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Abstract. Inferring diffusion networks from traces of cascades has been
intensively studied to gain a better understanding of information diffu-
sion. Traditional methods normally formulate a generative model to find
the network that can generate the cascades with the maximum likeli-
hood. The performance of such methods largely depends on sufficient
cascades spreading in the network. In many real-world scenarios, how-
ever, the cascades may be rare. The very sparse data make accurately
inferring the diffusion network extremely challenging. To address this
issue, in this paper we study the problem of transferring structure knowl-
edge from an external diffusion network with sufficient cascade data to
help infer the hidden diffusion network with sparse cascades. To this
end, we first consider the network inference problem from a new angle:
link prediction. This transformation enables us to apply transfer learning
techniques to predict the hidden links with the help of a large volume
of cascades and observed links in the external network. Meanwhile, to
integrate the structure and cascade knowledge of the two networks, we
propose a unified optimization framework TrNetInf. We conduct exten-
sive experiments on two real-world datasets: MemeTracker and Aminer.
The results demonstrate the effectiveness of the proposed TrNetInf in
addressing the network inference problem with insufficient cascades.

Keywords: Information diffusion · Network inference · Transfer
learning

1 Introduction

Utilizing cascades to infer the diffusion network is an important research issue
and has attracted a great deal of research attentions recently [17,20,22,23]. In
many scenarios, we only have the traces of information spreading in a network
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without explicitly observing the network structure. For example, in virus propa-
gation we only observe which people get sick at what time, but without knowing
who infected them [18]; in viral marketing, viral marketers can track when cus-
tomers buy products or subscribe to services, but it is hard to exactly know
who influence the customers’ decisions [25]. Inferring the underlying connectiv-
ity of diffusion networks is of outstanding interest in many applications, such as
technological innovations spreading [16], word-of-mouth effect in viral marketing
[26], and personalized recommendation in E-commerce websites [24].

Traditional approaches normally formulate a generative probability model to
find the network which can generate all the cascades with the maximum like-
lihood, such as ConNIe [20], NETINF [23], NETRATE [21], and InfoPath [22].
Although these models can work well on synthetic datasets, their performance
on real-world datasets is usually undesirable [3,21]. This is firstly due to the fact
that information diffusion on real-world networks is too complex for existing
information propagation models to handle. Secondly, the performance of gen-
erative models largely relies on a large volume of cascades, while in real-world
scenarios the cascades may be rare or at least not sufficient [19].

To address above mentioned problems, in this paper we will study how to
borrow the structure knowledge from an external diffusion network whose links
are known to help us infer a diffusion network whose links are hidden by transfer
learning. In many cases, although the cascades in the hidden diffusion network
are sparse, a network related to the hidden diffusion network is known and may
be helpful for our task [6]. For example, we want to infer the network of who
influencing whom to buy some products based on the transaction logs of users’
purchase history, such as iPhone 5S. The result might be quite inaccurate if we
do not have enough such logs. However, if we know their following relationships
and tweets about iPhone 5S in Twitter, the diffusion process of the tweets among
them may potentially help us infer who influenced whom to buy an iPhone 5S.

Transfer learning has achieved significant success in many machine learn-
ing tasks including classification [14,15], regression [13], and clustering [12] to
address the problem of lacking enough training data in the target domain. How-
ever, it is challenging to directly exploit transfer learning to our task. Traditional
generative models formulate this task as an optimization problem, hence it is nat-
urally hard for such models to extract and map feature spaces from one domain
to another for knowledge transfer. Meanwhile, transfer learning normally can
only capture and transfer knowledge from the source domain. In our task, we
need to consider not only the structure knowledge transferred from an external
diffusion network, but also the cascade information in the hidden network. How
to integrate the knowledge from two different networks in a unified scheme to
obtain a better network inference model also makes the problem challenging.

