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Abstract—With the advance of technology, entities can be
observed in multiple views. Multiple views containing different
types of features can be used for clustering. Although multi-view
clustering has been successfully applied in many applications, the
previous methods usually assume the complete instance mapping
between different views. In many real-world applications, infor-
mation can be gathered from multiple sources, while each source
can contain multiple views, which are more cohesive for learning.
The views under the same source are usually fully mapped,
but they can be very heterogeneous. Moreover, the mappings
between different sources are usually incomplete and partially
observed, which makes it more difficult to integrate all the views
across different sources. In this paper, we propose MMC (Multi-
source Multi-view Clustering), which is a framework based on
collective spectral clustering with a discrepancy penalty across
sources, to tackle these challenges. MMC has several advantages
compared with other existing methods. First, MMC can deal
with incomplete mapping between sources. Second, it considers
the disagreements between sources while treating views in the
same source as a cohesive set. Third, MMC also tries to infer
the instance similarities across sources to enhance the clustering
performance. Extensive experiments conducted on real-world
data demonstrate the effectiveness of the proposed approach.

I. INTRODUCTION

With the advance of technology, most of entities can be ob-
served in multiple views. Multiple views containing different
types of features can be used for clustering. Multiple view
clustering [1]–[3] aims to enhance clustering performance
by integrating different views. Moreover, as the information
explodes, we can get information from multiple sources.
Each source can contain multiple views that are fully aligned
and available for clustering. Combining data from multiple
sources, multiple views may help us get better clustering
performance.

However, several difficulties prevent us from combining
different sources and views. First, the views may be very het-
erogeneous. Different views may have different feature spaces
and distributions. Second, the instances mapping between
different sources may be incomplete and partially observed.
Different sources may have different instance sets, which
means the instance mapping between different sources is
not fully mapped. Also in real-world problems, the instance
mapping is often partially observed. We may only get part
of the instance mapping between different sources. Third, the
views in one source are generally more cohesive than the

views across different sources. This is very different from the
traditional multi-view clustering problem.

A good example is the social networks shown in Fig. 1. Peo-
ple usually use several social network services simultaneously,
e.g., those provided by Twitter and Foursquare. Each social
network is an independent source containing several views that
describe different aspects of the social network. We can use the
profile information of users for both Twitter and Foursquare
(view 3 in Fig. 1), the social connections of users (view 2 in
Fig. 1), location check-in history, etc. Views in a single source
describe the characters of the same set of users and focus on
different aspects. The views in Twitter focus on the social
activity aspects, while the views in Foursquare focus more
on the location based aspects. Since not all people use both
Twitter and Foursquare, the user mapping between Twitter and
Foursquare is incomplete and not one-to-one. Furthermore,
not all the shared users link their Twitter accounts with their
Foursquare accounts. We can only observe part of the mapping
between Twitter and Foursquare.

Multi-view clustering [1], [4], [5] aims to utilize the mul-
tiple representations of instances in different features spaces
to get better clustering performance. However, most of the
previous methods are based on the assumption that all the
views are fully mapped/aligned. They cannot deal with the
multi-source multi-view scenario with incomplete/partial map-
ping across sources. Although there are some previous studies
on dealing with multiple incomplete view clustering [6]–[9],
none of them are suitable for multi-source multi-view scenario.
They either cannot extend to more than two views or they do
not treat the views in one source as a cohesive set. All of the
previous methods only use the known mapping information.
Furthermore, none of them try to extend the known mapping
information to help improve clustering. These challenges and
emerging applications call for novel clustering methods which
can deal with multiple sources multiple views situations.
In this paper, we propose MMC (Multi-source Multi-view
Clustering) to integrate multiple sources for better clustering
results. The main contributions of this paper are summarized
as follows:

1) This paper is the first one to investigate the multi-source
multi-view clustering problem, where multiple sources
containing multiple views are available for clustering
and the instance mappings between sources are incom-
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Fig. 1: An Example of Social Networks. Twitter and Foursquare are
two sources. Twitter contains user connection view, user interaction
view and user profile view, while Foursquare contains user connection
view, user check-in location view, user profile view. The user mapping
between Twitter and Foursquare is incomplete and partially observed.

plete and partially known.
2) We develop a method MMC, based on collective spectral

clustering with discrepancy penalty within and between
sources. MMC appreciates the cohesiveness of all the
views in each source by pushing the latent feature
matrice of the views in one source to a consensus
for each source. MMC also considers the cross-source
discrepancy by minimize the difference among the con-
sensus latent feature matrices of different sources.

3) The proposed MMC not only generates clusters from
multiple sources but also tries to infer the unknown
instance similarity mapping between sources to im-
prove the clustering performance. By using the learned
consensus latent feature matrices of different sources
and the incomplete/partial mappings across sources,
MMC generates the instance similarities across different
sources, which will in turn help enhance the clustering
performance.

4) The proposed MMC is not limited to the multiple
sources multiple views problem. In real-world applica-
tions, we may have multiple partial aligned views, i.e.,
views with different numbers of instances. We can group
the views into groups where each group has the same
set of instances. Thus each group can be viewed as a
source and our method can be applied.

The experiment results on three groups of real data show
the effectiveness of the proposed method by comparing it with
other state-of-art methods.

II. PROBLEM FORMULATION

In this section, we will first define the problem of multi-
source multi-view clustering. Then we will start from the
single source problem to develop the objective function for
multi-source multi-view clustering problem.

