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Abstract—Community detection in online social networks has
been a hot research topic in recent years. Meanwhile, to enjoy
more social network services, users nowadays are usually involved
in multiple online social networks simultaneously, some of which
can share common information and structures. Networks that
involve some common users are named as multiple ‘“partially
aligned networks”. In this paper, we want to detect communities
of multiple partially aligned networks simultaneously, which
is formally defined as the “Mutual Clustering” problem. The
“Mutual Clustering” problem is very challenging as it has two
important issues to address: (1) how to preserve the network
characteristics in mutual community detection? and (2) how to
utilize the information in other aligned networks to refine and
disambiguate the community structures of the shared users?
To solve these two challenges, a novel community detection
method, MCD (Mutual Community Detector), is proposed in
this paper. MCD can detect social community structures of users
in multiple partially aligned networks at the same time with
full considerations of (1) characteristics of each network, and
(2) information of the shared users across aligned networks.
Extensive experiments conducted on two real-world partially
aligned heterogeneous social networks demonstrate that MCD
can solve the “Mutual Clustering” problem very well.

Keywords—Mutual Clustering, Multiple Aligned Social Net-
works, Data Mining

I. INTRODUCTION

Nowadays, online social networks which can provide users
with various services have become ubiquitous in our daily life.
The services provided by social networks are very diverse,
e.g., make new friends online, read and write comments on
recent news, recommend products and locations, etc. Real-
world social networks which can provide these services usually
have heterogeneous information, involving various kinds of
information entities (e.g., users, locations, posts) and complex
connections (e.g., social links among users, purchase links
between users and products). Meanwhile, among these services
provided by social networks, community detection techniques
play a very important role. For example, organization of online
friends and group-level recommendations of products are all
based on community structures of users detected from the
networks.

Meanwhile, as proposed in [12], [32], [33], [36], to enjoy
more social services, users nowadays are usually involved in
multiple online social networks simultaneously, e.g., Facebook,
Twitter and Foursquare. Furthermore, some of these networks
can share common information either due to the common
network establishing purpose or because of similar network
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features [34]. Across these networks, the common users are
defined as the anchor users, while the remaining non-shared
users are named as the non-anchor users. Connections between
anchor users’ accounts in different networks are defined as the
anchor links. The networks partially aligned by anchor links
are called multiple partially aligned networks.

Big data are high-volume, high-velocity, and high-variety
information assets that require new forms of processing to en-
able enhanced decision making, insight discovery and process
optimization [9]. Fusion and integration of multiple online
social networks produces one kind of big data in our daily
lives [1]. In this paper, we want to detect the communities
of each network across multiple partially aligned social net-
works simultaneously, which is formally defined as the Mutual
Clustering problem. The goal is to distill relevant information
from another social network to compliment knowledge directly
derivable from each network to improve the clustering or com-
munity detection, while preserving the distinct characteristics
of each individual network. The Mutual Clustering problem
is very important for online social networks and can be the
prerequisite for many concrete social network applications: (1)
network partition: Detected communities can usually represent
small-sized subgraphs of the network, and (2) comprehensive
understanding of user social behaviors: Community structures
of the shared users in multiple aligned networks can provide
a complementary understanding of their social interactions in
online social networks.

Besides its importance, the Mutual Clustering problem is a
novel problem and different from existing clustering problems,
including: (1) consensus clustering, [7], [14], [21], [17], [16]
which aims at achieving a consensus result of several input
clustering results about the same data; (2) multi-view cluster-
ing, [3], [4] whose target is to partition objects into clusters
based on their different representations, e.g., clustering web-
pages with text information and hyperlinks; (3) multi-relational
clustering, [30], [2] which focuses on clustering objects in one
relation (called target relation) using information in multiple
inter-linked relations; and (4) co-regularized multi-domain
graph clustering [5], which relaxes the one-fo-one constraints
on node correspondence relationships between different views
in multi-view clustering to “uncertain” mappings. In [5], prior
knowledge about the weights of mappings is required and each
view is actually a homogeneous network (more differences are
summarized in Section V). Unlike these existing clustering
problems, the Mutual Clustering problem aims at detecting the
communities for multiple networks involving both anchor and



| & , locations

Fig. 1. Heterogeneous online social networks.

non-anchor users simultaneously and each network contains
heterogeneous information about users’ social activities.

Despite its importance and novelty, the Mutual Clustering
is very challenging to solve due to:

e  Closeness Measure: Users in heterogeneous social
networks can be correlated with each other by various
direct and indirect connections. A general closeness
measure among users with such connection infor-
mation is the prerequisite for addressing the mutual
clustering problem.

e Network Characteristics: Social networks usually have
their own characteristics, which can be reflected in the
community structures formed by users. Preservation
of each network’s characteristics (i.e., some unique
structures in each network’s community structure) is
very important in the Mutual Clustering problem.

e Mutual Community Detection: Information in different
networks can provide us with a more comprehensive
understanding about the anchor users’ social struc-
tures. For anchor users whose community structures
are not clear based on in formation in one network,
utilizing the heterogeneous information in aligned
networks to refine and disambiguate the community
structures about the anchor users. However, how to
achieve such a goal is still an open problem.

To solve all these challenges, a novel cross-network com-
munity detection method, MCD (Mutual Community Detec-
tor), is proposed in this paper. MCD maps the complex
relationships in the social network into a heterogeneous in-
formation network [24] and introduces a novel meta-path
based closeness measure, HNMP-Sim, to utilize both direct and
indirect connections among users in closeness scores calcula-
tion. With full considerations of the network characteristics,
MCD exploits the information in aligned networks to refine
and disambiguate the community structures of the multiple
networks concurrently.