In this paper, we first formulate the network inference problem as a link pre-
diction task by extracting various cascade related features. The advantages of the
formulation are two-fold: 1) it paves the way of applying transfer learning tech-
niques for structure transfer; and, 2) link prediction does not rely much on the
particular information propagation model. As the links of the external diffusion
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network are known, we can use these labeled links to train a prediction model for
predicting the links in the hidden network by transfer learning. To incorporate
the transferred structure knowledge from the external network with the cas-
cades in the hidden network, we next propose a unified optimization framework
TrNetInf. TrNetInf jointly maximizes the likelihood of generating the cascades
in the hidden diffusion network and minimizes the difference between the links
inferred by traditional generative model and those predicted by transfer learning
model simultaneously. We evaluate TrNetInf on two real-world datasets: Meme-
Tracker dataset and AMiner citation network dataset. Experimental results on
both datasets demonstrate the superior performance of TrNetInf, especially when
the cascades are not sufficient. The main contributions of this paper are as fol-
lows:

• For the first time, to the best of knowledge, we study the network inference
problem with the challenge of lacking enough cascade data (Section 2).

• To transfer structure knowledge from one diffusion network to another, we
consider the network inference problem from a new angle: link prediction.
Meanwhile, as the links of the hidden network is unknown and structure
based features are hence not available, we propose to extract a set of cascade
related features for learning (Section 3.2).

• We further propose a unified optimization framework TrNetInf. TrNetInf can
efficiently integrate knowledge from source and target diffusion networks, and
combine the results from the traditional generative model and the proposed
link prediction model (Section 3.3).

• We evaluate the proposed approach on two real-world datasets by comparing
it against various baselines. The results verify its effectiveness in addressing
the network inference problem with very sparse cascades (Section 4).

The remainder of this paper is organized as follows. Section 2 formally defines
the studied problem. Section 3 details the proposed model. Section 4 evaluates
the model with two real-world datasets, followed by related work in Section 5.
Section 6 concludes this research with directions for future work.

2 Problem Statement

In this section, we will give some terminologies to help us state the problem. Then
we will formally define the studied problem. In information diffusion, a diffusion
network is usually referred to a network with a set of information spreading in
it [21]. Based on the diffusion network, we formally define a hidden diffusion
network as follows.

Definition 1 Hidden Diffusion Network GH: We define a diffusion network
GH = (V,EH) as a hidden diffusion network if only its nodes can be observed
but the edges are hidden and need to be inferred. Here V denotes the set of node
and EH denotes the hidden edges.

There are usually many traces of information diffusion on a diffusion network.
The traces are called cascades and can be formally defined as follows.
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Definition 2 Cascade: A cascade tc associated with information c can be
denoted as a N -dimensional vector tc = (tc1, ..., t

c
N )T , where N is the number of

nodes in the diffusion network. The ith dimension of tc records the time stamp
when information c infects node i, and tci ∈ [0, T c] ∪ {∞}.

The symbol ∞ labels nodes that are not infected during the observation window
[0, T c]. The time stamp is set to 0 at the start of each cascade. A cascade set C

consists of a collection of cascades, i.e. C = {t1, ..., tM}, where M is the number
of cascades.

Based on above defined terminologies, the traditional network inference prob-
lem can be defined as follows [23].

Problem 1. Given a hidden diffusion network GH = (V,EH) and a collection
of cascades C on GH, the network inference problem aims to recover the network
structure of GH, namely infer the hidden edges EH based on the cascades C.

In our case, besides the hidden diffusion network we also have a related exter-
nal diffusion network whose structure is known. Here we consider the hidden
diffusion network as the target domain network and the related network as the
source domain network. In traditional transfer learning setting, a domain D con-
sists of two components: a feature space X and a marginal probability distribu-
tion P (X), where X = {x1, ..., xn} ∈ X represent the features. Here we define a
domain D̂ of information spreading in network G contains a cascade space CG and
also a marginal probability distribution P (CG), where C

G = {cG
1 , ..., cG

n } ∈ CG .
We will introduce how to compute P (CG) later. Based on above definitions and
terminologies, we formally define the studied problem as follows.

Problem 2. Given the source domain diffusion network Gs = (V s, Es) and the
target domain diffusion network Gt

H = (V t, Et
H) with corresponding cascades

C
s ∈ Cs, Ct ∈ Ct, where the edges Es of network Gs is known and the edges Et

H
of network Gt

H is hidden, the problem is how to transfer knowledge from Gs and
Cs and incorporate it with Ct to better infer the edges Et

H of Gt
H.