TABLE I: Summary of symbols and their meanings

Symbols Description
K Number of sources.
vk Number of views for source k.
nk Number of instances in source k.
ck Number of clusters for source k.
Xk

i i-th view in source k
Kk

i Kernel matrix for the i-th view in source k
KU Kernel matrix of the matrix U

Lk
i = (Dk

i )
−1/2Kk

i (D
k
i )
−1/2

Normalized graph Laplacian for the i-th view in
source k, where Dk

i is a diagonal matrix consisting
of the row sums of Kk

i .
M(i,j) ∈ Rni×nj Instance mapping between source i and j.
W (i,j) ∈ Rni×nj Indicator matrix between source i and j

αk
i Importance of view i in source k

β(i,j) Importance of penalty between source i and j
Uk
i ∈ Rnk×ck Latent feature matrix for view i in source k

Uk∗ ∈ Rnk×ck Consensus latent feature matrix for source k

A. Problem Definition

Before we define the problem of multi-source multi-view
clustering, we summarize the notations in Table I. Let S =
{Sk}Kk=1 denote the set of the K available sources. For each
Sk, we have Sk = {Xk

i }
vk
i=1, where Xk

i denotes the i-th view
in source k and vk denotes the number of views in source k.
We assume that source k (1 ≤ k ≤ K) contains nk instances.
Let M = {M (i,j)}1≤i,j≤K be the known instance mappings
between sources, where M (i,j) ∈ Rni×nj

+ denotes the instance
mapping between sources i and j, and its element is defined
by

M
(i,j)
a,b =


1 instance a in source i is mapped to

instance b in source j.
0 otherwise.

(1)

Our goal is to cluster the instances into ck clusters for each
source k, while considering the other sources by using the
cross-source mapping in M.

B. Single Source Multiple Views Clustering

Clustering with multiple views within a single source can be
seen as traditional multi-view clustering problem. However, in
order to incorporate the cross-source disagreement, we would
like to get a consensus clustering solution for each source. Let
Kk
i be the positive semi-definite similarity matrix or kernel

matrix for view i in source k. The corresponding normalized
graph Laplacian will be Lki = Dk

i
−1/2

Kk
i D

k
i
−1/2, where Dk

i

is a diagonal matrix with the diagonal elements be the row
sums of Kk

i . To perform spectral clustering for a single view
i in source k, as shown in [3], [10], [11], we only need to
solve the following optimization problem for the normalized
graph Laplacian Lki :

max
Uk

i ∈Rnk×ck

tr((Uki )
TLki U

k
i ), s.t.(Uki )

TUki = I , (2)

where tr denotes the matrix trace, and Uki can be seen as
a latent feature matrix of view i in source k, which can be
given to the k-means algorithm to obtain cluster memberships.
For clustering multiple views in the same source, we have to
consider the disagreement between different views. We enforce
the learned latent feature matrix for each view to look similar
by regularizing them towards a common consensus.



Similar to the regularization in [3], we define the discrep-
ancy/dissimilarity between two latent feature matrices as:

D(Uki , U
k
j ) = ‖KUk

i
−KUk

j
‖2F , (3)

where KUk
i

and KUk
j

are the similarity/kernel matrices for Uki
and Ukj , and ‖.‖F denotes the Frobenius norm of the matrix.
We use linear kernel as the similarity measure in Eq. (3).
Thus, we get KUk

i
= Uki (U

k
i )
T and KUk

j
= Ukj (U

k
j )
T .

Using the properties of trace and the fact that (Uki )
TUki = I ,

(Ukj )
TUkj = I , Eq. (3) can be rewritten as follows:

D(Uki , U
k
j ) = ‖Uki (Uki )T − Ukj (Ukj )T ‖2F

= tr
(
Uki (U

k
i )
T + Ukj (U

k
j )
T − 2Uki (U

k
i )
TUkj (U

k
j )
T
)

= 2ck − 2tr(Uki (U
k
i )
TUkj (U

k
j )
T ).

(4)

Ignoring the constant terms, we can get the discrepancy
between two different latent feature matrices:

D(Uki , U
k
j ) = −tr(Uki (Uki )TUkj (Ukj )T ). (5)

Then D(Uki , U
k∗) = −tr(Uki (Uki )TUk∗(Uk∗)T ) is the dis-

crepancy between the i-th view and the consensus. Consid-
ering the discrepancy/dissimilarity between each view and
the consensus in the same source, the objective function for
clustering all the views within the k-th source will be as
follows:

max
{Uk

i },U
k∗
Jk =

vk∑
i=1

(
tr(Uk

i

T
Lk

i U
k
i ) + αk

i tr(U
k
i U

k
i

T
Uk∗Uk∗T )

)
,

s.t. Uk
i

T
Uk

i = I , ∀1 ≤ i ≤ vk, Uk∗TUk∗ = I

(6)

where Jk is the objective function for source k, Uki is the
latent feature matrix for the i-th view in source k, Uk∗ is the
consensus latent feature matrix for source k, and αki is the
relative importance of view i in source k.

C. Multiple Sources Multiple Views Clustering

In this section, we will derive the objective function for
Multi-source Multi-view Clustering problem. We model it as
a joint matrix optimization problem.

In order to incorporate multiple sources, we need to add
penalty between sources to the single source multiple views
clustering objective function. To appreciate the cohesiveness
of the views within one source, we learn the consensus
latent feature matrix for each source and only penalize the
discrepancy between those consensus latent feature matrices.

Similar to the discrepancy function across views within one
source, the penalty function across sources should consider the
discrepancy between the consensus clustering results for the
sources. Since the mappings between sources are incomplete
and partially known, we cannot directly apply the same penalty
function as in the single source multiple views clustering
objective function. However, by using the mapping matrices,
we can project the learned latent feature matrix from one
source to other sources, M (i,j)TU i∗ can be seen as projection
of the instance in source i to the instances in source j. The

penalty function for discrepancy between source i and source
j is as follow:

D̃(U i∗, U j∗) = ‖M (i,j)TU i∗(M (i,j)TU i∗)T − U j∗U j∗T ‖2F . (7)

Observing that the known mapping between two sources
is one-to-one and it is reasonable to assume that the un-
known part is one-to-at-most-one, which means one instance
in one source can be mapped to at most one instance in
the other source. So we can approximately assume that
M (i,j)M (i,j)T = I to help simplify the penalty function. The
Eq. 7 can be expressed as:

tr
((
M (i,j)TU i∗U i∗TM (i,j) − U j∗U j∗T

)(
M (i,j)TU i∗U i∗TM (i,j) − U j∗U j∗T

))
(8)

