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Abstract. Learning from graph data has been attracting much atten-
tion recently due to its importance in many scientific applications, where
objects are represented as graphs. In this paper, we study the problem
of multi-graph clustering (i.e., clustering multiple graphs). We propose
a multi-graph clustering approach (MGCT) based on the interior-node
topology of graphs. Specifically, we extract the interior-node topological
structure of each graph through a sparsity-inducing interior-node clus-
tering. We merge the interior-node clustering stage and the multi-graph
clustering stage into a unified iterative framework, where the multi-graph
clustering will influence the interior-node clustering and the updated
interior-node clustering results will be further exerted on multi-graph
clustering. We apply MGCT on two real brain network data sets (i.e.,
ADHD and HIV). Experimental results demonstrate the superior perfor-
mance of the proposed model on multi-graph clustering.

Keywords: Multi-graph clustering · Interior-node topology · Brain
network

1 Introduction

In recent years, graph mining has been a popular research area because of numer-
ous applications in social network analysis, computational biology and computer
networking. In addition, many new kinds of data can be represented as graphs.
For example, from common brain images such as the functional magnetic reso-
nance imaging (fMRI) data of multiple subjects, we can construct a brain connec-
tivity network for each of them, where each node represents a brain region, and
each link represents the functional/structural connectivity between two brain
regions [12]. These multiple brain networks provide us with an unprecedented
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opportunity to explore the inner structure and activity of the human brain,
serving as valuable supportive information for clinical diagnosis of neurologi-
cal disorders [18]. Therefore, mining on graphs becomes a crucial task and may
benefit various real-world applications.

Among the existing works on graph learning, quite a few of them fall into
supervised learning, which usually aim to select frequent substructures such as
connected subgraph patterns in a database of graphs and then feed these sub-
graph features into classifiers [6,11]. These methods typically work well when
the graph database is very large or the access to side information is assumed.
However, the number of subgraphs is exponential to the size of graphs, thus
the subgraph enumeration process is both time and memory consuming which
makes it infeasible to explore the complete subgraph space. Moreover, in many
real-world cases, only a small number of labeled graphs are available. Therefore,
finding discriminative subgraph patterns from a large number of candidate pat-
terns based on such limited instances is not reliable. While supervised methods
focus on training classifiers, unsupervised clustering could provide exploratory
techniques for finding hidden patterns in multiple graphs. In this paper, we
investigate the unsupervised scenarios by exploring the multi-graph clustering
based on the interior-node topology of graphs. Topology is the mathematics of
neighborhood relationships in space, which is independent of the distance met-
ric, thus the interior-node topology of graphs could provide complementary local
structure information for the original linkage, which can only characterize the
global structure information of graph. Despite its value and significance, to our
best knowledge, the interior-node topology of graphs has not been studied in the
problem of multi-graph clustering so far. There are two major challenges in this
multi-graph clustering problem:

– How to capture the interior-node topology of each graph? Conventional
approaches extract graph-theoretical measures, e.g., clustering coefficients, to
quantify the prevalence of clustered connectivity [10,23]. However, assigning
a predefined measure to specific nodes in a graph might not fully characterize
the subtle local topological structure of the graph.

– How to effectively leverage the extracted topological structure information
to facilitate the process of multi-graph clustering? The original linkage met-
ric describes the global connectivity structure in the graph, while the topo-
logical structure depicts the local neighborhood relationships. An effective
multi-graph clustering model should fuse these two complementary structural
information together.

To address the above challenges, we propose a framework of multi-graph clus-
tering with interior-node topology. The contributions of this work are twofold:

– We propose to consider both the global structure and the local topological
structure of graphs for the multi-graph clustering task. Specifically, we utilize
interior-node clustering to capture local topological structure of graphs.

– Considering the fact that graphs with a high similarity tend to have a similar
interior-node topology, we propose to merge the multi-graph clustering stage
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and interior-node clustering process into a unified iterative framework called
MGCT, where the results of interior-node clustering are exerted on multi-
graph clustering and the multi-graph clustering will in turn improve interior-
node clustering of each graph, thus achieving a mutual reinforcement.

Fig. 1. The framework of the proposed model.

