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Abstract—Bicycle-sharing systems (BSSs) offering shared bike
usages to the public are becoming more and more popular
nowadays. In bicycle-sharing systems, people can borrow and
return bikes at any bike stations in the service region, but the
free-ride time is usually limited. Therefore, for long-distance
bike trips, individuals need to pre-schedule the bike trip route
in advance and change the bike within the free-ride time so
no over-time fees will be charged. In this paper, we will study
the trip route planning problem for individuals when using the
bicycle-sharing systems. Given the trip origin and destination, we
aim at identifying the optimal trip route from the origin to the
destination through the bike stations. To address the problem,
we conduct a thorough analysis about an existing BSS, Divvy,
launched in Chicago. Based on the analysis results, a novel bike
route planning framework “BSSs based Trip rOute Planning”
(STOP) is proposed in this paper, which can identify the optimal
trip route by mapping the problem into a minimum-cost network
flow problem. Extensive experiments conducted on real-world
bicycle-sharing system datasets demonstrate the effectiveness of
STOP.

Index Terms—Route Planning, Bicycle-Sharing Systems, Geo-
graphic Information Systems, Vehicle Networks and Applications

I. INTRODUCTION

Bicycle-sharing systems (BSSs) [26], are the public trans-
portation service systems launched in the urban areas, in which
the bikes are available for shared use to the public. The
bikes together with the stations as well as bike trip routes
among the stations can form a kind of intelligent transportation
network. Generally, people can borrow bikes from the nearby
stations and return the bikes to any stations in the city. Without
concerns about the parking issues, BSSs have become an
important short-distance travel option for both local residents
and tourists. Due to the needs of green and low-carbon public
transport vehicles nowadays, BSSs have been launched in
many big cities (e.g., Chicago1, New York2, San Francisco3),
and achieved a remarkable success. A detailed analysis about
the Chicago Divvy BSS is available in [26].

In many of the BSSs, the bicycles are equipped with
sophisticated electronic sensors and real-time GPS tracking
devices, which can monitor traffic conditions and average
vehicles speed. Via the information exchange, people can
know the general trip time and design their traveling route

1https://www.divvybikes.com
2https://www.citibikenyc.com
3http://www.bayareabikeshare.com
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Fig. 1. An example of trip routes in BSSs.

wisely. In addition, to attract usages from the public, BSSs
usually provide the services either for free or with very
low service charges. Depending on the specific travel needs,
customers can purchase either annual membership or one-day
pass tickets, both of which will allow unlimited 30-minute
trips, and trips longer than 30 minutes will lead to over-time
fees. To avoid unreasonable long-time occupation of the bikes
by individuals, constraining the bike riding time is a common
practice used by the majority of the existing BSSs in service.
Therefore, for long-distance trips taking more than 30 minutes,
e.g., a full-day bike trip for sightseeing, customers need to pre-
plan the trip route in advance and change their bikes at stations
for every 30 minutes regularly, if they don’t want to pay the
unnecessary over-time fees.
Problem Studied: In this paper, we will study the trip route
planning problem for BSSs to help the customers determine
the optimal bike route (i.e., a sequence of stations for bor-
rowing/exchanging/returning the bikes). Formally, the problem
is defined as the ROUTEPLANNING problem. Given the trip
origin and destination, ROUTEPLANNING aims at identifying
the optimal bike route with the minimum costs between the
origin and destination without over-time fees.

To illustrate the problem more clearly, we also provide an
example in Figure 1, where the trip origin and destination to-
gether with 5 bike stations are shown. Between the origin and
destination, 3 different bike routes sharing common start/end
bike stations are given, which take different amount of time.
The free-ride time of the bikes in the system is 30 minutes.
Via route 1, customers ride directly to the end station and
it takes 35 minutes, which exceeds the time limit already,



TABLE I
PROPERTIES OF THE DIVVY DATASET

datasets trip station

2013 Q3-Q4 759,788 300

2014 Q1-Q2 905,699 300

2014 Q3-Q4 1,548,935 300

2015 Q1-Q2 1,096,239 474

and can introduce over-time fees. Both route 2 and route 3
have no overtime fees, but customers need to change the bikes
during the trip. Route 2 one bike change and takes 50 minutes,
while route 3 requires two bike changes at two intermediate
stations and takes 48 minutes. Among these three bike routes,
the optimal one without over-time charges is to be identified
in ROUTEPLANNING.

The ROUTEPLANNING problem is a new problem and has
never been studied for BSSs before. The ROUTEPLANNING
problem is different from traditional route direction works
[21], [25], [19], [4], [23], [11], as these existing works
mainly focus on discovering the route paths based on the
traffic road networks for general vehicles without time limit
concerns. Instead of the whole traffic road network, the input
of ROUTEPLANNING is merely a set of isolated bike stations,
and the objective is to identify the optimal bike route with the
free-ride time constraint.