Using the fact that U i∗TU i∗ = I , tr(U i∗TU i∗) = ci, and
M (i,j)M (i,j)T = I , and ignoring the constant terms, the
penalty function for discrepancy is

D̃(U i∗, U j∗) = −tr
(
U j∗U j∗TM (i,j)TU i∗U i∗TM (i,j)

)
(9)

Adding the penalty function between sources to the single
source multiple views clustering objective function for all the
sources, we get

max
Uk
i
,Uk∗(1≤k≤K,1≤i≤vk)

O =

K∑
k=1

Jk −
∑

i6=j,1≤i,j≤K

β
(i,j)

D̃(U
i∗
, U

j∗
),

where β(i,j) ≥ 0 is a parameter controlling the balance
between the objective function for individual source and the
inconsistency across sources.

III. OPTIMIZATION AND MMC FRAMEWORK

The proposed MMC framework simultaneously optimizes
the latent featue matrices in multiple sources and infers the
cross-source instance similarity mappings to help enhance the
clustering performance. To optimize the objective function in
Eq. (10), we employ an alternating scheme, that is, we opti-
mize the objective function with respect to one variable while
fixing others. Basically, we optimize the objective function
using two stages. First, maximizing O over Uki s with fixed
Uk∗s. Second, maximizing O over Uk∗s with fixed Uki s. We
repeat these two steps, until it converges.

Solving the optimization, we can iteratively learn the latent
feature matrices for each source. However, when only a small
portion of instances mapping between sources are observed,
the clustering performance is affected by the incompleteness
of the instance mapping across sources. Inferring the exact
instance mapping is really challenging and usually additional
information is required to infer such anchor link [12], [13].
However, instead of inferring the exact instance mapping, we
can try to infer the similarity mapping. This idea is based on
the Principle of Transitivity on Similarity:

Theorem III.1. Instances similar to the same instance in
different sources should be similar.

Fig. 2 illustrates the principle. In Fig. 2, B and C are both
similar to A in different sources. Given the known mapping



Fig. 2: Principle of Transitivity on Similarity.

between A in the two sources, we can infer that B and C are
similar. MMC tries to use the similarity transitivity principle
to help infer the cross-source instance similarity and to help
improve the clustering performance. Next, we will talk about
each step in the MMC framework in detail.

A. Initialization

Since the efficiency of the iterative optimization is affected
by the initialization step, in this paper, we learn the initial value
of Uki and Uk∗ rather than random initialization. For each Uki ,
we solve Eq. (2) to get an initial value. As we described in
the previous section, Eq. (2) is just the objective function for
single view clustering, without considering the relation among
views and sources. The solution Uki is given by the top-ck
eigenvectors of the Laplacian Lki .

For each Uk∗, we just solve Eq. (6) to get the initialization
value with the initial Uki . The objective function can be written
as:

max
Uk∗

tr

(
Uk∗T

(
vk∑
i=1

αk
i U

k
i U

k
i

T

)
Uk∗

)
,

s.t. Uk∗TUk∗ = I

(10)

The solution is given by the top-ck eigenvectors of the
modified Laplacian

∑vk
i=1 α

k
i U

k
i U

k
i
T .

In the previous section, we assume that the mapping matrix
between two sources is semi-orthogonal, i.e., M (i,j)M (i,j)T =
I . However, we can only get part of the mapping information
due to the incompleteness and partial known property of real-
world problem. The mapping matrix between two sources can
be expressed in two parts M (i,j)

0 and M i,j
1 :

M (i,j) =

[
M

(i,j)
0 0

0 M
(i,j)
1

]
, (11)

where M (i,j)
0 represents the known mapping between source

i and j and M (i,j)
1 represents the unknown part.

It is easy to find that M (i,j)
0 M

(i,j)T
0 = I . We only need

to initialize the unknown part to make it semi-orthogonal.
One natural way to estimate the unknown mapping is to
use the instance similarity among the instances between two
sources. Using the similarity transitivity principle, the instance
similarity between two sources i and j can be estimated by:

KUi∗

[
M

(i,j)
0 0
0 0

]
KUj∗ , where KUi∗ and KUj∗ are the two

kernel matrices for latent feature U i∗ and U j∗. It is worth to
note that the kernel matrices KUi∗ and KUj∗ can be seen as
the similarity matrices of the latent features for sources i and j.
The similarity transitivity principle allows us to use the known
instance mapping as a bridge to connects unmapped instances
in two sources. Using Fig. 2 as an example, (KUi∗)b,a provides
the similarity between instances B and A in source i, while
(KUj∗)a,c provides the similarity between instances A and
C in source j. If both instances A in both sources i and

j are mapped through M (i,j),
(
KUi∗

[
M

(i,j)
0 0
0 0

]
KUj∗

)
b,c

,

denoted by (M̃ (i,j))b,c, will provide the estimated similarity
between instance B in source i and instance C in source j.
So for the unmapped instances, we can have an estimated
similarity mapping M̃ (i,j)

1 . Then we can orthogonalize it using
SVD or other orthogonalization methods.

B. Maximizing O over Uki s with fixed Uk∗s

With fixed Uk∗s, for each Uki we only need to maximize
part of Jk.

max
Uk

i

L = tr(Uk
i

T
Lk

i U
k
i ) + αk

i tr(U
k
i U

k
i

T
Uk∗Uk∗T )

= tr(Uk
i

T
(Lk

i + αk
i U

k∗Uk∗T )Uk
i )

s.t. Uk
i

T
Uk

i = I

(12)

This is a standard spectral clustering objective on source k

view i with modified graph Laplacian Lki + αki U
k∗Uk∗

T .
According to [11], the solution Uki is given by the top-ck
eigenvectors of this modified Laplacian. With fixed Uk∗s, we
can calculate each Uki to maximize the objective function.