In the scenario of brain network analysis for multiple subjects, the proposed
framework of multi-graph clustering can be illustrated with the example shown
in Fig. 1. There are two stages in each iteration of the framework: multi-graph
clustering and interior-node clustering. In the multi-graph clustering stage, the
given six brain networks are clustered into two clusters, and then in the second
stage, the interior-node clustering of each graph will be updated with a weighted
influence from their neighbor graphs in the same cluster, after which the new
interior-node clustering results will be utilized for the multi-graph clustering
in the next iteration. After the model converges, we will obtain the final opti-
mal multi-graph clustering results, which can be used for further analysis, for
example, the neurological disorder identification.

We evaluate the proposed method on two real brain network data sets
(ADHD and HIV). Experimental results illustrate the superior performance of
the proposed approach for multi-graph clustering in brain network analysis.

2 Preliminaries

In this section we establish key definitions and notational conventions that sim-
plify the exposition in later sections.

Throughout this paper, matrices are written as boldface capital letters and
vectors are denoted as boldface lowercase letters. For a matrix M ∈ R

n×m, its
elements are denoted by mij , and its i-th row, j-th column are denoted by mi, mj

respectively. The Frobenius norm of M is defined as ‖M‖F =
√∑n

i=1 ‖mi‖22,
and the �2,1 norm of M is defined as ‖M‖2,1 =

∑n
i=1

∥∥mi
∥∥
2
. For any vector

u ∈ R
n, Diag(u) ∈ R

n×n is the diagonal matrix whose diagonal elements are
ui. In denotes an identity matrix with size n. ‖u‖0 is the �0 norm, which counts
the number of nonzero elements in the vector u.
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Definition 1 (Multi-graph Clustering). An undirected graph can be for-
mally represented as G = (V,E,A), where V is the set of vertices, E ⊂
V × V is the set of edges, and A is the weighted affinity matrix whose entry
denotes the affinity between a pair of nodes. Given a set of such graphs
D = {G1, G2, · · · , Gn}, the goal of multi-graph clustering is to cluster the graphs
in D into c subsets.

Definition 2 (Interior-node Clustering). Given an undirected graph G =
(V,E,A), the goal of interior-node clustering is to group the nodes of the graph
into k clusters C = {C1, · · · , Ck}, with V = C1 ∪ · · · ∪ Ck and Ci ∩ Cj = ∅ for
every pair i, j with i �= j.

Definition 3 (Topology). Topology is the mathematics of neighborhood rela-
tionships in space independent of metric distance. In the context of graph struc-
tures, such neighborhood relationships often correspond to the connectivity of
nodes, i.e., how nodes are connected to each other.

3 Methodology

In this section, we first introduce the proposed multi-graph clustering framework
MGCT, where we formulate the multi-graph clustering stage and the interior-
node clustering stage, both of which can be formulated as optimization problems.
We then present an iterative algorithm based on half-quadratic optimization to
solve this minimization problem.

3.1 An Iterative Framework: MGCT

In the literature of multi-graph clustering, the pairwise distance is mainly mea-
sured based on the structure of each graph, and graphs with highly similar
structures tend to be clustered into the same group. In other words, the graphs
that are clustered into the same group tend to have highly similar topological
structure [3]. Following these observations, we propose an iterative framework
called MGCT for multiple-graph clustering based on interior-node topology. In
each iteration, there are two stages: the interior-node clustering and the multi-
graph clustering, where the interior-node clustering results which imply local
topological structure are used together with the global structure of graph for
clustering multiple graphs, and then the multi-graph clustering results will be
utilized in turn to improve the interior-node clustering. Through this iterative
mutual reinforcement of interior-node clustering and multi-graph clustering, we
can finally achieve a refined multi-graph clustering result.