The ROUTEPLANNING problem is a difficult problem con-
sisting of many open challenges:
• Trip Route Cost: Different trip routes can lead to certain

commute costs, like the total travel distance, the number
of bike changes, and the time cost, etc. A proper measure
of the trip cost is needed.

• Free-ride Time Constraint: Due to the free-ride time
constraints, the trip route segments between bike stations
cannot exceed 30 minutes. Pre-pruning of the “illegal”
route segment is a necessary step.

• Optimal Route Detection: Given the trip origin and des-
tination, extraction of the optimal trip route with the
minimum costs between them consisting of the feasible
route segments only is a challenging problem.

To address these above challenges, a new bike route ex-
traction method “BSSs based Trip rOute Planning” (STOP)
is introduced in this paper. In STOP, the costs introduced by
the bike route are measured with the time, number of bike
changes and trip distances simultaneously. To maintain the
time constraints, we will introduce the bike route network
concept and propose to prune “illegal” trip route segments
from the network. Since these “illegal” trip routes actually
violate the time constraint, they will not involved in any
feasible solutions at all. Therefore, the pruning step will not
removing any feasible solutions but can also shrink the search
space effectively. Based on the pruned network, STOP applies
a minimum-cost network flow based model to extract the
optimal bike trips.

The remaining part of this paper is organized as follows.
At the very beginning, we will first introduce and analyze
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Fig. 2. Percentages of trip belong to different categories of users (Red: Female
Subscribers; Blue: Male Subscribers; Green: Subscribers; Gray: Customers).

the Divvy bicycle-sharing system launched in Chicago in
Section II. After that, in Section III, we will introduce the
concept definitions and formulation of the ROUTEPLANNING
problem. The method is described in Section IV, which is
evaluated in Section V. Finally, Section VI talks about the
related works and Section VII concludes the paper.

II. BICYCLE-SHARING SYSTEM ANALYSIS

To gain a more comprehensive knowledge about the BSSs,
in this section, we will analyze a real-world BSS launched
in Chicago, i.e., the Divvy Bike. In the following parts, we
will first introduce the datasets about Divvy, and then show
some brief analysis results about the user composition, bike
usage temporal patterns, as well as the station distribution and
station usage spatial patterns.

A. Divvy Dataset Description

Before analyzing the individuals’ travel behaviors, we will
introduce the dataset about a real-world bicycle-sharing system
first in this section. The dataset used in this paper is about the
Divvy bicycle-sharing system initially launched in the Chicago
city on June 28, 2013. At the very beginning, Divvy had about
750 bikes at 75 stations (operating in an area spanning from
the Loop north to Berwyn Avenue, south to 59th Street, west
to Kedzie Avenue, and east to the Lake Michigan coast). A
quick expansion has been made at early 2015, and Divvy now
operates 4, 760 bicycles at 474 stations (in an area bounded
by 75th Street on the south, Touhy Avenue on the north, Lake
Michigan on the east, and Pulaski Road on the west).

The Divvy bicycle-sharing system datasets are public and
new datasets are released every two quarters, which can be
downloaded at its official website4. We downloaded the Divvy
bicycle-sharing system data on November 2, 2015, which
contains 4 separate datasets time ranging from the middle
of 2013 to the middle of 2015. The downloaded datasets
include the complete historical trip records as well as the
station information, whose statistical information and detailed
descriptions are available in Table I and as follows.

4https://www.divvybikes.com/data
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Fig. 3. Statistics of trips on each day of the 2014 year (X axis: each day of 2014; Y axis: number of trips in one day).

• Trip: Each trip record in the datasets has a unique ID.
From the trip record data, we can know the trip start
and end time as well as the corresponding origin and
destination bike stations. The trip record also indicates
whether the user is an annual membership holder or just
an one-day pass holder, who are called the “subscriber”
and “customer” respectively. For the annual membership
subscribers, the trip record data also includes their gender
and birth year information, which is helpful for catego-
rizing the users (into male vs female, as well as youth vs
senior) and allows us to study the bike-usage behaviors
of different categories of people.

• Station: For each station, we can know its ID, name as
well as its specific location, which is represented as a
(latitude, longitude) coordinate pair in the dataset. At
stations, bikes are locked at the docks and the numbers
of docks available at the stations are called the station
capacities, which are also available in the datasets.

As shown in Table I, generally, the Chicago people like to
use the Divvy bike a lot and, on average, 179, 610 trips were
taken in each month during the past two years. Meanwhile,
the number of stations doesn’t change in the first 3 datasets
(which are all 300), and increases to 474 in the last dataset
because of the scheduled expansions during the spring and
early summer in 2015.

In the following subsections, we will study the datasets
in great detail to analyze the user composition, individuals’
temporal travel patterns, and spatial travel patterns respec-
tively. Based on the analysis results, we will introduce the
ROUTEPLANNING problem based on these stations and the
STOP model to address the problem.

