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Abstract Users nowadays are normally involved in multiple (usually more than
two) online social networks simultaneously to enjoy more social network services.
Some of the networks that users are involved in can share common structures either
due to the analogous network construction purposes or because of the similar social
network characteristics. However, the social network datasets available in research
are usually pre-anonymized and accounts of the shared users in different networks are
mostly isolated without any known connections. In this paper, we want to identify
such connections between the shared users’ accounts in multiple social networks
(which are called the anchor links), and the problem is formally defined as the
M-NASA (Multiple Anonymized Social Networks Alignment) problem. M-NASA
is very challenging to address due to (1) the lack of known anchor links to build
models, (2) the studied networks are anonymized, where no users’ personal pro-
file or attribute information is available, and (3) the “transitivity law” and the
“one-to-one property” based constraints on anchor links. To resolve these
challenges, a novel two-phase network alignment framework UMA (Unsupervised
Multi-network Alignment) is proposed in this paper. Extensive experiments con-
ducted on multiple real-world partially aligned social networks demonstrate that
UMA can perform very well in solving the M-NASA problem.
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1 Introduction

As proposed in [13], people nowadays are normally involved in multiple (usually
more than two) social networks simultaneously to enjoy more social network services.
Many of these networks can share common structure information (e.g., friendship
connections) due to either the analogous network establishing purposes or because
of similar network characteristics. Meanwhile, social network data available for
research is usually anonymized for privacy concerns [2], where users’ personal profile
and attribute information (e.g., names, hometown, gender and age) is either removed
or replaced with meaningless unique identifiers, and the accounts of the shared users
in these anonymized social networks are mostly isolated without any correspon-
dence relationships. In this paper, we want to study the “Multiple Anonymized Social
Networks Alignment” (M-NASA) problem to identify such correspondence rela-
tionships between the shared users’ accounts across multiple anonymized social
networks.

By following terminology definitions used in existing aligned networks studies
[13, 37], social networks sharing common users are defined as “partially aligned
networks”, where the shared users are named as “anchor users” [37] and the cor-
respondence relationships between anchor users’ accounts in different networks are
called “anchor links” [13]. The M-NASA problem studied in this paper aims at
identifying the anchor links among multiple anonymized social networks. To help
illustrate the M-NASA problem more clearly, we also give an example in Fig. 1,
which involves 3 different social networks (i.e., networks I, II and III). Users in
these 3 networks are all anonymized and their names are replaced with randomly
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generated identifiers. Each pair of these 3 anonymized networks can actually share
some common users, e.g., “David” participates in both networks I and II simultane-
ously, “Bob” is using networks I and III concurrently, and “Charles” is involved in
all these 3 networks at the same time. Besides these shared anchor users, in these
3 partially aligned networks, some users are involved in one single network only
(i.e., the non-anchor users [37]), e.g., “Alice” in network I, “Eva” in network II and
“Frank” in network III. The M-NASA problem studied in this paper aims at discov-
ering the anchor links (i.e., the dashed bi-directional orange lines) connecting anchor
users across these 3 social networks.

The M-NASA problem is of great importance for online social networks, as it
can be the prerequisite for various cross-site social network services, e.g., cross-
network link transfer [37], inter-network community detection [34], and viral mar-
keting across networks [31]. With the information transferred from developed social
networks, link prediction models proposed in [37] can overcome the cold-start prob-
lem effectively; constrained by the anchor links, community detection across aligned
networks can refine the community structures of each social network mutually
[10, 34]; via the anchor users, information can diffuse not only within but also
across networks which will lead to broader impact and activate more users in viral
marketing [31].

Besides its importance, the M-NASA problem is a novel problem and totally dif-
ferent from existing works, e.g., (1) supervised anchor link inference across social
networks [13], which focuses on inferring the anchor links between two social net-
works with a supervised learning model; (2) network matching [12, 18], which
explores various heuristics to match two networks based the known existence prob-
abilities of potential correspondence relationships; (3) entity resolution [4], which
aims at discovering multiple references to the same entity in one single database with
a relational clustering algorithm; and (4) cross-media user identification [30], which
matches users between two networks based on various node attribute information
generated by users’ social activities.

M-NASA differs from all these related works in various aspects: (1) M-NASA is
a general multi-network alignment problem and can be applied to align either two
[13] or more than two social networks; (2) M-NASA is an unsupervised network
alignment problem and requires no known anchor links (which are also extremely
expensive to obtain in the real world); (3) no extra heuristics will be needed and used
in the M-NASA problem; and (4) no information about the potential anchor links nor
their existence probabilities is required; and (5) social networks studied in M-NASA
are anonymized and involve structure information only but no attribute information.

Besides these easily distinguishable distinctions mentioned above, another sig-
nificant difference of M-NASA from existing two network alignment problems
is due to the “transitivity law” that anchor links follow. In traditional set the-
ory [15], a relation R is defined to be a transitive relation in domain X iff
∀a, b, c ∈ X , (a, b) ∈ R ∧ (b, c) ∈ R → (a, c) ∈ R. If we treat the union of user
account sets of all these social networks as the target domain X and treat anchor
links as the relation R, then anchor links depict a “transitive relation” among users
across networks. We can take the networks shown in Fig. 1 as an example. Let u be a
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user involved in networks I, II and III simultaneously, whose accounts in these net-
works are uI , uI I and uI I I respectively. If anchor links (uI , uI I ) and (uI I , uI I I ) are
identified in aligning networks (I, II) and networks (II, III) respectively (i.e., uI , uI I

and uI I I are discovered to be the same user), then anchor link (uI , uI I I ) should also
exist in the alignment result of networks (I, III) as well. In the M-NASA problem,
we need to guarantee the inferred anchor links can meet the transitivity law.

In addition to its importance and novelty, the M-NASA problem is very difficult
to solve due to the following challenges:

• unsupervised network alignment: No existing anchor links are available between
pairs of social networks in the M-NASA problem and inferring anchor links
between social networks in an unsupervised manner is very challenging.

• anonymized network alignment: Networks studied in this paper are all pre-
anonymized, where no attribute information indicating users’ personal charac-
teristics exists. It makes the M-NASA problem much tougher to address.

• transitivity law preservation and utilization: Anchor links among social networks
follow the “transitivity law”. How to (1) preserve such a property of anchor links,
and (2) utilize such a property to improve the multiple networks partial alignment
is still an open problem in this context so far.

