clustering
discrepancy to constrain the community structures
of anchor users only and non-anchor users are
pruned before calculating discrepancy cost, and
(4) the clustering discrepancy is normalized be-
fore being applied in mutual clustering objective
function.

Clustering based community detection in on-
line social networks is a hot research topic and
many different techniques have been proposed to
optimize certain measures of the results, e.g., mod-
ularity function Newman & Girvan (2004), and
normalized cut Shi & Malik (2000). Malliaros et
al. give a comprehensive survey of correlated tech-
niques used to detect communities in networks
in Malliaros & Vazirgiannis (2013) and a detailed
tutorial on spectral clustering has been given by
Luxburg in von Luxburg (2007). These works are
mostly studied based on homogeneous social net-
works. However, in the real-world online social
networks, abundant heterogeneous information
generated by users’ online social activities exist
in online social networks. Sun et al. Sun et al.
(2009) studies ranking-based clustering on hetero-
geneous networks, while Ji et al. Ji et al. (2011)
studies ranking-based classification problems on
heterogeneous networks. Coscia et al. Coscia et al.
(2011) proposes a classification based method for
community detection in complex networks and
Mucha et al. study the community structures in
multiplex networks in Mucha et al. (2010).

In recent years, researchers’ attention has started
to shift to study multiple heterogeneous social net-
works simultaneously. Kong et al. Kong et al.
(2013) are the first to propose the concepts of
aligned networks and anchor links. Across aligned
social networks, different social network applica-
tion problems have been studied, which include
different cross-network link prediction/transfer
Zhang et al. (2013, 2014a,b); Zhang & Yu (2015b),
emerging network clustering Zhang & Yu (2015a)
and large-scale network community detection Jin
et al. (2014), inter-network information diffusion
and influence maximization Zhan et al. (2015).
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8. Conclusion

In this paper, we have studied the mutual com-
munity detection problem across multiple partially
aligned heterogeneous online social networks. A
novel clustering method, MCD and MCD-SCALE,
has been proposed to solve the mutual community
detection problem. We have proposed a new simi-
larity measure, HNMP-Sim, based on social meta
paths in the networks. MCD and MCD-SCALE can
achieve very good clustering results in all aligned
networks simultaneously with full considerations
of network difference problem as well as the con-
nections across networks. Extensive experiments
conducted on two real-world partially aligned het-
erogeneous networks demonstrate that MCD and
MCD-SCALE can perform very well in solving the
mutual community detection problem.
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