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1 Synonyms

Multiple Aligned Social Network Analysis
Heterogeneous Information Networks
Meta Path based Heterogeneous Social Network Analysis

2 Glossary

SN: Social Network
HIN: Heterogeneous Information Network
MP: Meta Path
INMP: Inter-Network Meta Path

3 Definition

As shown in Figure 1(a), online social networks usually contain heterogeneous in-
formation involving different types of nodes, e.g., users, posts, words, timestamps
and location checkins, as well as complex links among the nodes, e.g., friendship
links among users, write links between users and posts, and the contain/attach links
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between posts and words, timestamps and checkins. Formally, such a kind of online
social network can be represented as the heterogeneous information networks.

Definition 1. (Heterogeneous Information Networks): A heterogeneous information
network can be represented as G = (V ,E ), where the nodes in set V =

⋃
i Vi and

the links in set E =
⋃

i Ei are of different categories respectively.

Users nowadays are usually involved in multiple online social networks simulta-
neously to enjoy more social network services. Formally, the online social networks
sharing common users can be defined as the multiple aligned social networks [16],
which are connected by the anchor links [42] between the accounts of shared users,
i.e., the anchor users [50].

Definition 2. (Multiple Aligned Social Networks): The multiple aligned social net-
works can be represented as G = ({Gi}i,{A (i, j)}i, j), where Gi = (V i,E i) denotes
the ith heterogeneous information network and A (i, j) represents the set of undirected
anchor links between networks Gi and G j.

Definition 3. (Anchor Link): Between networks Gi and G j, the set of undirected an-
chor links A (i, j) can be represented as A (i, j)= {(ui

m,v
j
n)|ui

m ∈U i,v j
n ∈U i,ui

m and v j
n

are the accounts of the same user}, where U i ⊂ V i and U j ⊂ V j are the user node
sets in networks Gi and G j respectively.

One way to model the heterogeneous information available across the multiple
aligned social networks is meta path [34, 50, 47], which abstracts the connections
among the different categories of nodes as sequences of link types connected by the
node types. For instance, given the social network with its schema shown in Figure 1,
a summary of the intra-network social meta paths extracted from the network is
provided in Table 1.

Definition 4. (Intra-Network Meta Path): Given a heterogeneous information net-
work Gi = (V i,E i), we can represents its networks schema as S(Gi) = (T i,R i),
where T i denotes the types of nodes in V i and R i denotes the types of links in E i.
Formally, based on the network schema, we can define the meta path as a sequence

P : T i
1

Ri
1−→ T i

2
Ri

2−→ ·· · Ri
m−→ T i

m+1, where T i
m ∈ T i and Ri

n ∈R i are the node and link
types available in network Gi respectively.

Besides the intra-network meta paths, via the anchor links and other shared in-
formation entities, nodes across different networks can also get connected by the
inter-network meta paths.

Definition 5. (Inter-Network Meta Path): Given a meta path P consisting of se-
quences of link types, P is an inter-network meta path between networks Gi and
G j iff P involves the node types and link types from the schema of both network Gi

and network G j.

The simplest inter-network meta path between networks Gi and G j will be the
anchor meta path [44, 50] involving the user node types from Gi and G j and the
anchor link type between Gi and G j. Some inter-network meta path examples are
summarized in Table 2.
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4 Introduction

Looking from a global perspective, the landscape of online social networks is highly
fragmented. A large number of online social networks have appeared and achieved
prosperous developments in recent years. Meanwhile, in such an age of online social
media, users usually participate in multiple online social networks simultaneously
to enjoy more social networks services, who can act as bridges connecting different
networks together. Formally, the online social networks sharing common users are
named as the aligned social networks [16], and these shared users who act like
anchors aligning the networks together are called the anchor users in existing works
[50].

The modeling of multiple aligned social networks provides social network prac-
titioners and researchers with the opportunities to study both individual user’s so-
cial behaviors across multiple social platforms and the propagation of information
across multiple social sites. Generally, with the social information from different
social sites, we can gain a more comprehensive knowledge about individual’s social
behavior patterns, which will be helpful for the networks to provide personalized
social network services for them. What’s more, the social information generated ei-
ther by the users themselves or from the external offline social events will be able
to propagate not only within one single social network, but also across the differ-
ent social platforms at the same time. By studying the multiple aligned networks
simultaneously, we can actually model the information diffusion process much bet-
ter, which will benefit many social information propagation based applications and
services.

However, in the real world, the accounts of individuals in different social sites
are mostly isolated without any known correspondence relationships between them.
Discovering the correspondence relationships between accounts of the same user
can be a crucial step for effective cross-platform social network services and appli-
cations, including friend recommendation, social community detection, information
diffusion and propagation.

5 Key Points

In this article, we will focus on the cross-platform social network analysis prob-
lems, whose prerequisite step is to align the different networks together, i.e., the
network alignment step. Meanwhile, to investigate users’ social activities and the
propagation of information across different social platforms, several application
problems will also be introduce in this article after aligning the networks, which
include link prediction, community detection, and viral marketing. The formulation
of these problems are provided as follows:

• network alignment: In the network alignment problem, we aim at identifying the
common users’ accounts (i.e., the anchor links) across different social platforms.
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Fig. 1 An example of HIN and the corresponding network schema.

Formally, given networks G1,G2, · · · ,Gn together with information available in
them, the network alignment problem aims at identifying the anchor link sets
A (1,2),A (1,3), · · · ,A (n−1,n) between pairwise networks.

• link prediction: Given multiple aligned networks G =({G1,G2, · · · ,Gn},{A (1,2),
A (1,3), · · · ,A (n−1,n)}), the objective of the cross-network link prediction prob-
lem is to infer the potential social connections which will be formed in the near
future in networks G1,G2, · · · ,Gn respectively.