• one-to-one constraint on anchor links: Anchor links have an inherent one-to-one
constraint [13], i.e., each user can have at most one account in each social network,
which will pose extra challenges on solving the M-NASA problem. (The case
that users have multiple accounts in one network can be resolved with method
introduced in [27], where these duplicated accounts can be aggregated in advance
to form one unique virtual account and the constraint on anchor links connecting
these virtual accounts will still be “one-to-one”.)

To solve the M-NASA problem, a novel network alignment framework UMA
(Unsupervised Multi-network Alignment) is proposed in this paper. UMA addresses
the M-NASA problem with two steps: (1) unsupervised transitive anchor link infer-
ence across multi-networks, and (2) transitive multi-network matching to maintain
the constraints on anchor links. In step (1), UMA infers sets of potential anchor
links with unsupervised learning techniques by minimizing the friendship inconsis-
tency and preserving the alignment transitivity property across networks. In step (2),
UMA keeps the one-to-one constraint on anchor links by selecting those with high
confidence scores but no blocking pairs, while maintaining the matching transitivity
property at the same time. The above mentioned new concepts will be introduced in
Sect. 3.

The rest of this paper is organized as follows. In Sect. 2, we define some important
concepts and the M-NASA problem. Method UMA will be introduced in Sect. 3 and
evaluated in Sect. 4. Finally, we introduce the related works in Sect. 5 and conclude
this paper in Sect. 6.



Concurrent Alignment of Multiple Anonymized Social Networks … 177

2 Problem Formulation

In this section, we will follow the definitions of “aligned networks” and “anchor
links” proposed in [37], which are introduced as follows.

Definition 1 (Anonymized Social Network) An anonymized social network can be
represented as graph G = (U , E), whereU denotes the set of users in the network and
E represents the social links among users. Users’ profile and attribute information in
G has all been deleted to protect individuals’ privacy.

Definition 2 (Multiple Aligned Social Networks) Multiple aligned social networks
can be represented as G = ((G(1), G(2), . . . , G(n)), (A(1,2),A(1,3), . . . ,A(n−1,n))),
where G(i), i ∈ {1, 2, . . . , n} represents an anonymized social network and
A(i, j), i, j ∈ {1, 2, . . . , n} denotes the set of undirected anchor links between net-
works G(i) and G( j).

Definition 3 (Anchor Links) Given two social networks G(i) and G( j), link (u(i), v( j))

is an anchor link between G(i) and G( j) iff (u(i) ∈ U (i)) ∧ (v( j) ∈ U ( j)) ∧ (u(i) and
v( j) are accounts of the same user), where U (i) and U ( j) are the user sets of G(i) and
G( j) respectively.

Social networks studied in this paper are all partially aligned [37] and the formal
definitions of the concepts like “anchor users”, “non-anchor users”, “full alignment”,
“partial alignment” are available in [37].

Based on the above definitions, the M-NASA problem can be formulated as fol-
lows:
The M-NASA Problem: Given the n isolated anonymized social networks
{G(1), G(2), . . . , G(n)}, the M-NASA problem aims at discovering the anchor links
among these n networks, i.e., the anchor link sets A(1,2),A(1,3), . . . ,A(n−1,n). Net-
works G(1), G(2), . . . , G(n) are partially aligned and the constraint on anchor links in
A(1,2),A(1,3), . . . ,A(n−1,n) is one-to-one, which also need to follow the transitivity
law.

3 Proposed Method

Based on observation about the “transitivity property” of anchor links, in this section,
we will introduce the framework UMA to address theM-NASA problem: in Sect. 3.1,
we formulate the unsupervised pairwise network alignment based on friendship con-
nection information as an optimization problem; integrated multi-network alignment
will be introduced in Sect. 3.2, where an extra constraint called alignment transitiv-
ity penalty is added to the objective function; the joint optimization function will be
solved in Sect. 3.3 by relaxing its constraints, and the redundant non-existing anchor
links introduced by such relaxation will be pruned with transitive network matching
in Sect. 3.4.
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3.1 Unsupervised Pairwise Network Alignment

Anchor links between any two given networks G(i) and G( j) actually define an one-
to-one mapping (of users and social links) between G(i) and G( j). To evaluate the
quality of different inferred mapping (i.e., the inferred anchor links), we introduce
the concepts of cross-network Friendship Consistency/Inconsistency in this paper.
The optimal inferred anchor links are those which can maximize the Friendship
Consistency (or minimize the Friendship Inconsistency) across networks.

For any anonymized social network G = (U , E), the social connections among
users in it can be represented with the social adjacency matrix.

Definition 4 (Social Adjacency Matrix) Given network G = (U , E), its social adja-
cency matrix can be represented with binary matrix S ∈ R

|U |×|U | and entry S(l, m) =
1 iff the corresponding social link (ul, um) ∈ E , where ul and um are users in G.

Based on the above definition, given two partially aligned social networks
G(i) = (U (i), E (i)) and G( j) = (U ( j), E ( j)), we can represent their corresponding
social adjacency matrices to be S(i) ∈ R

|U (i)|×|U (i)| and S( j) ∈ R
|U ( j)|×|U ( j)| respec-

tively.
Meanwhile, let A(i, j) be the set of undirected anchor links to be inferred connect-

ing networks G(i) and G( j), based on which, we can construct the corresponding
binary transitional matrix T(i, j) between networks G(i) and G( j), where users cor-
responding to rows and columns of T(i, j) are of the same order as those of S(i) and
S( j) respectively.

Definition 5 (Binary Transitional Matrix) Given anchor link set A(i, j) ⊂ U (i) ×
U ( j) between networks G(i) and G( j), the binary transitional matrix from G(i) to
G( j) can be represented as T(i, j) ∈ {0, 1}|U (i)|×|U ( j)|, where T(i, j)(l, m) = 1 iff link
(u(i)

l , u( j)
m ) ∈ A(i, j), u(i)

l ∈ U (i), u( j)
m ∈ U ( j).

The binary transitional matrix from G( j) to G(i) can be defined in a similar way,
which can be represented as T( j,i) ∈ {0, 1}|U ( j)|×|U (i)|, where (T(i, j))� = T( j,i) as the
anchor links between G(i) and G( j) are undirected. Considering that anchor links
have an inherent one-to-one constraint, each row and each column of the binary
transitional matrices T(i, j) and T( j,i) should have at most one entry filled with 1,
which will constrain the inference space of potential binary transitional matrices
T(i, j) and T( j,i) greatly.

