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Abstract. In the trust-centric context of signed networks, the social links among
users are associated with specific polarities to denote the attitudes (trust vs dis-
trust) among the users. Different from traditional unsigned social networks, the
diffusion of information in signed networks can be affected by the link polari-
ties and users’ positions significantly. In this paper, a new concept called “trust
hole” is introduced to characterize the advantages of specific users positions in
signed networks. To uncover the trust holes, a novel trust hole detection frame-
work named “Social Community based tRust hOLe expLoration” (SCROLL) is
proposed in this paper. Framework SCROLL is based on the signed community
detection technique. By removing the potential trust hole candidates, SCROLL

aims at maximizing the community detection cost drop to identify the optimal
set of trust holes. Extensive experiments have been done on real-world signed
network datasets to show the effectiveness of SCROLL.
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1 Introduction

In traditional works on sociology and social networks, the concept structural hole refers
to individuals who act as intermediaries or bridges between others who are not directly
connected [9]. Via these structural holes, information can propagate to separated indi-
viduals in different communities, or those who are otherwise not interacting with each
other. As a result, the structural holes who take these bridging positions in society or
social networks will accrue significant advantages than other users [9]. In traditional so-
cial networks with regular friendship connections among users, structural holes related
problems have been studied for years, and dozens of papers on it have already been
published [1, 3, 5, 9].

Meanwhile, in some online social networks like Epinions1, the connections con-
nected to users are associated with specific polarities (e.g., positive vs negative) to de-
note different attitudes among users (e.g., trust vs distrust). Such a kind of online social
networks are formally represented as the signed networks [11]. Different from tradi-
tional regular unsigned social networks, in the trust-centric context of signed networks,

1 http://www.epinions.com
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diffusion of information can be affected by the link polarities significantly. For instance,
in signed networks, information tends to propagate via the trust links between users
who trust each other instead of those distrusted ones. Viewed in this way, users who
bridge different cliques via distrust links actually cannot transmit information across
these cliques. Therefore, the traditional structural holes (i.e., the inter-community users
in unsigned networks) concept [9] can no longer work for the signed networks.

To characterize the advantages of specific users’ positions in signed networks, a
new concept named trust holes is introduced in this paper. Depending on the polarities
of links attached to them, the trust hole concept has two variants: (1) positive trust holes
who connect multiple isolated social communities via positive links, and (2) negative
trust holes who connect users within communities via negative links instead. Via the
positive trust holes, information can propagate between different social communities,
as people will trust information propagated from these hole users. Meanwhile, via the
negative trust holes, the intra-community information dissemination will be blocked
instead, as few of the neighbors will believe the information from the people they dis-
trust. Therefore, the positions of both positive trust holes and negative trust holes will
have great advantages in passing information among users in signed networks. The
formal definition of the trust hole concept is available in Section 2. Specifically, the
inter-community nodes attached with negative links and the intra-community nodes at-
tached with positive links are not trust holes, as their position own no advantages in
propagating information in signed networks. We will clarify that in detail in Section 2.
Problem Studied: In this paper, we aim at identifying the trust holes from the signed
networks, and the problem is referred to as the “Signed network trust HolE iDentification”
(SHED) problem formally.

The SHED problem is an interesting research problem, and it is also very important
for many concrete applications, e.g., community structure [6,10], and information diffu-
sion [13,14] (existence of the holes can help disseminate the information more broadly)
in signed networks. In addition, the SHED problem is a novel problem and we are the
first to study it in signed networks. Different from existing works about structural holes
in unsigned networks [3,9], the networks studied in this paper are signed networks, and
the target to be identified are the trust holes instead. For more information about related
works, please refer to Section 5.

The SHED problem is very challenging to solve due to the following reasons:

– definition of trust hole: The trust hole proposed in this paper is a new concept.
A formal definition of the trust hole concept is needed before studying the SHED
problem.