C. Maximizing O over Uk∗s with fixed Uki s

With fixed Uki s, for each Uk∗, we only need to maximize:

max
Uk∗
Q =

vk∑
i=1

αki tr(U
k
i U

k
i

T
Uk∗Uk∗

T
)−

∑
1≤j≤K,j 6=k

β(k,j)D̃(Uk∗, U j∗)

=

vk∑
i=1

αki tr(U
k
i U

k
i

T
Uk∗Uk∗

T
)

+
∑
j 6=k

β(k,j)tr
(
U j∗U j∗TM (k,j)TUk∗Uk∗TM (k,j)

)
= tr

(
Uk∗TLk∗Uk∗

)
s.t. Uk∗

T
Uk∗ = I .

(13)
where

Lk∗ =

vk∑
i=1

αki U
k
i U

k
i

T
+
∑
j 6=k

β(k,j)M (k,j)U j∗U j∗TM (k,j)T

The solution Uk∗ is given by the top-ck eigenvectors of this
modified Laplacian Lk∗. Thus, with fixed Uki s, we can calcu-
late the consensus Uk∗ for each of the sources to maximize
the objective function.



D. Infer the Similarity Mapping between Sources

Using above optimization method, we can iteratively learn
the latent feature matrices for each source. However, when the
number of partially observed mapping is limited, i.e., when
only a small number of instances mapping between sources
are observed, the estimated initial similarity mapping between
two sources may not be accurate. Hence the improvement of
clustering performance is limited.

Based on the similarity transitivity principle, MMC pro-
poses to use the learned latent feature matrices for multiple
sources to help infer the similarity mapping across sources.

Similar to the initialization, we use the instance mapping
between two sources as a bridge to help transfer the similarity.
The new estimated instance similarities between two sources
can be written as:

M̃ (i,j) = KUi∗M (i,j)KUj∗ , (14)

where KUi∗ and KUj∗ are the two kernel matrices for latent
feature matrices U i∗ and U j∗. In our experiment, we use linear
kernel for the latent feature matrices.

This estimated similarity mapping includes every instance
across two sources. However, we want to preserve the already
known instance mapping and only update the instance sim-
ilarity mapping for instances whose mappings are unknown.
We introduce the indicator matrix W i,j , which has the same
dimension as M (i,j) and was initialized with only 0 and 1.
W

(i,j)
ab equals to 1 if the mapping between a-th instance from

source i and the b-th instance from source j is known, and
0 if unknown. The similarity mapping between source i and
source j and is updated as follows:

M (i,j) ←W (i,j) ◦M (i,j) + (1−W (i,j)) ◦ M̃ (i,j), (15)

where ◦ indicates the element-wise multiplication, M̃ (i,j) =

U i∗U i∗
T
M (i,j)U j∗U j∗

T and 1 is an all-one matrix. By using
the indicator matrix W (i,j) and element-wise multiplication,
we can only update the unknown part of the mapping, and
preserve the known part. Once we have a better mapping
across sources, it will help learn better latent feature matrices.
The better latent feature matrices will in-turn help infer the
similarity mapping. This iteration continues until it converges.

E. MMC framework

The algorithm for the MMC framework is shown as Al-
gorithm 1. We first calculate the kernel matrices and the
corresponding normalized graph Laplacian matrices for ev-
ery view. In all the experiments throughout the paper, we
use Gaussian kernel for computing the similarities unless
mentioned otherwise. The standard deviation of the kernel is
set equal to the median of the pair-wise Euclidean distances
between the data points. We then initialize the latent feature
matrices {Uki }, {Uk∗} and the instance mappings M (i,j).
Then we iteratively update Uki s, Uk∗s and M (i,j)s until they
all converge.

Algorithm 1 MMC framework

Input: Data matrices for every view from each source {Xk
i }.

Instance mappings between sources {M (i,j)}. Indicator
matrices {W (i,j)}. The number of clusters for each source
{ck}. Parameters {αki } and {β(i,j)}.

Output: Clustering results for each source.
1: Calculate Kk

i and Lki for every k and i.
2: Initialize Uki for every k and i.
3: Initialize Uk∗ by solving Eq.(10).
4: repeat
5: repeat
6: Update each Uki by solving Eq. (12).
7: Update each Uk∗ by solving Eq. (13).
8: until objective function O converges.
9: Update the similarity mappings using Eq. (15).

10: until mappings between sources converge.
11: Apply k-means on Uk∗ for every source k.

IV. EXPERIMENTS AND RESULTS

In this section, we compare MMC framework with a number
of baselines on three real-world data sets.

A. Comparison Methods

We compare the proposed MMC method with several state-
of-art methods. Since no previous methods can be directly
applied to the multi-source multi-view situation, in order to
compare with the previous methods, we make some changes.
The details of comparison methods is as follows:
• MMC: MMC is the clustering framework proposed in

this paper, which applies collective spectral clustering
with discrepancy penalty across sources. The parameter
α is set to 0.1 and β is set to 1 for all the views and
sources throughout the experiment.

• Concat: Feature concatenation is one way to integrate all
the views. We concatenate views within each source, so
each source is a concatenated view. Since the instances
between sources are not fully aligned, we extend each
source by adding pseudo instances (average features).
Thus, sources are fully aligned after extension. We then
apply PCA and k-means to get the clustering results.

• Sym-NMF Symmetric non-negative matrix factorization
is proposed in [14] as a general framework for clustering.
It factorizes a symmetric matrix containing pairwise
similarity values. To apply Sym-NMF to multi-source
multi-view situation, we apply Sym-NMF to every view
from each source to get the latent feature matrices. Then
we combine all the latent feature matrices in the same
source to produce the final clustering results.