Binary transitional matrix T(i, j) defines a mapping of users from network G(i)

to G( j), i.e., T(i, j) : U (i) → U ( j). Besides the user nodes, the social links in network
G(i) can also be projected to network G( j) via the binary transitional matrices T(i, j)

and T( j,i): the social adjacency matrix S(i) being mapped from G(i) to G( j) can
be represented as T( j,i)S(i)T(i, j) (i.e., (T(i, j))�S(i)T(i, j)). Furthermore, considering
social networks G(i) and G( j) share significant community structure overlaps, the
friendship connections mapped from G(i) to G( j) (i.e., (T(i, j))�S(i)T(i, j)) should be
consistent with those in G( j) (i.e., S( j)), which can be quantified as the following
cross-network friendship consistency formally [14].
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Definition 6 (Friendship Consistency/Inconsistency) The friendship consistency
between network G(i) and G( j) introduced by the cross-network mapping T(i, j) is
defined as number of shared social links between those mapped from G(i) and the
social links in G( j) originally.

Meanwhile, we can define the friendship inconsistency as the number of non-
shared social links between those mapped from G(i) and those in G( j). Based on the
inferred anchor transitional matrix T(i, j), the introduced friendship inconsistency
between matrices (T(i, j))�S(i)T(i, j) and S( j) can be represented as:

∥
∥(T(i, j))�S(i)T(i, j) − S( j)

∥
∥

2

F ,

where ‖·‖F denotes the Frobenius norm. And the optimal binary transitional matrix
T̄(i, j), which can lead to the minimum friendship inconsistency can be represented as

T̄(i, j) = arg minT(i, j)

∥
∥(T(i, j))�S(i)T(i, j) − S( j)

∥
∥

2

F

s.t. T(i, j) ∈ {0, 1}|U (i)|×|U ( j)|,

T(i, j)1|U ( j)|×1 � 1|U (i)|×1,

(T(i, j))�1|U (i)|×1 � 1|U ( j)|×1,

where the last two equations are added to maintain the one-to-one constraint on
anchor links and X � Y iff X is of the same dimensions as Y and every entry in X
is no greater than the corresponding entry in Y.

3.2 Transitive Integrate Network Alignment

Isolated network alignment can work well in addressing the alignment problem of
two social networks. However, in the M-NASA problem studied in this paper, mul-
tiple (more than two) social networks are to be aligned simultaneously. Besides
minimizing the friendship inconsistency between each pair of networks, the transi-
tivity property of anchor links also needs to be preserved in the transitional matrices
inference.

The transitivity property should holds for the alignment of any n networks, where
the minimum of n is 3. To help illustrate the transitivity property more clearly and
simplify the descriptions of the model, we will use 3 network alignment as an example
to introduce the M-NASA problem, which can be easily generalized to the case of
n networks alignment. Let G(i), G( j) and G(k) be 3 social networks to be aligned
concurrently. To accommodate the alignment results and preserve the transitivity
property, we introduce the following alignment transitivity penalty:
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Definition 7 (Alignment Transitivity Penalty) Let T(i, j), T( j,k) and T(i,k) be the
inferred binary transitional matrices from G(i) to G( j), from G( j) to G(k) and from
G(i) to G(k) respectively among these 3 networks. The alignment transitivity penalty
C({G(i), G( j), G(k)}) introduced by the inferred transitional matrices can be quanti-
fied as the number of inconsistent social links being mapped from G(i) to G(k) via
two different alignment paths G(i) → G( j) → G(k) and G(i) → G(k), i.e.,

C({G(i), G( j), G(k)}) = ∥
∥(T( j,k))�(T(i, j))�S(i)T(i, j)T( j,k) − (T(i,k))�S(i)T(i,k)

∥
∥

2

F .

Alignment transitivity penalty is a general penalty concept and can be applied
to n networks {G(1), G(2), . . . , G(n)}, n ≥ 3 as well, which can be defined as the
summation of penalty introduced by any three networks in the set, i.e.,

C({G(1), G(2), . . . , G(n)}) =
∑

∀{G(i),G( j),G(k)}⊂{G(1),G(2),...,G(n)}
C({G(i), G( j), G(k)}).

The optimal binary transitional matrices T̄(i, j), T̄( j,k) and T̄(k,i) which can mini-
mize friendship inconsistency and the alignment transitivity penalty at the same time
can be represented to be

T̄(i, j), T̄( j,k), T̄(k,i) = arg minT(i, j),T( j,k),T(k,i)

∥
∥(T(i, j))�S(i)T(i, j) − S( j)

∥
∥

2

F

+ ∥
∥(T( j,k))�S( j)T( j,k) − S(k)

∥
∥

2

F + ∥
∥(T(k,i))�S(k)T(k,i) − S(i)

∥
∥

2

F

+ α · ∥
∥(T( j,k))�(T(i, j))�S(i)T(i, j)T( j,k) − T(k,i)S(i)(T(k,i))�

∥
∥

2

F

s.t. T(i, j) ∈ {0, 1}|U (i)|×|U ( j)|, T( j,k) ∈ {0, 1}|U ( j)|×|U (k)|

T(k,i) ∈ {0, 1}|U (k)|×|U (i)|

T(i, j)1|U ( j)|×1 � 1|U (i)|×1, (T(i, j))�1|U (i)|×1 � 1|U ( j)|×1,

T( j,k)1|U (k)|×1 � 1|U ( j)|×1, (T( j,k))�1|U ( j)|×1 � 1|U (k)|×1,

T(k,i)1|U (i)|×1 � 1|U (k)|×1, (T(k,i))�1|U (k)|×1 � 1|U (i)|×1,

where parameter α denotes the weight of the alignment transitivity penalty term,
which is set as 1 by default in this paper.

3.3 Relaxation of the Optimization Problem

The above objective function aims at obtaining the hard mappings among users
across different networks and entries in all these transitional matrices are binary,
which can lead to a fatal drawback: hard assignment can be neither possible nor
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realistic for networks with star structures as proposed in [14] and the hard subgraph
isomorphism [16] is NP-hard.