3 Methodology

In this section, we will first revisit some basic concepts and introduce some stan-
dard notations. Then we will introduce how to transform the network inference
problem to a link prediction task, and how to apply transfer learning techniques
to help predict links in the target diffusion network. Next, we will propose a uni-
fied scheme to incorporate the generative model on the target diffusion network
and the knowledge transferred from the source domain network.

Before introducing the approach, we first give some basic concepts which
are essential to model information diffusion. We define a nonnegative random
variable T to be the time when an event happens, such as useri adopting a
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piece of information. Let f(t) be the probability density function of T , then the
cumulative density function can be denoted as F (t) = P (T ≤ t) =

∫ t

0
f(x)dx.

Survival Function. The survival function S(t) is the probability that a cascade
tc does not infect a node by time t:

S(t) = P (T ≥ t) = 1 − F (t) =
∫ ∞

t

f(x)dx.

Hazard Function. Given functions f(t) and S(t), we can further define the
hazard function H(t), which represents the instantaneous rate that a cascade tc

infects a particular uninfected node within a small interval just after time t.

H(t) = lim
Δt→0

p(t ≤ T ≤ t + Δt|T ≥ t)
Δt

=
f(t)
S(t)

.

3.1 Network Inference Based on Generative Model

We define g(Δc
ij ;αij) as the conditional likelihood of information transmission

between node i and node j, where Δc
ij = tcj − tci is the difference between the

infecting time of the two nodes in cascade c and αij is the transmission rate
from node i to j. Here we assume that within a cascade tc, a node j with a
time stamp tcj can only be infected by the node i with an earlier time stamp, i.e.
tcj < tci . If tcj > tci , we can refer node j as one of node i’s child node and node i
as one of node j’s parent node.

Our goal is to infer the pair-wise transmission rate αij , and we consider that
there exists an edge between two nodes if their transmission rate is larger than
zero. Three models are used in most previous works to model the diffusion like-
lihood function g(Δc

ij ;αij): Exponential model, Power law model, and Rayleigh
model [21]. For brevity, we omit the description of the three models.

Likelihood of Node i Infecting j in Cascade tc. In a cascade, we assume 1)
one node gets infected once the first parent infects it, and 2) all the parents infect
their child nodes independently. Based on the two assumptions, the likelihood
of the parent node i infecting the child node j in cascade tc can be computed by

g(Δtcij ;αij) ×
∏

u�=i,tcu<tcj

S(Δtcuj ;αuj), (1)

where S(Δc
uj ;αuj) is the survival function described before to denote the prob-

ability that node j has not been infected by node u before tcj under pairwise
transmission rate αc

uj between nodes u and j. In the cascade tc, the node j
could be possibly infected by any one of its parent nodes. Hence the likelihood
of j getting infected in the cascade tc can be calculated by summing over the
likelihoods of each potential parent being the first one to infect it:

Γ+
j (tc) =

∑

i:tci<tcj

g(Δtcij ;αij) ×
∏

u�=i,tcu<tci

S(Δtcuj ;αuj). (2)
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Likelihood of a Node j Survives from the Cascade tc. If node j survives
from all the parents by the end time T c of cascade tc, we say the node survives
from the cascade tc. The likelihood that node j survives from the cascade tc can
be represented by the following product of survival function

Γ−
j (tc) =

∏

tci<T c

S(T c − tci ;αij). (3)

Likelihood of the Cascade tc. Given a cascade tc := (tc1, ..., t
c
N ), its likeli-

hood can be computed by multiplying the likelihoods of all the infected and
survived nodes in the cascade. With Eq. (2), Eq. (3), and the hazard function
H(Δtcij ;αij) = g(Δtcij ;αij)

S(Δtcij ;αij)
, the likelihood of cascade tc can be represented as

g(tc;A) =
∏

tcj<T c

Γ+
j (tc) ×

∏

tcj>T c

Γ−
j (tc)

=
∏

tcj<T c

∏

tcm>T c

S(T c − tcj ;αjm)×

∏

u:tcu<tcj

S(Δtcuj ;αuj)
∑

i:tci<tcj

H(Δtcij ;αij), (4)

where A is a N × N matrix with each element Aij = αij denoting the link
strength between node i and j.