• community detection: Given multiple aligned networks G = ({G1,G2, · · · ,Gn},
{A (1,2),A (1,3), · · · ,A (n−1,n)}), the cross-network community detection problem
aims at detecting the community structures of networks G1,G2, · · · ,Gn respec-
tively.

• viral marketing: Across the multiple aligned networks G = ({G1,G2, · · · ,Gn},
{A (1,2),A (1,3), · · · ,A (n−1,n)}), the cross-network viral marketing problem aims
at modeling the information propagation process across the aligned networks and
selecting the optimal seed users who will introduce the maximum influence.

6 Historical Background

Social Network Analysis Cross Aligned Network. Social activity analysis across
aligned social networks has become a hot research topic in recent years and many
pioneer works have been done on this topic. Zhang et al. propose to study the net-
work alignment problem between pairwise fully aligned networks [16], pairwise
partially aligned networks [44, 46, 49] and multiple partially aligned networks [48].
Based on the aligned networks, various kinds of application problems have been
studied across multiple social platforms, including friend recommendation and so-
cial link prediction for new users[42] and emerging networks [43, 50, 46], location
recommendation [43], community detection for emerging networks [45] and syner-
gistic clustering across networks [11, 47, 30], information diffusion [40, 41], viral
marketing [40], and tipping user identification [41].
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Meta Path Applications. Meta path first proposed by Sun et al. for heterogeneous
information networks (HIN) in [37] is a powerful tool, which can be applied in link
prediction problems [35, 36], clustering problems [37, 34], searching and ranking
problems [39, 21] as well as collective classification problem [15] in HIN. However,
most of these applications are within one single network only, meta path extracted
from which are called the intra-network meta path. In our works, we are the first to
extend the meta path concept to inter-network scenario [50, 44] and apply them to
address various synergistic knowledge discovery problems across partially aligned
heterogeneous social networks, which include network alignment [44], link recom-
mendation [50], community detection [47] and information diffusion [40, 41].
Network Alignment and Stable Matching. Network alignment problem has been
well studied in bioinformatics, e.g., protein-protein interaction (PPI) network align-
ment [13, 32, 33, 18, 14, 22]. Most network alignment approaches focus on find-
ing approximate isomorphism between two graphs [33, 18, 14]. Because of the in-
tractability of the problem, existing methods usually rely on practical heuristics to
solve the problem [14, 22]. Meanwhile, in recent years, some works have been done
on aligning social networks [16, 17, 26]. Various network alignment models have
been proposed to address the problem, which include the supervised classification
based network alignment methods [16, 44], PU (positive and unlabeled) classifica-
tion based method [46], and unsupervised matrix estimation based methods [48, 49].
Link Prediction and Recommendation: Link prediction in social networks first
proposed by Liben-Nowell [23] has been a hot research topic and many different
methods have been proposed. Liben-Nowell [23] proposes many unsupervised link
predicators to predict the social connections among users. Later, Hasan [9] proposes
to predict links by using supervised learning methods. An extensive survey of link
prediction works is available in [10, 8]. Most existing link prediction works are
based on one single network but many researchers start to shift their attention to
multiple networks. Dong et al. [6] propose to do link prediction with multiple in-
formation sources. Zhang et al. introduce the link prediction problem across aligned
networks for new users [42] and emerging networks [43, 46] based on supervised
classification models [42] and PU classification models [43, 46] respectively.
Clustering and Community Detection. Clustering is a very broad research area,
which includes various types of clustering problems, e.g., consensus clustering
[25, 24], multi-view clustering [1, 2], multi-relational clustering [38], co-training
based clustering [19], at the same time. Clustering based community detection in on-
line social networks is a hot research topic and many different models have already
been proposed to optimizing certain evaluation metrics, e.g., modularity function
[29], and normalized cut [31]. A detailed survey about existing community detec-
tion works is available in [28, 27]. Meanwhile, based on the information available
in multiple aligned networks, Jin [11], Zhang et al. [47] and Shao et al. [30] propose
to do synergistic community detection across multiple aligned social networks. Via
the anchor links, Zhang et al. also propose to transfer information from developed
networks to detect social community structures in emerging networks in [45].
Influence Maximization and Information Diffusion. Influence maximization prob-
lem is first proposed by Domingos et al. [5]. It is first formulated as an optimization
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Table 1 Summary of Intra-Network Social Meta Paths.
ID Notation Intra-Network Social Meta Path Semantics

1 U→ U User
f ollow−−−→ User Follow

2 U→ U→ U User
f ollow−−−→ User

f ollow−−−→ User Follower of Follower

3 U→ U← U User
f ollow−−−→ User

f ollow←−−− User Common Out Neighbor

4 U← U→ U User
f ollow←−−− User

f ollow−−−→ User Common In Neighbor

5 U→ P→W← P← U User write−−→ Post contain−−−−→Word contain←−−−− Post write←−− User Posts Containing Common Words
6 U→ P→ T← P← U User write−−→ Post contain−−−−→ Time contain←−−−− Post write←−− User Posts Containing Common Timestamps
7 U→ P→ L← P← U User write−−→ Post attach−−−→ Location attach←−−− Post write←−− User Posts Attaching Common Location Check-ins

problem in [12], where Kempe et al. propose two stochastic influence diffusion mod-
els, the independent cascade (IC) model and linear threshold (LT) model, to depict
the information propagation process. Viral marketing algorithms are usually of very
high time complexiety, and a considerable number of works focusing on speeding
up the seed selection have been introduced already, which include the CELF model
[20] and the heuristic algorithms for both IC model [4] and LT model [3]. However,
most of the existing works mainly focus on information diffusion within one single
network but fail to consider the propagation of information across different social
platforms. Zhan et al. [40, 41] propose to study the cross-network information dif-
fusion problems to identify both the optimal seed users [40] and tipping users [41]
from online social networks respectively.