To overcome such a problem, we propose to relax the binary constraint of entries
in transitional matrices to allow them to be real values within range [0, 1]. Each entry
in the transitional matrix represents a probability, denoting the confidence of certain
user-user mapping across networks. Such a relaxation can make the one-to-one con-
straint no longer hold (which will be addressed with transitive network matching in
the next subsection) as multiple entries in rows/columns of the transitional matrix
can have non-zero values. To limit the existence of non-zero entries in the transitional
matrices, we replace the one-to-one constraint, e.g.,

T(k,i)1|U (i)|×1 � 1|U (k)|×1, (T(k,i))�1|U (k)|×1 � 1|U (i)|×1

with sparsity constraints
∥
∥T(k,i)

∥
∥

0 ≤ t

instead, where term ‖T‖0 denotes the L0 norm of matrix T, i.e., the number of non-
zero entries in T, and t is a small positive number to limit the non-zero entries in the
matrix (i.e., the sparsity). Furthermore, in this paper, we propose to add term ‖T‖0

to the minimization objective function, as it can be hard to determine the value of t
in the constraint.

Based on the above relaxations, we can obtain the new objective function (avail-
able in the Appendix), which involves 3 variables T(i, j), T( j,k) and T(k,i) simultane-
ously, obtaining the joint optimal solution for which at the same time is very hard
and time consuming. We propose to address the above objective function by fixing
two variables and updating the other variable alternatively with gradient descent
method [1]. As proposed in [14], if during the alternating updating steps, the entries
of the transitional matrices become invalid (i.e., values less than 0 or greater than 1),
we apply the projection technique introduced in [14] to project (1) negative entries
to 0, and (2) entries greater than 1 to 1 instead. With these processes, the updating
equations of matrices T(i, j), T( j,k), T(k,i) at step t + 1 are given as follows

T(i, j)(t + 1) = T(i, j)(t) − η(i, j) ∂L
(

T(i, j)(t), T( j,k)(t), T(k,i)(t), β, γ, θ
)

∂T(i, j)
,

T( j,k)(t + 1) = T( j,k)(t) − η( j,k)
∂L (

T(i, j)(t + 1), T( j,k)(t), T(k,i)(t), β, γ, θ
)

∂T( j,k)
,

T(k,i)(t + 1) = T(k,i)(t) − η(k,i) ∂L
(

T(i, j)(t + 1), T( j,k)(t + 1), T(k,i)(t), β, γ, θ
)

∂T(k,i)
.
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Such an iteratively updating process will stop when all transitional matrices con-
verge. In the updating equations, η(i, j), η( j,k) and η(k,i) are the gradient descent steps
in updating T(i, j), T( j,k) and T(k,i) respectively. The Lagrangian function of the objec-
tive function is available in the Appendix.

Meanwhile, considering that ‖·‖0 is not differentiable because of its discrete val-
ues [29], we will replace the ‖·‖0 with the ‖·‖1 instead (i.e., the sum of absolute
values of all entries). Furthermore, as all the negative entries will be projected to 0,
the L1 norm of transitional matrix T can be represented as

∥
∥T(k,i)

∥
∥

1 = 1�T(k,i)1
(i.e., the sum of all entries in the matrix). In addition, the Frobenius norm ‖X‖2

F can
be represented with trace Tr(XX�). The partial derivatives of function L with regard
to T(i, j), T( j,k), and T(k,i) are given in the Appendix.

3.4 Transitive Generic Stable Matching

Based on the transitive integrated network alignment introduced in the previous
sections, we can obtain the confidence scores among users across networks, which
can be used to construct user’s partner preference list across networks. For instance,
if the score of link (u(i), v( j)) is greater than that of link (u(i), w( j)) between networks
G(i) and G( j), then we can user u(i) prefers v( j) to w( j).

However, due to the constraint relaxation, the one-to-one constraint on the inferred
anchor links can no longer hold. In this section, we propose to apply the transitive
network matching algorithm to help prune the redundant non-existing anchor links
introduced by the constraint relaxation.

In this section, we will first briefly talk about the traditional stable matching for
two networks, then we will introduce the generic stable matching for two networks.
Finally, we will introduce transitive generic stable matching for multiple networks.

3.4.1 Traditional Stable Matching

Meanwhile, as proposed in [13], the one-to-one constraint of anchor links across fully
aligned social networks can be met by pruning extra potential anchor link candidates
with traditional stable matching. In this subsection, we will introduce the concept
of traditional stable matching briefly.

We first use a toy example in Fig. 2 to illustrate the main idea of our solution.
Suppose in Fig. 2a we are given the ranking scores from the transitive integrated
network alignment. We can see in Fig. 2b that link prediction methods with a fixed
threshold may not be able to predict well, because the predicted links do not satisfy the
constraint of one-to-one relationship. Thus one user account in the source network
can be linked with multiple accounts in the target network. In Fig. 2c, weighted
maximum matching methods can find a set of links with maximum sum of weights.
However, it is worth noting that the input scores are uncalibrated, so maximum
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Fig. 2 An example of anchor link inference by different methods. a is the input, ranking scores.
b–d are the results of different methods for anchor link inference. a Input scores. b Link prediction.
c Max weight(1:1). d UMA(1:1)

weight matching may not be a good solution for anchor link prediction problems.
The input scores only indicate the ranking of different user pairs, i.e., the preference
relationship among different user pairs.

Here we say ‘node x prefers node y over node z’, if the score of pair (x, y) is
larger than the score of pair (x, z). For example, in Fig. 2c, the weight of pair a, i.e.,
Score (a) = 0.8, is larger than Score (c) = 0.6. It shows that user ui (the first user
in the source network) prefers vi over v j . The problem with the prediction result in
Fig. 2c is that, the pair (ui , vi ) should be more likely to be an anchor link due to the
following reasons: (1) ui prefers vi over v j ; (2) vi also prefers ui over u j .

Given the user sets U (1) and U (2) of two partially aligned social networks G(1)

and G(2), each user in U (1)(or U (2)) has his preference over users in U (2)(or U (1)).
Term v j P (1)

ui
vk is used to denote that ui ∈ U (1) prefers v j to vk for simplicity, where

v j , vk ∈ U (2) and P (1)
ui

is the preference operator of ui ∈ U (1). Similarly, we can use
term ui P (2)

v j
uk to denote that v j ∈ U (2) prefers ui to uk in U (1) as well.

Definition 8 (Matching) Mapping μ : U (1) ∪ U (2) → U (1) ∪ U (2) is defined to be a
matching iff (1) |μ(ui )| = 1,∀ui ∈ U (1) and μ(ui ) ∈ U (2); (2) |μ(v j )| = 1,∀v j ∈
U (2) and μ(v j ) ∈ U (1); (3) μ(ui ) = v j iff μ(v j ) = ui .

