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Abstract

Nowadays, many new social networks offering specific
services spring up overnight. In this paper, we want to
detect communities for emerging networks. Community
detection for emerging networks is very challenging as
information in emerging networks is usually too sparse
for traditional methods to calculate effective closeness
scores among users and achieve good community detec-
tion results. Meanwhile, users nowadays usually join
multiple social networks simultaneously, some of which
are developed and can share common information with
the emerging networks. Based on both link and attribu-
tion information across multiple networks, a new gen-
eral closeness measure, intimacy, is introduced in this
paper. With both micro and macro controls, an effec-
tive and efficient method, CAD (Cold stArt community
Detector), is proposed to propagate information from
developed network to calculate effective intimacy scores
among users in emerging networks. Extensive experi-
ments conducted on real-world social networks demon-
strate that CAD can perform very well in addressing
the emerging network community detection problem.

1 Introduction

Clusters in networks are defined as groups of nodes
which are strongly connected in the group but loosely
connected to nodes in other groups. Depending on spe-
cific disciplines, networks studied in clustering problems
can be very diverse, which include online social net-
works, e.g., Twitter and Facebook [18]; e-commerce net-
works, e.g., Amazon and Epinions [6]; and bibliographic
networks, e.g., DBLP [15]. Meanwhile, discovering clus-
ters of user in social networks is also formally defined
as the community detection problem [10, 18, 17, 7, 15].
Community detection is very important for online social
networks as it is a crucial prerequisite for many con-
crete social services, e.g., better organization of users’
friends in online social networks by partitioning them
into “schoolmates”, “family”, “celebrities”, etc.

Nowadays, witnessing the incredible success of pop-
ular online social networks, e.g., Facebook and Twitter,
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a large number of new social networks offering specific
services also spring up overnight. Generally, new emerg-
ing networks are networks containing very sparse infor-
mation, which can be (1) networks starting to provide
social services for only a very short period of time; or
(2) even more mature ones that start to branch into
new geographic areas or social groups [20]. The formal
definitions of “emerging networks” and “developed net-
works” are available in Section 2. Considering its wide
applications in various social services, community detec-
tion is important for emerging networks as high-quality
community detection results enable emerging networks
to provide better services, which will help attract more
user registration effectively.
Problem: In this paper, we study the community de-
tection problem for emerging networks, which is for-
mally defined as the “emerging network community de-
tection” problem. Furthermore, when the network is
brand new (i.e., little information about the registered
users exists in the network), the problem will be the
“cold start community detection” problem. Few works
have studied the cold start problem in community de-
tection and we are the first to propose the concepts
of “emerging network community detection” and “cold
start community detection”.

Community detection for emerging networks is a
new problem and conventional community detection
methods for developed networks cannot be applied.
Compared with developed networks, information in
emerging networks is too sparse to support traditional
methods in calculating effective closeness scores and
achieving good results. More information about related
problems is available in Section 5.

Meanwhile, as proposed in [5, 19, 20, 21], users
nowadays usually participate in multiple social networks
simultaneously to enjoy more social services. Users
who are involved in an emerging network may have
been using other developed social networks for a long
time. Furthermore, some of the developed networks
can share common information with emerging networks
either due to the network establishing purpose, e.g.,
Google Scholar (released in 2004) and Research Gate
(launched in 2008) are both constructed for better aca-
demic communications, or because of specific network
features, e.g., Twitter (created in 2006) and Foursquare



(launched in 2009) can both offer geo-spatial services
and allow users to follow other users. If the useful
information in developed networks can be propagated
to emerging networks, the information sparsity prob-
lem encountered in detecting communities for emerging
networks can be solved promisingly.

Despite its importance and novelty, the “emerging
network community detection” problem is very challeng-
ing to solve due to the following reasons:

• effective closeness measure: Effective definition
and calculation of closeness measure which can cap-
ture the connections among users in various aspects
is a prerequisite for effective community detection.
The problem is more urgent in the emerging net-
work community detection problem due to the in-
formation sparsity problem in emerging networks.

• information weight control : Users have both link
and attribute information (i.e., multiple informa-
tion types) in both emerging network and devel-
oped networks (i.e., multiple information sources).
How to determine the weights of different infor-
mation types and information sources in closeness
score calculation is very challenging.

• high time and space cost : Community detection
across multiple networks can involve too many
nodes and connections, which will lead to high time
and space cost.

To solve all the above challenges, a novel community
detection method, CAD, is proposed in this paper: (1)
CAD introduces a general closeness measure, intimacy,
based on both link and attribute information in (and
across) heterogeneous networks; (2) CAD can propa-
gate useful information across developed and emerging
networks to solve the shortage of information problem
with both micro and macro information weight controls,
whose parameters can be adjusted automatically; (3)
effective and efficient techniques are proposed to help
CAD overcome the high time and space cost problem.

This paper is organized as follows. We formulate
the problem in Section 2. Detailed description of the
methods is introduced in Section 3. In Section 4, we
show the experiment results. Finally, we give the related
works and conclusions in Sections 5 and 6.