– formulation of the SHED problem: In the signed network setting, how to formulate
the SHED problem with clear motivations and objectives is still an open problem.

– solution to the SHED problem: The SHED itself is a difficult problem. Some triv-
ial methods, like isolated trust hole identification in the positive sub-graph (and
negative sub-graph) along, will face great challenges in both obtaining the positive
and negative trust holes independently and fusing the trust hole results from these
two sub-graphs to get the final consistent results. An integrated trust hole detection
framework based on the whole signed network is desired.
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To address the above challenges, an integrated trust hole detection framework named
SCROLL (Social Community based tRust hOLe expLoration) is proposed in this paper.
Before introducing SCROLL, we will first define the trust hole concept with full consid-
erations about the link polarities in the signed networks. SCROLL formulates the SHED
problem from the community detection perspective. By removing the potential trust
hole users, SCROLL aims at maximizing the community detection cost drop to identify
the optimal set of trust hole candidates, which maps the SHED to a max-min optimiza-
tion problem. A new concept named “signed normalized cut decrease” is proposed in
SCROLL to quantify the cost drop formally based on the signed normalized cut measure
introduced in this paper. The SHED problem is shown to be NP-hard, but based on such
a formulation, SCROLL can solve the SHED approximately with an alternative updating
schema based schema.

The following parts of this paper are organized as follows. Terminology definition
and problem formulation are given in Section 2. The method is introduced in Section 3,
which is evaluated in Section 4. Finally, Section 5 is about the related works and Sec-
tion 6 concludes this paper.

2 Problem Formulation

2.1 Terminology Definition

The networks studied in this paper are signed networks, where links are associated with
different polarities.

Definition 1 (Signed Network): A signed network can be represented as G = (V, E , s),
where V (|V| = n) and E (|E| = m) are the sets of users and links respectively. Sign
mapping s : E → {+1,−1} projects links to their different polarities, where polarities
+1 and −1 denote that the links are the trust and distrust links respectively.

Users in regular social networks will form social communities based on the connec-
tions among them, where intra-community connections are more dense compared with
those between different communities [17]. The social communities formed in signed
networks can be different due to the polarities attached to links.

Definition 2 (Signed Social Community): Given a signed network G, we can represent
the communities formed by users in G as C = {C1, C2, · · · , Ck}, where k is the com-
munity number, Ci ⊆ V,∀i ∈ {1, 2, · · · , k} and

⋃k
i=1 Ci = V . Generally speaking, in

the trust-centric context, users connected by positive links tend to trust each other and
will be grouped in the same community. Meanwhile, for those connected by distrust
links, they will have very few social interactions and will be partitioned into different
communities.

However, in the real scenario, the signed social communities formed by people
cannot fit the definitions exactly, and there may still exist a large number of inter-
community positive links and intra-community negative links. In such a case, the po-
sitions of individuals connecting different communities via positive links, as well as
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Fig. 1. Trust Holes vs Structural Hole. (A: positive trust hole, B: negative trust hole)

those connecting individuals within the same community via negative links will have
significant advantages in information dissemination (as introduced in Section 1).

Definition 3 (Signed Trust Hole): Given a signed network G (with signed social com-
munity C), literally, the signed trust holes in G denote a subset of users in G (i.e.,
H ⊂ V) occupying positions of the largest advantages. More specifically, the signed
trust holes in H are the users either (1) connecting different communities via positive
links (connected with users in them), who are referred to as the positive trust holes; or
(2) connecting users within the same community with negative links, who are called the
negative trust holes respectively.