7 Cross-Network Information Fusion and Mining

In this section, we will briefly introduce several different information fusion prob-
lems across multiple social sites. The problem studied in this section include (1)
network alignment, (2) social link prediction, (3) social community detection, and
(4) information diffusion and viral marketing. Before diving into the details about
the problems and methods, we will first introduce the meta paths extracted from the
aligned heterogeneous social networks at the beginning.

7.1 Social Meta Path Description

Meta paths can actually connect various categories of node types from the net-
work, and those starting and ending with user node types are formally named as
the social meta paths [47] specifically. In this article, we will use the Foursquare
and Twitter networks as the example of multiple aligned social networks, which
actually share a large amount of common users. As shown in Figure 1(a), both
the Foursquare and Twitter networks can be represented as a heterogeneous in-
formation network G = (V ,E ), where the node set V = U ∪P ∪L ∪T ∪W
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Table 2 Summary of Inter-Network Social Meta Paths.
ID Notation Intra-Network Social Meta Path Semantics

1 Ui→ Ui↔ U j ← U j Useri f ollow−−−→ Useri Anchor←−−→ User j f ollow←−−− User j Inter-Network Common Out Neighbor

2 Ui← Ui↔ U j → U j Useri f ollow←−−− Useri Anchor←−−→ User j f ollow−−−→ User j Inter-Network Common In Neighbor

3 Ui→ Ui↔ U j → U j Useri f ollow−−−→ Useri Anchor←−−→ User j f ollow−−−→ User j Inter-Network Common Out In Neighbor

4 Ui← Ui↔ U j ← U j Useri f ollow←−−− Useri Anchor←−−→ User j f ollow←−−− User j Inter-Network Common In Out Neighbor

5 Ui→ Pi→ L← P j ← U j Useri write−−→ Posti checkin at−−−−−→ Location checkin at←−−−−− Post j write←−− User j Inter-Network Common Location Checkins
7 Ui→ Pi→ T← P j ← U j Useri write−−→ Posti at−→ Time at←− Post j write←−− User j Inter-Network Common Timestamps
8 Ui→ Pi→W← P j ← U j Useri write−−→ Posti contain−−−−→Word contain←−−−− Post j write←−− User j Inter-Network Common Words

involves the nodes of users, posts, locations, timestamps and words, while the link
set E = Eu,u∪Eu,p∪Ep,l ∪Ep,t ∪Ep,w contains the links among users, between users
and posts, and those between posts and locations, timestamps, words respectively.
The corresponding network schema of the HIN is shown in Figure 1(b). Based on
the network schema, a set of intra-network social meta paths can be extracted and
defined from the network, which are shown in Table 1.

Besides the intra-network social meta paths, in Table 2, we also show a list of
inter-network social meta paths connecting user node types in networks Gi and
G j respectively. These inter-network social meta paths connect user nodes across
networks via either the anchor links or other common information entities, e.g.,
location checkins, words and timestamps.

7.2 Cross-Network Network Alignment

As introduced in Section 5, let A (i, j) be the set of anchor links to be inferred be-
tween networks Gi and G j, which maps users between networks Gi and G j. Con-
sidering that users in different social networks are associated with both links and
attribute information, the quality of the inferred anchor links A (i, j) can be measured
by the costs introduced by such mappings calculated with users’ link and attribute
information, i.e.,

cost(A (i, j)) = cost in links (A (i, j))+α · cost in attributes(A (i, j)),

where α denotes the weight of the cost obtained from the attribute information.

7.2.1 Social Structure Information based Network Alignment

Based on the social links among users in both Gi and G j (i.e., E i
u,u and E j

u,u re-

spectively), we can construct the binary social adjacency matrices Si ∈ R|U i|×|U i|

and S j ∈ R|U j |×|U j | for networks Gi and G j respectively. Entries in Si and S j (e.g.,
Si(p,q) and S j(l,m)) will be assigned with value 1 iff the corresponding social links
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(ui
p,u

i
q) and (u j

l ,u
j
m) exist in Gi and G j, where ui

p,u
i
q ∈U i and u j

l ,v
j
m ∈U j are users

in networks Gi and G j.
Via the inferred user anchor links A (i, j), users as well as their social connections

can be mapped between networks Gi and G j. We can represent the inferred user
anchor links A (i, j) with binary user transitional matrix P ∈ R|U i|×|U j |, where the
(ith, jth) entry P(p,q) = 1 iff link (ui

p,u
j
q) ∈ A (i, j). Considering that the constraint

on user anchor links is one-to-one, each column and each row of P can contain at
most one entry being assigned with value 1, i.e.,

P1|U
j |×1 ≤ 1|U

i|×1, P>1|U
i|×1 ≤ 1|U

j |×1,

where P1|U j |×1 and P>1|U i|×1 can get the sum of rows and columns of matrix P
respectively. Equation P1|U j |×1 ≤ 1|U i|×1 denotes that every entry of the left vector
is no greater than the corresponding entry in the right vector.

Matrix P is an equivalent representation of user anchor link set A (i, j). Next,
we will infer the optimal user transitional matrix P, from which we can obtain the
optimal anchor link set A (i, j).

The optimal user anchor links are those which can minimize the inconsistency
of mapped social links across networks and the cost introduced by the inferred user
anchor link set A (i, j) with the link information can be represented as

cost in link(A (i, j)) = cost in link(P) =
∥∥∥P>SiP−S j

∥∥∥2

F
,

where ‖·‖F denotes the Frobenius norm of the corresponding matrix and P> is the
transpose of matrix P.