2 Problem Formulation

In this paper, we will use the definitions of anchor user,
anchor link, aligned networks proposed in [5, 19, 20,
21]. Definitions of other important terminologies and
the formulation of the emerging network community
detection problem will be introduced in this section.
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Figure 1: An example of attribute augmented heteroge-
neous network. (a): attribute augmented heterogeneous
network, (b-d): timestamp, text and location attributes.

2.1 Terminology Definition

Definition 2.1. (Intimacy): Users in social networks
can be correlated with each other closely and the cor-
relation is quantified as the “intimacy” in this paper.
Intimacy is a general closeness measure and can be ap-
plied to various networks, e.g., networks with link in-
formation only, networks with both link and attribute
information as well as multiple aligned heterogeneous
networks. The intimacy between user ui, uj ∈ V denotes
the transition probability from ui to uj in the network.

Definition 2.2. (Intimacy Matrix): Matrix H ∈
R|V|×|V| is defined as the intimacy matrix among users
in V, where H(i, j) is the intimacy between ui and uj.

Definition 2.3. (Attribute Augmented Heterogeneous
Networks): Users can have both link and attribute
information in social networks, which can be formulated
as attribute augmented heterogeneous networks, G =
(V, E ,A), where V and E are the user set and link
set respectively. A = {a1, a2, · · · , am} is the set of m
different attributes that users have in the network and
ai ∈ A can have ni different values.

Including the attributes as nodes provides a con-
ceptual framework to handle social links and node at-
tributes in a unified framework. For example, in the so-
cial network shown in Figure 1(a), we can get not only
user social link information, but also their active time,
posting content and check-in locations and each of them
can take on a set of values. By creating an augmented
network, we can make the posting times, content key-
words, and locations as augmented network nodes as
shown in Figures 1(b)-1(d). The effect on increasing
the dimensionality of the network will be handled in
Lemma 3.1 in lower dimensional space.



Definition 2.4. (Aligned Attribute Augmented Het-
erogeneous Networks): Multiple aligned attribute aug-
mented heterogeneous networks can be defined as G =
((G1, G2, · · · , Gn), (A1,2, A1,3, · · · , A1,n, A2,3, · · · ,
A(n−1),n)), where Gi, i ∈ {1, 2, · · · , n} is an attributed
augmented heterogeneous network and Ai,j , i 6= j, i, j ∈
{1, 2, · · · , n} is the set of undirected anchor links [21, 5]
between Gi and Gj.

Definition 2.5. (Average Degree) The average degree
of a network denotes the average number of edges
connected to each node in the network, i.e., connection
density. The average degree of network G can be

represented as AD(G) = |E|
|V| .

Definition 2.6. (Emerging and Developed Networks):
Concepts “emerging” and “developed” can depict the
sparsity of information in networks. In this paper,
emerging networks (or developed networks) are defined
as networks whose average degree is lower than threshold
εnew (or larger than threshold εdev). In other words,
network G is an emerging network iff AD(G) < εnew
and G is a developed network iff AD(G) > εdev.

2.2 Emerging Network Community Detection
In this paper, we will study the emerging network
community detection problem based on two real-world
partially aligned networks: Foursquare and Twitter,
whose detailed information is available in Section 4.
According to the given definitions, networks studied in
this paper can be formulated as two partially aligned
attribute augmented heterogeneous networks: G =
((Gt, Gs), (At,s)), where Gt and Gs are the emerging
and developed networks respectively and At,s is the
set of anchor links between Gt and Gs. Both Gt

and Gs can be formulated as the attribute augmented
heterogeneous network, e.g., Gt = (Vt, Et,At). With
information across G, we can calculate the intimacy
matrix, H, among users in the emerging networkGt that
we target on. Emerging network community detection
problem aims at partitioning user set Vt of Gt into
K disjoint clusters, C = {C1, C2, · · · , CK}, based on
the intimacy matrix, H, such that users in each cluster
are more similar to each other than those in different
clusters, where

⋃K
i Ci = Vt and Ci ∩ Cj = ∅,∀i, j ∈

{1, 2, · · · ,K}, i 6= j. When the target network Gt is
brand new, i.e., Et = ∅ and At = ∅, the problem will be
the cold start community detection problem.

3 Proposed Methods

We will introduce the emerging network community de-
tection method, CAD, in this section. In Section 3.1,
we first introduce the concept of intimacy based on the

simple case with social links only and then extend the
intimacy matrix to capture attribute similarity in Sec-
tion 3.2. Generalization of the intimacy matrix to cover
cross network information propagation is addressed in
Section 3.3. The approximation to solve the high space
and time cost is introduced in Section 3.4.