B. Divvy User Composition

The Divvy Bike can attract the usage from a very diverse
group of people in Chicago. From Figure 2, we observe
that the majority of trips are actually taken by the registered
“subscribers” (i.e., the green area marked with “Sub”), which
account for about 66% in the total trips, while those finished by
the “customers” with one-day pass (i.e., the gray area) account
for 34% in all.

No extra information is available for the “customers”, as
they just buy one-day pass and no personal information
is recorded. Meanwhile, for the “subscribers” with formal
membership registrations, we can know more (e.g., gender and
age) about them and can further study their compositions.

As shown in Figure 2, the “subscribers” area is further
divided into the “male” and “female” subscribers. Among all
these Divvy bike trips, “male subscribers” (i.e., the blue area)
finish about 50% of them, and “female subscribers” (i.e., the
red area) have taken 16% of the trips.

In addition, we also count the trips finished by people be-
longing to 3 different age groups, which include young people:
age<30; mid-aged people: 30≤age<50; and senior people:
age≥50, which are denoted by the red/blue color of different
saturations in Figure 2. From the result, we observe that among
the 50% bike trips finished by the “male subscribers”, the
ratio of trips taken by the young, mid-aged and senior people
account for 17%, 27% and 7% respectively. Meanwhile, the
trip finished by the female subscribers belonging to these 3
groups are 7%, 7%, and 2% respectively. Therefore, the Divvy
bike is preferred and frequently used by the young and mid-
aged people, who together finish about 58% of the total trip.

In summary, based on the analysis results, we can partition
the users into several categories (e.g., “customers” vs “sub-
scribers”, “male” vs “female”, young vs mid-aged vs senior).
In the following sections, we will study the temporal and
spatial travel patterns of different categories of users in detail.

C. Temporal Travel Patterns

1) Bike Usage in One Year: The Divvy bicycle-sharing
system provides bike sharing services throughout the whole
year. To have a look at the bike usage within a year in the
dataset, we count up the trip records on each day in 2014 taken
by “customers”, “male subscribers” and “female subscribers”
respectively, whose results are available in Figure 3.

From Figure 3, we observe that people use the Divvy bike
everyday, but the majority of the trips concentrate within the
months ranging from April to November, and the number
of trips taken during the winter seasons is quite limited.
Such a phenomenon can be correlated to the weather in
Chicago and, to support such a statement, we also check
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Fig. 4. Trip Duration (X axis: trip time duration, Y axis: # trips).

the historical weather within the Chicago area in 2014 from
Weather Underground5. According to the historical weather
data in Chicago, the average temperatures during January
and February of 2014 were below 20◦F , and the average
temperature in November and December of 2014 were be-
low 40◦F respectively. Meanwhile, over 20 days snowed in
January 2014, and the numbers of snowing days during the
February, November and December were all larger than 10.
In this kind extreme weather conditions, traveling by bike is
almost infeasible. Meanwhile, as the weather gets better, Divvy
bike usage increases steadily.

Besides the weather reasons, some other factors can also
influence the Divvy bike usages, like various events celebrated
in Chicago. For instance, from Figure 3, we observe that
people’s bike riding activities reach the peak on July 19-20,
2014 (Saturday and Sunday) in Chicago. According to Chicago
event schedule6, at the same time, various events were taken
place at Chicago including the “Pitchfork Music Festival” (tens
of thousands of music fans are involved and gathered together),
“Taste of River North”, “Chicago Craft Beer festival”, etc. To
attend these celebration festivals, Divvy bikes with no worries
about the parking issues are the ideal travel options for people.
Viewed in this perspective, the Divvy bike riding activities are
also correlated with the offline events.

2) Bike Trip Time Length Distribution: In addition, to study
the bike usages in the real-world, we calculate the average
trip time duration in the whole dataset to be 17.76 minutes.
To study the detailed distributions of trip time length, in
Figure 4, we partition the trip length into 6 bins: {<30
minutes, 30 minute-1 hour, 1 hour-2 hours, 2 hours-5 hours, 5
hours-10 hours, >10 hours} and count the number of trips
belonging each time bin. From Figure 4, we can observe
that the number of trips which are shorter than 30 minutes
ridden by “subscribers” and “customers” are 2, 784, 145 and
1, 128, 802, which together accounts for 90.77% of the total
bike trips. In other words, the majority of users will return the
bike within the free-ride time (i.e., 30 minutes) and don’t want
to pay the over-time charges. However, about 397, 714 bike
trips are still longer than 30 minutes, the majority of which are
taken by “customers”. The number of over-time trips ridden

5http://www.wunderground.com
6http://www.choosechicago.com/articles/view/CHICAGO-EVENTS-

FESTIVALS-2014-CALENDAR-HIGHLIGHTS/1243/
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Fig. 5. Divvy station distribution and population distribution at Chicago [1].

by “customers” is 345, 446, and accounts for 86.85% of the
total over-time trips.