This paper is organized as follows: In Section II, we
formulate the problem. Section III introduces the Mutual
Clustering methods. Section IV shows the experiment results.
In Sections V and VI, we give the related works and conclude
this paper.

II. PROBLEM FORMULATION

The networks studied in this paper are Foursquare and
Twitter. Users in both Foursquare and Twitter can follow other
users, write tips/tweets, which can contain timestamps, text
content and location check-ins. As a result, both Foursquare
and Twitter can be modeled as heterogeneous information
networks G = (V, E), where V. = UUPULUT UW is the set
of different types of nodes in the network and U, P, £, T, W
are the node sets of users, posts, location check-ins, timestamps
and words respectively, while £ = £, UE,UE UE UE, is
set of directed links in the network and &, &,, &, & and
&, are the sets of social links among users, links between
users and posts and those between posts and location-checkins,
timestamps as well as words respectively. To illustrate the
structure of the heterogeneous network studied in this paper,
we also give an example in Figure 1. As shown in the figure,
users in the network can be extensively connected with each
other by different types of links (e.g., social links, co-location
checkins connections).

The multiple aligned networks can be modeled as G =
(Gset; Aset)a where Gset = {G(l)a G(2)7 B G('n)}7 ‘Gset| =
n is the set of n heterogeneous information networks and
Ager = {AT2)AQ) A3 A=) s the set
of undirected anchor links between different heterogeneous
networks in Gge;. In this paper, we will follow the definitions
about “anchor user”, “non-anchor user”, “anchor link”, etc.
proposed in [12], [32], [33], [36] and the constraint on anchor
links is “one-to-one”, i.e., each user can have one account
in on network. The case that users have multiple accounts in
online social networks can be resolved with method introduced
in [26], where these duplicated accounts can be aggregated in
advance to form one unique vitural account in advance and
the anchor links connecting these vitural accounts will be still
“one-to-one”. Different from [12], [32], networks studied in
this paper are all partially aligned [33], [36].

Mutual Clustering Problem: For the given multiple aligned
heterogeneous networks G, the Mutual Clustering problem
aims to obtain the optimal communities {C"),C¢(?) ... ¢}
for {G1), G? ... G} simultaneously, where C(?) =
i uld, .. Uéﬁ))} is a partition of the users set /(¥ in
GO, kD = 1O, U nUf) =0,V 1,m e {1,2,...,kD}

and Uf(:)l UJ@ = U, Users in each detected cluster are more
densely connected with each other than with users in other
clusters. In this paper, we focus on studying the hard (i.e.,
non-overlapping) clustering of users in online social networks.

III. PROPOSED METHODS

A co-regularization based multi-view clustering model was
proposed in [5], which achieves the clustering results of
nodes across multi-view by minimizing absolute clustering
disagreement of all nodes (both shared and non-shared nodes).
It cannot be applied to address the Mutual Clustering problem,
as in mutual clustering, we only exploit information across
networks to refine the social community structures of anchor
users only, while non-anchor users social community structures
are not affected and can preserve their characteristics. To solve
the Mutual Clustering problem, a novel community detection
method, MCD, will be proposed in this section. By mapping
the social network relations into a heterogeneous information



TABLE I
SUMMARY OF HNMPs.

ID  Notation Heterogeneous Network Meta Path S tics
1l
1 U—-U User M} User Follow
i i
2 U—-U—=U User M> User M) User Follower of Follower
i llow ™1 .
3 U—=U<+U User Jollow User follow User Common Out Neighbor
llow™1 i .
4 U+—~U—=U User Jotlow User Jollow User Common In Neighbor
5 U—>P—->W<+ P+ U User 2775 post <2752, Word Posts Containing Common Words
contain—1 write 1 User
6 U—=P—=T<+P<+U User 7225 post 221%™, Time Posts Containing Common Timestamps
-1 P
contain™ write User
7 U—>P—-L<+P+U User 2745 post 2122M, 1 ocation Posts Attaching Common Location Check-ins
attach ™! write”1
Post User

network, we use the concept of social meta path to define
closeness measure among users in Section 3.1. Based on this
similarity measure, we introduce the network characteristics
preservation independent clustering method in Section 3.2 and
normalized discrepancy based co-clustering method in Section
3.3. To preserve network characteristics and use information in
other networks to refine community structures mutually at the
same time, we study the mutual clustering problem in Section
3.4.

A. HNMP-Sim

Many existing similarity measures, e.g., “Common Neigh-
bor” [8], “Jaccard’s Coefficient” [8], defined for homogeneous
networks cannot capture all the connections among users
in heterogeneous networks. To use both direct and indirect
connections among users in calculating the similarity score
among users in the heterogeneous information network, we
introduce meta path based similarity measure HNMP-Sim in
this section.

1) Meta Paths in Heterogeneous Networks: In heteroge-
neous networks, pairs of nodes can be connected by different
paths, which are sequences of links in the network. Meta
paths [24], [25] in heterogeneous networks, i.e., heterogeneous
network meta paths (HNMPs), can capture both direct and
indirect connections among nodes in a network. The length of
a meta path is defined as the number of links that constitute
it. Meta paths in networks can start and end with various
node types. However, in this paper, we are mainly concerned
about those starting and ending with users, which are formally
defined as the social HNMPs. The notation, definition and
semantics of 7 different social HNMPs used in this paper are
listed in Table I. To extract the social meta paths, prior domain
knowledge about the network structure is required.