3.1 Intimacy Matrix of Homogeneous Network
For a given homogeneous network, e.g., G = (V, E),
where V, E are the user set and social link set in
the network respectively, we can define the adjacency
matrix of G to be Z ∈ R|V|×|V|, where Z(i, j) = 1,
if (ui, uj) ∈ E . Meanwhile, via the social links in E ,
information can propagate within the network, whose
propagation paths can reflect the closeness among users

[12]. Formally, we define pij = Z(i,j)√∑
m Z(j,m)

∑
n Z(i,n)

to be the information transition probability from uj to
ui. Let’s assume that user ui ∈ V injects a stimulation
into network G initially and the information will be
propagated to other users in G afterwards. During
the propagation process, users receive stimulation from
their neighbors and the amount is proportional to the
amount difference of stimulation reaching the user and
his neighbors. Let vector f (τ) ∈ R|V| denote the states
of all users in V at τ , i.e., the proportion of stimulation
at users in V at time τ . The change of stimulation at
ui at time τ + ∆t is defined as follows:

f (τ+∆t)(i)− f (τ)(i)

∆t
= α

∑
uj∈V

pji(f
(τ)(j)− f (τ)(i)),

where coefficient α can be set as 1 as proposed in [23].
The transition probabilities pij , i, j ∈ {1, 2, · · · , |V|}

can be represented with the transition matrix X =
(D−

1
2 ZD−

1
2 ) of network G, where X ∈ R|V|×|V|,

X(i, j) = pij and diagonal matrix D ∈ R|V|×|V| has

value D(i, i) =
∑|V|
j=1 Z(i, j) on its diagonal.

Definition 3.1. (Social Transition Probability Ma-
trix): The social transition probability matrix of net-
work G can be represented as Q = X −DX, where X is
the transition matrix defined above and diagonal matrix
DX has value DX(i, i) =

∑|V|
j=1 X(j, i) on its diagonal.

Furthermore, by setting ∆t = 1, denoting that
stimulation propagates step by step through network,
we can rewrite the propagation updating equation as:

f (τ) = f (τ−1) + α(X−DX)T f (τ−1) = (I + αQT )f (τ−1)

= (I + αQT )τf (0) = (I + αQ)τf (0),

where Q is symmetric and QT = Q. Other transition
probability matrices in the following parts of this paper



are all symmetric and we will use (I + αQ) to denote
(I + αQT ) for simplicity.

The propagation process will stop when f (τ) =
f (τ−1) and the stationary transition matrix can be
represented as (I + αQ)(τ), where that smallest τ that
can stop the propagation (i.e., (I + αQ)(τ) = (I +
αQ)(τ−1)) is defined as the stop step. To obtain the
stop step τ , we need to keep checking the powers of
(I + αQ) until it doesn’t change as τ increases, i.e., the
stop criteria.

Definition 3.2. (Homogeneous Network Intimacy
Matrix): Matrix H = (I + αQ)τ ∈ R|V|×|V| is defined as
the intimacy matrix of users in homogeneous network
G, where τ is the stop step and H(i, j) denotes the
intimacy score between ui and uj in the network.

3.2 Intimacy Matrix of Attribute Augmented
Heterogeneous Network and Micro Control
Real-world social networks can usually contain various
kinds of information, e.g., links and attributes. Besides
among users, information can also propagate among
users via shared attributes in heterogeneous networks.

Definition 3.3. (Attribute Transition Probability Ma-
trix): The connections between users and attributes,
e.g., ai, can be represented as the attribute adjacency
matrix Aai ∈ R|V|×ni , where ni is the number of values
that attribute ai can have. Similar to the social transition

probability matrix, based on Aai , we formally define the
attribute transition probability matrix from users to at-
tribute ai to be Ri ∈ R|V|×ni and that from attribute ai

to users in V to be Si = RT
i .

The importance of different information types in
calculating the closeness measure among users can
be different. To handle such a problem, we intro-
duce the micro control by giving different informa-
tion types distinct weights to denote their differences:
ω = {ω0, ω1, · · · , ωm}, where

∑m
i=0 ωi = 1.0, ω0 is

the weight of link and ωi is the weight of attribute ai,
i ∈ {1, 2, · · · ,m}.

Definition 3.4. (Weighted Attribute Transition Prob-
ability Matrix): With weights ω, we define R̃ =

[ω1R1, · · · , ωnRn], S̃ =
[
ω1ST1 , · · · , ωnSTn

]T to be the
weighted attribute transition probability matrices be-
tween users and all attributes, where R̃ ∈ R|V|×(naug−|V|),
S̃ ∈ R(naug−|V|)×|V|, naug = (|V| +

∑m
i=1 ni) is the number

of all nodes in the attribute augmented heterogeneous
network.

Definition 3.5. (Network Transition Probability Ma-
trix): Furthermore, the transition probability matrix of

the whole attribute augmented heterogeneous network G

is defined as Q̃aug =

[
Q̃ R̃

S̃ 0

]
, where Q̃T

aug = Q̃aug ∈

Rnaug×naug and Q̃ = ω0Qis the weighted social transition
probability matrix of the network.