• MultiNMF: MultiNMF is one of the state-of-art multi-
view clustering methods based on joint nonnegative ma-
trix factorization [15]. MultiNMF formulates a joint ma-
trix factorization process with the constraint that pushes
clustering solution of each view towards a common
consensus instead of fixing it directly. Throughout the



Fig. 3: Source alignment

experiment, the parameter λv is set to 0.01 as in the
original paper.

• CoReg: CoReg is the centroid based multi-view cluster-
ing method proposed in [3]. It aims to get clusters that are
consistent across views by co-regularizing the clustering
hypotheses. Throughout the experiment, the parameter λv
is set to 0.01 as suggested in the original paper.

• CGC: CGC [8] is the most recent work that deals with
many-to-many instance relationship, which is similar to
incomplete instance mapping. In order to run the CGC
algorithm, we generated the relations between views
within one source, which is complete one-to-one map-
ping. We also generate the relations between views across
sources, which is incomplete and partially known. We
run CGC on all the views across sources and report the
best performance for each source. In the experiment, the
parameter λ is set to 1 as suggested in the original paper.

It is worth to note that the two multi-view clustering
methods MultiNMF and Co-Reg only work with views that
are fully aligned. In our experiments, only views from the
same source are fully mapped/aligned. Views across different
sources are partially mapped. We apply MultiNMF and Co-
Reg in two ways.

The first way is to apply them to every single source, de-
noted as MultiNMF-S and CoReg-S. Thus, both MultiNMF-S
and Co-Reg-S only co-regularize the views within a source
without considering the discrepancy between sources. The
second way is to apply MultiNMF and Co-Reg to multiple
sources, denoted as MultiNMF-M and CoReg-M. However,
the views across sources are not fully mapped/aligned. In order
to apply MultiNMF and Co-Reg, we align the sources by
adding average pseudo instances to every source. As shown in
Fig. 3, for the unmapped instances in one source, we created
the corresponding pseudo instances in other sources. Thus, the
instances from different sources are fully mapped. MultiNMF
and Co-Reg are then applied to all the aligned views, and
performance is reported for every source.

In our experiments, we use Gaussian kernel for computing
the similarities unless mentioned otherwise. The standard
deviation of the kernel is set equal to the median of the pair-
wise Euclidean distances between the data points. K-means is

TABLE II: Statistics of the datasets

data size # view # cluster
Dutch 2000 6 10
USPS 2000 2 10

English 1200 2 6
Translation 1200 2 6

BBC 352 2 6
Reuters 294 2 6

Guardian 302 2 6

used to get clustering results for all the methods. For each
setting, we run k-means 20 times and report the average
performance.

B. Dataset

In this paper, three groups of real-world data sets are used to
evaluate the proposed MMC method. The important statistics
of them are summarized in Table II.
• Dutch-USPS This data set comes from two sources, UCI

Handwritten Dutch digit numbers and USPS digit data.
The first source, Dutch1, consists of 2000 examples of
handwritten numbers ’0’-’9’ (200 examples per class)
extracted from a collection of Dutch utility maps. All
the examples have been digitized in binary images. Each
example is represented in the following six views: (1)
76 Fourier coefficients of the character shapes, (2) 216
profile correlations, (3) 64 Karhunen-Love coefficients,
(4) 240 pixel averages in 2× 3 windows, (5) 47 Zernike
moments, and (6) 6 morphological features. The second
source, USPS2, consists of digit images with size 16×16
for numbers ‘0’-‘9’. We randomly select 2000 examples
corresponding to the examples in first source. From USPS
data, we extract two views, the original pixel feature
with dimension of 256 and the Gaussian similarity matrix
between examples with dimension of 2000.

• English-Translations: This data contains two sources,
the original Reuters news documents written in English,
and the machine translations in other four languages
(French, German, Spanish and Italian) in 6 topics [16].
From the first source, English, we use the document-term
matrix and the cosine similarity matrix of the documents
as two views. From the second source, Translation,
we extract the document-term matrices from French and
German as two views. We randomly sample 1200 docu-
ments from the first source in a balanced manner, with
each category having 200 documents. We then select the
corresponding 1200 documents from the second source.

• News Text data3: This news data has three sources: BBC,
Reuters, and The Guardian. In total there are 948 news
articles covering 416 distinct news stories from the period
February to April 2009. Thus, the articles from these three
sources are naturally partially mapped. Of these distinct
stories, 169 were reported in all three sources, 194 in

1https://archive.ics.uci.edu/ml/datasets/Multiple+Features
2http://www.cs.nyu.edu/ roweis/data.html
3http://mlg.ucd.ie/datasets/3sources.html



two sources, and 53 appeared in a single news source.
Each story was annotated with one of the six topical
labels: business, entertainment, health, politics, sport,
technology. From each source, we extract two views, the
document-term matrix and the cosine similarity matrix.
From the three sources, we create three sets of data, BBC-
Reuters (239 mapped instances), BBC-Guardian (250
mapped instances) and Reuters-Guadian (212 mapped
instances).

It is worth noting that both Dutch-USPS and English-
Translation data are one-to-one fully mapped. In our ex-
periments, we randomly delete part of the mappings across
different sources.

C. Results

The results for Dutch-USPS data and English-Translation
data are shown in Table III. The results are obtained under 60%
known mappings . We report the NMI (Normalized Mutual
Information) for each source in Table III.

From Table III, we can observe that the proposed MMC
framework outperforms all the other comparison methods
on both Dutch-USPS and English-Translation data. For the
Dutch-USPS data, although CoReg-M and CGC are close to
MMC (less than 4%) on Dutch, MMC outperforms the other
methods on USPS by at least 10 %. We can also observe that
MultiNMF-M and CoReg-M perform better than MultiNMF-S
and CoReg-S on Dutch-USPS. However, the performance of
the multi-source methods is worse than single-source method
on English-Translation. This suggests that combining multiple
sources only using the incomplete instance mappings may even
hurt the performance. The proposed MMC methods, however,
iteratively discovers the similarity among unmapped instances
and uses the similarity to help learning.