2) HNMP-based Similarity: These 7 different social HN-
MPs in Table I can cover lots of connections among users in
networks. Some meta path based similarity measures have been
proposed so far, e.g., the PathSim proposed in [24], which is
defined for undirected networks and considers different meta
paths to be of the same importance. To measure the social
closeness among users in directed heterogeneous information
networks, we extend PathSim to propose a new closeness
measure as follows.

Definition 1 (HNMP-Sim): Let P;(x ~» y) and P;(x ~~ -)
be the sets of path instances of HNMP # ¢ going from z to

y and those going from x to other nodes in the network. The
HNMP-Sim (HNMP based Similarity) of node pair (z,y) is
defined as

HNMP-Sim(z, y) Zwl (

[P wwy|+|73(ywx)|)
Pi(z ~ )+ [Pily ~ )| )’

where w; is the weight of HNMP # i and ), w; = 1. In this
paper, the weights of different HNMPs can be automatically
adjusted by applying the technique proposed in [34].

Let A; be the adjacency matrix corresponding to the
HNMP # i among users in the network and A;(m,n) = k
iff there exist k different path instances of HNMP # ¢ from
user m to n in the network. Furthermore, the similarity
score matrix among users of HNMP # ¢ can be represented
as S; = (D; +DZ-) (A; + AT), where AT denotes the
transpose of A;, diagonal matrices D; and D; have values
D;(1,l) = Y, A;(I,m) and D;(1,1) = >, (AT)(l,m) on
their diagonals respectively. The HNMP-Sim matrix of the
network which can capture all possible connections among
users is represented as follows:

S — Z“”‘Si - Zw,- ((Di+1’3i)*1 (A +AiT)).

B. Network Characteristic Preservation Clustering

Clustering each network independently can preserve each
networks characteristics effectively as no information from
external networks will interfere with the clustering results.
Partitioning users of a certain network into several clusters
will cut connections in the network and lead to some costs
inevitably. Optimal clustering results can be achieved by
minimizing the clustering costs.

For a given network G, let C = {Uy,Us,..., U} be the
community structures detected from G. Term U; = U — U;
is defined to be the complement of set U; in (. Various
cost measure of partition C can be used, e.g., cut [29] and
normalized cut [23]:

cut(C ZSUZ,Uz Z Z S(u,v),
= lueU,,vEU
—_ k J—
1 S(U;, U;) cut(U;,U;)
Ncut(C) = = = S0
BEPS RN



where S(u,v) denotes the HNMP-Sim between u,v and

For all users in U, their clustering result can be represented
in the result confidence matrix H, where H = [hy, ha, ...,
hn]T, n= |Z/{\, h; = (hi,17 hi72, RN hi,k) and h@j denotes the
confidence that u; € U is in cluster U; € C. The optimal H
that can minimize the normalized-cut cost can be obtained by
solving the following objective function [27]:

min Tr(H'LH),
st. HFDH =1

where L = D—S, diagonal matrix D has D (3, 1)
on its diagonal, and I is an identity matrix.

= Zj S(i, )

C. Discrepancy based Clustering of Multiple Networks

Besides the shared information due to common network
construction purposes and similar network features [34], an-
chor users can also have unique information (e.g., social
structures) across aligned networks, which can provide us
with a more comprehensive knowledge about the community
structures formed by these users. Meanwhile, by maximizing
the consensus (i.e., minimizing the “discrepancy”) of the
clustering results about the anchor users in multiple par-
tially aligned networks, we refine the clustering results of
the anchor users with information in other aligned networks
mutually. We can represent the clustering results achieved

in GO and G@ as c<1 = (wM v, - Ul and
c? = {Ul(z) U2(2)

Let u; and u; be two anchor users in the network, whose

accounts in G and G@ are u(l), uz(?), u'Y and u(z)

J
(1) 1) are partitioned into the same

(2) (2

w) } respectively.

respectively. If users u; * and u;

cluster in GM) but their correspondlng accounts u;”" and u;

are partitioned into different clusters in G® , then it will lead
to a discrepancy between the clustering results of ugl), uz@,

u§.1) and u(z) in aligned networks G(*) and G(?).

Definition 2 (Discrepancy): The discrepancy between the
clustering results of u; and u; across aligned networks elS)
and G is defined as the difference of confidence scores
of u; and u; being partitioned in the same cluster across
aligned networks. Considering that in the clusterrn results,

the confidence scores of ugl) and ugl) (u,l(» and u ) being
partitioned into &M (k 2)) clusters can be represented as
vectors h( ) and h(l) (h and h ) respectively, while the
confidences that u; and u; are in the same cluster in G(!) and
G @) can be denoted as h( )(h§1)) nd h(2) (h(2)) - Formally,
the discrepancy of the clusterrng results about u; and u; 1s
defined to be d;;(C1),C?) = (h§1>(h§1>) ~h®mP)T

if w;,u; are both anchor users; and d;;(C™",C?) = 0
otherwise. Furthermore, the discrepancy of C(!) and C(?) will
be:

n) (2

= 2.2 44(C

dicW, ¢ cW c@),

where n(") = [V and n(?) = [U?)]. In the definition, non-
anchor users are not involved in the discrepancy calculation,
which is totally different from the clustering disagreement
function (all the nodes are included) introduced in [5]

However, considering that d(C(!), C(?)) is highly dependent
on the number of anchor users and anchor links between G(!)
and G®, minimizing d(C™"),C(?)) can favor highly consented
clustering results when the anchor users are abundant but
have no significant effects when the anchor users are very
rare. To solve this problem, we propose to minimize the
normalized discrepancy instead, which significantly differs
from the absolute clustering disagreement cost used in [5].