Assuming the cascades spread independently in the network, the likelihood
of a set of cascades C = {t1, ..., tM} can be represented as the product of the
likelihoods of all the individual cascades,

∏

tc∈C

g(tc;A). (5)

Network Inference Problem. The goal is to find the matrix A such that
the network G with edge matrix A generates cascades C with the maximum
likelihood. This can be achieved by solving the following optimization problem

minA −
∑

c∈C

logg(tc;A). (6)

s. t. αk
ij ≥ 0; i, j = 1, ..., N, i �= j

3.2 Link Prediction in Diffusion Network with Structure Transfer

Fig.1. illustrates the framework of the proposed structure transfer scheme. The
left part shows the source domain diffusion network with observed network struc-
ture and a large number of cascades. The right part is the target domain diffusion
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Fig. 1. An illustration of the proposed structure transfer scheme

network with sparse cascades and hidden network structure. In the network, ni

denotes node i, and eij denotes the edge between node i and j. In a cascade ti,
we use (nj , tij) to denote node j is infected at time tij . Given the two domain
diffusion networks, our goal is to borrow the structure and cascade information
of the source domain to help infer the network structure in the target domain. To
this aim, we formulate it as a link prediction task. Specifically, we first extract
features {f1, f2..., fn} from the cascades and extract link labels lij ∈ {+1,−1}
in the source domain network. lij = +1 means there exist an edge between node
i and j, and otherwise lij = −1. In such a way we extract training samples from
the source domain. Then we apply transfer learning technique to select training
samples and use them to help predict the link labels in the target domain. Based
on the brief description of the framework, next we will elaborate this scheme.

Traditionally, link prediction can be considered as a supervised classification
task by constructing a set of features, such as neighborhood based features and
path based features [4,10,11]. Motivated by this, we also formulate the network
inference problem as a supervised classification problem since the links in the
source domain network are known. However, the challenge is that the links in
the target domain network are hidden and we cannot construct the features
used in traditional link prediction setting. Alternatively, we can extract features
from cascades. For example, if node i and j have never appeared in a cascade
simultaneously, we can infer that there is probably no link between them; and
if node i is the root node of a cascade with node j as the first child node, we
can infer that there is definitely a link from i to j. In all we extract 16 cascade
related features whose detailed descriptions are given in Table 1.

With the extracted features, we next utilize a popular transfer learning algo-
rithm TrAdaBoost [9] to leverage the links of the source domain network to
help us predict the links in the target domain network. TrAdaBoost is a transfer
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learning framework extended from AdaBoost. Given the limited number of train-
ing instances Ml

T and some test instances T in the target domain, TrAdaBoost
aims to utilize the large volume of available labeled training instances MS in
the source domain to build a model f : X → Y such that the prediction error on
T is minimized. Formally, let XS be the instances in the source domain network,
XT be the instances in the target domain network, and Y = {−1,+1} be the set
of labels. Given the source domain network GS whose edges are known and the
target domain network GT whose edges are hidden, we first assume that their
label distribution is the same YS = YT , but the feature distribution is differ-
ent PS(y|x) �= PT (y|x). To utilize TrAdaBoost, we further assume that a small
number of labels of the instances X l

T in the target domain network GT is given.
Therefore, the training data set M ⊆ {X × Y } includes two parts: MS , and
Ml

T . MS represents the source domain network data that MS = {(xS
i , yS

i )},
where xS

i ∈ XS(i = 1, ..., n). Ml
T represents a small number of training data

Ml
T = {(xT

j , yT
j )} in the target domain network, where xT

j ∈ XT (j = 1, ...,m).
n and m are the sizes of MS and Ml

T , respectively. By applying TrAdaBoost,
we can finally obtain a label matrix L with lij ∈ {−1,+1} denoting whether
there exists a link from node i to j in the target domain network GT .