In the real world, heterogeneous social networks
can contain large amounts of attributes, i.e., naug is
extremely large. The weighted transition probability
matrix, i.e., Q̃aug, will be of extremely high dimensions
and can hardly fit in the memory. As a result, it will be
impossible to update the matrix until the stop criteria
meets to obtain the stop step and the intimacy matrix.
To solve such problem, we propose to obtain the stop
step and the intimacy matrix by applying partitioned
block matrix operations with the following Lemma 3.1.

Lemma 3.1. (Q̃aug)k =

[
Q̃k Q̃k−1R̃

S̃Q̃k−1 S̃Q̃k−2R̃

]
, k ≥ 2, where

Q̃k =


I, if k = 0,

Q̃, if k = 1,

Q̃Q̃k−1 + R̃S̃Q̃k−2, if k ≥ 2

, Q̃k ∈ R|V|×|V|and

the heterogeneous network intimacy matrix is defined as

H̃aug =
(
I + αQ̃aug

)τ
(1 : |V|, 1 : |V|)

=

(
τ∑
t=0

(τ
t

)
αt(Q̃aug)t

)
(1 : |V|, 1 : |V|)

=

(
τ∑
t=0

(τ
t

)
αt
(

(Q̃aug)t(1 : |V|, 1 : |V|)
))

=

(
τ∑
t=0

(τ
t

)
αtQ̃t

)
,

where X(1 : |V|, 1 : |V|) is a sub-matrix of X with indexes
in [1, |V|], τ is the stop step, achieved when Q̃τ = Q̃τ−1,
i.e., the stop criteria, Q̃τ is called the stationary matrix.

Proof. The lemma can be proved by induction on k [22].
Considering that (R̃S̃) ∈ R|V|×|V| can be precomputed in
advance, the space cost will be O(|V|2), |V| � naug.

Since we are only interested in the intimacy and
transition matrices among users, not those between the
augmented attributes and users, we create a reduced
dimensional representation only involving users for Q̃k

and H̃ such that we can capture the effect of “user-
attribute” and “attribute-user” transitions on “user-
user” transitions. Q̃k is a reduced dimensional represen-
tation of Q̃k

aug, while eliminating the augmented items,
it still maintains the “user-user” transitions effectively.

3.3 Intimacy Matrix across Aligned Attribute
Augmented Heterogeneous Networks and Macro
Control When Gt is new, the intimacy matrix H̃



among users calculated based on the information in
Gt will be very sparse. Meanwhile, useful information
propagated from other aligned developed networks can
help solve the shortage of information problem in the
emerging network [19, 20]. However, as proposed in [11],
information propagated from the developed networks
can be different from that in emerging networks. To
handle this problem, we propose to apply the macro
control technique by using weights, ρs,t, ρt,s ∈ [0, 1],
to control the proportion of information propagated
between Gs and Gt. If information from Gs is helpful
for improving the community detection results in Gt,
we can set a higher ρs,t to propagate more information
from Gs. Otherwise, we can set a lower ρs,t instead.

Definition 3.6. (Anchor Transition Matrix): To
propagate information across networks, we define the
anchor transition matrices between Gt and Gs to be
Tt,s ∈ R|Vt|×|Vs| and Ts,t ∈ R|Vs|×|Vt|, where Tt,s(i, j) =

Ts,t(j, i) = 1, if (uti, u
s
j) ∈ At,s, uti ∈ Vt, usj ∈ Vs.

Definition 3.7. (Weighted Network Transition Ma-
trix): Meanwhile, with weights ρs,t and ρt,s, we de-
fine the weighted network transition probability matrix

of Gt and Gs to be Q̄t
aug = (1 − ρt,s)

[
Q̃t R̃t

S̃t 0

]
and

Q̄s
aug = (1− ρs,t)

[
Q̃s R̃s

S̃s 0

]
, where Q̄t

aug ∈ Rn
t
aug×n

t
aug and

Q̄s
aug ∈ Rn

s
aug×n

s
aug , ntaug and nsaug are the numbers of all

nodes in Gt and Gs respectively.

Definition 3.8. (Weighted Anchor Transition Ma-
trix): Furthermore, to accommodate the dimensions,
we define the weighted anchor transition matrices be-

tween Gs and Gt to be T̄t,s = (ρt,s)

[
Tt,s 0

0 0

]
, T̄s,t =

(ρs,t)

[
Ts,t 0

0 0

]
, where T̄t,s ∈ Rn

t
aug×n

s
aug and T̄s,t ∈

Rn
s
aug×n

t
aug . Nodes corresponding to entries in T̄t,s and

T̄s,t are of the same order as those in Q̄t
aug and Q̄s

aug

respectively.

Definition 3.9. (Aligned Network Transition Matrix):
The transition probability matrix across aligned net-

works is defined as Q̄align =

[
Q̄t
aug T̄t,s

T̄s,t Q̄s
aug

]
, where

Q̄T
align = Q̄align ∈ Rnalign×nalign , nalign = ntaug + nsaug is

the number of all nodes across the aligned networks.