Definition 3 (Normalized Discrepancy) The normalized dis-
crepancy measure computes the differences of clustering re-
sults in two aligned networks as a fraction of the discrepancy
with regard to the number of anchor users across partially
aligned networks:

d(cM,c®)
(a1 (!A“’Q)! -1

) and G

Nd(cW,c@) =

Optlrnal consensus clustering results of G'! will be

c) c.

CW . C? =arg min Nd(CY,c?).

¢ ¢

Similarly, the normalized-discrepancy objective function
can also be represented with the clustering results confidence
matrices H®) and H®) as well. Meanwhile, considering
that the networks studied in this paper are partially aligned,
matrices H(") and H® contain the results of both anchor
users and non-anchor users, while non-anchor users should
not be involved in the discrepancy calculation according to
the definition of discrepancy. We propose to prune the results
of the non-anchor users with the following anchor transition
matrix first.

Definition 4 (Anchor Transition Matrix): Binary matrix T(1:?)
(or TY) is defined as the anchor transition matrix from
networks GV to G®@ (or from G2 to GV)), where T(12) =
(TGN, TG, 5) = 1if (uf”,«l?) € A1) and 0
otherwise. The row indexes of T (1.2 (or TZD) are of the
same order as those of H") (or H(?)). Considering that the
constraint on anchor links is “one-to-one” in this paper, as a
result, each row/column of T(32) and T2 contains at most
one entry filled with 1.

In Figure 2, we show an example about the clustering
discrepancy of two partially aligned networks G(*) and G(?),
users in which are grouped into two clusters {{uy,us}, {uz}}
and {{ua,uc},{up,up}} respectively. Users u;, us and
us, uc are identified to be anchor users, based on which
we can construct the “anchor transition matrices” T(»2) and
T(21) as shown in the upper right plot. Furthermore, based
on the community structure, we can construct the “clustering
confidence matrices” as shown in the lower left plot. To
obtain the clustering results of anchor users only, the anchor
transition matrix can be applied to prune the clustering results
of non-anchor users from the clustering confidence matrices.
By multiplying the anchor transition matrices (T(12))T and
(TGN with clustering confidence matrices H) and H?)
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Fig. 2. An example to illustrate the clustering discrepancy.

respectively, we can obtain the “pruned confidence matrices”
as show in the lower right plot of Figure 2. Entries correspond-
ing anchor users u1, us, ua and uc are preserved but those
corresponding to non-anchor users are all pruned.

In this example, the clustering discrepancy of the par-
tially aligned networks should be 0 according to the above
discrepancy definition. Meanwhile, networks G(!) and G(?)
are of different sizes and the pruned confidence matrices
are of different dimensions, e.g., (T(L2)THM ¢ RAx2
and (TZV)TH® ¢ R3*2, To represent the discrepancy
with the clustering confidence matrices, we need to further
accommodate the dimensions of different pruned clustering
confidence matrices. It can be achieved by multiplying one
pruned clustering confidence matrices with the corresponding
anchor transition matrix again, which will not prune entries but
only adjust the matrix dimensions. Let H() = (T(1:2)TH®)
and H® = (TO)T(TED)TH®), In the example, we can
represent the clustering discrepancy to be

2
Hﬂ(l) (ﬂ(l))T _a® (Iq(z))T o,
F

where matrix HH7 indicates whether pairs of anchor users
are in the same cluster or not.

Furthermore, the objective function of inferring clustering
confidence matrices, which can minimize the normalized dis-
crepancy can be represented as follows

HHu) H(l)) —H® (HO) H

min
HOH® |T0.2) HF (||T(1,2)||F _ 1)
st. (HMTDOHO =1, HO)TDPH® = 1.

F

where D), D®) are the corresponding diagonal matrices of
HNMP-Sim matrices of networks G(!) and G(?) respectively.

D. Joint Mutual Clustering of Multiple Networks

Normalized-Cut objective function favors clustering results
that can preserve the characteristic of each network, however,
normalized-discrepancy objective function favors consensus
results which are mutually refined with information from
other aligned networks. Taking both of these two issues into
considerations, the optimal mutual clustering results C(*) and

Algorithm 1 Curvilinear Search Method (CSM)

Input: X, Ci, Qp and function F
parameters € = {p, 1, 6, T, T, Tas }
Output: Xy 11, Cry1, Qrt1
I Y(r) = (I+ZA) "' (I-3A) X,
2: while F (Y (7)) > Ci + p7F’ ((Y(0))) do
T =0T
Y(r)=(1+ZA) ' (1-3%
: end while
: Xk+1 = Yk(T)
Qrt+1 =nQx +1
Crt1 = (MQrCk + F(Xp+1)) /Qr+1

7 = max (min(7, Tar), Tm)

A) X,

C@ of aligned networks G and G® can be achieved as
follows:

arg min o - Neut(CV) + 8- Neut(C?) 46 - Nd(cV,c®)

c) c(2)

where a, 8 and 6 represents the weights of these terms and,
for simplicity, «, 8 are both set as 1 in this paper.

By replacing Ncut(C™M)), Neut(C®), Nd(C™,C?)) with
the objective equations derived above, we can rewrite the joint
objective function as follows:

i Te((HONTT,WEFM® CTr(HPHTT,R) H®)
H(E?’II{Il(z) @ r(( ) >+ﬂ I‘(( ) )

S(LOE 2 (ORI < (NG = () TH2

[ @) - ae @)’
e (e -1)

st. HTDOHD =1 (H?)TDOH® =1,

where LY = DM — SMW 1,2 = D®@ — §@) and matrices
SM, 82 and DW, D@ are the HNMP-Sim matrices and
their corresponding diagonal matrices defined before.