Table 1. Cascade related features for structure transfer

feature description

f1
whether node i and j appear in at least one cascade simultaneously,
and ti < tj

f2
whether there exists a cascade with node i as the root node
and node j as its first child node

f3 the relative frequency of node i appearing before node j in all the cascades

f4 the minimum time lag minΔtcij between node i and j in all the cascades

f5 the average time lag aveΔtcij between node i and j in all the cascades

f6−8
the maximum probability maxf(Δc

ij ; 1) of node i infecting node j
in all the cascades with three models

f9−11
the average probability avef(Δc

ij ; 1) of node i infecting node j
in all the cascades with three models

f12
for all the cascades that node i is before j, the minimum number of nodes
minNc

ij between i and j

f13
for all the cascades that node i is before j, the average number of nodes
aveNc

ij between i and j

f14
for all the cascades that node i is before j, the minimum number of nodes
minNc

ri between root node r and i

f15
for all the cascades that node i is before j, the minimum number of nodes
minNc

rj between root node r and j

f16
for all the cascades that node i is before j, the minimum sum of nodes
min(Nc

ri + Nc
rj) between root node r and i, j
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3.3 TrNetInf: Network Inference Incorporating Structure Transfer

By solving the generative model in Eq. (6), we can infer a network matrix A;
while by structure transfer with TrAdaBoost, we can obtain a label matrix L.
In this section, we will describe how to combine the two parts.

Both methods can infer the connectivity of the target network independently,
but the knowledge they used coming from different domains. The generative
model only uses the cascades in the target network, and the link prediction
based approach mainly relies on the structure knowledge transferred from the
source domain network. The results of the two methods may be quite different,
and their overlapping part is more likely to be accurate. Thus besides maximizing
the probability of generating all the cascades in the target domain, we also want
to minimize the difference between the inferred network links by the generative
model and the predicted links by diffusion network transfer. We propose to
achieve the two goals simultaneously by solving such an optimization problem

minA −
∑

c∈C

logg(tc;A) + γ||L − A||2, (7)

s. t. αk
ij ≥ 0; lij = {0, 1}; i, j = 1, ..., N and i �= j

where A = {αij |i, j = 1, ..., N, i �= j} are the variables and L = {lij |i, j =
1, ..., N, i �= j} contains the link labels from structure transfer.

Eq. (7) contains two parts. The first part computes the likelihood of the
inferred network generating all the cascades, and we want it to be as high as
possible. The second part incorporates the structure knowledge transferred from
the source domain network. We expect the difference between the two results as
small as possible by minimizing the L2 norm distance between L and A. γ is
a parameter used to control the importance of knowledge transferred from the
source domain network. Smaller γ implies we trust more on the inferred net-
work by generative model, while larger γ means we rely more on the transferred
structure knowledge when available cascades are insufficient.

In addition, most networks are sparse in a sense that one node usually is
connected to a small number of other nodes [1,20]. In order to encourage a
sparse solution, we add a L2 norm penalty term ||A||2. With the penalty term
to control the sparsity of the network, we finally have such an optimization
problem

minA −
∑

c∈C

logg(tc;A) + γ1||L − A||2 + γ2||A||2 (8)

s. t. αk
ij ≥ 0; lij = {0, 1}; i, j = 1, ..., N and i �= j

We have the following theorem to guarantee that the solution to the opti-
mization problem in Eq. (8) is unique and consistent.
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Theorem 1. Given the optimization problem in Eq. (8), the following results
hold:

1. Given the log-concave survival functions and concave hazard functions, the
problem defined by Eq. (8) is strictly convex in A [21].

2. The optimization problem defined by Eq. (9) is convex for the proposed
TrNetInf model with exponential, Rayleigh, and power law distributions.

3. The solution to Eq.(8) gives a unique and consistent maximum likelihood
estimator.

Proof Sketch. 1) Manuel et al. have proved that given the log-concave survival
functions and hazard functions in the parameters of the pairwise transmission
likelihoods by the exponential, power-law, and Rayleigh models,

∑
c∈C

logg(tc;A)
is strictly convex in A [21]. 2) Due to the fact that all the norm functions are con-
vex, we can further infer that both ||L−A||2 and ||A||2 are convex. As the convex
function follows from linearity and composition rules, the liner combination of
the three convex functions is also a convex function. 3) For a strictly convex
function, its global minimum is unique. Based on the criteria for consistency
of identification, continuity and compactness defined by Newey and Mcfadden
[27], we can further infer that the solutions to Eq.(8) is consistent. Due to space
reason, we omit the proof here, and one can refer [21] for more details.