Multi-graph Clustering. In this part, we focus on the formulation of the
multi-graph clustering stage. Since the multi-graph clustering and interior-node
clustering depend on each other and are performed alternatively, here we assume
we have obtained the interior-node clustering results of the graphs, which can
be used for the multi-graph clustering. The formulation of the interior-node
clustering problem and the overall iterative process will be discussed later.
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Given a set of graphs D = {G1, G2, · · · , Gn}, with the corresponding set
of affinity matrices A = {A1,A2, · · · ,An}, where Ai ∈ R

m×m is the weighted
affinity matrix of Gi, and its entry denotes the pairwise affinity between nodes in
Gi, suppose we have performed interior-node clustering on each of these graphs
and obtained a set of clustering indicators F = {F1,F2, · · · ,Fn}, where Fi ∈
R

m×k is the interior-node clustering indicator of Gi, we build a similarity matrix
S ∈ R

n×n, where sij denotes the similarity between the two graphs Gi and Gj ,
and we define it as:

sij = δ(− ‖Ai − Aj‖2F ) + (1 − δ)(− ‖Fi − Fj‖2F ) (1)

which is a weighted combination of the similarity based on the original affinity
matrix of each graph and the similarity based on interior-node clustering results,
where δ is the weight parameter balancing the two parts. In this way, the interior-
node topology characterized by the interior-node clustering indicator matrix can
be incorporated for multi-graph clustering. With this similarity matrix, we can
formulate the clustering of graphs in D as a spectral clustering problem, where
graphs with a higher pairwise similarity tend to be grouped into the same cluster.
Let H ∈ R

n×c be the multi-graph clustering indicator matrix, then the optimal
H can be obtained by solving the following objective function [22]:

min
H

Tr
(
HTLH

)

s.t. HTH = Ic (2)

where L = D− 1
2 (D−S)D− 1

2 is the symmetric normalized Laplacian matrix, and
D is a diagonal matrix with dii =

∑n
j=1 sij .

Interior-Node Clustering. We now study the problem of interior-node clus-
tering of graph in the context of multi-graph clustering.

In graph theory, a cluster is described as a set of nodes more densely con-
nected with each other than with the rest nodes of the graph. Given a graph G
with m nodes and the weighted affinity matrix A ∈ R

m×m , the goal of interior-
node clustering is to group the m nodes into k clusters, i.e., to find a cluster
indicator matrix F ∈ R

m×k, whose entry indicates which cluster a node may
belong to.

Intuitively, nodes with a higher correlation should have a similar cluster indi-
cator. With this assumption, a graph regularization can be embedded to learn
the cluster indicator matrix F, which is formulated as the following minimization
problem on the basis of the spectral analysis [22]:

min
F

m∑

i,j=1

aij

∥∥∥
f i

√
dii

− f j

√
djj

∥∥∥
2

2
= Tr

(
FTL′F

)

s.t. FTF = Ik (3)

where L′ = D′− 1
2 (D′ − A)D′− 1

2 is the symmetric normalized Laplacian matrix,
and D′ is a diagonal matrix with dii =

∑m
j=1 aij .
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The above formulation provides a measure of the smoothness of F over the
edges in G. Notice that when a node connects to the nodes in different clusters, it
will lead to a relatively large value of Tr

(
FTL′F

)
[21]. Therefore, it is expected

to identify these boundary-spanning nodes to moderate this influence. In the
following, we show how to model and leverage the topology of interior-node to
achieve this goal.

From the definition of the topology, we know it is the mathematics of neigh-
borhood relationships in space independent of metric distance. In the context of
graph structures, such neighborhood relationships often correspond to the con-
nectivity of nodes, i.e., how nodes are connected to each other. In view of the
involvement of graph, a näıve approach is that the value of f i at every node vi is
the weighted average of f i at neighbors of vi, with the weights being proportional
to the edge weights in adjacency matrix A, which can be fitted as

min
F

∥
∥F − D′−1AF

∥
∥2

F
(4)

Since there are some boundary-spanning nodes across clusters, and their
neighbors naturally occur in different clusters, to exploit the formulation of (4)
on interior-node clustering more effectively, it is crucial for the clustering indica-
tor matrix F to have discriminative ability for such boundary-spanning nodes,
i.e., promoting row-wise sparsity to discriminate relevant boundary-spanning
nodes, and thus achieving only characterizing interior nodes. Inspired by [8],
we introduce the �2,1-norm penalty to make it and thus we have the following
optimization problem:

min
F

Tr
(
FTL′F

)
+ α

∥∥F − D′−1AF
∥∥
2,1

s.t. FTF = Ik (5)

where α is a parameter balancing two terms (i.e., smoothness and sparsity). It
can be seen the sparsity-inducing property of �2,1 norm pushes the clustering
indicator matrix F to be sparse in rows. More specifically, f i shrinks to zero
if the neighbors of node vi belongs to different clusters. In particular, the more
nodes having neighbors belonging to different clusters, the larger

∥
∥fi−D′−1Afi

∥
∥2

2

tends to be, so the value of f i gets penalized more harshly. We can thus obtain
a better clustering indicator F for interior nodes.