Definition 3.10. (Aligned Network Intimacy Matrix):
According to Definition 7, with Q̄align, we can obtain the
the intimacy matrix, H̄align, of users in Gt to be

H̄align = (I + αQ̄align)τ (1 : |Vt|, 1 : |Vt|),

where H̄align ∈ R|Vt|×|Vt|, τ is the stop step.

Meanwhile, methods introduced in Lemma 3.1
doesn’t work well with Q̄align as the non-zero square
matrix at the upper left corner of Q̄align is still of high
dimension. To obtain the stop step, we have no choice
but to keep calculating powers of (I+αQ̄align) until the
stop criteria can meet, which can be very time consum-
ing. In this part, we propose to solve the problem with
the following Lemma 3.2.

Lemma 3.2. For the given matrix (I + αQ̄align), its kth

power meets (I + αQ̄align)kP = PΛk, k ≥ 1, matrices P

and Λ contain the eigenvector and eigenvalues of (I +

αQ̄align). The ith column of matrix P is the eigenvector
of (I+αQ̄align) corresponding to its ith eigenvalue λi and
diagonal matrix Λ has value Λ(i, i) = λi on its diagonal.

Proof. The Lemma can be proved by induction on k

[13]. The time cost of calculating Λk is O(nalign), which
is far less than that required to calculate (I + αQ̄align)k.

Definition 3.11. (Eigen-decomposition based Aligned
Network Intimacy Matrix): In addition, if P is invert-
ible, we can have (I + αQ̄align)k = PΛkP−1,, where Λk

has Λ(i, i)k on its diagonal. And the intimacy calculated
based on eigenvalue decomposition will be

H̄align =
(
PΛτP−1

)
(1 : |Vt|, 1 : |Vt|).

where the stop step τ can be obtained when PΛτP−1 =

PΛτ−1P−1, i.e., stop criteria.

3.4 Approximated Intimacy to Reduce Dimen-
sion Eigendecomposition based method proposed in
Lemma 3.2 enables us to calculate the powers of (I +
αQalign) very efficiently. However, when applying
Lemma 3.2 to calculate the intimacy matrix of real-
world partially aligned networks, it can still suffer from
the space problem. The reason is that the dimension of
(I+αQalign), i.e., nalign×nalign, is so high that matrix
(I + αQalign) can hardly fit in the memory. To solve
that problem, in this part, we propose to calculate the
approximated intimacy matrix H̄approx

align with less space
and time costs instead.

Let’s define the transition probability matrices ofGt

and Gs to be Q̃t
aug and Q̃s

aug respectively. By applying
Lemma 3.1, we can get their stop step and the stationary
matrices to be τ t, τs, Q̃t

τt and Q̃s
τs respectively.

Definition 3.12. (Reduced Aligned Network Transi-
tion Matrix): Stationary matrices Q̃t

τt
, Q̃s

τs together
with the anchor transition matrices, Tt,s and Tt,s, can
be used to define a low-dimensional reduced aligned net-
work transition matrix, which only involves users ex-
plicitly, while the effect of “attribute-user” or “user-
attribute” transition is implicitly absorbed into Q̃t

τt
and



Q̃s
τs :

Q̄user
align =

[
(1− ρt,s)Q̃t

τt
(ρt,s)Tt,s

(ρs,t)Ts,t (1− ρs,t)Q̃s
τs

]
,

where Q̄user
align ∈ R(|V|t+|Vs|)2 and (|V|t + |Vs|)� nalign.

Definition 3.13. (Approximated Aligned Network In-
timacy Matrix): With Lemma 3.2, we can get intimacy
matrix of users in Gt based on Q̄user

align to be:

H̄approx
align =

(
P∗(Λ∗)τ (P∗)−1

)
(1 : |Vt|, 1 : |Vt|),

where (I + αQ̄user
align) = P∗Λ∗(P∗)−1, τ is the stop step.

3.5 Clustering and Weight Self-Adjustment In-
timacy matrix H̄align (or H̄approx

align ) stores the intimacy

scores among users in Vt and can be used to detect com-
munities in the emerging network. In this paper, we will
use the low-rank matrix factorization method proposed
in [16] to get the latent feature vectors, U:

min
U,V

∥∥∥H̄align −UVUT
∥∥∥2

F
+ θ ‖U‖2F + β ‖V‖2F ,

s.t.,U ≥ 0,V ≥ 0,

where U is the latent feature vectors, V stores the
correlation among rows of U, θ and β are the weights
of ‖U‖2F , ‖V‖2F respectively.

Detailed derivatives and solution to the above ob-
jective function is available in [16]. The latent feature
vectors in U can be used to detect communities in some
traditional clustering methods, e.g., Kmeans [3].

Meanwhile, to handle Challenge 2, we use weights,
ωt, ωs, ρt,s and ρs,t, to denote the importance of
different information types and information sources
respectively. For simplicity, we set ωt = ωs = ω =
[ω0, ω1, · · · , ωm] and ρt,s = ρs,t = ρ in this paper.

Let C be the community detection result achieved
by CAD in Gt. The optimal result C, evaluated by some
metrics, e.g., entropy E(C) [23], can be achieved with
the following equation:

ω, ρ = min
ω,ρ

E(C).