Solving TrNetInf. Since we have proved Eq. (8) is convex and the solution is
unique, we can use a regular convex optimization algorithm to solve Eq. (8). Here
we use CVX1, a popular Matlab-based convex optimization package to solve this
problem. We run the algorithm on a Dell PowerEdge T620 server with 32 cores
Intel(R) Xeon(R) CPU E5-2670 2.60 GHz, and 64 GB main memory, running
the Ubuntu 13.04 operating system.

4 Experimental Results

In this section we conduct a systematic empirical study on real datasets to
verify the effectiveness of TrNetInf in inferring diffusion network with sparse
cascades. We first introduce the experiment setup, including the used datasets
and baselines. Next we give the parameter analysis to show how sensitive the
proposed approach is to the parameters γ1 and γ2. Then we report the quantitive
comparison results with baselines including state-of-the-art methods.

4.1 Experiment Setup

We use two real-world datasets to evaluate TrNetInf: MemeTracker dataset2 [7]
and AMiner citation network dataset3 [5,8].

MemeTracker Dataset. The MemeTracker dataset contains more than 300
million blog posts and news articles collected from 3.3 million websites. Memes
1 http://cvxr.com/cvx/
2 http://www.memetracker.org/data.html
3 http://arnetminer.org/citation

http://cvxr.com/cvx/
http://www.memetracker.org/data.html
http://arnetminer.org/citation
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Table 2. Dataset statistics

MemeTracker Datasets

phrase cluster # of nodes # of edges # of cascades

“good morning America” (Target) 2,754 4,822 425
“put lipstick on a pig” (Source) 2,845 4,621 336

“I’m a mac I’m a pc” (Target) 1,766 2,303 207
“daily show Jon Stewart” (Source) 1,637 2,255 263

AMiner Citation Network Dataset

research field # of nodes # of edges # of cascades

Computer Theory (Target) 19,073 20,220 832
Graphic (Source) 16,469 21,705 707

are short textual phrases or quotes (like, “good morning America”) that spread
through the web. Each meme m can be considered as a piece of information, and
all the time-stamped webpages which contain meme m forms a diffusion cascade.
Memes related to the same topic are considered to be in a same cluster. With
the aim of structure transfer, we consider memes in the same cluster coming
from the same domain, and memes in different clusters coming from different
domains. Given a meme cluster Cm, we first extracted the cascades collection C,
and all the websites containing one phrase in Cm as the nodes. For some memes
with very long diffusion paths, we split it into several small cascades with length
less than 30. The ground truth of the network is constructed by extracting the
hyperlinks among all the extracted websites. If a site si publishes a phrase and
uses a hyperlink to refer to another site sj that also publishes a similar phrase,
we think there exists a link from sj to si.

AMiner Citation Network Dataset. The AMiner citation network dataset
contains the citation relationships among papers extracted from DBLP, ACM,
and other sources. The citation relationships among papers can be naturally con-
sidered as the ground truth of the diffusion network. Similar to MemeTracker
dataset, we also consider some term pair phrases (like, “deep learning”) extracted
from the paper titles and abstracts as the information, and all the papers con-
taining the same phrase can be considered as a cascade. To enable structure
transfer, we distinguish the diffusion networks of different domains based on the
research fields such as database and computer theory. For example, papers pub-
lished in the field of database can be considered coming from a domain and those
published in computer theory can be consider coming from another domain.

In our experiment, we extract four meme clusters from the MemeTracker
dataset forming two groups of datasets for evaluation. For each group of dataset,
we use one as the source domain data donated by “Source” and the other as
the target domain data denoted by “Target”. Similarly, we select the papers
published in the venues of two research fields: computer theory and graphic
from the AMiner dataset forming another group of dataset. Statistics of the
datasets is given in Table 2. We compare TrNetInf with the following baselines.
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• NETRATE4 [21]. NETRATE is a representative model to infer both the
connectivity of the network and the transmission rates over each edge. As
the most relevant work to the proposed model, we choose it as a baseline.

• NetInf5 [23]. Another type of network inference model only aims to infer the
network connectivity, such as NetInf. To compare with such kind of methods,
we choose the representative approach NetInf as the second baseline.

• TrNetInf without Sparsity Penalty (TrNetInf-SP). To study whether
and to what extent the sparsity penalty can affect algorithm performance,
we use TrNetInf without sparsity penalty as a baseline. For this baseline, we
simply set the parameter γ2 = 0.