As we discussed earlier, the graphs clustered into the same group tend to have
more similar topological structure, in each iteration of our framework, we hope
to further improve the interior-node clustering of each graph by incorporating
the interior-node clustering results of its neighbors, i.e., the graphs clustered into
the same group by the multi-graph clustering stage of the previous iteration. For
two graphs in the same cluster, the closer they are, the more similar interior-
node clustering they tend to have. Based on this assumption, for graph Gi, we
consider only the graphs that are in the same cluster with Gi, and we aim to
infer the weights of influence they should have on Gi.
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Suppose we have a set of feature matrices X = {X1,X2, · · · ,Xn}, where Xi

can represent both the global and local structure of Gi, we aim to infer a weight
matrix W by solving the following minimization problem:

min
W

∑

i

∥
∥∥Xi −

∑

j

wijXj

∥
∥∥
2

F

s.t.
∑

j

wij = 1 (6)

where wij denotes the weight of Gj for Gi, which will be used to control the
extent that Fj will be used to influence Fi in the next iteration, and Gj can only
be a graph from the cluster containing Gi. A larger wij implies a closer distance
between Gi and Gj in the same cluster.

Now we can improve the interior-node clustering of each graph by adding a
weighted influence from the neighbour graphs based on the multi-graph cluster-
ing. For a graph Gi, the interior-node clustering can be obtained by solving the
following objective function extended from Eq. (5):

min
Fi

Tr
(
FT

i LiFi

)
+ α

∥
∥∥Fi − D−1

i AiFi

∥
∥∥
2,1

+ β
∥
∥∥Fi −

∑

j

wijFj

∥
∥∥
2

s.t. FT
i Fi = Ik (7)

where Ai is the weighted affinity matrix of Gi, Di is the diagonal matrix, and
Li is the symmetric normalized Laplacian matrix.

With the two stages illustrated above, we can formulate the overall iterative
process. We first obtain an initial multi-graph clustering indicator matrix H0

by Eq. (2), where S is computed by Eq. (1) with δ = 1. Then we can infer
the weight matrix W by solving (6), which will be used for optimizing the
interior-node clustering of each graph in (7). With the resulted Fi for each graph
Gi, a new similarity matrix can be created by Eq. (1), which leads to another
iteration of multi-graph clustering by Eq. (2). The overall iterative algorithm
with optimization solutions will be discussed in the following section.

3.2 Optimization

Since the minimization problem in Eq. (2) is a typical spectral clustering prob-
lem, we can directly solve it by computing the first c generalized eigenvectors of
the eigenproblem as illustrated in [20].

To solve the minimization problem (7), we propose an iterative algorithm
based on the half-quadratic minimization [16] and the following lemma [9].

Lemma 1. Let φ(.) be a function satisfying the conditions: x → φ(x) is convex
on R; x → φ(

√
x) is convex on R+; φ(x) = φ(−x),∀x ∈ R; φ(x) is C1 on

R; φ′′(0+) ≥ 0, lim
x→∞φ(x)/x2 = 0. Then for a fixed ‖ui‖2, there exists a dual

potential function ϕ(.), such that
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φ(‖ui‖2) = inf
p∈R

{p‖ui‖22 + ϕ(p)} (8)

where p is determined by the minimizer function ϕ(.) with respect to φ(.).