Definition 9 (Blocking Pair) A pair (ui , v j ) is a a blocking pair of matching μ if ui

and v j prefers each other to their mapped partner, i.e., (μ(ui ) �= v j ) ∧ (μ(v j ) �= ui )

and (v j P (1)
ui

μ(ui )) ∧ (ui P (2)
v j

μ(v j )).

Definition 10 (Stable Matching) Given a matching μ, μ is stable if there is no
blocking pair in the matching results [8].

We propose to formulate the anchor link prediction problem as a stable match-
ing problem between user accounts in source network and accounts in target net-
work. Assume that we have two sets of unlabeled user accounts, i.e., U (1) =
{u1, u2, . . . , u|U (1)|} in source network and U (2) = {v1, v2, . . . , v|U (2)|} in target net-
work. Each ui has a ranking list or preference list P(ui ) over all the user accounts in
target network (vi ∈ U (2)) based upon the input scores of different pairs. For exam-
ple, in Fig. 2a, the preference list of node ui is P(ui ) = (vi , v j ), indicating that node
vi is preferred by ui over v j . The preference list of node u j is also P(u j ) = (vi , v j ).
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Similarly, we also build a preference list for each user account in the target network.
In Fig. 2a, P(vi ) = P(v j ) = (ui , u j ).

3.4.2 Generic Stable Matching

Stable matching based method proposed in [13] can only work well in fully aligned
social networks. However, in the real world, few social networks are fully aligned
and lots of users in social networks are involved in one network only, i.e., non-anchor
users, and they should not be connected by any anchor links. However, traditional
stable matching method cannot identify these non-anchor users and remove the
predicted potential anchor links connected with them. To overcome such a problem,
we will introduce the generic stable matching to identify the non-anchor users and
prune the anchor link results to meet the one-to-one constraint.

In UMA, we introduce a novel concept, self matching, which allows users to be
mapped to themselves if they are discovered to be non-anchor users. In other words,
we will identify the non-anchor users as those who are mapped to themselves in the
final matching results.

Definition 11 (Self Matching) For the given two partially aligned networks G(1)

and G(2), user ui ∈ U (1), can have his preference P (1)
ui

over users in U (2) ∪ {ui } and
ui preferring ui himself denotes that ui is an non-anchor user and prefers to stay
unconnected, which is formally defined as self matching.

Users in one social network will be matched with either partners in other social
networks or themselves according to their preference lists (i.e., from high preference
scores to low preference scores). Only partners that users prefer over themselves will
be accepted finally, otherwise users will be matched with themselves instead.

Definition 12 (Acceptable Partner) For a given matching μ : U (1) ∪ U (2) → U (1) ∪
U (2), the mapped partner of users ui ∈ U (1), i.e., μ(ui ), is acceptable to ui iff
μ(ui )P (1)

ui
ui .

To cut off the partners with very low preference scores, we propose the par-
tial matching strategy to obtain the promising partners, who will participate in the
matching finally.

Definition 13 (Partial Matching Strategy) The partial matching strategy of user
ui ∈ U (1), i.e., Q(1)

ui
, consists of the first K the acceptable partners in ui ’s preference

list P (1)
ui

, which are in the same order as those in P (1)
ui

, and ui in the (K + 1)th entry
of Q(1)

ui
. Parameter K is called the partial matching rate in this paper.

An example is given at the last plot of Fig. 3, where to get the top 2 promising
partners for the user, we place the user himself at the 3rd cell in the preference list.
All the remaining potential partners will be cut off and only the top 3 users will
participate in the final matching.

Based on the concepts of self matching and partial matching strategy, we define
the concepts of partial stable matching and generic stable matching as follow.
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Fig. 3 Partial network alignment with pruning

Definition 14 (Partial Stable Matching) For a given matching μ, μ is (1) rational
if μ(ui )Q(1)

ui
ui ,∀ui ∈ U (1) and μ(v j )Q(2)

v j
v j ,∀v j ∈ U (2), (2) pairwise stable if there

exist no blocking pairs in the matching results, and (3) stable if it is both rational
and pairwise stable.

Definition 15 (Generic Stable Matching) For a given matching μ, μ is a generic
stable matching iff μ is a self matching or μ is a partial stable matching.

As example of generic stable matching is shown in the bottom two plots of Fig. 3.
Traditional stable matching can prune most non-existing anchor links and make sure
the results can meet one-to-one constraint. However, it preserves the anchor links
(Rebecca, Becky) and (Jonathan, Jon), which are connecting non-anchor users. In
generic stable matching with parameter K = 1, users will be either connected with
their most preferred partner or stay unconnected. Users “William” and “Wm” are
matched as link (William, Wm) has the highest score. “Rebecca” and “Jonathan”
will prefer to stay unconnected as their most preferred partner “Wm” is connected
with “William” already. Furthermore, “Becky” and “Jon” will stay unconnected as
their most preferred partner “Rebecca” and “Jonathan” prefer to stay unconnected.
In this way, generic stable matching can further prune the non-existing anchor links
(Rebecca, Becky) and (Jonathan, Jon).

The truncated generic stable matching results can be achieved with the Generic
Gale-Shapley algorithm as given in Algorithm 1.
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Algorithm 1 Generalized Gale-Shapley Algorithm
Input: user sets of aligned networks: U (1) and U (2).

classification results of potential anchor links in L
known anchor links in A(1,2)

truncation rate K
Output: a set of inferred anchor links L′
1: Initialize the preference lists of users in U (1) and U (2) with predicted existence probabilities of links in L and known

anchor links in A(1,2), whose existence probabilities are 1.0
2: construct the truncated strategies from the preference lists
3: Initialize all users in U (1) and U (2) as free
4: L′ = ∅
5: while ∃ free u(1)

i in U (1) and u(1)
i ’s truncated strategy is non-empty do

6: Remove the top-ranked account u(2)
j from u(1)

i ’s truncated strategy

7: if u(2)
j ==u(1)

i then

8: L′ = L′ ∪ {(u(1)
i , u(1)

i )}
9: Set u(1)

i as stay unconnected
10: else
11: if u(2)

j is free then

12: L′ = L′ ∪ {(u(1)
i , u(2)

j )}
13: Set u(1)

i and u(2)
j as occupied

14: else
15: ∃u(1)

p that u(2)
j is occupied with.