• TrNetInf without Structure Transfer (TrNetInf-ST) Similarity, we
also use the TrNetInf without structure transfer as a baseline to study how
much improvement can be achieved by incorporating structure transfer. In
this case, we set the parameter γ1 = 0.

• Link Prediction with Structure Transfer (LPST). As the proposed
TrNetInf combines the information from link prediction model, we use this
baseline to study how well the pure link prediction model can perform on
the network inference problem and how much achievement can be achieved
by TrNetInf. For the LPST baseline, we use TrAdaBoost as the classifier.

γ
γ

Fig. 2. F1-measure on “good morning America” dataset with various γ1 and γ2

4.2 Parameter Analysis

We first study the effect of parameters γ1 and γ2 on the performance of TrNetInf.
Due to space limitation, we only report the result of the first group of Meme-
Tracker dataset. The results of the other datasets are similar.
4 http://people.tuebingen.mpg.de/manuelgr/netrate/
5 http://snap.stanford.edu/netinf/

http://people.tuebingen.mpg.de/manuelgr/netrate/
http://snap.stanford.edu/netinf/
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Fig. 2. shows the F1-measure of the “good morning America” dataset with
“put lipstick on a pig” as the source domain network over various γ1 and γ2.
One can see that with the increase of γ1, the performance first increases, and
then decreases, and finally becomes stable. It implies that structure transfer
does help our task as the F1-measure are mostly higher than non-transfer with
γ1 = 0. From γ1 = 100 on, the performance tends to be stable, which means
the transferred structure knowledge dominates the final results when γ1 is large.
One can also see the F1-measure further increases if we add the sparsity penalty
weighted by γ2, but too large a γ2 will also hurt the performance. How to choose
a proper γ2 may largely depend on the prior knowledge on the network. A denser
network prefers a smaller γ2, and a larger γ2 means we may want to infer a less
dense network. Fig. 2. suggests that γ1 = 10, γ2 = 10 seem a good choice of the
two parameters for the MemeTracker dataset, and in the following experiments
we choose γ1 = 10, γ2 = 10 as our default parameter settings.

4.3 Quantitive Comparison with Baselines

We quantitively evaluate the performance of TrNetInf via three measures: pre-
cision, recall, and F1-measure. We first study the effectiveness of TrNetInf with
insufficient cascades by comparing with two state-of-the-art network inference
approaches NETRATE and NetInf. To utilize TrAdaBoost for knowledge trans-
fer, some link labels in the target domain network need to be available. In our
experiment, we assume 1% links in the target domain network are given.

Comparison Against Network Inference Models. Fig. 3. shows the
precision-recall curves of three approaches: NETRATE, NetInf, and TrNetInf
over the three datasets. One can see that TrNetInf outperforms NETRATE and
NefInf on the three datasets in terms of precision-recall. It implies that the per-
formance can be improved if the structure knowledge is properly transferred.
The result also shows that the AMiner dataset seems easier to infer than the
two MemeTracker datasets.

Evaluation with Sparse Cascade Data. To study the effectiveness of TrNet-
Inf with insufficient cascades, we compare the F1-measure achieved by TrNetInf
against NETRATE and NetInf by sampling different numbers of cascades in the
target domain network. Fig. 4. shows the F1-measures of the three approaches
over various numbers of cascades. One can observe that TrNetInf achieves sig-
nificantly higher F1-measure than NETRATE and NetInf when the number of
cascades is relatively small. With the increase of the number of cascades, the
performance of the three methods tends to be similar. It implies that structure
transfer is especially helpful when the cascade data are very sparse. The per-
formance of the two baselines becomes closer to TrNetInf when more and more
cascades are available. It implies that the improvement by structure transfer
becomes less significant when a large volume of cascades are available.