Let Pi = Fi − D−1
i AiFi. According to the analysis for the �2,1 norm in [9], if

we define φ(x) =
√

x2 + ε, we can replace ‖Pi‖2,1 with
∑n

j=1 φ(‖pj
i‖2). Thus,

based on Lemma 1, we reformulate the objective function of Eq. (7) as follows:

min
Fi

Tr
(
FT

i LiFi

)
+ αTr

(
PT

i QPi

)
+ β

∥∥∥Fi −
∑

j

wijFj

∥∥∥
2

s.t. FT
i Fi = Ik (9)

where Q = Diag(q), and q is an auxiliary vector of the �2,1 norm. The elements
of q are computed by qj = 1

2
√

‖pj
i ‖2

2+ε
, where ε is a smoothing term and is usually

set to be a small constant value (we set ε = 10−4 in this paper).
The quadratic optimization problem with orthogonal constraint have been

well studied, and can be solved by a lot of solvers [1,24]. Here we employ the
solver Algorithm 2 in [24] to solve Eq. (9), which is a more efficient optimization
algorithm with publicly available code.

Another optimization problem we need to solve is Eq. (6). In [19], such a min-
imization problem with respect to vectors is solved as a constrained least squares
problem for locally linear embedding. Since the Frobenius norm for matrices is a
straightforward generalization of the l2 norm for vectors, we can directly obtain
the following equation based on the analysis in [19].

∥
∥∥Xi −

∑

j

wijXj

∥
∥∥
2

F
=

∑

jr

wijwirCjr (10)

where Gj and Gr denote two neighbors of Gi, i.e., Gj and Gr are in the cluster
containing Gi. Cjr is the local covariance matrix, which can be obtained by

Cjr =
1
2
(Mj + Mr − mjr − M0) (11)

where mjr = −sjr denotes the squared distance between the jth and rth neigh-
bors of Gi, thus can be obtained by Eq. (1), Mj =

∑
z mjz, Mr =

∑
z mrz and

M0 =
∑

jr mjr. Then the optimal weights can be obtained by:

wij =

∑
r C−1

jr∑
lz C−1

lz

(12)

For details about the derivation of the above solution, readers can refer to [19].
Based on the above analysis, we summarize the overall optimization algorithm
of MGCT in Algorithm 1.
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Algorithm 1. MGCT
Input: D = {G1, G2, · · · , Gn}, c, k
Output: Assignments to c clusters
1: Initialize H0 s.t. HT

0 H0 = Ic;
2: while not converge do
3: Compute W according to Eq. (12);
4: for i = 1; i <= n; i + + do
5: Initialize Fi0 s.t. Fi

T
0 Fi0 = Ik,t ← 0;

6: while not converge do
7: Set Qt ← Diag( 1

2
√

‖pi
t‖2

2+ε
);

8: Compute Fit+1 by solving Eq. (9);

9: t ← t + 1;
10: end while
11: end for
12: Update H by solving Eq. (2);
13: Cluster H by k-means;
14: end while

4 Experiments

In order to empirically evaluate the effectiveness of the proposed multi-graph
clustering approach for brain network analysis, we test our model on real fMRI
brain network data and compare with several state-of-the-art baselines.

4.1 Data Collection and Preprocessing

In this work, we use two real resting-state fMRI datasets as follows:

– Human Immunodeficiency Virus Infection (HIV): This dataset is collected
from Chicago Early HIV Infection Study in Northwestern University [18].
The clinical cohort in this study includes 77 subjects, 56 of which are early
HIV patients (positive) and the other 21 are seronegative controls (negative).
The two groups did not differ in the demographic characteristics including
age, gender, racial composition and education level.

– Attention Deficit Hyperactivity Disorder (ADHD): This dataset is collected
from ADHD-200 global competition dataset1, which contains the resting-state
fMRI images of 768 subjects. Subjects are either ADHD patients or normal
controls. In particular, the patient group in ADHD involves three stages of
ADHD disease, which can be treated as three different groups, making the
total number of groups be 4.

We use DPARSF toolbox2 for fMRI data preprocessing. A time series of
responds is extracted from each of the 116 anatomical volumes of interest
(AVOI), which represents the 116 different brain regions. We perform the stan-
dard fMRI brain image processing steps, including functional images realign-
ment, slice timing correction and normalization. Afterwards, spatial smoothing
is performed on these images with an 8-mm Gaussian kernel for increasing signal-
to-noise ratio, followed by the band-pass filtering (0.01–0.08 Hz) and the linear
1 http://neurobureau.projects.nitrc.org/ADHD200/.
2 http://rfmri.org/DPARSF.

http://neurobureau.projects.nitrc.org/ADHD200/
http://rfmri.org/DPARSF
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trend removing of the time series. We also apply linear regression to reduce spu-
rious variance coming from hardware reasons or subject factors such as thermal
motion of electrons. After all these preprocessing steps, we compute the brain
activity correlations among different brain regions based on the obtained time
series for each of them, and then we use the positive correlations to form the links
among the regions. Finally, we exclude the 26 cerebellar regions, and each brain
is represented as a graph with 90 nodes, which correspond to the 90 cerebral
regions.