16: if u(2)
j prefers u(1)

i to u(1)
p then

17: L′ = (L′ − {(u(1)
p , u(2)

j )}) ∪ {(u(1)
i , u(2)

j )}
18: Set u(1)

p as free and u(1)
i as occupied

19: end if
20: end if
21: end if
22: end while

3.4.3 Transitive Generic Stable Matching

To ensure the network matching results can meet the “transitivity law”, in matching
networks (G(i), G( j)), (G( j), G(k)) and (G(k), G(i)), we need to consider the results
globally. For instance,when matching these 3 networks, we can match networks (G( j),
G(k)) with Algorithm 1, which is identical to the regular pairwise network match-
ing problem. Next, we can match networks (G(i), G( j)). If we identify (u(i), v( j))

and (v( j), w(k)) should be matched between networks (G(i), G( j)) and (G( j), G(k))
respectively, we will follow the following strategy to either pre-add (w(k), u(i)) to
the alignment result between networks (G(k), G(i)) or separate pair (u(i), v( j)) and
set u(i) and v( j) as self-occupied:

• case 1: Given that (v( j), w(k)) is matched between networks (G( j), G(k)), if users
(u(i), v( j)) is paired together between networks (G(i), G( j)), and u(i) and w(k) are
either free or self-occupied, then we will add (w(k), u(i)) to the result between
networks (G(k), G(i)).

• case 2: Given that (v( j), w(k)) is matched between networks (G( j), G(k)), if users
(u(i), v( j)) is paired together between networks (G(i), G( j)), but either u(i) or w(k)

has been matched with other users when matching networks (G(k), G(i)), then we
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will set users u(i) and v( j) to be self-occupied in the results between networks
(G(i), G( j)).

Next, we can match networks G(k), G(i) by following very similar strategies. For
each user pair (w(k), u(i)) to be matched (excluding the pre-added ones), we check
the matching statuses of users w(k) and u(i) in the matching of (G(i), G( j)) and (G( j),
G(k)):

• case 1: if w(k) and u(i) are both paired with other users in matching (G(i), G( j))
and (G( j), G(k)), and their partners are the same user actually, then we will add
(w(k), u(i)) into the alignment result of networks (G(k), G(i));

• case 2: if w(k) and u(i) are both paired with other users in matching (G(i), G( j))
and (G( j), G(k)), but their partners are different users, then we will set w(k) and u(i)

as free/self-occupied and continue the matching process of networks (G(k), G(i));
• case 3: if one user (e.g., w(k)) is matched with one user (e.g., v( j)) but the other

one (i.e., u(i)) is set as self-occupied in matching (G(i), G( j)) and (G( j), G(k)), then
we check the status of v( j) in matching (G( j), G(k)). If v( j) is paired with another
user, then we will set w(k) and u(i) as free/self-occupied and continue the matching
process of networks (G(k), G(i));

• case 4: if v( j) is also set as self-occupied in matching networks (G( j), G(k)), then
we will add pair (v( j), w(k)) into the matching result of networks (G( j), G(k)) and
add pair (w(k), u(i)) into the alignment result of networks (G(k), G(i)).

Finally, we can achieve the matching results among networks G(i), G( j) and G(k)

respectively.

4 Experiments

To examine the effectiveness of UMA in addressing theM-NASA problem, extensive
experiments on real-world multiple partially aligned social networks will be done in
this section. Next, we will introduce the dataset used in the experiments in Sect. 4.1
and give brief descriptions about the experiment settings in Sect. 4.2. Experiment
results and detailed analysis will be given in Sects. 4.3 and 4.4.

4.1 Dataset Description

Nowadays, Question-and-Answer (Q&A) websites are becoming a new platform for
people to share knowledge, where individuals can conveniently post their questions
online and get first-hand replies very quickly. A large number of Q&A sites have
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sprung out overnight, e.g., Stack Overflow,1 Super User,2 Programmers,3 Quora.4

Stack Overflow, Super User and Programmers are all Q&A sites constructed for
exchanging knowledge about computer science and share large number of common
users, which are used as the partially aligned networks G(i), G( j) and G(k) respectively
in the experiments.

We crawled the multiple partially aligned Q&A networks during November 2014–
January 2015 and the complete information of 10, 000 users in Stack Overflow,
Super User and Programmers Q&A sites respectively. The anchor links (i.e., the
ground truth) between pairs of these Q&A networks are obtained by crawling their
homepages in these sites respectively, where users’ IDs in all these networks they
participate in are listed. For example, at site,5 we can have access to all the Q&A
sites IDs that Jon Skeet owns, which can be used to extract the ground truth anchor
links across networks. Among these 3 networks, the number of shared anchor users
(1) between Stack Overflow and Super User is 3, 677, (2) between Stack Overflow
and Programmers is 2, 626, (3) between Super User and Programmers is 1, 953.
Users in Q&A sites can answer questions which are of their interests. Considering
that users don’t have social links in these Q&A sites, we will create social connections
among users if they have every answered the same question in the past. Answering
common questions in Q&A sites denotes that they may share common interests as
well as common expertise in certain areas.

4.2 Experiment Settings

In the experiments, anchor links between users across networks are used for validation
only and are not involved in building models. Considering that the network alignment
method introduced in this paper is based on the social link information only, isolated
users with no social connections in each network are sampled and removed. Based on
the social links among users, we infer the optimal transitional matrices between pairs
of networks by minimizing the friendship inconsistency as well as the alignment tran-
sitivity penalty. Alternative updating method is used to solve the joint objective func-
tion, where the transitional matrices are initialized with method introduced in [14].
All users in each network are partitioned into 10 bins according to their social degrees,
where initial anchor links are assumed to exist between users belonging to the corre-
sponding bins between pairs of networks, e.g., users in bin 1 of Stack Overflow and
those in bin 1 of Programmers. The initial values of entries corresponding to these
anchor links in transitional matrices are calculated with the relative degree distance

1http://stackoverflow.com.
2http://superuser.com.
3http://programmers.stackexchange.com.
4http://www.quora.com.
5http://stackexchange.com/users/11683/jon-skeet?tab=accounts.

http://stackoverflow.com
http://superuser.com
http://programmers.stackexchange.com
http://www.quora.com
http://stackexchange.com/users/11683/jon-skeet?tab=accounts
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based on their social degrees, e.g., rdd(u(i)
l , u( j)

m ) =
(

1 + |deg(u(i)
l )− deg(u( j)

m )|
(deg(u(i)

l ) + deg(u( j)
m ))/2

)−1
,

where deg(u) denotes the social degree of user u in the networks. Based on the
inferred transitional matrices, anchor links with the highest scores but can meet the
one-to-one constraint and transitivity law are selected with the method introduced in
Sect. 3.4, which can output both the confidence scores and their inferred labels.