To help illustrate this concept more clearly, we also give an example in Figure 1,
where the colored regions denote different communities in the network. In plots A and
B, we show the signed networks, where the links are associated with different polarities
(i.e., positive vs negative). In the signed networks, nodes bridging different groups are
not necessarily the trust holes. For instance, in plot A, the “Green” nodes which con-
necting different groups via positive links is defined as the positive trust hole, while the
“Red” node bridging groups with negative links is not, as information will not propagate
between groups via him/her. Besides the inter-community nodes, in signed networks,
the intra-community nodes can also be the trust holes. For instance, in plot B, we ob-
serve that, in the “Blue” group, the central node connects to other nodes via both positive
and negative links, which will partially block the dissemination of information within
the group as some of his neighbors distrust information from him/her (he/she is still in
the group as some others tend to trust him). The remaining intra-community nodes are
not trust holes on the other hand. As a result, the positions of both the “Green” node
in plot A and the central “Blue” node in plot B have significant advantages, which are
called the positive and negative trust holes respectively.
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2.2 Problem Statement

In this paper, we aim at identifying the set of trust holes from signed networks. LetG =
(V, E , s) be the signed network and C be the community structures detected from G.
Various cost functions can be utilized to measure the quality of the detected community
structure C, which can be denoted as cost(C, G). Meanwhile, let G′ = (V ′, E ′) be the
network obtained after removing the positive and negative trust holes, where V ′ = V\H
and E ′ = {(u, v)|(u, v) ∈ E , u /∈ H, v /∈ H}, and C′ be the new community structures
of G′, which will lead to cost cost(C′, G′).

According to the definition of trust holes, the existence of positive/negative trust
hole will not only influence the dissemination of information, but also blurring the net-
work community structure. Removal of the trust holes from network G will also delete
the inter-community positive links and intra-community negative links attached to them,
and better community structures can be identified from G.

Therefore, in this paper, we propose to formulate the SHED problem from the com-
munity detection perspective. The optimal trust holes set H of size h can be identified
by removing potential trust hole candidates from the network. The users removal of
whom introducing the maximum community detection cost drop will be the optimal
result. Formally, the objective function of the SHED problem can be represented as

max
H

Cost(C∗, G)− Cost((C′)∗, G′)

s.t. |H| = h,

where Cost(·) denote the costs introduced by the community structure in the network,
and its concrete representations will be introduced in the following sections. And C∗ =
argminC Cost(C, G) and (C′)∗ = argminC′ Cost((C′), G′) denote the optimal com-
munity structure introducing the minimum costs in networks G and G′ respectively.

Meanwhile, identification of the trust hole number (i.e., h) can be another interesting
problem, but it is out of the scope of this paper, and we will leave it as a future work. In
the SHED problem, the trust hole number is pre-given but we will also analysis the the
effects of different parameter h on the performance of different comparison methods in
the experiment section.

3 Proposed Methods

In this section, we will introduce the method SCROLL in detail. Based on the community
cost function introduced in Section 3.1, we will provide the objective function of the
SHED problem in Section 3.2 based on the “signed normalized cut decrease” concept.
With some simple analysis, the SHED problem is shown to be NP-hard. An alternative
updating schema based solution will be applied to address the objective function in
Section 3.3.

3.1 Signed Normalized Cut Cost Function

Any community quality measures, e.g., entropy, normalized dbi, can be applied to de-
fine the community cost function. In this paper, we propose to use the normalized
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cut [20]. In this part, we will first do a quick review about the normalized cut mea-
sure for unsigned networks. Next, we propose to extend it to the signed network setting
with full considerations of the constraints introduced by link polarities.

Traditional Normalized Cut Measure for Unsigned Networks Given a traditional
unsigned social network Gu, based on the connection among users in which, we can
define its adjacency matrix as Au. Its corresponding Laplace matrix can be repre-
sented as Lu = Diag(Au) − Au, where Diag(Au) denotes the corresponding diag-
onal matrix of A and Diag(Au)(i, i) =

∑
j A(i, j). Meanwhile, given the social struc-

ture Cu = {Cu1 , Cu2 , · · · , Cuk }, we can define the corresponding indicator matrix as
X = (x1,x2, · · · ,xk), where xj = (x1,j , x2,j , · · · , xn,j)>, and entry xj(i) = xi,j
denotes whether user ui is in cluster Cuj or not. Traditional unsigned normalized cut
cost function [16] is defined to be

Ncut(Cu, Gu) =
i=k∑
i=1

x>i L
uxi = Tr(X>LuX),

where Tr(·) denotes the trace of a matrix, and X is subject to constraint X>X = I.