7.2.2 Social Attribute Information based Network Alignment

With these different attribute information (i.e., username, temporal activity and text
content), we can calculate the similarities between users across networks Gi and
G j based on the inter-network social meta paths. To measure the social closeness
among users across directed heterogeneous information networks, we propose a new
closeness measure named INMP-Sim (Inter-Network Meta Path based Similarity) as
follows.

Definition 6. (INMP-Sim): Let Pi(x y) and Pi(x ·) be the sets of path in-
stances of inter-network meta paths # i going from x to y and those going from x to
other nodes in the network. The INMP-Sim of node pair (x,y) is defined as

INMP-Sim(x,y) = ∑
i

ωi

(
|Pi(x y)|+ |Pi(y x)|
|Pi(x ·)|+ |Pi(y ·)|

)
,

where ωi is the weight of inter-network meta paths # i and ∑i ωi = 1.
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Formally, we represent such similarity matrix as Λ ∈ R|U i|×|U j |, where entry
Λ(p,q) is the similarity between ui

p and u j
q. Similar users across social networks are

more likely to be the same user and user anchor links A
(i, j)

u that align similar users
together should lead to lower cost. In this paper, the cost function introduced by the
inferred user anchor links A

(i, j)
u in attribute information is represented as

cost in attribute(A (i, j)
u ) = cost in attribute(P) =−‖P◦Λ‖1 ,

where ‖·‖1 is the L1 norm of the corresponding matrix, entry (P ◦Λ)(i, l) can be
represented as P(i, l) ·Λ(i, l) and P ◦Λ denotes the Hadamard product of matrices
P and Λ .

7.2.3 Joint Objective Function for Network Alignment

Both link and attribute information is important for user anchor link inference. By
taking these two categories of information into consideration simultaneously, we
can represent the optimal user transitional matrix P∗ which can lead to the minimum
cost as follows:

P∗ = argmin
P

cost(A (i, j)
u )

= argmin
P

∥∥∥P>SiP−S j
∥∥∥2

F
−α · ‖P◦Λ‖1

s.t. P ∈ {0,1}|U i|×|U j |,

P1|U
j |×1 ≤ 1|U

i|×1,P>1|U
i|×1 ≤ 1|U

j |×1.

The objective function is an constrained 0− 1 integer programming problem,
which is hard to address mathematically. Many relaxation algorithms have been
proposed so far. For more information about how to resolve the objective function
as well as its effectiveness evaluation on real-world datasets, please refer to [49].

7.3 Cross-Network PU Link Prediction

Given a network screenshot, we propose to label the existing and non-existing social
links among users as positive and unlabeled instances respectively, where the unla-
beled links involve both positive and negative links at the same time. In this section,
we will introduce the PU link prediction framework for multiple aligned networks
proposed in [50].
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7.3.1 PU Link Prediction Feature Extraction

Meta paths introduced in the previous sections can actually cover a large number
of path instances connecting users across the network. Formally, we denote that
node n (or link l) is an instance of node type T (or link type R) in the network as

n ∈ T (or l ∈ R). Identity function I(a,A) =

{
1, if a ∈ A
0, otherwise,

can check whether

node/link a is an instance of node/link type A in the network. To consider the effect
of the unconnected links when extracting features for social links in the network,
we formally define the Social Meta Path based Features to be:

Definition 7. (Social Meta Path based Features): For a given link (u,v), the feature

extracted for it based on meta path P = T1
R1−→ T2

R2−→ ·· ·
Rk−1−−−→ Tk from the networks

is defined to be the expected number of formed path instances between u and v
across the networks:

x(u,v) = I(u,T1)I(v,Tk) ∑
n1∈{u},n2∈T2,··· ,nk∈{v}

k−1

∏
i=1

p(ni,ni+1)I((ni,ni+1),Ri),

where p(ni,ni+1) = 1.0 if (ni,ni+1) ∈ Eu,u and otherwise, p(ni,ni+1) denotes the
formation probability of link (ni,ni+1) to be introduced in Subsection 7.3.3.

Based on the above social meta path based feature definition and the extracted
intra-network and inter-network meta paths, a set of features can be extracted for
user pairs with the information across the aligned networks.

7.3.2 Meta Path based Feature Selection

Meanwhile, information transferred from aligned networks via the features ex-
tracted based on the inter-network social meta path can be helpful for improving
link prediction performance in a given network but can be misleading as well, which
is called the network difference problem. To solve the network difference problem,
we propose to rank and select top K features from the feature vector extracted based
on the intra-network and inter-network social meta paths, x, from the multiple par-
tially aligned heterogeneous networks.

Let variable Xi ∈ x be a feature extracted based on meta paths #i and variable
Y be the label. P(Y = y) denotes the prior probability that links in the training set
having label y and P(Xi = x) represents the frequency that feature Xi has value x.
Information theory related measure mutual information (mi) is used as the ranking
criteria:

mi(Xi) = ∑
x

∑
y

P(Xi = x,Y = y) log
P(Xi = x,Y = y)

P(Xi = x)P(Y = y)

Let x̄ be the features of the top K mi score selected from x. In the next subsection,
we will use the selected feature vector x̄ to build a novel PU link prediction model.
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7.3.3 PU Link Prediction Method

As introduced at the beginning of this section, from a given network, e.g., G, we
can get two disjoint sets of links: connected (i.e., formed) links P and unconnected
links U . To differentiate these links, we define a new concept “connection state”,
z, in this paper to show whether a link is connected (i.e., formed) or unconnected
in network G. For a given link l, if l is connected in the network, then z(l) = +1;
otherwise, z(l) = −1. As a result, we can have the “connection states” of links in
P and U to be: z(P) = +1 and z(U ) =−1.