Comparison Methods: Considering that social networks studied in this paper
(1) contain only social link information, and (2) no known anchor links exist between
networks, therefore, neither inter-network user resolution method MOBIUS [30] built
with various user attribute information nor supervised network alignment method
MNA [13] can be applied to address the M-NASA problem. To show the advantages
of UMA, we compare UMAwith many other baseline methods, including both state-
of-art network alignment methods as well as extended traditional methods, which
are all unsupervised network alignment methods based on the link information only.
All the comparison methods used in the experiments are listed as follows.

• Unsupervised Multi-network Alignment: Method UMA introduced in this paper
can align multiple partially networks concurrently, which include two steps:
(1) transitive network alignment, and (2) transitive network matching. Anchor
links inferred by UMA can maintain both one-to-one constraint and transitivity
property.

• Integrated Network Alignment (INA): To show that transitive network matching
can improve the alignment results, we introduce another method named INA,
which is identical to the first step of UMA but without the matching step. Anchor
links inferred by INA cannot maintain the one-to-one constraint nor transitivity
law property.

• Pairwise Network Alignment: Big-Align is a state-of-art unsupervised network
alignment method proposed in [14] for aligning pairwise networks. When applied
to the multiple-network case, Big-Align can only align networks pair by pair.
What’s more, the output of Big-Align cannot maintain the one-to-one constraint
nor transitivity property of anchor links. We also use Big-Align as a baseline
method to show the advantages of the multiple-network alignment framework
UMA introduced in this paper.

• Pairwise Alignment + Pairwise Matching: We also extend Big-Align [14] and
introduce another baseline method Big-Align-PM, which can further prune the
redundant non-existing anchor links with pairwise network stable matching pro-
posed in [13] to guarantee the inferred anchor links can meet the one-to-one con-
straint.

• Relative Degree Distance (RDD) based Alignment: The transitional matrix ini-
tialization method RDD [14] is compared as another baseline methods, which
calculate the confidence scores of potential anchor links with the degree informa-
tion of users.

• Relative PageRank based Alignment: Traditional PageRank method is mainly pro-
posed for calculating the correlation rank scores of a webpage to the given query.
In addition, we also extend the traditional PageRank method and propose a new
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(a) (b) (c)

Fig. 4 L1 norm of transitional matrices at each iteration. a Matrix T(i, j). b Matrix T( j,k). c Matrix
T(k,i)

method RPR to infer potential anchor links. For a potential anchor link (u(i)
l , u( j)

m ),
RPR calculates the reciprocal of the relative pagerank scores between u(i)

l , u( j)
m as

its existence confidence, i.e., |pagerank(u(i)
l ) − pagerank(u( j)

m )|−1.

Evaluation Metrics:
To evaluate the performance of different comparison methods, various commonly
used evaluation metrics are applied. All these comparison methods (in INA, the
selected anchor links are assigned with scores 1, while those not selected are assigned
with scores 0) can output confidence scores of potential anchor links, which are
evaluated by metrics AUC and Precision@100.

4.3 Convergence Analysis

To solve the objective function in Sect. 3.3, alternative updating method is applied
to infer the optimal transitional matrices across networks. To demonstrate that the
matrix updating equation can converge within a limited iterations, we calculate the
L1 norms (i.e., the sum of all entries’ absolute value) of transitional matrices T(i, j),
T( j,k) and T(k,i) at each iteration, which are available in Fig. 4. As shown in the
plots, after a few iterations (about 5 iterations), the L1 norm of these transitional
matrices will converge quickly with minor fluctuations around certain values, which
demonstrates that the derived equation updating can converge very well in updating
the transitional matrices.

4.4 Experiment Results

The experiment results of all these comparison methods are available in Fig. 5, where
performance of all these comparison methods in Fig. 5 are evaluated by AUC and
Precision@100 respectively.
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(a) (b)

(c) (d)

(e) (f)

Fig. 5 Performance comparison of different methods evaluated by AUC and Precision@100. a AUC
(G(i), G(J )). b Precision @ 100 (G(i), G(J )). c AUC (G( j), G(k)). d Precision @ 100 (G( j), G(k)).
e AUC (G(k), G(i)). f Precision @ 100 (G(k), G(i))

In Fig. 5, we show the alignment results achieved by all the 6 comparison meth-
ods between network pairs (G(i), G( j)), (G( j), G(k)) and (G(k), G(i)). As shown in
the plots, UMA performs much better than all the other comparison methods with
great advantages in predicting the anchor links between all these networks pairs. For
instance, in Fig. 5a, the AUC obtained by UMA is 0.89, which is about 4 % larger
than INA and over 13 % larger than the other comparison methods; in Fig. 5f, the
Precision@100 achieved by UMA is 0.87, which is over 25 % higher than that of
INA, almost the double of that gained by Big-Align and Big-Align-PM, and even
4–5 times of that obtained by RDD and RPR.
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By comparing UMA and INA, method UMA consisting of transitive integrated
network alignment and transitive network matching performs better, which demon-
strates the effectiveness of the transitive network matching step in pruning redundant
non-existing anchor links.

Compared with the isolated pairwise network alignment method Big-Align, the
fact that INA achieves better performance justifies that aligning multiple networks
simultaneously by incorporating the alignment transitivity penalty into the objective
function can identify better anchor links than pairwise isolated network alignment.

By comparing Big-Align-PM and Big-Align, the pairwise network matching
step can help improve the prediction results of anchor links between networks
(G(k), G(i)) but has no positive effects (even has negative effects) on the anchor
links between other network pairs, e.g., network pairs (G(i), G( j)) and (G( j), G(k)).
However, the effective of the transitive network matching method applied in UMA
has been proved in the comparison of UMA and INA. It may show that transitive net-
work matching exploiting the transitivity law performs much better than the pairwise
network matching method.

For completeness, we also compare UMA with extensions of traditional methods
RDD and RPR and the advantages of UMA over these methods are very obvious.

5 Related Works

Graph alignment is an important research problem in graph studies [6] and dozens of
papers have been published on this topic in the past decades. Depending on spe-
cific disciplines, the studied graphs can be social networks in data mining [13]
protein-protein interaction (PPI) networks and gene regulatory networks in bioin-
formatics [11, 17, 23, 24], chemical compound in chemistry [26], data schemas
in data warehouse [19], ontology in web semantics [7], graph matching in com-
binatorial mathematics [18], as well as graphs in computer vision and pattern
recognition [3, 5].