The objective function is a complex optimization problem
with orthogonality constraints, which can be very difficult
to solve because the constraints are not only non-convex
but also numerically expensive to preserve during iter?tions.
Meanwhile, by substituting (D("))* H®") and (D®)* H(®)
with X, X2 we can transform the objective function into

a standard form of problems solvable with method proposed
in [28]:

min o (Tr((XM)TLOX
X (1) X(2)

H’i‘(l)X(l) (TmX(l))T X (T(2)X(2))T

[T (|22} - 1)
s.t. (X(l))Tx(l) =1, (X(2))TX(2) -1

(1)) +8- Tr((X(z))Tf,(Q)X(z))

2

+6

)

£)

where L) = D(1)>_’ TLO(DW)~2), L
((D(Q))—%)TL@)( D®)~2) and T(l) = (T2 T (D)~
T(2) — (T2 (T 1)) (D(Q))“

1
2

Wen et al. [28] propose a feasible method to solve the
above optimization problems with a constraint-preserving up-
date scheme. They propose to update one variable, e.g., X(1),
while fixing the other variable, e.g., X®), alternatively with
the curvilinear search with Barzilai-Borwein step method until



Algorithm 2 Mutual Community Detector (MCD)

Input: aligned network: G = {{GM), GP}, (A2 AZ Dy,
number of clusters in G and G®: k() and k(2);
HNMP Sim matrices weight: w;
parameters: € = {p, 7,8, T, Ty, T™ }3
function F and consensus term weight 6

Output: H(l), H®

: Calculate HNMP Sim matrices, Sgl) and SEQ)

< S(l) = 27 wiSED, S(Q) = Zl w1S7(2)

: Initialize X(*) and X(® with Kmeans clustering results on S and s

: Tnitialize GV = 0,Q Y =1 and ¢§? = 0,Q? =1

. converge = False

. while converge = False do

/* update X1 and X(® with CSM */

X;c]il’ Cl(c1+)1’ Qg«zl = CSM(X}(CI)’ Cl(cl)’ QECU}]:’ €)

R I

(2) (2) (2)  _ 2) ~(2) ~H(2)
X1 Cpl1s Qpyy =CSM(X7,C7, QL7 Fle)
8: if Xil_gl and Xﬁzl both converge then
9: converge = True

10: end if
11: end while

12 g — ((Du))—%)TX(l)’ H® — ((D<2>)—%)TX<2)

convergence. For example, when X (?) is fixed, we can simplify
the objective function into

min F(X), st.(X)TX =1,

where X = X() and F(X) is the objective function, which
can be solved with the curvilinear search with Barzilai-
Borwein step method proposed in [28] to update X until
convergence and the variable X after the (k + 1), iteration
will be

Xpy1 =Y (1), Y (1) = (I+ 7%CA)_I (I - 7%“A) X,

A= LT(X’“)X;{ — Xy(

8}'(Xk))T
o0X

X ’

Tr((Xk-,*Xk—l)T(Xk*Xk—l)) —
[Tr(Xr—Xe— )T (VFX0)-VFXe_)))] )7 'k~
76", § is the Barzilai-Borwein step size and h is the smallest
integer to make 7y satisfy

where let 7 = (

F (Y (1)) < Ck + priFr (Y(0)) .

Terms C, Q are defined as Cri1 =
NQrCr + F(Xp41)) /Qr41 and Qpy1 = nQr +1,Q0 = 1.
More detailed derivatives of the curvilinear search method
(i.e., Algorithm 1) with Barzilai-Borwein step is available
in [28]. Meanwhile, the pseudo-code of method MCD is
available in Algorithm 2. Based on the achieved solutions

_1
X® and X®, we can get HY = (DW) 2 X" and
H® — (D<2>)—% X2

IV. EXPERIMENTS

To demonstrate the effectiveness of MCD, we will conduct
extensive experiments on two real-world partially aligned het-
erogeneous networks: Foursquare and Twitter, in this section.

A. Dataset Description

As mentioned in the Section II, both Foursquare and
Twitter used in this paper are heterogeneous social networks,
whose statistical information is given in Table II. These two
networks were crawled with the methods proposed in [12]

TABLE 11
PROPERTIES OF THE HETEROGENEOUS SOCIAL NETWORKS

network
property Twitter  Foursquare
user 5,223 5,392
# node  tweet/tip 9,490,707 48,756
location 297,182 38,921
friend/follow 164,920 76,972
#link  write 9,490,707 48,756
locate 615,515 48,756

during November, 2012. The number of anchor links obtained
is 3, 388. For more information about the datasets and crawling
methods, please refer to [12], [32], [33], [36].

B. Experiment Settings

1) Comparison Methods: The comparison methods used in
the experiments can be divided into three categories,

Mutual Clustering Methods

e MCD: MCD is the mutual community detection
method proposed in this paper, which can detect
the communities of multiple aligned networks with
consideration of the connections and characteristics
of different networks. Heterogeneous information in
multiple aligned networks are applied in building
MCD.

Multi-Network Clustering Methods

e SIcLus: the clustering method proposed in [37],
[34] can calculate the similarity scores among users
by propagating heterogeneous information across
views/networks. In this paper, we extend the method
proposed in [37], [34] and propose SICLUS to cal-
culate the intimacy scores among users in multiple
networks simultaneously, based on which, users can be
grouped into different clusters with clustering models
based on intimacy matrix factorization as introduced
in [34]. Heterogeneous information across networks is
used to build SICLUS.