Extended Signed Normalized Cut Measure for Signed Networks However, in signed
networks studied in this paper, the polarities associated to links can post extra con-
straints [22] on the community structures:

– constraint of positive links: From the trust-centric point of view, trust links (i.e.,
positive links) are stronger indicators of the closeness among users in signed net-
works. Generally, users who trust each other are more likely to share information
and can be in the same community.

– constraint of negative links: Meanwhile, on the other hand, distrust links (i.e., neg-
ative links) can show the negative attitudes among users in signed networks. Users
who distrust each other tend to have less social interactions, and will stay in differ-
ent communities.

To handle the constraints introduced by the polarities of these signed links, in this
paper, we propose to extend the traditional normalized cut concept to the trust-centric
signed networks. Based on the positive links in network signed network G, we propose
to construct the positive Laplace matrix L+. The cost introduced by detected commu-
nities C in cutting positive links can be represented as the positive normalized cut cost
function:

Ncut(C, G)+ =

i=k∑
i=1

x>i L
+xi = Tr(X>L+X).

Meanwhile based on the negative links in signed network G, we can construct the
negative Laplace matrix L−. The cost introduced by detected communities C in cutting
the negative links can be represented as the following negative normalized cut cost
function:

Ncut(C, G)− =

i=k∑
i=1

x>i L
−xi = Tr(X>L−X).
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By considering the polarities of links in signed networks, in the trust-centric con-
text, the optimal community structure should cut the minimum positive links but the
maximum negative links. Viewed in this way, we introduce the signed normalized cut
cost function for network G to be

Ncut(C, G) = α · Ncut(C, G)+ − (1− α) · Ncut(C, G)−

= α · Tr(X>L+X)− (1− α) · Tr(X>L−X)

= Tr
(
X>(α · L+ − (1− α) · L−)X

)
= Tr

(
X>LX

)
,

where matrix L = (α ·L+−(1−α) ·L−) and α is the weight of the positive normalized
cut cost term.

Moreover, the optimal community structure C∗ (i.e., the optimal indicator matrix
X∗) which can minimize the signed normalized cut cost function can be represented as:

X∗ = argmin
X

Tr
(
X>LX

)
,

s.t. X>X = I.

Constraint X>X = I ensures the obtained indicator matrix X is orthogonal. The dis-
crete binary value constraint on X is usually relaxed, which can actually take any real
values in range [0, 1].

3.2 Objective Function of the SHED Problem

As introduced in Section 2, the trust holes either connecting different communities via
positive links or linking individuals within communities via negative links will make
the social community structure of the network hard to distinguish. Therefore, we pro-
pose to remove potential trust hole candidates together with their attached links from
the network. The users removal of whom from the network can lead to the maximum
community detection cost drop will be the optimal trust holes to be identified in the
SHED problem. Based on the signed normalized cut cost function introduced in the
previous section, we will define the concrete objective function of SHED in this section.

Let G, C∗ and G′, (C′)∗ be the networks and their optimal community structures
before and after removing the signed trust holes H respectively. Considering that, in
the signed normalized cut cost function, network information is actually stored in the
Laplace matrix, next we will first study how to represent the Laplace matrix of network
G′ (i.e., L′) after removing the signed trust holes from the original Laplace matrix of
network G (i.e., L).