We also reported the results on three sets of the news text
data (BBC-Reuters, BBC-Guardian and Reuters-Guardian) in
Table IV. From Table IV, we can see that MMC outperforms
other comparison methods by a large margin in most cases.
On Reuters-Guardian, although MultiNMF-M is slightly better
than MMC on Guardian, MMC is still better than all the other
baselines on Reuters.

From Table III and Table IV, we can observe that MMC
outperforms other comparison methods in most cases for all
the three groups of data. We can also conclude that MMC
reduces the impact of negative transfer by iteratively learns the
similarity among unmapped instances and takes advantage of
it. The other reason why MMC can have a better performance
for all the sources is that MMC treats the views within each
source as a cohesive unit for clustering while considering
discrepancy/disagreements between sources.

D. Parameter Study

There are two sets of parameters in the proposed MMC
method: {αki }, the relative importance of view i in source k,
and {β(i,j)}, the weight of the discrepancy penalty between
source i and j. Here we explore the influence of the view
importance weights and the discrepancy penalty weights. We

TABLE III: NMI for Dutch-USPS and English-Translation at 60%
cross source mapping known

Method Dutch USPS English Translation
Concat 0.5734 0.3916 0.1914 0.1621

Sym-NMF 0.7778 0.3005 0.2783 0.1527
MultiNMF-S 0.5382 0.4010 0.3413 0.2708
MultiNMF-M 0.7585 0.4700 0.342 0.2164

CoReg-S 0.7503 0.4044 0.3381 0.2874
CoReg-M 0.7886 0.5257 0.2187 0.2198

CGC 0.7851 0.2780 0.2636 0.2536
MMC 0.8248 0.6348 0.3528 0.3073

TABLE IV: NMI for News Text Data

Method BBC-Reuters BBC-Guardian Reuters-Guardian
BBC Reuters BBC Guardian Reuters Guardian

Concat 0.3003 0.3118 0.3344 0.3603 0.2994 0.3073
Sym-NMF 0.4414 0.443 0.4261 0.4444 0.4332 0.4325

MultiNMF-S 0.4799 0.4158 0.4637 0.4677 0.4275 0.4656
MultiNMF-M 0.5453 0.5127 0.4539 0.5243 0.5372 0.5465

CoReg-S 0.5488 0.5273 0.5532 0.5393 0.5273 0.536
CoReg-M 0.4311 0.4615 0.4927 0.5103 0.4644 0.454

CGC 0.4378 0.4159 0.4354 0.4171 0.4338 0.3921
MMC 0.5714 0.5874 0.5632 0.5903 0.5639 0.5377

first fix {β(i,j)} to be 1, and run the proposed MMC method
with various {αki } values (10−3 to 103). We then fix {αki }
to be 0.1, and run the proposed MMC method with various
{β(i,j)} values (10−3 to 103). Due to the limit of space, we
only report the results on Dutch-USPS data with 60% known
mapping in Fig. 4 and Fig. 5. From Fig. 4, we can see that the
performance is stable with αki smaller than 100, and the best
performance is achieved when αki is around 0.1. In Fig. 5,
The performance is stable with β(i,j) between 0.1 and 100.
The best performance is achieved when β(i,j) is near 1.
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V. DISCUSSION

In this section, we aim at analyzing MMC more in detail
in order to answer the following four questions:



TABLE V: NMI on Dutch-USPS with different clusters number

Method c1 = 2 c1 = 4 c1 = 6 c1 = 8 c1 = 10

Concat(D) 0.7806 0.5847 0.5499 0.5737 0.5734
Sym-NMF(D) 0.9652 0.8907 0.8393 0.7912 0.7778

MultiNMF-S(D) 0.9041 0.6996 0.5687 0.5917 0.5382
MultiNMF-M(D) 0.9652 0.8717 0.8086 0.7460 0.7585

CoReg-S(D) 0.9387 0.8879 0.8322 0.7807 0.7503
CoReg-M(D) 0.9652 0.9035 0.8205 0.8295 0.7886

CGC(D) 0.9652 0.9108 0.8345 0.7976 0.7851
MMC(D) 0.9652 0.9433 0.8897 0.8311 0.8248
Concat(U) 0.4877 0.3470 0.3338 0.3730 0.3916

Sym-NMF(U) 0.5708 0.4412 0.3465 0.2875 0.3005
MultiNMF-S(U) 0.6261 0.6070 0.4783 0.4306 0.4010
MultiNMF-M(U) 0.7711 0.5006 0.6147 0.5585 0.4700

CoReg-S(U) 0.5375 0.5116 0.4207 0.3778 0.4044
CoReg-M(U) 0.5676 0.7604 0.5023 0.5146 0.5257

CGC(U) 0.5708 0.4513 0.2866 0.2642 0.2780
MMC(U) 0.7753 0.7435 0.7109 0.6856 0.6348

(1) How does the difficulty of the clustering problem affect
the performance of these methods?
(2) How does percentage of known mappings between sources
affect the performance of MMC?
(3) How good is the inferred similarity mapping?
(4) How fast does MMC converge?

To show the performance for clustering problem with dif-
ferent difficulties, we apply MMC to Dutch-USPS data but
with different number of clusters (2 to 10). The difficulty
of the clustering problem increases as the number of clusters
increases. The results are shown in Table V. The percentage
of known mappings is also set to 60%. The NMIs for both
sources are reported in separate rows (MMC(D) for Dutch
and MMC(U) for USPS).

From Table V, we can observe that as the number of
clusters increases (the difficulty of the problem increases), the
performance for all of the methods decrease. The proposed
MMC outperforms other comparison methods in almost all
cases with one exception. CoReg-M outperforms MMC on
USPS when the cluster number is 4. However, the proposed
MMC achieved the second best performance in that case.

To answer the second question, we apply MMC on both
Dutch-USPS data and English-Translation data with various
percentages of known mapping between 30% to 100 % (10%
interval). The results are shown in Tables VI and VII. It
is worth noting that Sym-NMF, CoReg-S and MultiNMF-
S do not utilize the instance mapping across sources. Thus,
the performance of these three methods remain the same for
different percentages.