Besides the “connection state”, links in the network can also have their own
“labels”, y, which can represent whether a link is to be formed or will never be
formed in the network. For a given link l, if l has been formed or to be formed, then
y(l) = +1; otherwise, y(l) =−1. Similarly, we can have the “labels” of links in P
and U to be: y(P) = +1 but y(U ) can be either +1 or −1, as U can contain both
links to be formed and links that will never be formed.

By using P and U as the positive and negative training sets, we can build a link
connection prediction model Mc, which can be applied to predict whether a link
exists in the original network, i.e., the connection state of a link. Let l be a link to
be predicted, by applying Mc to classify l, we can get the connection probability of
l to be:

Definition 8. (Connection Probability): The probability that link l’s connection
states is predicted to be connected (i.e., z(l) = +1) is formally defined as the con-
nection probability of link l: p(z(l) = +1|x̄(l)).

Meanwhile, if we can obtain a set of links that “will never be formed”, i.e., “-1”
links, from the network, which together with P (“+1” links) can be used to build
a link formation prediction model, M f , which can be used to get the formation
probability of l to be:

Definition 9. (Formation Probability): The probability that link l’s label is predicted
to be formed or will be formed (i.e., y(l) = +1) is formally defined as the formation
probability of link l: p(y(l) = +1|x̄(l)).

However, from the network, we have no information about “links that will never
be formed” (i.e., “-1” links). As a result, the formation probabilities of potential
links that we aim to obtain can be very challenging to calculate. Meanwhile, the
correlation between link l’s connection probability and formation probability has
been proved in existing works [7] to be:

p(y(l) = +1|x̄(l)) ∝ p(z(l) = +1|x̄(l)).

In other words, for links whose connection probabilities are low, their formation
probabilities will be relatively low as well. This rule can be utilized to extract links
which can be more likely to be the reliable “-1” links from the network. We pro-
pose to apply the the link connection prediction model Mc built with P and U to
classify links in U to extract the reliable negative link set. Formally, such a kind of
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Fig. 2 PU Link Prediction Framework across Multiple Aligned Networks.

negative link extraction method is called the spy technique based reliable negative
link extraction. For more detailed information about method, please refer to [50].

With the extracted reliable negative link set RN , we can solve the PU link
prediction problem with classification based link prediction methods, where P and
RN are used as the positive and negative training sets respectively. Meanwhile,
when applying the built model to predict links in L i, the optimal labels, Ŷ i, of L i,
should be those which can maximize the following formation probabilities:

Ŷ i = argmax
Y i

p(y(L i) = Y i|G1,G2, · · · ,Gk)

= argmax
Y i

p(y(L i) = Y i|x̄(L i))

where y(L i) = Y i represents that links in L i have labels Y i.

7.3.4 Multi-Network Link Prediction Framework

Method proposed in [50] is a general link prediction framework and can be applied
to predict social links in n partially aligned networks simultaneously. When it comes
to n partially aligned network, the optimal labels of potential links {L 1,L 2, · · · ,L n}
of networks G1,G2, · · · ,Gn will be:

Ŷ 1, Ŷ 2, · · · , Ŷ n

= arg max
Y 1,Y 2,··· ,Y n

p(y(L 1) = Y 1,y(L 2) = Y 2, · · · ,y(L n) = Y n|G1,G2, · · · ,Gn)

The above target function is very complex to solve and, in this paper, we propose
to obtain the solution by updating one variable, e.g., Y 1, and fix other variables,
e.g., Y 2, · · · ,Y n, alternatively with the following equation [43]:
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(Ŷ 1)(τ) = argmaxY 1 p(y(L 1) = Y 1|G1, · · · ,Gn,(Ŷ 2)(τ−1),(Ŷ 3)(τ−1), · · · ,(Ŷ n)(τ−1))

(Ŷ 2)(τ) = argmaxY 2 p(y(L 2) = Y 2|G1, · · · ,Gn,(Ŷ 1)(τ),(Ŷ 3)(τ−1), · · · ,(Ŷ n)(τ−1))

· · · · · ·
(Ŷ n)(τ) = argmaxY n p(y(L n) = Y n|G1, · · · ,Gn,(Ŷ 1)(τ),(Ŷ 2)(τ), · · · ,(Ŷ (n−1))(τ))

The structure of the link prediction framework is shown in Figure 2(b). When
predicting social links in network Gi, we can extract features based on the intra-
network social meta path extracted from Gi and those extracted based on the inter-
network social meta path across G1, G2, · · · , Gi−1, Gi+1, · · · , Gn for links in P i,
U i and L i. Feature vectors x(P) and x(P) as well as the labels, y(P), y(U ),
of links in P and U are passed to the PU link prediction model M i and the meta
path selection model MS i. The formation probabilities of links in L i predicted by
model M i will be used to update the network by replace the weights of L i with the
newly predicted formation probabilities. The initial weights of these potential links
in L i are set as 0 (i.e., the formation probability of links mentioned in Definition
11). After finishing these steps on Gi, we will move to conduct similar operations
on Gi+1. We iteratively predict links in G1 to Gn alternatively in a sequence until the
results in all of these networks converge.

7.4 Cross-Network Community Detection

The goal of cross-network community detection is to distill relevant information
from another social network to compliment knowledge directly derivable from each
network to improve the clustering or community detection, while preserving the
distinct characteristics of each individual network. To solve the Mutual Clustering
problem, a novel community detection method, MCD, is proposed in [47]. By map-
ping the social network relations into a heterogeneous information, the proposed
method in [47] uses the concept of social meta path to define closeness measure
among users. Based on this similarity measure, the proposed method [47] can pre-
serve the network characteristics and utilize the information in other networks to
refine community structures mutually at the same time. In this section, we will in-
troduce the mutual community detection framework proposed in [47] briefly.