Let matrix I ∈ {0, 1}|V|×|V| be the identity matrix with 1s on its diagonal only.
Given the user set V and structure hole set H = {ui, uj , · · · , um}, we define the cor-
responding transformation matrix T ∈ {0, 1}(|V|−|H|)×|V| based on I, where the rows
corresponding structure holes in H are all removed. For instance, if ui is identified
as a trust hole, after removing ui, we can define the corresponding transformation to
be T ∈ {0, 1}(|V|−1)×|V|, where rows T (l, :) = I(l, :),∀l ∈ {1, 2, · · · , i − 1} and
T (l, :) = I(l + 1, :),∀l ∈ {i, i + 1, · · · , |V| − 1}. Therefore, given a set of structure
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holes H, we can define a unique transformation matrix T for it. In this paper, we will
misuse matrix T to denote the signed trust hole for simplicity. With transformation ma-
trix T, we can represent the Laplace matrix to be L′ = Diag(TAT>)−TAT>, where
A is the signed adjacency matrix of G weighted by parameter α.

Definition 4 (Signed NCut Decrease): Based on the Laplace matrices L and L′ as well
as transformation matrix T, we can define the signed ncut decrease introduced by ma-
trix T to be

NCut-Decrease(T) = Ncut(C∗, G)− Ncut((C′)∗, G′)
= min

X
Tr
(
X>LX

)
−min

X′
Tr
(
(X′)>L′(X′)

)
.

Furthermore, the objective function for detecting the optimal signed trust hole H∗
can be represented as

H∗ = argmax
H

NCut-Decrease(T)

= argmax
T

(
min
X

Tr
(
X>LX

)
−min

X′
Tr
(
(X′)>L′(X′)

) )
,

s.t. X>X = I, (X′)>(X′) = I,TT> = I,

|H| = h,T ∈ {0, 1}(|V|−|H|)×|V|.

Considering that matrix T is obtained from the identity matrix by removing rows cor-
responding to the structure hole users, the last constraint is added to ensure each row of
T should contain only one entry with value 1, while the remaining entries are all 0s.

3.3 Solution to the SHED Problem

In this section, we will first analyze the objective function of the SHED problem first,
and after that we will introduce an approximated method to address it.

Objective Function Analysis By studying the objective equation, we observe that the
first constrained minimization equation is actually a constant, removal of which has no
effects on the solutions. Therefore, we can simplify the objective function as follows

H∗ = argmin
T

min
X′

Tr
(
(X′)>L′(X′)

)
,

s.t. (X′)>(X′) = I,TT> = I, |H| = h,T ∈ {0, 1}(|V|−|H|)×|V|.

As we can see, the objective function is actually a joint min-min non-linear integer
programming problem involving multiple variables simultaneously, joint optimization
of which is shown to be NP-hard [7]. Therefore, a new approximated method SCROLL is
proposed in this paper to address the objective function based on an alternative updating
schema. Constraint |H| = h will be removed from the objective function since the
number of detected trust holes has been denoted by the dimension of matrix T already.
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Solution SCROLL with Alternative Updating As introduced in the previous sec-
tion, Laplace matrix L′ can be represented as L′ = Diag(TAT>) − TAT>. The
transformation matrix T is also involved in the Diag(·), which will make the partial
derivatives calculation of the objective function about variable T infeasible. To ad-
dress this problem, in this paper, we propose approximate the representation of L′

as L′ ≈ TLT> instead. The introduced deviation by such a approximation will be
TLT> − (Diag(TAT>)−TAT>) = T · Diag(A) ·T> − Diag(TAT>), which are
mainly about the values (about the out-degrees of the trust holes) on the diagonal of L′.
Based on such an approximation, the new objective function can be represented as

H∗ = argmin
T

min
X′

Tr
(
(X′)>TLT>(X′)

)
,

s.t. (X′)>(X′) = I,TT> = I.

Here the integer constraint matrix T is relaxed and entries in T can take any real values
in range [0, 1].