In Table VI and Table VII, the proposed MMC outperforms
the other comparison methods for both sources in almost all
of the different parameter settings. It is important to notice
that even with 100% mapping available, the proposed MMC
is still better than other multi-view clustering methods. This is
because MMC will treat views within one source as a cohesive
set while other multi-view clustering algorithms treat the views
from different sources equally.

From the results, we can conclude that MMC works for
various percentages of known mapping across sources. The

TABLE VIII: The inference accuarcy under differnet cluster numbers
on Dutch-USPS

c = 2 c = 4 c = 6 c = 8 c = 10

instances 160 320 480 640 800
matches 113 259 349 429 522
accuracy 0.7063 0.8094 0.7271 0.6703 0.6525

TABLE IX: The number of iterations until converge

% Known 30% 40% 50% 60% 70% 80% 90%

# iter 14 14 15 18 19 21 17

reason why MMC performs better is not only because it
appreciates the cohesiveness of the views, but also for every
iteration, MMC tries to infer the instance similarity mapping
between different sources. Although the instance similarity
mapping is not as the same as the instance mapping, it
provides extra information about the partially known instance
mapping. Thus the inferred instance similarity mappings will
help improve clustering in the next iteration.

To show how good the inference of similarity mapping is,
we perform another set of experiments to measure the quality
of the inferred similarity mappings among those not-aligned
instances. For each not-aligned instance, we select the most
similar instance mapped by the similarity mapping. Then we
check if the two instances are in the same class. We test the
accuracy for different number of clusters on Dutch-USPS data.
Here the percentage of known instance mapping is set to 60%.
We reported the number of instances that are not aligned by
the known mapping, and the number of class matches by the
inference of similarity mappings in Table VIII.

From Table VIII, we can clearly observe that when the
number of clusters is 4, the inference of similarity mapping can
get an accuracy as high as 0.8094. As the number of clusters
increases, the accuracy of the inference drops. However, even
with the number of clusters being as high as 10, we still
get an accuracy of 0.6525 for the inference. To have a better
understanding of the inferred similarity mapping, we plot the
similarity mapping among the unmapped instances from the
Dutch-USPS data with four clusters and 60% known mapping
in Fig. 6. The instances are sorted by the class label for both
sources (the first 80 instances belongs to class 1, the second
80 instances belong to class 2, etc,.) The X axis indicates the
instances in Dutch, while the Y axis indicates the instances in
USPS. From the figure, we can clearly see that there are four
dark squares of width 80 on the diagonal line, which indicates
that the same class of instances are more likely to be mapped
together.

To show how fast MMC converges, we report the number
of outer iterations until convergence for Dutch-USPS data in
Table IX. From the table we can see that the method converges
fast (less than 20 iterations).

VI. RELATED WORKS

Multi-view learning [3], [4], [17], [18], is proposed to
learn from instances which have multiple representations in
different feature space. For example, [1] developed and stud-



TABLE VI: NMI for Dutch-USPS data with various percentages of known mapping

Method 30% known 40% known 50% known 60% known 70% known 80% known 90% known 100% known
Concat(D) 0.5515 0.5616 0.5631 0.5734 0.5770 0.5887 0.6064 0.6128

Sym-NMF(D) 0.7778 0.7778 0.7778 0.7778 0.7778 0.7778 0.7778 0.7778
MultiNMF-S(D) 0.5382 0.5382 0.5382 0.5382 0.5382 0.5382 0.5382 0.5382
MultiNMF-M(D) 0.6081 0.6676 0.7031 0.7585 0.8040 0.8130 0.7799 0.8356

CoReg-S(D) 0.7503 0.7503 0.7503 0.7503 0.7503 0.7503 0.7503 0.7503
CoReg-M(D) 0.7827 0.7861 0.7825 0.7886 0.8038 0.8343 0.8492 0.8596

CGC(D) 0.7947 0.7891 0.8019 0.7851 0.7929 0.7840 0.7878 0.8003
MMC(D) 0.7931 0.7903 0.8177 0.8248 0.8371 0.8537 0.8611 0.8746
Concat(U) 0.3067 0.3231 0.3623 0.3916 0.4354 0.4789 0.5350 0.6128

Sym-NMF(U) 0.3005 0.3005 0.3005 0.3005 0.3005 0.3005 0.3005 0.3005
MultiNMF-S(U) 0.401 0.4010 0.4010 0.4010 0.4010 0.4010 0.4010 0.4010
MultiNMF-M(U) 0.3468 0.3611 0.5029 0.4700 0.6007 0.6083 0.7011 0.7816

CoReg-S(U) 0.4044 0.4044 0.4044 0.4044 0.4044 0.4044 0.4044 0.4044
CoReg-M(U) 0.3527 0.4094 0.4607 0.5257 0.5808 0.6642 0.7541 0.8564

CGC(U) 0.2968 0.2902 0.2795 0.2780 0.2958 0.2882 0.2758 0.2898
MMC(U) 0.496 0.5463 0.6039 0.6348 0.6862 0.7587 0.8262 0.8684

TABLE VII: NMI for English-Translation data with various percentages of known mapping

Method 30% known 40% known 50% known 60% known 70% known 80% known 90% known 100% known
Concat(E) 0.1144 0.1334 0.1617 0.1914 0.2037 0.2488 0.2495 0.2498

Sym-NMF(E) 0.2783 0.2783 0.2783 0.2783 0.2783 0.2783 0.2783 0.2783
MultiNMF-S(E) 0.3413 0.3413 0.3413 0.3413 0.3413 0.3413 0.3413 0.3413
MultiNMF-M(E) 0.3253 0.3289 0.3339 0.3420 0.3689 0.3531 0.3523 0.3508