Isolated Clustering Methods, which can detect communities
in each isolated network:

e NcCUT: NCUT is the clustering method based on
normalized cut proposed in [23]. Method NCUT can
detect the communities in each social network merely
based on the social connections in each network in the
experiments.

e KMEANS: KMEANS is a traditional clustering method,
which can be used to detect communities [22] in social
networks based on the social connections only in the
experiments.

2) Evaluation Methods: The evaluation metrics applied in
this paper can be divided into two categories: Quality Metrics
and Consensus Metrics.



TABLE III
COMMUNITY DETECTION RESULTS OF FOURSQUARE AND TWITTER EVALUATED BY QUALITY METRICS.

remaining anchor link rates o

network measure methods 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

MCD 0927 0924 095 0969 0966 0961 0958 0954 0971  0.958

dbi SlcLus ~ 0.891 0889 088 0877 0894 0883  0.89 0.88  0.887  0.893

NcuT  0.863 0863 0863 0863  0.863 0863  0.863 0863 0863  0.863

KMEANS  0.835 0835 0835 0835 0835 0835 0835 0835 0835 0835

MCD 1551 1607 1379 1382 1396 1382 1283 1552 1308 1497

2 entro SIcLus 4332 4356 4.798 4339 4474 4799 4446  4.658 4335 4459

g 24 Ncut 2768 2768 2768 2768 2768 2768 2768 2768 2768  2.768

z KMEANS 2369 2369 2369 2369 2369 2369 2369 2369 2369 2369

£ MCD 0216 0205 0196 0163 0239 0192 0303 0198 0.170 0311

densit SlcLus 0116 0121 0.3 0095  0.143 0.1l 0.13 012 0143  0.103

ensity Ncur  0.154  0.154 0154 0154 0154 0154 0154 0154 0154  0.154

KMEANS  0.182 0182 0182 0182 0182 0182 0182 0182 0182  0.182

MCD  -0.137 -0.114 -0148 -0.156 -0.117  -011  -0.035 -0.125 -0.148  -0.044

Glhowette  SICLUS 0168 0198 -0.173  -0.189  -0.178 0181 021  -0.195 -0.167  -0.18

S NcuT 034 034 034  -034  -034 -034 034 -034 -034 -034

KMEANS  -0.297  -0.297  -0.297 -0.297 -0.297 -0297 -0297 -0297 -0297  -0.297

MCD 0962 0969 0955 0969 097 0958 0952 096 0946 0953

b SlcLus  0.815  0.843 0807 083 0826 0832 0835 0808 0812  0.836

Ncur 0759 0759 0759 0759 0759 0759 0759 0759 0759  0.759

KMEANS 0761 0761 0761 0761 0761 0761 0761 0761 0761  0.761

MCD 227 2667 248 2381 243 2372 2452 2459 2564 2191

i SlcLus 4780 5114 5066 4961 4904 4866  5.121 4629 4872  5.000

5 entropy Ncutr  3.099  3.099  3.099  3.099  3.099  3.099  3.09  3.099  3.09  3.099

g KMEANS 3245 3245 3245 3245 3245 3245 3245 3245 3245 3245
=

MCD 014 0097 0142 0109 015 0158  0.126 0149 0147  0.164

densit SIcLus 0055 0017 0044 0026 004 0062 0016 0044 0045  0.02

sty Ncur 0107 0107 0107 0107 0107 0107 0107 0107  0.107  0.107

KMEANS 0119 0119 0119 0119 0119 0119 0119 0119 0119  0.119

MCD -0137 0179 -0282 -0.175 -0275 -0273 -0248 -0269 -0.266 -0.286

Glhosete  SICLUS <0356 0322 0311 -0.347  -0346 0349 0323 -0.363 -0345 0352

NCUT 0424  -0424  -0424  -0424  -0424 -0.424 -0424 -0.424 0424  -0.424

KMEANS ~ -0.406  -0406 -0406 -0406 -0.406 -0.406 -0406 -0.406 -0.406  -0.406

Quality Metrics: 4 widely and commonly used quality metrics
are applied to measure the clustering result, e.g., C = {U; }X ,
of each network.

normalized-dbi [37]:

o L d(e o) +d(e, )
dbi(C) = T T
ndbi(C) K ern;? oi +0j +d(ci, ¢j) +d(cj, ¢;)’

i
where ¢; is the centroid of community U; € C,
d(c;, c;) denotes the distance between centroids ¢; and
¢j and o; represents the average distance between ele-

ments in U; and centroid c;. (Higher ndbi corresponds
to better performance).

entropy [37]: H(C) = _ZZ-K:1 P(i)log P(i), where
P(i) = || (Lower entropy corresponds to

S Uil
better performance).

density [37]: dens(C) Zfil ‘I%I" where E and
E; are the edge sets in the network and U;. (Higher
density corresponds to better performance).

silhouette [15]:
K

. 1 1
sil(C) = 3 Z(W >

=1 uel;

b(u) — a(u) )
max{a(u),b(u)}”’

where a(u) = ﬁ > vels uro A(u,v) and b(u) =

ming 4 (Ilel e, d(u,v)). (Higher silhouette

corresponds to better performance).