4.2 Baselines and Metrics

We use four clustering methods as baselines.

– k-means: a classic clustering method [4]. We convert the adjacency matrix
of each subject graph into vectors and then apply the k-means algorithm
to cluster all the subject graphs. For the implementation of the k-means
algorithm, we adopt the Litekmeans [5], which has been proven to be a fast
MATLAB implementation of the k-means algorithm.

– Spectral Clustering (SC) [7]: a method for constructing graph partitions
based on eigenvectors of the adjacency matrix of graph. In the experiment,
we apply the normalized spectral clustering algorithm proposed in [20]. We
first construct the similarity matrix for the multiple graphs only based on
their adjacency matrices and then use the similarity matrix as the input for
normalized spectral clustering of the multiple graphs.

– Clustering Coefficient (CC): the k-means clustering with clustering coef-
ficient [17] as the feature representation of each graph.

– Two-layer Spectral Clustering(TSC): We adapt the typical spectral clus-
tering into both of the two stages in our framework, where spectral clustering
on the multi-graph is based on the spectral clustering on each graph. We call
the model TSC.

– MGCT: our proposed multi-graph clustering method based on interior-
node topology. To evaluate the discriminative ability of the sparsity-inducing
term, i.e., the �2,1-norm penalty term in Eq. (7), we employ MGCT with
and without the sparsity-inducing term and denote them as MGCT and
MGCTnonST respectively.

We adopt the following two measures for the evaluation.

– Accuracy . Let ci represent the clustering label result of a multi-graph clus-
tering algorithm and yi represent the corresponding ground truth label of the
graph Gi. Then Accuracy is defined as: Accuracy =

∑n
i=1 δ(yi,map(ci))

n , where
δ is the Kronecker delta function, and map(ci) is the best mapping function
that permutes clustering labels to match the ground truth labels using the
KuhnMunkres algorithm [13]. A larger Accuracy indicates better clustering
performance.
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– Purity . Purity is a measure used to evaluate the clustering method’s abil-
ity to recover the groundtruth class labels, and it is defined as: Purity =
1
n

∑k
q=1 max1≤j≤l n

j
q, where n is the total number of samples, and nj

q is the
number of samples in cluster q that belongs to original class j. Therefore,
the purity is a real number in [0, 1]. The larger the Purity, the better the
clustering performance.

The main parameters in our framework include the weight parameters α, β,
and δ as well as the number of interior-node clusters k. Note that in the rest
part of this paper, we use k specifically to denote the number of interior-node
clusters in each graph although it might has been used for denoting other general
variables in the equations above. For the convenience of evaluation, we directly
use the number of distinct labels in each dataset as the number of clusters in
multi-graph clustering. Since there are four possible labels of the samples in
ADHD datasets, we set the number of clusters to be 4. For HIV dataset, we
have two possible labels (positive, negative), so we set the cluster number to
be 2. We apply the grid search to find the optimal values for α, β and δ. We
do grid search for α in {10−2, 10−1, · · · 102}, β in {10−4, 10−3, · · · 104}, and δ in
{0.1, 0.2, · · · 0.9}. The optimal k is selected by the grid search from {2, 3, · · · , 12}.
For fair comparisons of all the methods, we employ Litekmeans [5] for all the
k-means clustering step if it is needed in the implementation of the six methods
listed above. We repeat clustering for 20 times with random initialization as
k-means depends on initialization. For the evaluation, we repeat running the
program of each methods for 50 times and report the average accuracy and
purity as the results.