The optimization problem is very difficult to solve.
Next, we will propose a method to adjust ω and ρ
automatically to enable CAD to achieve better results.

The weight adjustment method used to deal with ω
can work as follows: for example, in networkGt, we have
relational information and attribute information E and
A = {A1, A2, · · · , Am}, whose weights are initialized to
be ω = {ω0, ω1, · · · , ωm}. For ωi ∈ ω, i ∈ {0, 1, · · · ,m},
we keep checking if increasing ωi by a ratio of γ, i.e.,
(1 + γ)ωi, can improve the performance or not. If so,

Table 1: Properties of the Heterogeneous Networks
network

property Twitter Foursquare

# node
user 5,223 5,392
tweet/tip 9,490,707 48,756
location 297,182 38,921

# link
friend/follow 164,920 76,972
write 9,490,707 48,756
locate 615,515 48,756

(1+γ)ωi after re-normalization is used as the new value
of ωi; otherwise, we restore the old ωi before increase
and study ωi+1. In the experiment, γ is set as 0.05.
Similarly, for the weight of different networks, i.e, ρ,
we can adjust them with the same methods to find the
optimal ρ.

4 Experiments

To demonstrate the effectiveness of CAD, in this
section, we will conduct extensive experiments on
two real-world aligned online heterogeneous networks:
Foursquare and Twitter.

4.1 Dataset Description The datasets used in this
paper are those proposed in [5, 19, 20, 21], crawled
during November, 2012, whose statistical information is
available in Table 1. The number of anchor links crawled
between Foursquare and Twitter is 3, 388. Foursquare
and Twitter share lots of common information as users
in both Foursquare and Twitter can make friends with
other users, write posts and check in at locations. For
more detailed information about the datasets, please
refer to [5, 19, 20, 21].

4.2 Experiment Settings In this part, we will in-
troduce the experiment settings in details, which include
the comparison methods, evaluation metrics and exper-
iment setups.

4.2.1 Comparison Methods We have different im-
plementations of CAD, which are compared with both
state-of-art and traditional community detection meth-
ods. All the comparison methods can be divided into 3
categories:
Methods with Parameter Adjustment
• CADe-a (Exact intimacy matrix based CAD with
parameter Adjustment): CADe-a can calculate the ex-
act intimacy matrix across aligned attribute augmented
networks based on eigenvalue decomposition as pro-
posed in Subsection 3.3, detect communities with ma-
trix factorization and adjust parameter ρ and ω auto-
matically.



•CADa-a (Approximated intimacy matrix based CAD
with parameter Adjustment): CADa-a is similar to
CADe-a except that CADa-a calculate the intimacy
matrix with the lower-dimensional reduced aligned net-
work transition probability matrices method as proposed
in Subsection 3.4.
Methods without Parameter Adjustment
• CADe (Exact intimacy matrix based CAD): CADe
is identical to CADe-a except that in CADe, ω and ρ
are fixed as { 14 ,

1
4 ,

1
4 ,

1
4} and 0.8 respectively.

• CADa (Approximated intimacy matrix based CAD):
CADa is identical to CADa-a except that in CADa,
ω and ρ are fixed as { 14 ,

1
4 ,

1
4 ,

1
4} and 0.8 respectively.

Single Network Clustering Methods
• Sinfl (Social Influence-based clustering): Sinfl pro-
posed in 2013 [23] can detect the communities with the
influence matrix calculated based on the emerging net-
work only.
• Ncut (Normalized Cut): Ncut [14] aiming at mini-
mizing the normalized cut between different clusters can
be used to detect the communities based on the influ-
ence matrix obtained by Sinfl in the emerging network.
• Kmeans (Kmeans): Kmeans [3] is a traditional clus-
tering methods, which can also detect social commu-
nities in online social networks based on the influence
matrix obtained by Sinfl in the emerging network.

4.2.2 Evaluation Metrics Evaluation metrics used
to evaluate the performance of all the comparison
methods in the experiment include:
• normalized Davies-Bouldin index : ndbi(C) =
1
K

∑K
i=1 minj 6=i

d(ci,cj)+d(cj ,ci)
σi+σj+d(ci,cj)+d(cj ,ci)

, where ci is the

centroid of Ui ∈ C, d(ci, cj) is the distance between ci
and cj , σi denotes the average distance between items
in Ui and centroid ci [23].
• Silhouette: Let a(u) = 1

|Ui|−1
∑
v∈Ui,v 6=u d(u, v)

and b(u) = minj,j 6=i

(
1
|Uj |

∑
v∈Uj d(u, v)

)
, the Sil-

houette index is defined to be silhouette(C) =
1
K

∑K
i=1( 1

|Ui|
∑
u∈Ui

b(u)−a(u)
max{a(u),b(u)} ) [9].

• Entropy : E(C) = −
∑K
i=1 P (i) logP (i), where P (i) =

|Ui|
|V| [23].