7.4.1 Network Characteristic Preservation Clustering

Clustering each network independently can preserve each networks characteristics
effectively as no information from external networks will interfere with the clus-
tering results. Partitioning users of a certain network into several clusters will cut
connections in the network and lead to some costs inevitably. Optimal clustering
results can be achieved by minimizing the clustering costs.

Let Ai be the adjacency matrix corresponding to the intra-network meta path # i
among users in the network and Ai(m,n) = k iff there exist k different path instances
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of intra-network meta path # i from user m to n in the network. Furthermore, the
similarity score matrix among users of meta path # i can be represented as Si =(
Di + D̄i

)−1 (Ai +AT
i
)
, where AT

i denotes the transpose of Ai, diagonal matrices
Di and D̄i have values Di(l, l) = ∑m Ai(l,m) and D̄i(l, l) = ∑m(AT

i )(l,m) on their
diagonals respectively. The meta path based similarity matrix of the network which
can capture all possible connections among users is represented as follows:

S = ∑
i

ωiSi = ∑
i

ωi

((
Di + D̄i

)−1 (Ai +AT
i
))

.

For a given network G, let C = {U1,U2, . . . ,Uk} be the community structures
detected from G. Term Ui = U −Ui is defined to be the complement of set Ui in G.
Various cost measure of partition C can be used, e.g., cut and normalized cut:

cut(C ) =
1
2

k

∑
i=1

S(Ui,Ui) =
1
2

k

∑
i=1

∑
u∈Ui,v∈Ui

S(u,v),

Ncut(C ) =
1
2

k

∑
i=1

S(Ui,Ui)

S(Ui, ·)
=

k

∑
i=1

cut(Ui,U i)

S(Ui, ·)
,

where S(u,v) denotes the similarity between u,v and S(Ui, ·)= S(Ui,U )= S(Ui,Ui)+
S(Ui,U i).

For all users in U , their clustering result can be represented in the result con-
fidence matrix H, where H = [h1, h2, . . . , hn]

T, n = |U |, hi = (hi,1,hi,2, . . . ,hi,k)
and hi, j denotes the confidence that ui ∈ U is in cluster U j ∈ C . The optimal H
that can minimize the normalized-cut cost can be obtained by solving the following
objective function:

min
H

Tr(HT LH),

s.t. HT DH = I.

where L = D−S, diagonal matrix D has D(i, i) = ∑ j S(i, j) on its diagonal, and I is
an identity matrix.

7.4.2 Discrepancy based Clustering of Multiple Aligned Networks

Besides the shared information due to common network construction purposes
and similar network features [45], anchor users can also have unique information
(e.g., social structures) across aligned networks, which can provide us with a more
comprehensive knowledge about the community structures formed by these users.
Meanwhile, by maximizing the consensus (i.e., minimizing the “discrepancy”) of
the clustering results about the anchor users in multiple partially aligned networks,
we refine the clustering results of the anchor users with information in other aligned
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networks mutually. We can represent the clustering results achieved in Gi and G j as
C i = {U i

1,U
i
2, · · · , U i

ki} and C j = {U j
1 ,U

j
2 , · · · ,U

j
k j} respectively.

Let up and uq be two anchor users in the network, whose accounts in Gi and G j

are ui
p, u j

p, ui
q and u j

q respectively. If users ui
p and ui

q are partitioned into the same
cluster in Gi but their corresponding accounts u j

p and u j
q are partitioned into different

clusters in G j, then it will lead to a discrepancy between the clustering results of ui
p,

u j
p, ui

q and u j
q in aligned networks Gi and G j.

Definition 10. (Discrepancy): The discrepancy between the clustering results of up
and uq across aligned networks Gi and G j is defined as the difference of confi-
dence scores of up and uq being partitioned in the same cluster across aligned
networks. Considering that in the clustering results, the confidence scores of ui

p

and ui
q (u j

p and u j
q ) being partitioned into ki (k j) clusters can be represented as

vectors hi
p and hi

q (h j
p and h j

q) respectively, while the confidences that up and uq

are in the same cluster in Gi and G j can be denoted as hi
p(hi

q)
T and h j

p(h j
q)

T .
Formally, the discrepancy of the clustering results about up and uq is defined

to be dp,q(C i,C j) =
(

hi
p(hi

q)
T −h j

p(h j
q)

T
)2

if up,uq are both anchor users; and

dp,q(C i,C j) = 0 otherwise. Furthermore, the discrepancy of C i and C j will be:

d(C i,C j) =
ni

∑
p

n j

∑
q

dp,q(C
i,C j),

where ni = |U i| and n j = |U j|.

However, considering that d(C i,C j) is highly dependent on the number of an-
chor users and anchor links between Gi and G j, minimizing d(C i,C j) can favor
highly consented clustering results when the anchor users are abundant but have no
significant effects when the anchor users are very rare. To solve this problem, we
propose to minimize the normalized discrepancy instead.

Definition 11. (Normalized Discrepancy) The normalized discrepancy measure com-
putes the differences of clustering results in two aligned networks as a fraction of
the discrepancy with regard to the number of anchor users across partially aligned
networks:

Nd(C i,C j) =
d(C i,C j)(∣∣A(i, j)
∣∣)(∣∣A(i, j)

∣∣−1
) .

Optimal consensus clustering results of Gi and G j will be Ĉ i, Ĉ j:

Ĉ i, Ĉ j = arg min
C i,C j

Nd(C i,C j).

Similarly, the normalized-discrepancy objective function can also be represented
with the clustering results confidence matrices Hi and H j as well. Meanwhile, con-
sidering that the networks studied in this paper are partially aligned, matrices Hi
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and H j contain the results of both anchor users and non-anchor users, while non-
anchor users should not be involved in the discrepancy calculation according to the
definition of discrepancy. After pruning the non-anchor users from the confidence
matrices, we can represent the pruned confidence matrices as H̄i and H̄ j.