In bioinformatics, the network alignment problem aims at predicting the best
mapping between two biological networks based on the similarity of the molecules
and their interaction patterns. By studying the cross-species variations of biological
networks, network alignment problem can be applied to predict conserved functional
modules [21] and infer the functions of proteins [20]. Graemlin [9] conducts pairwise
network alignment by maximizing an objective function based on a set of learned
parameters. Some works have been done on aligning multiple network in bioinfor-
matics. IsoRank proposed in [25] can align multiple networks greedily based on the
pairwise node similarity scores calculated with spectral graph theory. IsoRankN [17]
further extends IsoRank by exploiting a spectral clustering scheme.

In recent years, with rapid development of online social networks, researchers’
attention starts to shift to the alignment of social networks. A comprehensive survey
about recent works on heterogeneous social networks, including the recent network
alignment works, is available in [22]. Enlightened by the homogeneous network
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alignment method in [28], Koutra et al. [14] propose to align two bipartite graphs
with a fast alignment algorithm. Zafarani et al. [30] propose to match users across
social networks based on various node attributes, e.g., username, typing patterns and
language patterns etc. Kong et al. formulate the heterogeneous social network align-
ment problem as an anchor link prediction problem. A two-step supervised method
MNA is proposed in [13] to infer potential anchor links across networks with het-
erogeneous information in the networks. However, social networks in the real world
are mostly partially aligned actually and lots of users are not anchor users. Zhang
et al. have proposed the partial network alignment methods based on supervised
learning setting and PU learning setting in [32, 33] respectively. Existing social net-
work alignment paper mostly focus on aligning two social networks, Zhang et al.
[35] introduce a multiple network concurrent alignment framework to align multiple
social networks simultaneously. Besides the common users shared by different social
networks, many other categories of information entities, e.g., movies, geo-locations,
and products, can also be shared by different movie-related networks, location based
social networks, and e-commerce sites respectively. Zhang et al. are the first to intro-
duce the partial co-alignment of social network, and propose a sophisticated network
co-alignment framework in [36].

6 Conclusion

In this paper, we have studied the multiple anonymized social network alignment
(M-NASA) problem to infer the anchor links across multiple anonymized online
social networks simultaneously. An effective two-step multiple network alignment
framework UMA has been proposed to address the M-NASA problem. The anchor
links to be inferred follow both transitivity law and one-to-one property, under the
constraint of which, UMA matches multiple anonymized networks by minimizing
the friendship inconsistency and selects anchor links which can lead to the maximum
confidence scores across multiple anonymized social networks based on the generic
stable matching method. In this paper, we take 3 Q&A networks as an example to
introduce both the method and conduct the experiments. In our future works, we will
generalize the proposed model to multiple networks of diverse categories.

Acknowledgments This work is supported in part by NSF through grants III-1526499, CNS-
1115234, and OISE-1129076, Google Research Award, and the Pinnacle Lab at Singapore Man-
agement University.

Appendix: New Objective Function

Based on the above relaxations used in Sect. 3.3, the new objective function can be
represented as
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∥
∥

2

F

+ β · ∥∥T(i, j)
∥
∥

0 + γ · ∥
∥T( j,k)

∥
∥

0 + θ · ∥
∥T(k,i)

∥
∥

0 .

The partial derivatives of function L with regard to T(i, j), T( j,k), and T(k,i) will
be:

(1)
∂L (

T(i, j), T( j,k), T(k,i), β, γ, θ
)

∂T(i, j)

= 2 · S(i)T(i, j)(T(i, j))�(S(i))�T(i, j)

+ 2 · (S(i))�T(i, j)(T(i, j))�S(i)T(i, j)

+ 2α · S(i)T(i, j)T( j,k)(T( j,k))�(T(i, j))�(S(i))�T(i, j)T( j,k)(T( j,k))�

+ 2α · (S(i))�T(i, j)T( j,k)(T( j,k))�(T(i, j))�S(i)T(i, j)T( j,k)(T( j,k))�

− 2 · S(i)T(i, j)(S( j))� − 2 · (S(i))�T(i, j)S( j)

− 2α · (S(i))�T(i, j)T( j,k)T(k,i)S(i)(T(k,i))�(T( j,k))�

− 2α · S(i)T(i, j)T( j,k)T(k,i)(S(i))�(T(k,i))�(T( j,k))� − β · 11�.

(2)
∂L (

T(i, j), T( j,k), T(k,i), β, γ, θ
)

∂T( j,k)

= 2 · S( j)T( j,k)(T( j,k))�(S( j))�T( j,k)

+ 2 · (S( j))�T( j,k)(T( j,k))�S( j)T( j,k)

+ 2α · (T(i, j))�S(i)T(i, j)T( j,k)(T( j,k))�(T(i, j))�(S(i))�T(i, j)T( j,k)

+ 2α · (T(i, j))�(S(i))�T(i, j)T( j,k)(T( j,k))�(T(i, j))�S(i)T(i, j)T( j,k)

− 2 · S( j)T( j,k)(S(k))� − 2 · (S( j))�T( j,k)S(k)
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− 2α · (T(i, j))�(S(i))�T(i, j)T( j,k)T(k,i)S(i)(T(k,i))�

− 2α · (T(i, j))�S(i)T(i, j)T( j,k)T(k,i)(S(i))�(T(k,i))� − γ · 11�.

(3)
∂L (

T(i, j), T( j,k), T(k,i), β, γ, θ
)

∂T(k,i)

= 2 · S(k)T(k,i)(T(k,i))�(S(k))�T(k,i)

+ 2 · (S(k))�T(k,i)(T(k,i))�S(k)T(k,i)

+ 2αT(k,i)(S(i))�(T(k,i))�T(k,i)S(i)

+ 2αT(k,i)S(i)(T(k,i))�T(k,i)(S(i))�

− 2 · S(k)T(k,i)(S(i))� − 2 · (S(k))�T(k,i)S(i)

− 2α · (T( j,k))�(T(i, j))�(S(i))�T(i, j)T( j,k)T(k,i)S(i)

− 2α · (T( j,k))�(T(i, j))�S(i)T(i, j)T( j,k)T(k,i)(S(i))� − θ · 11�.
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