We propose to address the objective function with an alternative updating schema:
(1) fix T and update X′; and (2) fix X′ and update T.
Step 1: By fixing variable T and adding the constraint term (X′)>(X′) = I as a regu-
larizer term, we can represent the objective function to be

min
X′

Tr
(
(X′)>TLT>(X′)

)
+ ρ

∥∥(X′)>(X′)− I
∥∥2
F
,

where parameter ρ denotes the weight of the regularizer term, and it is assigned with
with very large value (e.g., 10) in the experiment to ensure the constraint can be main-
tained.

The above objective function is a convex function can be addressed with gradient
descent method, and the updating equation of variable X′ can be represented as

X′ = X′ − η1
∂
(

Tr
(
(X′)>TLT>X′

)
+ ρ

∥∥(X′)>X′ − I
∥∥2
F

)
∂X′

= X′ − 2η1

(
TLT>X′ + 2ρ

(
X′(X′)>X′ −X′

))
,

where parameter η1 denotes the learning step and it is assigned with a small constant
value (0.0001) in the experiments.
Step 2: Meanwhile, in a similar way, by fixing parameter X′ and adding the constraint
term TT> = I as a regularizer term, we can find that the resulting objective function
is also a convex function. We can further represent the updating equation of variable T
to be

T = T− 2η2
(
X′(X′)>TL+ 2ρ(T(T)>T−T)

)
,

where parameter η2 denotes the learning step of updating T.
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Table 1. Properties of different networks

network # nodes # links link type

Epinions 131,828 841,372 directed

Slashdot 77,350 516,575 directed

Therefore, the alternative updating equation of variables X′ and T at step τ can be
represented as

X′(τ) = (X′)(τ−1) − 2η1

(
T(τ−1)L(T(τ−1))>(X′)(τ−1)

+2ρ
(
(X′)(τ−1)((X′)(τ−1))>(X′)(τ−1) − (X′)(τ−1)

))
,

T(τ) = T(τ−1) − 2η2
(
(X′)(τ)((X′)(τ))>(T′)(τ−1)L

+2ρ(T(τ−1)(T(τ−1))>T(τ−1) −T(τ−1))
)
.

Such a alternative updating process will continue until both X′ and T converge. From
the result of T, we can recover the rows that are removed from the identified results,
which corresponding to the signed trust holes of the signed network. Under the con-
straint that each row and each column can constrain at most one entry being filled with
value 1, for entries in T(τ), we sort their values in decreasing order to select the entries
with the largest values to preserve, which will be assigned with 1. The rest will all be
assigned with value 0. In addition, based on matrix X′, we can obtain the community
structures formed by users in the signed networks. Depending on the positions and the
connections attached to the identified trust holes (i.e., intra or inter community, and pos-
itive or negative links), we can differentiate the specific categories of trust holes (i.e.,
positive and negative trust holes respectively) from the results.

4 Experiments

To test the effectiveness of SCROLL in addressing the SHED problem. We conduct ex-
tensive experiments on real-world signed network datasets, and compare them with both
state-of-art and traditional baseline methods.

4.1 Dataset Description

The real-world signed network dataset used in the experiments include the Epinions
network and the Slashdot network. Some basic statistical information about these two
datasets is available in Table 1.
Reproducible Research?: The dataset used in this paper is public accessible, which
can be downloaded from the SNAP site2.

2 http://snap.stanford.edu/data/index.html#signnets
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Fig. 2. Experiment results on the Epinions network.

4.2 Experiment Setting

Based on the positive and negative links, the positive and negative adjacency matrices
are constructed respectively. With the positive/negative adjacency matrices, we can de-
fine the integrated Laplace matrix and the weight of positive Laplace matrix α is set as
0.5. Framework SCROLL infers the transformation matrix T and confidence matrix X
simultaneously with the alternative updating schema. From the transformation matrix
T we can recover the trust holes.