Furthermore, the objective function of inferring clustering confidence matrices,
which can minimize the normalized discrepancy can be represented as follows

min
Hi,H j

∥∥∥H̄i
(
H̄i
)T − H̄ j

(
H̄ j
)T
∥∥∥2

F∥∥T(i, j)
∥∥2

F

(∥∥T(i, j)
∥∥2

F −1
) ,

s.t. (Hi)T DiHi = I,(H j)T D jH j = I.

where Di, D j are the corresponding diagonal matrices of similarity matrices of net-
works Gi and G j respectively.

7.4.3 Joint Optimization Objective Function

Taking both of these two issues into considerations, the optimal mutual clustering
results Ĉ i and Ĉ j of aligned networks Gi and G j can be achieved as follows:

arg min
C i,C j

α ·Ncut(C i)+β ·Ncut(C j)+θ ·Nd(C i,C j)

where α , β and θ represents the weights of these terms and, for simplicity, α , β are
both set as 1 in this paper.

By replacing Ncut(C i), Ncut(C j), Nd(C i,C j) with the objective equations de-
rived above, we can rewrite the joint objective function as follows:

min
Hi,H j

α·Tr((Hi)T LiHi)+β ·Tr((H j)T L jH j)+θ ·

∥∥∥H̄i
(
H̄i
)T − H̄ j

(
H̄ j
)T
∥∥∥2

F∥∥T(i, j)
∥∥2

F

(∥∥T(i, j)
∥∥2

F −1
) ,

s.t. (Hi)T DiHi = I,(H j)T D jH j = I,

where Li = Di−Si, L j = D j−S j and matrices Si, S j and Di, D j are the similarity
matrices and their corresponding diagonal matrices defined before.

The objective function is a complex optimization problem with orthogonality
constraints, which can be very difficult to solve because the constraints are not only
non-convex but also numerically expensive to preserve during iterations. Please re-
fer to [47] for more information about the solution to the objective function.
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7.5 Cross-Network Influence Maximization

Via anchor users, information can propagate not only within but also across social
networks. The anchor users’ social influence have been seriously underestimated
in traditional single-network setting. By identifying seeds that have cross-network
impacts, we reduce the number of seeds to affect the same number of people. Al-
ternatively, we can also use an easily accessible network such as Twitter to impact
other networks such as Foursquare or Facebook. In this section, we will introduce
the cross-network influence maximization problem studied in [40], and its objec-
tive is to identify the optimal seed users who will introduce the maximum influence
across aligned networks.

7.5.1 Information Propagation Model across Aligned Heterogeneous Social
Networks

Meanwhile, in heterogeneous social networks, each meta path defines an influence
propagation channel among users, based on which, we can construct multi-aligned
multi-path networks for the aligned heterogeneous networks. The formal definition
of multi-aligned multi-path networks is given as follows:

Definition 12. (Multi-Aligned Multi-Relational Networks (MMNs)) For two given
heterogenous networks Gi and G j, we can define the multi-aligned multi-relational
network constructed based on the above intra and inter network social meta paths
as G = (U ,E ,R), where U = U i ∪U j denote the user nodes in the MMNs G.
Set E is the set of links among nodes in U and element e ∈ E can be represented
as e = (u,v,r) denoting that there exists at least one link (u,v) of link type r ∈R =
R i∪R j∪{Anchor}, where R i, R j are the intra-network link types of networks Gi,
G j and the inter-network Anchor link between Gi and G j respectively.

The authors of [40] propose to extend the LT model into the MMNs case and
propose a new information diffusion model, MMLT (MMNs based LT model). In
particular, under MMNs, they generalize the definition of neighbor to be anyone that
can be connected through a given set of meta paths, e.g., anyone in the same network
sharing the same posting words under the intra-network common word meta path,
or across networks under the inter-network common word meta path. To simplify
the presentation, they assume that the threshold of every object follows a uniform
distribution in [0,1], such that the weighted percentage of the activated neighbors
determines the object activation probability, where the weight is determined by the
weight of the link. Next, they focus on calculating the object activation probability
of all users in the network with the influence propagated based on the MMLT model
in multiple meta paths across networks. If the individual’s activation probability can
exceed his threshold, he will be activated in the MMLT model.

Meanwhile, based on the MMNs M = (U,E,R), the amount of influence prop-
agated between pairs of users in different meta paths in/across the network can be
quantified by Pathsim [37]. Formally, the amount of intra-network (inter-network)
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influence propagated between user u and v in network Gi with intra-network meta
path # l and inter-network meta path # m can be represented as:

φ
i,l
(u,v) =

2|P i,l
(u,v)|

|P i,l
(u,·)|+ |P

i,l
(·,v)|

, ψ
i,m
(u,v) =

2|Qi,m
(u,v)|

|Qi,m
(u,·)|+ |Q

i,m
(·,v)|

,

where P i,l
(u,v) (Qi,m

(u,v)) denotes the set of intra-network (inter-network) diffusion
channels in meta path # l (and # m) starting from u and ending at v respectively.

Furthermore, in the MMLT model, information diffuses in discrete step and the
activation probability of individuals in network Gi at step t + 1 based on the influ-
ence in intra-network (and inter-network) meta path # l (and # m) can be denoted
as:

gi,l
v (t +1) =

∑u∈Γ
i,l

in (v) φ
i,l
(u,v)I(u, t)

∑u∈Γ
i,l

in (v) φ
i,l
(u,v)

, hi,m
v, j (t +1) =

∑u∈Γ
i,m

in (v) ψ
i,m
(u,v)I(u, t)

∑u∈Γ
i,m

in (v) ψ
i,m
(u,v)

,

where Γ
i,l

in (v) (and Γ
i,m

in (v)) are the neighbor sets of user v in intra-network meta path
# l (and inter-network meta path # m) and function I(u, t) = 1 if user u is activated
at step t, and 0 otherwise.