Comparison Against Two Variations and Link Prediction Models.
Next, we conduct experiment to study whether transfer learning and sparsity
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(a) I’m a mac I’m a pc (b) good morning America (c) Computer theory

Fig. 3. The precision-recall curves of the three approaches on three groups of datasets

(a) I’m a mac I’m a pc (b) good morning America (c) Computer theory

Fig. 4. The F1-measure of the three approaches with various numbers of cascades

penalty can both help the network inference task. To this aim, we compare
TrNetInf with two variations: TrNetInf without sparsity penalty (TrNetInf-SP)
and TrNetInf without structure transfer (TrNetInf-ST). We report precision,
recall, and F1-measure for each method on each dataset in Table 3. The figures
in bold show the best results. One can see that TrNetInfer is consistently better
than TrNetInf-SP and TrNetInf-ST. On average, the F1-measure has improved
by about 4% compared with TrNetInf-SP on the three groups of datasets. Com-
pared with TrNetInf-ST, the improvement is more significant, more than 13%.
The result leads us to conclude that 1) sparsity penalty do help the studied
task, and 2) transfer learning can significantly improve the performance. We also
report the performance of link prediction with structure transfer model LPST.
One can see that although slightly worth than TrNetInf-ST, LPST model still

Table 3. Experimental result by comparing TrNetInf against two variations and LPST

Method
“I’m a mac I’m a pc” “good morning America” Computer theory
precision recall F1 precision recall F1 precision recall F1

TrNetInf 0.575 0.611 0.593 0.621 0.635 0.628 0.651 0.700 0.675
TrNetInf-SP 0.557 0.598 0.576 0.601 0.598 0.600 0.622 0.657 0.640
TrNetInf-ST 0.534 0.515 0.524 0.546 0.526 0.536 0.540 0.704 0.611

LPST 0.579 0.379 0.458 0.515 0.534 0.524 0.534 0.598 0.564
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gives rather good prediction results. It means that properly structure transfer
can provide us useful information for better inferring the diffusion network.

5 Related Work

The problem of inferring the diffusion networks and estimating the diffusion
probabilities has been extensively studied in many domains, such as the hyperlink
network of on-line new articles [21–23], the coloration network of scientist [20],
and the following network in social media [2,17,28]. Previous related works on
this topic can be roughly divided into inferring the network structure [23] and
inferring both the network structure and the transmission rates between nodes
[21]. The representative work on inferring the network structure is NetInf [23].
NetInf formulates this problem as a submodular function maximization problem.
NETRATE is a representative approach to infer the diffusion network through
estimating the pairwise transmission rates between two nodes. Based on the
general inference models, some fine-grained models are proposed. [17] and [19]
studied the topic-level diffusion network inference problem.

A related research topic to the network inference problem is link prediction.
Link prediction aims to predict the likelihood of a future association between
nodes, knowing that there is no association between the nodes in the current
state of the graph [4,11]. One of the earliest link prediction models is proposed
by Liben-Nowell and Kleinberg [29]. Their proposed approach typically extracts
the similarity between a pair of vet ices by various graph-based similarity metrics.
Then they use the ranking on the similarity scores to predict the link between two
vertices. Besides similarity ranking based approach, another popular approach
is to model the link prediction problem as a supervised classification problem
[4,10,11]. Such methods normally learn a prediction model by constructing a set
of features, such as neighborhood based features [4] and path based features [10].
The main difference between link prediction and network inference is that link
prediction aims to predict the future potential connections between nodes based
on their current states. In the network inference setting, the network structure
is totally hidden and needs to be inferred from traces of information diffusion.

6 Conclusion

To address the problem that traditional inference models may not be effective
when lacking enough cascade data, in this paper we proposed a structure transfer
scheme to infer the diffusion network with the help of an external diffusion
network. We first formulated the network inference problem as a link prediction
task by extracting cascade related features. This formulation thus enabled us
effectively transfer the cascades and links of the external diffusion network to
help predict the hidden links of the target domain network. We also proposed
a unified optimization framework to integrate the traditional generative model
and the proposed transfer learning model. Evaluations on two real-world datasets
demonstrated the effectiveness of the proposed scheme.
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In the future, we are particularly interested in further investigating: 1) How to
extend one source domain to many source domains. Currently we only consider
one source domain diffusion network, but multiple source domains may be more
helpful as more information are available [30]. 2) Given multiple source domain
diffusion networks, how to select the source domains that are most relevant to
the target domain. Currently we only use the domain data which are highly
relevant to the target domain. A domain that are irrelevant may also hurt the
performance. Source domain diffusion network selection is an interesting and
challenging research issue we will focus on in the future.
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