Consensus Metrics: Given the clustering results C() =
(UMK and €@ = {UP}ET, the consensus metrics
measuring the how similar or dissimilar the anchor users are
clustered in C™") and C® include:

rand [21]: rand(C™M,C?) = Noo+%gii%12+Nu’

where N11(Ngo) is the numbers of pairwise anchor
users who are clustered in the same (different) com-
munity(ies) in both CM) and C®), Ny; (Vo) is that of
anchor users who are clustered in the same commu-
nity (different communities) in C™) but in different
communities (the same communities) in C(?). (Lower
rand corresponds to better performance).

variation of information [21]: wvi(C™),c(®) =
H(CW)+ H(CP) —2mi(CV,c?). (Lower vi cor-
responds to better performance).

mutual  information  [21]:  mi(C™H,C(?)) =
KD g Pij
i=1 Zuj=1 P((Z),J)l(();é; ij()j), where
. U NaU) 1 9
P(i,j) = Tf‘l and |Ui( ) Na U]( )| =

{ulu € Ui(l),ﬂv € UZ-(Q), (u,v) € A}‘ [12]. (Higher
mi corresponds to better performance).

normalized mutual information [21]:



TABLE IV
COMMUNITY DETECTION RESULTS OF FOURSQUARE AND TWITTER EVALUATED BY CONSENSUS METRICS.

remaining anchor link rates o

measure methods 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
MCD 0.095 0.099 0.107 0.138 0.116 0.121 0.132 0.106 0.089 0.159
rand SIcLus 0.135 0.139 0.144 0.148 0.142 0.14 0.132 0.132 0.144 0.141
Ncut 0.399 0.377 0.372 0.4 0.416 0.423 0.362 0.385 0.362 0.341
KMEANS 0436 0387 04 0358 0403 0363 0408 0365 035 0363
MCD 3309 4.052 4.058 3902 4.038 4348 3973 3944 4078 2911
i SIcLus 7.56 8.324 8.414 8.713 8.756 8.836 8.832 8.621 8.427 8.02
Ncut 5.384 5.268 5.221 4.855 5.145 5.541 5.909 5.32 5.085 5.246
KMEANS 5.427 5.117 5.355 5.326 5.679 5.944 5.452 5.567 5.513 4.686
MCD 0.152 0.152 0.149 0.141 0.149 0.156 0.142 0.158 0.147 0.146
omi SIcLus 0.172 0.097 0.081 0.06 0.056 0.069 0.078 0.093 0.105 0.149
Ncut 0.075 0.074 0.111 0.108 0.109 0.099 0.05 0.036 0.042 0.106
KMEANS 0.008 0.047 0.048 0.054 0.048 0.028 0.047 0.014 0.067 0.119
MCD 0.756 0.611 0.4 0.258 0.394 0.431 0.381 0.533 0.697 0.689
mi SIcLus 0.780 0.446 0.367 0.277 0.258 0.325 0.374 0.44 0.489 0.698
Ncut 0.188 0.181 0.261 0.232 0.252 0.243 0.138 0.092 0.111 0.31
KMEANS 0.02 0.112 0.119 0.135 0.127 0.078 0.119 0.038 0.194 0.314
3000 foursqyare ‘ Twittgr
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Fig. 3. ||X(@||, and ||X?)||, in each iteration.

mi(C(1> ,C(2>)

. 2
nmi(CY,Cc?) VHCO)H(C®)

corresponds to better performance).

(Higher nmi

C. Experiment Results

The experiment results are available in Tables III-IV. To
show the effects of the anchor links, we use the same networks
but randomly sample a proportion of anchor links from the
networks, whose number is controlled by o € {0.1,0.2,

.-+, 1.0}, where ¢ = 0.1 means that 10% of all the anchor
links are preserved and o = 1.0 means that all the anchor links
are preserved.

Table III displays the clustering results of different methods
in Foursquare and Twitter respectively under the evaluation
of ndbi, entropy, density and silhouette. As shown in these
two tables, MCD can achieve the highest ndbi score in both
Foursquare and Twitter for different sample rate of anchor links
consistently. The entropy of the clustering results achieved by
MCD is the lowest among all other comparison methods and
is about 70% lower than SICLUS, 40% lower than NCUT and
KMEANS in both Foursquare and Twitter. In each community
detected by MCD, the social connections are denser than
that of SICLUS , NcUT and KMEANS. Similar results can be
obtained under the evaluation of silhouette, the silhouette score
achieved by MCD is the highest among all comparison meth-
ods. So, MCD can achieve better results than modified multi-
view and isolated clustering methods under the evaluation of
quality metrics.

(@) k() -ndbi (Foursquare) (b) k(1) -ndbi (Twitter)
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Fig. 4. Analysis of parameters k) and k(2.

Table IV shows the clustering results on the aligned
networks under the evaluation of consensus metrics, which
include rand, vi, nmi and mi. As shown in Table IV, MCD can
perform the best among all the comparison methods under the
evaluation of consensus metrics. For example, the rand score
of MCD is the lowest among all other methods and when
o = 0.5, the rand score of MCD is 20% lower than SICLUS,
72% lower than NCUT and KMEANS. Similar results can be
obtained for other evaluation metrics, like when o = 0.5 , the
vi score of MCD is about half of the the score of SICLUS; the
nmi and mi score of MCD is the triple of that of KMEANS.
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As a result, MCD can achieve better performance than both
modified multi-view and isolated clustering methods under the
evaluation of consensus metrics.

According to the results shown in Tables III-IV, we observe
that the performance of MCD doesn’t varies much as o
changes. The possible reason can be that, in method MCD,
normalized clustering discrepancy is applied to infer the clus-
tering confidence matrices. As o increases in the experiments,
more anchor links are added between networks, part of whose
effects will be neutralized by the normalization of clustering
discrepancy and doesn’t affect the performance of MCD much.

D. Convergence Analysis

MCD can compute the solution of the optimization func-
tion with Curvilinear Search method, which can update ma-
trices X1 and X(?) alternatively. This process will continue
until convergence. To check whether this process can stop or
not, in this part, we will analyze the convergence of X()
and X®. In Figure 3, we show the L' norm of matrices
XD and X, HX(l) 1 and ||X(2)’ 1 in each iteration of
the updating algorithm, where the LP norm of matrix X
is X[, = (32,22 Xijp)%. As shown in Figures 3, both
[X®]|, and || X can converge in less than 200 iterations.