Comparison Methods The networks studied in this paper are signed, and no existing
works have studied the trust hole detection problem based on signed networks before
yet. We propose to apply the existing works on traditional structural hole detection prob-
lem to the signed networks by discarding the polarity information. In SHED, no com-
munity structure information is available about the signed networks, thus the unsigned
structural hole detection method proposed in [15] taking the community structure as the
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Fig. 3. Experiment results on the Slashdot network.

input cannot work for the SHED problem. The list of comparison methods used in the
experiments are provided as follows:

– SCROLL: Method SCROLL is the trust hold detection method proposed in this paper,
which can consider both the links as well as the polarities attached to the links.

– BICC: Method BICC is the state-of-art structural hole detection method for un-
signed networks [18]. To accommodate the setting of BICC, we transform the
signed networks to a unsigned one by discarding the link polarities.

– CONSTRAINT: Method CONSTRAINT proposed in [2] uses constraint to estimate
the importance of each node and selects the nodes with the lowest K constraint
scores as the hole candidates.
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Table 2. Intersection of trust holes selected by different comparison methods.

SCROLL BICC CONSTRAINT PAGERANK DEGREE RANDOM RANDOM DEGREE PAGERANK CONSTRAINT BICC SCROLL
50 26 1 32 25 4 SCROLL 4 35 27 4 23 50

50 2 25 26 3 BICC 5 23 23 4 50
50 1 1 2 CONSTRAINT 0 4 5 50

50 22 4 PAGERANK 6 27 50
50 4 DEGREE 4 50

Epinions 50 RANDOM 50 Slashdot

– PAGERANK: Traditional node ranking algorithm PAGERANK can also be used as a
method for structural hole detection in [15], which returns the nodes with the top
K page rank scores as the result.

– DEGREE: Method DEGREE selects the users with the top K degree as the hole
candidates. Considering that the links in the network datasets are directed, the social
degree of user u is identical to the number of neighbors of u in the network (i.e.,
|Γ (u)| = |{v|v ∈ U , (u, v) ∈ E ∨ (v, u) ∈ E}|).

– RANDOM: Method RANDOM randomly selects K users as the hole candidates.

Evaluation Metrics For the real-world signed network datasets, we propose to mea-
sure the performance of these different comparison methods two different metrics. One
of the evaluation metrics is the signed normalized cut decrease introduced in this paper.
Generally, higher signed normalized cut decrease corresponds to better performance.

Another evaluation metric used in the experiments is the trust hole index introduced
in this paper. Generally, the optimal trust holes are the user nodes which connect to other
nodes in different communities via the positive links or nodes in the same community
via negative links.

Definition 5 (Trust Hole Index): Let Γ−(u) and Γ+(u) be the sets of negative and
positive neighbors of user u respectively and mapping c : U → C be the function
projects users to their communities respectively. The trust hole index for user u can be
represented as

TH-Index(u) =
1

Z(Γ+(u))

∑
v,w∈Γ+(u),v 6=w

I(c(v) 6= c(w))

+
1

Z(Γ−(u))

∑
v,w∈Γ−(u),v 6=w

I(c(v) = c(w)).

where the normalization termZ(Γ+(u)) = 1
|Γ+(u)|×(|Γ+(u)|−1) , and termZ(Γ−(u)) =

1
|Γ−(u)|×(|Γ−(u)|−1) . Function I(c(v) 6= c(w)) is 1 if c(v) 6= c(w) and similar for
I(c(v) = c(w)).

Generally, users with higher trust hole index are more likely to be the trust holes,
and methods achieving higher trust hole index will have better performance.

4.3 Experiment Result

The experiment results on the real-world signed networks, Epinions and Slashdot, are
shown in Figure 2 and Figure 3 respectively.
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In Figure 2(a), we show the performance of different comparison methods evalu-
ated by the normalized cut decrease metric at different hole numbers. From the plot,
we can observe that SCROLL can outperform other comparison methods for different
hole numbers. For instance, when the hole number is 25, the normalized cut decrease
achieved by SCROLL is 0.150, which is more than two times higher than that obtained
by DEGREE and PAGERANK, about 7 times larger than that achieved by BICC, RAN-
DOM and CONSTRAINT. In Figure 2(b), we show the performance of the comparison
methods when the evaluation metric is trust hole index. According to the plot, we can
observe that DEGREE and PAGERANK has comparable performance, both of which are
below the trust hole index curve of SCROLL. The constraint method cannot work well
when dealing with the signed networks at all, which is the baseline of all the comparison
methods.