D. Spatial Travel Patterns

1) Spatial Distribution of Bike Stations: In Figure 5, we
show the distribution of the Divvy stations at the Chicago
city, where the blue area and blue dots are the existing service
region and the existing Divvy station locations. Due to the
vast travel demands from the public, Divvy is expanding its
service region to broader areas by adding new stations to both
new and existing service regions, i.e., the red area and the
red dots. By comparing the number of stations in the existing
and planned service regions (i.e., the blue and red areas), we
observe the station distribution is denser in the blue region,
which also corresponds to the densely populated area at the
Chicago city. The most prosperous area at Chicago should be
the Loop area, which is also the region that the Divvy bike was
initially launched at. To have a clear view about the stations
available at that area, in Figure 5, we also zoom in the area
(i.e., marked in the green dashed square), from which we can
observe divvy stations within the Loop region is extremely
dense and many new stations are to be added.

2) Bike Trip Geo-Distance Distribution: For bike trips
taken by different categories of people among the stations,
their trip distance can vary a lot. In Figure 6, we show
the distributions about the distance (in kilometers (KM)) of
trips taken by “customers”, “male subscribers” and “female
subscribers” respectively. Here, Manhattan Distance [24] is
used as the distance measure, as the roads in Chicago are
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very similar to those in Manhattan. We observe that the
distribution curves don’t follow the power law distribution
[5] exactly, where the majority of trips are within distance
about 0.5 − 5KM, while those shorter than 0.5KM or longer
than 5KM only account for a very small proportion. What’s
more, based on the historical trip data, we calculate the average
distance of trips ridden by “customers” and “subscribers” (both
male and female subscribed users) to be 2.12KM and 1.91KM
respectively. In other words, trips finished by the customers are
slightly longer.

3) Frequently Travelled Station Pairs: Generally, different
Divvy bike trips are for different purposes, and the purpose
can be captured more clearly by considering the origin and
destination stations at the same time. For example, if the bike
trip departs from residential region and the destination is a
campus, the rider is likely to be a student and uses Divvy
bike to commute from home to schools; while if the trip
origin and destination stations are both attraction sites, then
the rider mainly uses the Divvy bike for sightseeing. Motivated
by this, we show the top 5 frequently traveled station pairs of
“male subscribers”, “female subscribers” and “customers” in
Figure 7, where the origin and destination stations are listed
and marked on the map.

From Figure 7, we observe that the top ranked Divvy
station pair for “male subscribers” is “Station 283 → Station
174”, where station 283 is at the Chicago loop region (i.e.,
the Chicago city center area full of office buildings) and
station 174 is just next to the “Ogilvie Transportation Center”.
Therefore, the divvy trip for male users from station 283 and
station 174 can be for catching up transportation vehicles from
their workplaces.

Meanwhile, the top ranked station pair for “female sub-
scribers” is “Station 284 → Station 255”, where station 284
is next to “The Art Institute of Chicago” and station 255 is next
to various spots, e.g., “The Field Museum”, “Chicago Shedd
Aquarium” and “Chicago Adler Planetarium”. In addition,
between station 284 and station 255, there exist an exercise
trail for jogging and bike-riding along the Lake Michigan
coast, and Chicago people like to go there for relax a lot.
Therefore, the divvy trip for female users from station 284
and station 255 can be for either museum visiting or personal
exercises.

For the “customers”, we observe that the top 5 Divvy trips
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Fig. 7. Top 5 most frequently traveled stations.

for them are actually among only 3 stations, which are “Station
35” (a station next to Chicago Navy Pier), “Station 76” (a
station next to Millennium Park) and “Station 85” (a station
next to the Oak Street Beach). Actually, these 3 stations are all
close to attraction spots and are very popular for tourists. In the
trip station pair list, we notice that customers will depart and
arrive at the same Divvy stations (e.g., Station 76 → Station
76, and Station 35 → Station 35), which means they borrow
the bike from a station to wander around the nearby places
and return the bike back to the same station. However, such
observations (i.e., borrowing and returning bikes at common
stations) are not common for the subscribed users.

III. PROBLEM FORMULATION

Based on the previous introduction about the Divvy BSS and
the analysis results, in this section, we will introduce several
important terminologies used in this paper, and give the formal
definition of the ROUTEPLANNING problem.

A. Terminology Definition

In BSSs, bike stations are distributed in the service region,
and we can represent the stations as set S = {s1, s2, · · · , sn},
where n is the station number. The problem studied in this
paper is the trip route planning based on the BSSs (i.e.,
stations in S), and trip from the origin and destination can
be represented with the BSSs based trip concept as follows:
Definition 1 (BSSs based Trip): Given the trip origin o and
destination d, the whole trip route from o to d based on the
BSSs actually consists of three sub-trips: (1) trip from the
origin o to the start station si ∈ S by walk, (2) the bike trip
from the start station si to the end station sj ∈ S via bike,
and (3) the trip from end station sj to the destination d by
walk.