E. Parameter Analysis

In method MCD, we have three parameters: k(1) k()
and 0, where k(1 and k() are the numbers of clusters
in Foursquare and Twitter networks respectively, while 6 is
the weight of the normalized discrepancy term in the object
function. In the pervious experiment, we set k() = 50,
kE®?) =50 and # = 1.0. Here we will analyze the sensitivity
of these parameters in details.

To analyze k), we fix k() = 50 and 6 = 1.0 but assign
kM with values in {10, 20, 30, 40, 50, 60, 70, 80,
90,100}. The clustering results of MCD with different k(")
evaluated by ndbi and rand metrics are given in Figures 4(a)-
4(c). As shown in the figures, the results achieved by MCD are
very stable for k(1) with in range [40, 100] under the evaluation
of ndbi in both Foursquare and Twitter. Similar results can be
obtained in Figures 4(c), where the performance of MCD on
aligned networks is not sensitive to the choice of k(*) for k(1)
in range [40,100] under the evaluation of both rand. In a
similar way, we can study the sensitivity of parameter k(2),
the results about which are shown in Figures 4(d)-4(f).

To analyze the parameter 6, we set both k(1) and k() as
50 but assign 6 with values in {0.001, 0.01, 0.1, 1.0, 10.0,

10° 10" 10° 10' 10° 10°

(b) 6-ndbi (Twitter)

10° 107 10" 10° 10" 10° 10°

0
(¢) O-rand

Analysis of parameter 6.

100.0, 1000.0}. The results are shown in Figure 5, where
when 6 is small, e.g., 0.001, the ndbi scores achieved by
MCD in both Foursquare and Twitter are high but the rand
score is not good (rand is inversely proportional). On the
other hand, large 6 can lead to good rand score but bad ndb:
scores in both Foursquare and Twitter. As a result, (1) large
0 prefers consensus results, (2) small 6 can preserve network
characteristics and prefers high quality results.

V. RELATED WORK

Clustering is a very broad research area, which include
various types of clustering problems, e.g., consensus cluster-
ing [17], [16], multi-view clustering [3], [4], multi-relational
clustering [30], co-training based clustering [13], and dozens
of papers have been published on these topics. Lourenco et al.
[17] propose a probabilistic consensus clustering method by
using evidence accumulation. Lock et al. propose a bayesian
consensus clustering method in [16]. Meanwhile, Bickel et al.
[3] propose to study the multi-view clustering problem, where
the attributes of objects are split into two independent subsets.
Cai et al. [4] propose to apply multi-view K-Means clustering
methods to big data. Yin et al. [30] propose a user-guided
multi-relational clustering method, CrossClus, to performs
multi-relational clustering under user’s guidance. Kumar et al.
propose to address the multi-view clustering problem based on
a co-training setting in [13].

A multi-view clustering paper which is correlated to the
problem studied in this paper is [5], which relaxes the one-
to-one constraint in traditional multi-view clustering problems
to uncertain mappings. Weights of such mappings need to be
decided by prior domain knowledge and each view is actually
a homogeneous network. To regularize the clustering results,
a cost function called clustering disagreement is introduced
in [5], whose absolute value of all nodes in multiple views
is involved in the optimization. Different from [5]: (1) the
constraint on anchor links in this paper is one-to-one and
no domain knowledge is required, (2) each network involves
different users and contains heterogeneous information, (3)
we apply clustering discrepancy to constrain the community
structures of anchor users only and non-anchor users are
pruned before calculating discrepancy cost, and (4) the cluster-
ing discrepancy is normalized before being applied in mutual
clustering objective function.

Clustering based community detection in online social
networks is a hot research topic and many different techniques
have been proposed to optimize certain measures of the
results, e.g., modularity function [20], and normalized cut [23].
Malliaros et al. give a comprehensive survey of correlated



techniques used to detect communities in networks in [18]
and a detailed tutorial on spectral clustering has been given
by Luxburg in [27]. These works are mostly studied based
on homogeneous social networks. However, in the real-world
online social networks, abundant heterogeneous information
generated by users’ online social activities exist in online social
networks. Sun et al. [25] studies ranking-based clustering on
heterogeneous networks, while Ji et al. [10] studies ranking-
based classification problems on heterogeneous networks. Cos-
cia et al. [6] proposes a classification based method for
community detection in complex networks and Mucha et al.
study the community structures in multiplex networks in [19].

In recent years, researchers’ attention has started to shift to
study multiple heterogeneous social networks simultaneously.
Kong et al. [12] are the first to propose the concepts of aligned
networks and anchor links. Across aligned social networks, dif-
ferent social network application problems have been studied,
which include different cross-network link prediction/transfer
[32], [33], [36], [35], emerging network clustering [34] and
large-scale network community detection [11], inter-network
information diffusion and influence maximization [31].

VI. CONCLUSION

In this paper, we have studied the mutual clustering prob-
lem across multiple partially aligned heterogeneous online
social networks. A novel clustering method, MCD, has been
proposed to solve the mutual clustering problem. We have
proposed a new similarity measure, HNMP-Sim, based on
social meta paths in the networks. MCD can achieve very
good clustering results in all aligned networks simultaneously
with full considerations of network difference problem as well
as the connections across networks. Extensive experiments
conducted on two real-world partially aligned heterogeneous
networks demonstrate that MCD can perform very well in
solving the mutual clustering problem.
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