CoReg-S(E) 0.3381 0.3381 0.3381 0.3381 0.3381 0.3381 0.3381 0.3381
CoReg-M(E) 0.2060 0.2088 0.2098 0.2187 0.2194 0.2193 0.2184 0.2182

CGC(E) 0.2388 0.2550 0.2656 0.2636 0.2707 0.2680 0.2737 0.2740
MMC(E) 0.3436 0.3485 0.3571 0.3528 0.3576 0.3595 0.3558 0.3637
Concat(T) 0.1044 0.1124 0.1397 0.1621 0.1685 0.2098 0.2072 0.2198

Sym-NMF(T) 0.1527 0.1527 0.1527 0.1527 0.1527 0.1527 0.1527 0.1527
MultiNMF-S(T) 0.2708 0.2708 0.2708 0.2708 0.2708 0.2708 0.2708 0.2708
MultiNMF-M(T) 0.1945 0.2063 0.2146 0.2164 0.2146 0.2223 0.2541 0.2581

CoReg-S(T) 0.2874 0.2874 0.2874 0.2874 0.2874 0.2874 0.2874 0.2874
CoReg-M(T) 0.2160 0.2146 0.2178 0.2198 0.2171 0.2213 0.2210 0.2299

CGC(T) 0.2288 0.2450 0.2556 0.2536 0.2607 0.2580 0.2637 0.2640
MMC(T) 0.3028 0.3075 0.3072 0.3073 0.3090 0.3144 0.3196 0.3230

Fig. 6: Scatter plot of the inferred similarity mapping for Dutch-USPS
data with four clusters.

ied partitioning and agglomerative, hierarchical multi-view
clustering algorithms for text data. [3], [5] are among the
first works proposed to solve clustering problem via spectral
projection. [15] proposed to solve multi-view clustering by
joint non-negative matrix factorization. [6], [7], [19], [20] are
among the first works to solve the multi-view clustering with

partial/incomplete views. However, none of the previous multi-
view clustering methods can deal with incomplete and partial
known mapping between sources/views. Further more, All the
previous methods fail to treat the views within one source as
a cohesive unit.

Consensus clustering [21], [22] is also related to the pro-
posed MMC framework. It deals with the situation in which a
number of different clustering results have been obtained for
a particular dataset and it is desired to find a single consensus
clustering which is a better fit in some sense than the existing
ones. [23] gives a report about consensus clustering algo-
rithms comparison and refinement. [24] proposes a bayesian
consensus clustering method. However, consensus clustering
aims to find a single consensus clustering from fully mapped
clustering solutions. None of the previous methods works for
the incomplete and partially unknown mappings between the
instances.

VII. CONCLUSION

This paper is the first to investigate the problem of clustering
with multiple sources and multiple views. The proposed MMC
framework treats views in the same source as a cohesive group
for clustering by learning consensus latent feature matrices



from the views within one source. It also incorporates multiple
sources by using cross-source discrepancy penalty to enhance
the clustering performance. MMC also uses the learned latent
features to infer the cross-source unknown similarity mapping,
which in turn will help improve the performance of clustering.
Extensive experiments conducted on three groups of real-
world data sets show the effectiveness of MMC comparing
with other state-of-arts methods.

REFERENCES

[1] S. Bickel and T. Scheffer, “Multi-view clustering,” in ICDM, 2004.
[2] K. Chaudhuri, S. M. Kakade, K. Livescu, and K. Sridharan, “Multi-view

clustering via canonical correlation analysis,” in ICML, 2009.
[3] A. Kumar, P. Rai, and H. D. III, “Co-regularized multi-view spectral

clustering,” in NIPS, 2011.
[4] B. Long, P. S. Yu, and Z. M. Zhang, “A general model for multiple view

unsupervised learning.” in SDM. SIAM, 2008, pp. 822–833.
[5] A. Kumar and H. D. III, “A co-training approach for multi-view spectral

clustering,” in ICML, 2011.
[6] W. Shao, X. Shi, and P. S. Yu, “Clustering on multiple incomplete

datasets via collective kernel learning,” in ICDM, 2013.
[7] S. Li, Y. Jiang, and Z. Zhou, “Partial multi-view clustering,” in AAAI,

2014, pp. 1968–1974.
[8] W. Cheng, X. Zhang, Z. Guo, Y. Wu, P. F. Sullivan, and W. Wang,

“Flexible and robust co-regularized multi-domain graph clustering.” in
KDD, 2013.

[9] W. Shao, L. He, and P. S. Yu, “Clustering on multi-source incomplete
data via tensor modeling and factorization,” in PAKDD, 2015.

[10] U. Luxburg, “A tutorial on spectral clustering,” Statistics and Computing,
vol. 17, no. 4, pp. 395–416, Dec. 2007.

[11] A. Y. Ng, M. I. Jordan, and Y. Weiss, “On spectral clustering: Analysis
and an algorithm,” in NIPS, 2002, pp. 849–856.

[12] X. Kong, J. Zhang, and P. S. Yu, “Inferring anchor links across multiple
heterogeneous social networks,” in CIKM, 2013, pp. 179–188.

[13] J. Zhang, P. S. Yu, and Z.-H. Zhou, “Meta-path based multi-network
collective link prediction,” in KDD, 2014.

[14] D. Kuang, H. Park, and C. H. Q. Ding, “Symmetric nonnegative matrix
factorization for graph clustering.” in SDM, 2012, pp. 106–117.

[15] J. Liu, C. Wang, J. Gao, and J. Han, “Multi-view clustering via joint
nonnegative matrix factorization,” in SDM, 2013.

[16] M. R. Amini, N. Usunier, and C. Goutte, “Learning from multiple par-
tially observed views - an application to multilingual text categorization,”
in NIPS, 2009.

[17] A. Blum and T. Mitchell, “Combining labeled and unlabeled data with
co-training,” in COLT, 1998.

[18] K. Nigam and R. Ghani, “Analyzing the effectiveness and applicability
of co-training,” in CIKM, 2000.
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