4.2.3 Experiment Setups In the experiment,
Foursquare and Twitter are used as the emerging
and developed networks respectively. As proposed in
[19, 20], to obtain networks of different degrees of new-
ness, we randomly sample a proportion of information
from Foursquare, which include both link and attribute
information controlled by σF ∈ [0, 1]. If σF = 0.0,
then Foursquare is brand new; if σF = 0.8, then the
Foursquare network is more developed and 80% of the

information is preserved. Meanwhile, considering the
abnormally large number of locations and words used
in each network, only top 5000 locations (words) that
users frequently visited (used) in each network are used
in the experiment. Different methods applied to the
new Foursquare network can obtain different clustering
results. To check whether these clustering methods
can discover the communities in the real world, we
evaluate the clustering results based on the similarity
matrix among users calculated with original complete
social information and the similarity measure used is
Jaccard’s Coefficient. If methods can obtain enough
reliable information from either the emerging or other
developed networks, then their performance will be
very good evaluated by different metrics.

4.3 Experiment Results The experiment results
are shown in Table 2. Parameter K is fixed as 50
and the ratio of anchor links σA is fixed as 0.8 but
change the information sampling rate (i.e., σF ) with
values in {0.0, 0.1, · · · , 1.0} to denote different degrees
of newness. The results are evaluated by metrics: ndbi,
entropy and silhouette.

As shown in Table 2, Sinfl, Ncut and Kmeans
cannot work when σF = 0.0 due to the cold start prob-
lem. However, CADe-a, CADa-a, CADe and CADa,
based on the intimacy matrix across aligned networks,
can still work well when σF = 0.0. For example, when
σF = 0.0, the ndbi score of CADe-a is 0.954; the en-
tropy is 3.001; the silhouette is −0.396. In addition, for
different σF , CADe-a, CADa-a, CADe and CADa
can perform better than Sinfl, Ncut and Kmeans
consistently. It shows that information propagated from
aligned network can (1) overcome the cold start prob-
lem, and (2) solve the information sparsity problem in
emerging network community detection.

Compared with CADe (or CADa), CADe-a (or
CADa-a) can perform better in most cases when eval-
uated by ndbi, silhouette and entropy. For example,
when σF = 0.8, the ndbi of CADe-a is 0.984, which is
2% higher than that of CADe; the silhouette of CADe-
a is −0.150, which is 23.4% better than that of CADe.
CADe-a (or CADa-a) can always perform better than
CADe (or CADa) for σF ∈ {0.0, 0.1, · · · , 1.0} when
evaluated by entropy, as entropy is used as the metric
when adjusting the parameters. This shows that pa-
rameter adjustment method can work very well in de-
termining better parameters.

By comparing CADe, CADa with CADe-a,
CADa-a respectively, methods based on approximated
intimacy matrix can achieve very similar results as those
based on matrix eigendecomposition. Meanwhile, as
shown in Table 3 the memory space and time needed



Table 2: Community Detection Result of Foursquare.
Information Sampling Rate σF

measure methods 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

ndbi

CADe-a 0.954 0.959 0.966 0.969 0.968 0.972 0.974 0.979 0.984 0.989 0.991
CADa-a 0.917 0.922 0.923 0.925 0.938 0.946 0.946 0.946 0.947 0.949 0.950

CADe 0.938 0.944 0.949 0.949 0.954 0.957 0.959 0.966 0.966 0.969 0.969
CADa 0.914 0.914 0.918 0.923 0.932 0.936 0.939 0.940 0.942 0.942 0.946

Sinfl - 0.881 0.889 0.901 0.907 0.913 0.913 0.916 0.916 0.917 0.917
Ncut - 0.864 0.870 0.889 0.889 0.893 0.894 0.894 0.894 0.897 0.897

Kmeans - 0.842 0.859 0.881 0.886 0.887 0.889 0.890 0.892 0.893 0.894

entropy

CADe-a 3.001 2.859 2.753 2.482 2.361 2.342 2.167 2.25 2.140 1.994 1.932
CADa-a 4.150 4.137 4.133 4.108 4.084 4.025 4.013 3.856 3.506 3.70 3.68

CADe 3.751 3.751 3.726 3.718 3.621 3.585 3.38 3.233 3.173 3.005 2.998
CADa 4.360 4.237 4.213 4.211 4.102 4.061 4.021 4.015 3.97 3.851 3.823

Sinfl - 5.147 5.105 5.063 4.981 4.968 4.934 4.892 4.856 4.768 4.668
Ncut - 5.823 5.691 5.618 5.517 5.512 5.494 5.485 5.473 5.467 5.459

Kmeans - 6.182 5.993 5.909 5.888 5.878 5.829 5.812 5.762 5.730 5.699

silhouette

CADe-a -0.396 -0.272 -0.28 -0.257 -0.251 -0.244 -0.224 -0.216 -0.150 -0.147 -0.132
CADa-a -0.401 -0.384 -0.380 -0.377 -0.287 -0.279 -0.271 -0.270 -0.260 -0.237 -0.238