Similar results of these comparison methods can be observed for the Slashdot net-
work in Figure 3, and SCROLL can outperform other methods for different hole num-
bers.

In addition, in Table 2, we show the shared trust holes detected by the different com-
parison methods in the Epinions and Slashdot networks respectively. From the results,
we can observe that the trust holes selected by SCROLL have some overlapping with
BICC, DEGREE and PAGERANK. In the Epinions, the number of detected trust holes
by SCROLL and BICC is 26, the number of shared trust holes by SCROLL and PAGER-
ANK is 32, while those shared by SCROLL and DEGREE is 25 respectively. Meanwhile,
the trust holes detected by these three methods are quite different from those selected
by RANDOM and CONSTRAINT. For instance, in Epinions, the trust holes shared by
SCROLL and CONSTRAINT is merely 1, and those shared by SCROLL and RANDOM
is only 4. Similarly results can be observed for the Slashdot network, and SCROLL
can choose some common holes with BICC, PAGERANK and DEGREE, but have quite
different results with RANDOM and CONSTRAINT.

5 Related Works

Traditional structural holes are usually correlated to a wide range of indicators about
social success, which have been studied in various papers already [1, 3, 4]. Ahuja [1]
proposes to study the effects of a firm’s network of relations on innovation from three
different perspectives: direct ties, indirect ties and structural holes, where structural
holes are discovered to have both positive and negative influences on subsequent inno-
vations. Burt [3] introduces the relation between structural holes and good ideas. Burt
discovers that structural holes connecting different groups are more likely to express
ideas, less likely to have ideas dismissed, and more likely to have ideas evaluated as
valuable.

Later, some works propose to study the formation of structural holes in social net-
works from the game theory perspective [5, 8, 9]. Goyal et al. [8] propose that in social
networks, individuals form links with others to create surplus, to gain intermediation
rents, and to circumvent others, which are the forces in the process of strategic network
formation. Kleinberg et al. [9] propose to apply a game-theoretic approach to study the
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structural holes, and notice that individuals will differentiate themselves in equilibrium
of the game, occupying different social strata and receiving different payoffs.

Recently, some works have been done on finding the structure holes from social
networks [15, 23]. Lou et al. [15] formulate the structure hold mining problem from
the information diffusion and community detection perspectives, and discover that the
problem is NP-hard based on these two modeling. Vilhena et al. [23] extend the struc-
tural hole concept to “culture holes” and propose to find the “culture holes” from the
citation networks. For more background knowledge about online social networks and
the research works studied based on them, please refer to a recent survey paper written
by Shi et al. in [19].

Signed networks since introduced by Leskovec et al. [12] have become a hot re-
search topic, as links in signed networks can denote different attitudes among users,
which provide new opportunities for researchers to study the connections among users.
Leskovec et al. [11] propose to predict the positive and negative links in signed net-
works based on the balance theory. Doreian et al. [6] study the partition problem in
signed networks. A recent survey about related works in signed networks is given by
Tang et al. in [21].

6 Conclusion

In this paper, we have studied the trust hole detection problem in signed networks. A
formal definition about the trust hole concept as well as its two different variants are
clearly illustrated in this paper. To identify the set of trust holes from the signed network,
a community detection based trust hole detection framework, SCROLL, is introduced in
this paper. By identifying the set of users, removal of whole from the network can
lead to the maximum signed normalized cut decrease, SCROLL can detect the optimal
set of trust holes from the signed network. Extensive experiments have been done on
real-world signed networks, and the results demonstrate the effectiveness of SCROLL in
addressing the SHED problem.
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