4.3 Performance Evaluations

As shown in Tables 1 and 2, our MGCT method performs the best on the two
datasets in terms of both accuracy and purity. Among the six clustering meth-
ods, the first two methods (i.e., k-means, Spectral Clustering) directly use the
original matrix of each graph in the data set for calculating the distance or simi-
larity between each pair of the graphs, which is utilized for the final multi-graph
clustering. From Tables 1 and 2, we can see that the clustering accuracy and
purity of these two methods are quite low. This is probably because that they
do not consider the interior-node topology of these graphs when doing cluster-
ing. The CC achieves a slightly better result compared to k-means and Spectral
Clustering. This is mainly due to the fact that CC does consider some local
structure information while calculating the clustering coefficient. However, since
it only assigns a single predefined measure to each node in the graph, which rep-
resents each brain region in the brain networks, the subtle topological structure
of each brain network might not be fully characterized.

Comparatively, the last three methods (i.e., TSC, MGCT, MGCTnonST ) all
utilize the topological structure informationbut atdifferent level.TheTSCmethod
first performs spectral clustering on each graph, and the resulted matrix containing
the clustering indicator vectors areused in themulti-graph spectral clustering.This
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process does include the topological structure, but it only has the one-way and one-
time influence on themulti-graph clustering task.The result ofmulti-graph cluster-
ing does not have influence on the interior-node clustering. Different from TSC, the
two methods we proposed namely the MGCT and MGCTnonST perform the task
in an iterative way, and achieves the mutual reinforcement by leveraging the topol-
ogy structure into multi-graph clustering and inferring a better topology structure
for each graph from the multi-graph clustering result alternatively. According to
Tables 1 and 2, we can also see that the proposed MGCT method outperforms the
MGCTnonST in both accuracy and purity. This indicates the importance of the �2,1

norm we add in Eq. (7), which has the sparsity-inducing property.
In order to evaluate the effectiveness of MGCT for interior-node topology

extraction of brain networks, we investigate the resulted brain networks with
interior-node clusters detected by MGCT and show the results of two brain net-
works in Fig. 2. We can find from the figure that the interior nodes of the normal
brain network have been well grouped into several clusters, while the cluster
boundaries in the patient’s brain network are very blurred and the nodes widely
spread out. Usually, the correlated regions of human brain will work together
towards a task, and tend to present an approximately synchronized trend in their
time series. Thus, the nodes representing these correlated regions would become
more possible to be grouped into the same cluster. Therefore, the fuzzy cluster
boundaries of the patient’s interior nodes indicate that the collaboration activity

Table 1. Clustering Accuracy.

Methods Accuracy

ADHD (k = 6) HIV (k = 9)

k-means 52.0% 60.3%

Spectral Clustering 55.2% 60.9%

CC 56.8% 63.7%

TSC 57.6% 62.5%

MGCTnonST 59.3% 64.9%

MGCT 62.8% 68.1%

Table 2. Clustering Purity.

Methods Purity

ADHD (k = 6) HIV (k = 9)

k-means 0.55 0.63

Spectral Clustering 0.59 0.65

CC 0.57 0.66

TSC 0.57 0.64

MGCTnonST 0.62 0.69

MGCT 0.67 0.72

(a) a typical normal control (b) a stage-2 ADHD patient

Fig. 2. Comparison of two brain networks with interior-node topology captured by
MGCT from two subject graphs in ADHD dataset
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Fig. 3. Accuracy and purity with different k

of different regions might not be very organized. These observations imply that
our proposed framework can be further used for distinguishing subjects with
neurological disorders from healthy controls.

4.4 Parameter Sensitivity

In this section, we explore the sensitivity and effects of the four main parameters
in our proposed method, including α, β, δ and k. We first evaluate the clustering
performance of MGCT with different k values, ranging from 2 to 12. Figure 3
shows the clustering performance of MGCT in accuracy and purity with different
k on both ADHD and HIV datasets. As we can see from the figure, the multi-
graph clustering performance is very sensitive to the value of k, especially when
the value for k keeps very small. For example, as shown in Fig. 3(a), the accuracy
increases dramatically when the value of k goes from 2 to 6 before it reaches the
peak value at 6. The main reason for such high sensitivity is that when k is set to
be a small number, the interior-node clusters identified from each brain network
tend to have large sizes, which could not capture the interior-node topological
structure very well, resulting in a less discriminative measure for distinguishing
subjects in different neurological states. A similar changing trend is shown for
the purity, while noticeably the peak purity value shows up when k = 9 instead
of k = 6. This can be traced back to the definition of purity. Since it counts
the number of nodes in the dominated class for each cluster instead of counting
the number of nodes only when they match the correct groundtruth labels.
Thus, when the number of clusters increases, each cluster becomes easier to be
dominated by one class, leading to a higher purity.