CADe -0.401 -0.302 -0.275 -0.270 -0.264 -0.262 -0.242 -0.222 -0.196 -0.186 -0.129
CADa -0.401 -0.381 -0.380 -0.372 -0.272 -0.260 -0.259 -0.251 -0.247 -0.246 -0.204

Sinfl - -0.482 -0.472 -0.469 -0.463 -0.462 -0.461 -0.459 -0.457 -0.428 -0.408
Ncut - -0.415 -0.413 -0.413 -0.412 -0.410 -0.410 -0.408 -0.408 -0.345 -0.336

Kmeans - -0.515 -0.515 -0.510 -0.508 -0.504 -0.498 -0.467 -0.464 -0.452 -0.434

Table 3: Space and time costs in calculating H̄align.

method

emerging network cost exact approx.

Foursquare
space cost(MB) 19526 1627

time cost(s) 65996.17 6499.97

by CADa and CADa-a to calculate H̄approx
align is much

less than that used by CADe and CADe-a to calcu-
late the exact intimacy matrix. So, calculating intimacy
matrix with approximation would not harm the perfor-
mance but can save lots of space and time.

4.4 Parameter Analysis In this part, we will an-
alyze the effect of parameter K (i.e., the number of
clusters) on the clustering results. We fix σF and σA
as 0.5 and 0.8 respectively, but change K with values
in {10, 20, · · · , 100}. The results are shown in Figure 2.
As shown in Figures 2(a)-2(c), different methods can
achieve the best performance at different Ks when eval-
uated by different metrics. For example, in Figure 2(a)
when evaluated by ndbi, CADe-a can perform the best
at K = 70, but CADe performs the best at K = 90. In
Figure 2(b), CADe-a performs the best at K = 70 and
K = 10 when evaluated by entropy and in Figure 2(c)
under the evaluation of silhouette, CADe-a can achieve
the best performance at K = 90.

5 Related Work

Clustering aims at grouping similar objects in the same
cluster and many different clustering methods have also
been proposed. One type is the hierarchical clustering

methods [2], which include agglomerative hierarchical
clustering methods [1] and divisive hierarchical cluster-
ing methods [1]. Another type of clustering methods
is partition-based methods, which include K-means for
instances with numerical attributes [3].

In recent years, many community detection works
have been done on heterogeneous online social networks.
Zhou et al. [22] propose to do graph clustering with rela-
tional and attribute information simultaneously. Zhou
et al. [23] propose a social influence based clustering
method for heterogeneous information networks. Some
other works have also been done on clustering with in-
complete data. Sun et al. [15] propose to study the
clustering problem with complete link information but
incomplete attribute information. Lin et al. [8] try
to detect the communities in networks with incomplete
relational information but complete attribute informa-
tion.

Multiple aligned heterogeneous networks first stud-
ied by Kong et al. [5] have become a hot research topic
in recent years. Kong et al. [5] are the first to pro-
pose the concept of “anchor link”, “aligned heteroge-
neous networks” and study the anchor link prediction
problem across aligned networks. Zhang et al. [19] are
the first to study link prediction problem for new users
with information transferred from other aligned source
networks via anchor links. Zhang et al. [20] are the
first to study collective link prediction across “partially
aligned location-based social networks”. Zhang et al.
[21] propose the concepts of collective PU link prediction
and extends the traditional intra-network meta paths to
inter-network meta paths. Jin et al. study the commu-
nity detection problem of multiple aligned large-scale
networks simultaneously in [4].
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Figure 2: Experiment results with different K.

6 Conclusion

In this paper, we have studied the community detection
problems for emerging networks. A novel community
detection method, CAD, has been proposed to solve
the problem. CAD can calculate the intimacy matrix
among users across aligned attribute augmented hetero-
geneous networks with efficient information propagation
model. CAD can handle the network heterogeneity and
difference problems very well with micro and macro con-
trols, whose parameters can be adjusted automatically.
Extensive experiments have been done on real-world
partially aligned networks and the results demonstrate
effectiveness of CAD in address the emerging network
community detection problem.
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[17] J. Tobias, R. Planqué, D. Cram, and N. Seddon.
Species interactions and the structure of complex com-
munication networks. PNAS, 2014.

[18] L. Wang, T. Lou, J. Tang, and J. Hopcroft. Detecting
community kernels in large social networks. In ICDM,
2011.

[19] J. Zhang, X. Kong, and P. Yu. Predicting social
links for new users across aligned heterogeneous social
networks. In ICDM, 2013.

[20] J. Zhang, X. Kong, and P. Yu. Transferring heteroge-
neous links across location-based social networks. In
WSDM, 2014.

[21] J. Zhang, P. Yu, and Z. Zhou. Meta-path based multi-
network collective link prediction. In KDD, 2014.

[22] Y. Zhou, H. Cheng, and J. Yu. Graph clustering based
on structural/attribute similarities. VLDB, 2009.

[23] Y. Zhou and L. Liu. Social influence based clustering
of heterogeneous information networks. In KDD, 2013.