Depending on the distance between the trip origin o and
destination d, the bike sub-trip in the above definition can
involve either one single or several trip segments by bike.
Definition 2 (Bike Sub-Trip): A bike trip t can be formally
represented as a sequence of consequential bike trip segments
t = si → sk · · · → sj , where si and sj are the start and end
bike stations respectively, while other stations involved in t
are the intermediate bike stations.

To simplify the representations, we will misuse the set
theory notations that sk ∈ t and si → sk ∈ t to denote station



sk and segment si → sk is one part t in this paper. In addition,
via the bike sub-trip t, the whole travel trip from origin o to
destination d can be represented as sequence o → t → d,
where o→ t = o→ si and t→ d = sj → d.

B. Problem Formulation

Based on the definitions introduced above, we can formally
define the ROUTEPLANNING problem as follows:
Problem Definitions (ROUTEPLANNING): Given the trip ori-
gin o and destination d on the map, the ROUTEPLANNING
problem aims at identifying the optimal trip route from o to d
based on the BSSs, i.e., bikes at stations S. Let r : o→ t→ d
be a potential trip route, which connects o and d via the
bike trip t. The costs introduced by r can be quantified as
function cost(r) (whose concrete representation is available in
the following section). The optimal trip route to be identified
in ROUTEPLANNING can be represented as

r∗ = argmin
r∈R

cost(r)

s.t. time-constraint(si → sj),∀si → sj ∈ t,

where R represents the set of all potential trip routes from o
to d. Time constraints on trip segments si → sj ∈ t are added
to ensure their time costs are within the reasonable range.
For simplicity reasons, we will not distinguish different group
of users when addressing the ROUTEPLANNING problem in
this paper. In the following section, we will introduce the
framework STOP to address the ROUTEPLANNING problem.

IV. PROPOSED METHODS

In this section, we will talk about the framework STOP
in detail. The bike trip cost measure will be introduced in
Section IV-A, and after that in Section IV-B, we will introduce
the bike route network concept and propose to prune “illegal”
trip route segments from the network to maintain the time
constraints. Finally, in Section IV-C, we will talk about the
optimal trip route extraction from the pruned route graph that
introduces the minimum costs.

A. Trip Route Cost

The trip route cost can be measured based on various types
of information about the route, including the distance, time
and number of bike changes in the trip.
Time Cost of Trips

Let r : o → t → d be a trip route from the origin to the
destination on the map, where t = si → sk → · · · → sj
denote the bike sub-trip. The time cost of the trip route r can
be divided into three parts: (1) time taken to go to start station
si from o, (2) time cost of bike sub-trip from si to sj , and (3)
time cost of heading to destination d from sj , which can be
represented as

costt(r) = time(o→ t) + time(t) + time(t→ d).

Meanwhile, considering that the trip route r consists of the
sub-trips both by walk and by bike, in the real scenarios,
it takes different amount of efforts for people to walk and

o d

si

si

sj

sj

r1

r2

30 minutes, 3 miles

25 minutes, 5 miles

Fig. 8. An example about trip route time and distances.

ride bikes for the same time length. As pointed out in [6],
the energy needed for people to walk for 10 minutes would
be much less than that needed for them to ride bikes for 10
minutes. Therefore, the time costs introduced by different sub-
trips should be assigned with different weights:

costt(r) = α · time(o→ t) + time(t) + α · time(t→ d),

where parameter α ∈ [0, 1] represents the weight of the time
cost of sub-trips by walk.
Distance Cost of Trips

Besides the time consumption, the whole trip distance is
another important factor that should be considered in define
the trip route cost function. Trip route distance has some
correlations with the time cost, but they are totally different
measures. As shown in Figure 8, for two trip routes r1 and r2
connecting the trip origin o and destination d, the distance of
routes r1 is much shorter than r2 but it actually takes longer
time. Meanwhile, as proposed in [6], it consumes less energy
for people to ride bikes for 10 miles than by walk at a regular
speed. Therefore, we propose to define the weighted distance
based cost function by weighting the bike sub-trip distance
with parameter α ∈ [0, 1]:

costd(r) = dist.(o→ t) + α · dist.(t) + dist.(t→ d),

Bike Change Cost of Trips
In addition to the time and distance based cost measures, the

number of bike changes is another unique factor in measuring
the quality of BBSs-based trip routes. Routes which are short
in the geographical distance and time but need the customers
to change bikes too often may not be good options for the
customers. Viewed in this perspective, we propose to define
the trip route cost based on the number of needed bike changes
in route r to be:

costc(r) = length(t)− 1 = |t| − 1.

Joint Commute Trip Cost Function
By combining the above cost measures together, we can

define the joint cost function for trip route r as follows

cost(r) = β · costt(r) + θ · costd(r) + (1− β − θ) · costc(r),

where the linear combination parameters β and θ denote the
weights of the time and distance costs respectively.