By aggregating all kinds of intra-network and inter-network relations, they can
obtain the integrated activation probability of vi, where the logistic function is used
as the aggregation function.

pi
v(t +1) =

e∑l ρ i,lgi,l
v (t+1)+∑m ω i,mhi,m

v (t+1)

1+ e∑l ρ i,lgi,l
v (t+1)+∑m ω i,mhi,m

v (t+1)
,

where ρ i,l and ω i,m denote the weights of intra-network and inter-network relation-
ships in diffusion process, whose value satisfy ∑l ρ i,l +∑m ω i,m = 1,ρ i,l ≥ 0,ω i,m ≥
0. Similarly, we can get activation probability of a user v( j) in G( j).

7.5.2 Seed User Selection

Formally, let mapping σ : Z → R denote the influence function which projects the
seed user set to the number of users who can get activated by Z . As proposed
in [40], based on the cross-network information propagation model introduced in
the previous subsection, the identification of the optimal seed user set of certain
size who can introduce the maximum influence is NP-hard. Meanwhile, they also
show that based on the information diffusion model, the influence function is both
monotone and submodular. In such a case, the conventional stepwise greedy seed
user selection method which select the users who can lead to the maximum increase
of influence can achieve a 1− 1

e -approximation of the optimal solution. The pseudo-
code of the algorithm is available in Algorithm 1.
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Algorithm 1 M&M Greedy Algorithm for AHI problem
Input: G(1), G(2), anchor user matrix An(1)×n(2)

, d
Output: seed set Z
1: initialize Z =, seed index i = 0;
2: get network schema S(1)G and S(2)G , get user set U =U (1) ∪U (2);
3: for v = 0 to |U | do
4: extract intra and inter network diffusion meta paths of v;
5: end for
6: calculate relations’ diffusion strength φ(u,v) and ψ(u,v);
7: define activation probability vector P(1), P(2) and calculate their initial value;
8: while i < d do
9: for u ∈U \Z do
10: using Monte Carlo method to estimate u’s marginal gain Mu =σ(Z∪{u})−σ(Z) based on users’ activation

probability;
11: end for
12: select z = arg max

u∈U\Z
Mu

13: Z = Z∪{z}
14: update users’ activation probability in P(1), P(2) and i = i+1.
15: end while

8 Key Applications

The problems introduced in this article are all very important for many concrete real-
world social network applications and services. Here, we list the key applications of
these introduced works as follows:

• Application of Network Alignment: The network alignment framework intro-
duced in this article can be applied to various types of existing real-world social
networks to identify the common users. In addition, the model can also be applied
to align other types of networks, e.g., email contact network, bibliographical co-
operation network, message/telephone call network. It can even be used in the
traditional entity resolution problem studied in database, and the biological PPI
(protein-protein interaction) network alignment as well.

• Application of Social Link Prediction: The link prediction problem and method
introduced in this article can be used to infer potential friendship connections to
be formed among users, such that the network service provider can recommend
the users to each other as potential friends. Besides recommending friends, it can
also be used to recommend locations in location-based social networks, products
in e-commerce sites and videos in online video sites, where information from
different sources can be aggregated to improve the link prediction result.

• Application of Community Detection: With more information available about the
entities, the mutual community detection framework introduced in this paper can
also be applied to automatically categorize the products in e-commerce sites, tag
the restaurants in location based sites. Meanwhile, the cross-network commu-
nity detection problem and the proposed framework also provide another way
for researchers to study the traditional multi-view and multi-source clustering
problems.

• Application of Cross-Network Information Diffusion: By considering the shared
anchor users’ role in propagating information within and across networks, the
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cross-network information diffusion model introduced in this paper can applied in
real-world product promotions, election campaigns to propagate the information
about products and ideas to activate more people.

9 Future Directions

There are several interesting directions for further research in the domain of multiple
aligned network studies:

• Multiple Aligned Social Sites: Existing aligned network studies mainly focus on
studying two aligned networks. Meanwhile, when it comes to multiple aligned
networks (more than two), many of the studied problems will encounter many
new challenges, e.g., the balance of information from different sites, constraints
introduced by the multiple sources (e.g., on anchor links).

• Large Scale Networks: Most of the introduced methods and models work very
well for small-sized social networks, but when it comes to the large scale net-
works they will suffer from the high time complexity problem a lot. Extending
and generalize the existing models to the scalable version will be an interesting
direction.

• Domain Difference Problem: Many of the existing cross-network studies tackle
the domain difference problem in a very simple way, e.g., the meta path selection
in link prediction, and meta path weighting in community detection and infor-
mation diffusion. A more general and effective method to handle the domain
difference problem is still an open problem so far.

10 Cross References

• Social Meta Path, Network Schema
• Intra-Network Meta Path, Anchor Meta Path, Inter-Network Meta Path
• Social Structure, Social Adjacency Matrix
• Social Attribute, INMP-Sim
• Positive Links, Unlabeled Links, reliable negative link
• PU Link Prediction
• Social Meta Path based Feature
• Meta Path Selection, Mutual Information
• Connection Probability, Formation Probability
• Multi-Network Link Prediction Framework
• Network Characteristic Preservation Clustering
• Cut, Normalized-Cut
• Discrepancy based Clustering of Multiple Aligned Networks
• Discrepancy, Normalized Discrepancy
• Multi-Aligned Multi-Relational Networks



Cross-Platform Social Network Analysis 21

• MMNs based LT model
• Logistic Function, Aggregation Function
• NP-Hard, Submodular, Monotone
• Greedy Algorithm
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