Now, we analyze the sensitivity of MGCT to δ, which balances the weights
from the original affinity matrix and the interior-node clustering indicator matrix
when creating the similarity matrix among multiple graphs. As shown in Fig. 4,
MGCT achieves different level of accuracy and purity when the value of δ varies.
For ADHD, the highest accuracy is achieved when δ = 0.4, while for HIV, it
achieves the highest accuracy when δ = 0.7, and similar situations for the purity.
These results indicate that both the global structure and the interior-node topo-
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Fig. 4. Accuracy and purity with different δ

logical structure are important for the multi-graph clustering analysis, and their
weights need to be determined for specific practical situations. Next, we evaluate
the sensitivity of MGCT to α and β. We set k to be 6 and run the MGCT method
with different values for α and β on ADHD and HIV data. The clustering accu-
racy of MGCT is plotted versus the values for α and β in Fig. 5. As shown in the
figure, MGCT achieves the best performance when α = 102, β = 103 on ADHD
dataset, and α = 102, β = 102 on HIV dataset. Parameter α controls the sparsity
while parameter β controls the influence of iterative multi-graph clustering results
on interior-node clustering. If the value for α is very small, then it will not really
enforce the sparsity. Similarly, if the value for β is quite small, the iterative process
would barely have influence on interior-node clustering optimizing. In these cases,
the performance will decline. However, when the values for them are too large,
they would enforce too much sparsity or influence, which might make the perfor-
mance drop as well. Therefore, an optimal combination of the two parameters is
crucial for improving the performance of MGCT.
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Fig. 5. Accuracy with different α, β

5 Related Work

Our work relates to several bodies of studies, including the multi-graph cluster-
ing, node clustering in graphs, and brain network analysis.
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In the context of multi-graph clustering, there are a few of strategies that
have been proposed and widely used [3], for example the structural summary
method discussed in [2], and the hierarchical algorithm with graph structure
proposed in [15]. However, these methods only focus on finding a summary from
the global structure of the graphs without looking into the topological structure,
thus would lose very important local structural information, leading to a less
effective clustering of multiple graphs.

For node clustering in graphs, there has also been a vast literature of works. One
classic category of these methods are the spectral clustering algorithms [22], which
use the eigenvalues of the Laplacian matrix to perform dimension reduction and
then cluster the data in fewer dimensions.Recently, newmethods of node clustering
have been proposed for various applications, such as the works for social network
analysis [25,26], which utilize the heterogeneous information in aligned networks
for node clustering. Although these work use information from multiple graphs,
they focus on the mutual relationship of graphs at the node level instead of the
graph-graph neighbourhood relationship as we consider.

Brain network analysis has become a hot research topic of medical data
mining these years. A major task in brain network analysis is to identify the
difference of a healthy subject and a neurological demented subject in brain
network structure. In the past decade, quite a few of works have been done to
solve this problem. In [11], a discriminative subgraph mining method is proposed
for classifying brain networks. In [14], they find a unified cut and a contrast cut
of multiple graphs for studying brain networks of multiple subjects. This work is
the most related one of ours. However, they study the brain networks when the
labels of subjects (healthy or demented) are given, while we cluster the unlabeled
subjects into groups with their brain network features.

6 Conclusions

In this paper, we propose an iterative framework MGCT for multi-graph cluster-
ing based on interior-node topology of graphs. To capture the local topological
structure of the graphs, we perform the sparsity-inducing interior-node cluster-
ing on each graph. In this framework, the interior-node clustering and the multi-
graph clustering are performed alternatively, where the results of interior-node
clustering are exerted on multi-graph clustering and the multi-graph clustering
in turn improves the interior-node clustering of each graph. After this iterative
mutual reinforcement process, we can obtain a refined multi-graph clustering
result, which can be used for further analysis of the graphs. Experiments on
two real brain network datasets demonstrate the superior performance of the
proposed model in multi-graph clustering for brain network analysis.
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