B. Bike Route Network and Pre-Pruning

Generally, in the real-world, customers can ride the bikes
between any pairs of stations in the system service region.
However, some of the trip route segments can be either
“illegal” (violating the time constraint) or not regular routes
(e.g., through dangerous blocks) that few people will take
them actually. In this paper, we will introduce the concept
of bike route network, and propose to pre-prune the network
by removing the infeasible routes.
Bike Route Network

Based on the bike stations S, all the potential pairwise direct
bike trip routes among the stations can be represented as set
L = S×S−{(si, si)}si∈S , where the trips starting and ending
at the same station are not counted as they contribute nothing
for the travel from origin o to destination d. Here, the concept
of direct bike trip routes denotes the unit of bike sub-trips,
and all the bike sub-trips will consist of the direct bike trip
routes in L. The bike stations S together with the direct trip
routes L will form the following bike route network.
Definition 4 (Bike Route Network): The bike route network
consisting of stations S can be represented as G = (S,L),
where L = S × S − {(si, si)}si∈S .

According to the definition, the bike route network is
actually a clique of size |S|. For each direct bike route in graph
G, we can represent its time cost and geographical distance as
time(t) and dist.(t) respectively, which can be obtained with
both Google APIs7 and the historical bike trip record data.
Pruned Bike Route Graph

However, according to the definition of the ROUTEPLAN-
NING problem, there exists a time constraint for each trip route
segment in the bike sub-trip. Many of the direct bike trip
routes in L violating the constraint and will not be selected
in the final route r. The bike trip time cost can be estimated
with either the historical bike trips between the origin and
destination stations, or the real-time GPS tracking system
equipped with the bicycles together with the current traffic
conditions. In this paper, we make use of the historical bike
trip time length information to estimate the potential time cost
of each trip origin and destination pairs. By analyzing the
customers’ historical bike riding records, their trip length are
usually within a reasonable range, which can be represented as
[µt−σt, µt+σt], here µt and σt denote the average trip time
length and the standard deviation of the trip length distribution.
According to the bike trip datasets (to be introduced in
Section V), we can obtain the mean trip duration as well as
the standard deviation to be µt = 761.56 and σt = 429.73.
The direct bike trip routes in L that are not within the range
will hardly appear in customers’ trip routes actually.

In this paper, we propose to prune the direct bike trip routes
that are either greater than 30 minutes or not within the normal
trip length range from the route network, which can not only
maintain the time constraints but also greatly shrink the search
space of the potential bike routes. Formally, we can represent
the obtained the pruned route graph G = (S,L), where L =

7https://developers.google.com/maps/

{t|t ∈ L ∧ µt − σt ≤ time(t) ≤ min{µt + σt, 60× 30}}. All
the direct bike route available in G are the “legal” trip route
segments.

C. Framework STOP

Given the trip origin and destination o and d, the optimal
bike trip t connecting o and d will consist of stations and direct
commute routes from the pruned commute graph G only. In
this paper, we will address the problem with the minimum
cost network flow model.

1) Network Flow Graph Construction: Given the pruned
bike route graph G = (S,L), trip origin o and trip destination
d, we propose to construct the network flow graph node set
V = S ∪ {o, d}. What’s more, besides the existing bike trip
routes connecting bike stations in G, we further introduce two
groups of links connecting the trip origin o and stations in
S and stations in S to the destination node d, as well as a
back propagation link (d, o). All these links can be used to
construct the network flow graph link set E = L∪ ({o}×S)∪
(S×{d})∪{(d, o)}. In addition, each link l ∈ E is associated
with a specific weight cost(l) = β ·costt(l)+θ ·costd(l)+(1−
β−θ) · costc(l). As introduced in Section IV-A, depending on
the link type, the concrete representation of cost(l) will be
β · (α · time(l)) + θ · dist.(l) + 0, if l ∈ E \ (L ∪ {d, o});
β · time(l) + θ · (α · dist.(l)) + (1− β − θ) · 1, if l ∈ L;
0, otherwise.

Based on the above remarks, we can define the network
flow graph as follows:
Definition 5 (Network Flow Graph): Based on the pruned bike
route graph G = (S,L), trip origin o and trip destination d, the
network flow graph can be represented as H = (V, E , cost),
where cost : E → R maps the links in E to the corresponding
trip cost.

The optimal trip route can be effectively extracted from H
with the minimum cost network flow model.

2) Optimal Commute Trip Route Extraction: In the network
flow model, each link in the constructed network flow graph
is associated with certain amount of network flow, which is
constrained by specific bounds.
Bound Constraint of Network Flow In the network flow
model, the amount of network flow associated with links in
E can be denoted as {xu,v}(u,v)∈E . Meanwhile, the amount
of network flow of each edge needs to meet certain flow
constraint, which can be generally represented as

f
u,v
≤ xu,v ≤ fu,v,∀(u, v) ∈ E ,

where f
u,v

and fu,v represent the upper bound and lower
bound of edge (u, v) respectively. For different types of edges,
we will introduce the specific constraints for them as follows.

More specifically, to extract the optimal bike trip route based
on the network flow model, we only allow the network flow
of amount 1 to propagate within the network flow graph. To
achieve such a objective, we set both the upper and lower



bounds of the back-propagation edge (d, o) to be exactly 1,
i.e.,

xd,o = 1.

Meanwhile, for the other links in the network flow graph,
the network flow of at most amount 1 can propagate across
each link. We propose to represent the lower and upper bounds
of these links to be 0 and 1 respectively and allow xu,v to take
integer values only:

xu,v ∈ {0, 1},∀(u, v) ∈ E \ {(d, o)},

where xu,v = 1 denotes that the link is selected as one segment
of the optimal trip route.
Mass Balance Constraint

Besides the flow constraint of each link, in the network
flow model, for each node (e.g., u) in the graph, the amount
of network flow going into u should be equal to that going out
from u. In other words, the network flow through the network
should meet the mass balance constraint:∑

v∈V,(v,u)∈E

xv,u =
∑

w∈V,(u,w)∈E

xu,w.

Minimum Cost Network Flow
For all potential trip routes from origin o to destination

d, we aim at discovering the optimal one that introduces the
minimum cost. The cost introduced by all the potential links
in the network flow graph H can be represented as

cost(H) =
∑

(u,v)∈E

xu,v · cost(u, v),

where only the costs of the selected links will be counted.
Furthermore, the optimal trip route that leads to the min-

imum trip cost can be obtained by addressing the following
optimization objective function

min
∑

(u,v)∈E

xu,v · cost(u, v)

s.t.
∑

v∈V,(v,u)∈E

xv,u =
∑

w∈V,(u,w)∈E

xu,w,

xd,o = 1,

xu,v ∈ {0, 1},∀(u, v) ∈ E .

The objective equation is actually an integer programming
problem, which can be resolved with some open source
toolkits, e.g., PuLP8 and SciPy9. We will not talk about how
to solve the problem here due to the limited space. The links
corresponding to the variables which are assigned with value
1 (except the back propagation link (d, o)) in the results will
be selected to form the optimal trip route result.

8https://pypi.python.org/pypi/PuLP
9http://docs.scipy.org

V. EXPERIMENTS

To test the effectiveness of the proposed bike trip route
planning framework STOP, in this paper, we conduct extensive
experiments on real-world bicycle-sharing system dataset (i.e.,
the Divvy BSS dataset introduced in Section II). In this
section, we will first describe the experiment settings in detail.
After that, we will provide the experiment results with detailed
explanations and give some case studies.

A. Experiment Settings

1) Experiment Setups: From the historical bike trip records,
we extract a set of consequential trip segments taken by
the same people, which are used as the trip instances for
evaluation. We can represent the trip instance set as T , where
t ∈ T denotes a specific trip route consisting of several
consequential trip segments. The geographical coordinates of
the start and end stations of each trip route can be used as
the input of framework STOP. By addressing the objective
equation in the network flow model, we can obtain the set of
trip segments selected from the pruned bike route network,
which will be outputted as the optimal trip route of the input
coordinate pairs. In the experiments, the parameter α is set as
0.8.

2) Comparison Methods: Different from traditional trip
route planning methods, the bicycle-sharing system introduces
much more constraints about the potential routes to be iden-
tified, e.g., the stations are fixed, the free-ride time limits. To
demonstrate the advantages of STOP, we compare STOP with
many baseline methods, and the comparison methods used in
the experiments include:
• STOP: The framework STOP is the bike trip route plan-

ning method introduced in this paper. STOP defines
the trip cost based on time, distance and bike changes
information (where weights β = θ = 1

3 ), and extract the
optimal trip route with the network flow model.

• STOP-NO-T, STOP-NO-D, STOP-NO-C: To demonstrate
the motivation of involving the time, distance and bike
changes in the trip cost definition, several variants of
STOP are introduced in the experiments, which include
(1) STOP-NO-T which neglects the time information in
cost definition (i.e., parameters β = 0, θ = 0.5), (2)
STOP-NO-D which doesn’t consider the distance infor-
mation (i.e., parameters β = 0.5, θ = 0), and (3)
STOP-NO-C which fails to consider the bike changes (i.e.,
parameters β = 0.5, θ = 0.5).

• SHORT-D: In addition, the trip route direction problem
can also be transformed into the traditional shortest path
problem. We also apply the traditional Dijkstra’s algo-
rithm to find the shortest paths from the route network
[19] where the edge weights are defined as the geo-
graphical distance.

• SHORT-T: Similar to method SHORT-D, we also address
ROUTEPLANNING problem by finding the shortest path
from the route network where the edge weights are the
time cost [19].
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Fig. 9. Bike Trip Route Planning Result of Comparison Methods.
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Fig. 10. Comparison of Bike Trip Route Planned by STOP with Real-world Trip Route without Planning.

3) Evaluation Metrics: For each trip origin and destination
pairs, we compare the planned trip route segments connecting
the origin and destination of the comparison methods with the
ground truth segments and calculate its Precision, Recall and
F1 scores of the results. The average Precision, Recall and F1
scores of all the trip origin and destination pairs obtained by
the different comparison methods are used as the evaluation
metrics.

In addition, compared with the ground truth, trip segments
outputted by the methods can be of different length (i.e.,
number of segments) and different quality (i.e., time and
distance). In this paper, we also evaluate the performance of
STOP by calculating the average trip route distance, average
trip time and average number of segments involved in the
planned trip routes, which is also compared with real-world
average distance, time and segment number as well.

B. Experiment Result

The experiment results are available in Figures 9-10.
In the plots of Figure 9, we show the average Precision,

Recall and F1 scores achieved by different comparison meth-
ods. From the results, we can observe STOP utilizing all
the information can outperform other baseline methods with
significant advantages when the evaluation metrics are average
Precision, and average F1. For instance, the average Precision
achieved by STOP is 0.56, which is 24% higher than the
average Precision obtained by STOP-NO-T, 30% higher than
that achieved by STOP-NO-D, 60% higher than that obtained
by STOP-NO-C, 51% higher than that achieved by SHORT-D,
and 69% higher than that of SHORT-T. For the average Recall
measure, method STOP also has comparable performance to
SHORT-D and SHORT-T, which can obtained the average
Recall scores of 0.17, 0.19 and 0.19 respectively.

In addition, by comparing the trip routes planned by STOP
with the ground truth trip route segments, the planned route

segments are much better in trip distance, trip time, and
number of bike changes. According to the results given in
Figure 10, the average Distance of the trip routes planned by
STOP is 0.98 KM(kilometer), which is 21.6% shorter than
the average distance of the trip routes without planning; the
average Time cost of the planned trip route takes about 474.5
seconds, which account for only about 70% of the trip route
time cost without planning; the average Segment number is
only 2.46, which is only 36% of the trip route segment without
planning.

In sum, for the planned trip routes by STOP, a large number
of the segments are already taken by the customers in the
real-world. Meanwhile, from the whole trips perspective, the
planned trips are generally much better (in both bike changes,
distances, and time costs) than the real-world trip routes
without pre-planning.

C. Case Study

In addition, we also do a case study to illustrate the
advantages of framework STOP, and the result is shown in
Figure 11. Given the trip origin at the “South Loop” area in
Chicago and the destination at the “North Avenue Beach”, we
show the planned route by STOP and the real trip route without
pre-planning. From the plot, we can observe that the planned
route is shorter than the one without planning. In addition, the
planned trip route requires two bike changes during the trip,
while the other one changes the bike 4 times in all.

VI. RELATED WORKS

Traffic route planning and direction is a traditional research
problem, which has been studied for many years, and dozens
of research works have been published on this topic [12],
[9], [18], [14], [23], [4], [13], [3], [11]. To generate mission-
adaptable routes in an accurate and efficient manner, Szczerba
et al. [21] propose a novel route planning approach computed
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Fig. 11. A case study about the planned bike route vs bike trip route without
planning.

in real-time, which can take into account various mission
constraints, like minimum route leg length, etc. Simmons et
al. observe that driving is a routine activity where people drive
to the same destinations using the same routes. Based on such
an intuition, Simmons et al. [20] propose to learn individuals’
driving patterns from the historical records and try to predict
the drive route and destination in advance.

Meanwhile, most popular route planning systems (Windows
Live Local, Google Maps, etc.) generate driving directions
using a static library of roads and road attributes. They ignore
the preferences of the drivers they serve. To overcome such
a serious shortcoming, Letchner et al. [15] presents a set
of methods for including driver preferences and time-variant
traffic condition estimates in route planning. Time complexity
issue is a very serious problem for most route planning
algorithms. To speed up the route planning algorithm, a fast
route planning framework is introduced by Sanders et al. in
[19]. More information about existing engineering trip route
planning algorithms is available in [7], [2].

Bicycle-sharing has received increasing attention in recent
years. A detailed analysis about the Chicago Divvy BSS
is available in [26]. DeMaio gives a complete introduction
about the history, impacts, models of provision, and future of
bicycle-sharing systems in [8]. Midgley provides a complete
overview work about the bicycle-sharing schemes, manage-
ment, policies, and challenges as well as opportunities in [17].
A large number of other review and case-study works on
bicycle-sharing systems have appeared so far [16], [27], [22],
[10], which study the bicycle-sharing systems from different
aspects and directions.

VII. CONCLUSION

In this paper, we have studied the ROUTEPLANNING prob-
lem for BSSs with various types of constraints, and a new route
planning framework STOP is introduced in this paper. STOP
maps the ROUTEPLANNING problem into a minimum cost
network flow problem, where the costs of route segments are
defined based on their corresponding time, distance and bike
change information. We have conducted experiments on a real-
world BBSs dataset, Divvy, and the experiment results have
demonstrated the outstanding performance of STOP compared
with other route planning methods.
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