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Abstract

Online social networks have gained great success in recent years. Some
online social networks only involving users and social links among users can be
represented as homogeneous networks. Meanwhile, some other social networks
containing abundant information, which include multiple kinds of nodes and
complex relationships, can be denoted as heterogeneous networks. Predicting
the missing links or links that will be formed in the future based on a snapshot
of social networks is formally defined as the link prediction problem. Link
prediction problems have extensive applications in real-world social networks
and many concrete social services can be cast as link prediction tasks, e.g., friend
and location recommendations can all be solved as the problem of predicting
social links among users and the location links between users and locations.
Link prediction problems have been an important research topic for many years
and a large number of different methods have been proposed so far.

This article summaries the existing link prediction methods for both homo-
geneous and heterogeneous networks, which include various unsupervised link
predicators, random walk based link prediction methods, methods based on ma-
trix factorization techniques, supervised link prediction methods and meta paths
based link prediction methods. Meanwhile, as proposed in recent works, people
are usually involved in multiple social networks simultaneously nowadays and
networks sharing common users are formally defined as the aligned networks. In
this article, we will also introduce the latest progress of link prediction problems
across multiple aligned heterogeneous networks. The link prediction problems
across aligned networks can include anchor link prediction problem and link
transfer across aligned heterogeneous networks. We will introduce the newly
proposed methods to solve these problems in details and, finally, we will con-
clude this survey with a discussion about the future link prediction research
works.
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Chapter 1

Introduction

Online social networks, such as Facebook, Twitter and Foursquare, have become
more and more popular in recent years. Some social networks involving one sin-
gle type of nodes and links can be represented as homogeneous networks, while
some other social network containing abundant information about: who, where,
when and what [30], can be denoted as heterogeneous networks. Information
entities in online social networks can be represented as nodes and the relation-
ships among the nodes can be denoted as links, e.g., social connections among
users can be cast as social links [60, 61], location check-ins can be indicated as
location links between users and locations [61].

However, in some cases, not all links in social networks are observable, which
can be (1) hidden by the users to protect personal privacy [5, 32, 50]; (2) missing
due to the mistakes happened in crawling, storage or transmission of the net-
work data [13, 18]. In other cases, the social networks studied can be dynamic
[9, 42] and links within the networks can evolve with time. Many links that
are nonexistent in the network can appear in the future [33, 24]. Therefore,
predicting the missing links in social networks or potential links that will exist
in the future can be an interesting problem.

Link prediction has extensive applications in real-world social networks and
many concrete social services can be cast as link prediction tasks, e.g., friend
recommendation services can be solved by predicting the social links among
users [43, 50], location recommendation services can be regarded as the location
link prediction task [57, 12].

According to the heterogeneity of networks, link prediction problems in on-
line social networks can divided into two categories: (1) link prediction problems
in homogeneous networks [33], (2) link prediction problems in heterogeneous
networks [54, 44, 57, 12]. Meanwhile, according to the number of link types to
be predicted, link prediction problems can be partitioned into two subsets: (1)
single link prediction task [60, 33, 54, 44, 3, 39, 24], e.g., social link prediction
or co-author link prediction, (2) collective link prediction task [61, 40, 53, 8, 15],
which aims at predicting multiple kinds of links, e.g., social and location links,
simultaneously. For each specific link prediction problem, many different link
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prediction approaches have been proposed, e.g., massive unsupervised predica-
tors based on social similarity measures [33], methods based on random walk
[22, 19, 31, 6, 47], methods based on matrix factorization [1, 46, 17], meta path
based supervised link prediction methods [58, 44] and collective link prediction
framework [61, 15].

In recent years, link prediction problems have many new developments. As
proposed in [30, 60, 61], nowadays, to enjoy more online social services, people
are usually getting involved in multiple different social networks simultaneously
[30]. For example, people can participate in Foursquare to share reviews or tips
about different locations or places with their friends. At the same time, they
may use Twitter to post comments on the latest news, and turn to Facebook
to share photos with relatives. These social networks sharing common users are
formally defined as multiple aligned networks, which is first proposed in [30].

These shared users in different social networks are formally defined as the
anchor users [30, 60, 61] as they can act like anchors fixing the networks they
participate in, while the remaining unshared users are named as the non-anchor
users. To represent the connections between aligned networks, the links between
accounts of anchor users in different networks are defined as the anchor links,
which is a new type of links first proposed in [30].

Across the aligned networks, many novel link prediction problems have been
proposed so far, which include (1) anchor link prediction [30], which aims at
predicting the anchor links between networks; (2) social link prediction for new
users [60], which focuses on prediction social links for new users with information
across aligned networks and can overcome the cold start problem; (3) collective
social and location link prediction [61], which can predict the social links and
location links across networks simultaneously.

In this article, we present a survey about both traditional and newly pro-
posed link prediction problems and approaches. The article is organized as
follows: we will introduce the definition of some important concepts, the formu-
lation of problems and evaluation metrics in Chapter 2; link prediction problems
and methods for homogeneous networks will be given in Chapter 3; we will de-
scribe the link prediction problems and methods for heterogeneous networks in
Chapter 4; we will talk about newly introduced link prediction problems across
aligned heterogeneous networks as well as the methods proposed to solve these
problems in details in Chapter 5. Finally, we will conclude the article with
future works in link prediction in Chapter 6.
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Chapter 2

Problem Formulation

2.1 Terminology Definition

Definition 1 (Homogeneous Social Network): For a given social network G =
(V,E), where V is the node set and E is the link set. If all nodes in V are
identical and all links in E are of the same type, then G is defined to be a
homogeneous social network.
Definition 2 (Heterogeneous Social Network): A social network is heteroge-
neous if it contains multiple kinds of nodes and links. Heterogeneous social
networks can be represented as G = (V,E), where V =

⋃
i Vi is the union of

different node sets and E =
⋃
iEi is the union of heterogeneous link sets.

Definition 3 (Aligned Heterogeneous Social Networks): If two different social
networks share some common users, then these two networks are called aligned
networks. Multiple aligned heterogeneous social networks can be formulated as G
= ((G1, G2, · · · , Gn), (A1,2, A1,3, · · · , A1,n, A2,1, · · · , An,(n−1))), where Gi, i ∈
{1, 2, · · · , n} is a heterogeneous social network and Ai,j 6= ∅, i, j ∈ {1, 2, · · · , n}
is the set of directed anchor links from Gi to Gj [30, 60, 61].
Definition 4 (Anchor Links): Let U i and U j be the user sets of Gi and Gj

respectively. Link (ui, vj) is a directed anchor link from Gi to Gj iff. (ui ∈
U i) ∧ (vj ∈ U j) ∧ (ui and vj are the accounts of the same user in Gi and Gj

respectively) [30, 60, 61].

2.2 Link Prediction Problem Formulation

Let G = (V,E) be the given network, where V =
⋃
i Vi is the union of various

kinds of node sets in G and E =
⋃
iEi is the union of link sets among these

nodes in the network. From network G, a set of existing links E and a set of
potential links to be predicted L can be extracted.

Traditional social link prediction models formulate the problem either as
a label prediction problem, where existent and nonexistent links are labeled
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Table 2.1: Confusion matrix of link prediction results.
Classified Positive Classified Negative

Actual Positive TP FN
Actual Negative FP TN

as positive and negative links respectively, or as a existence probability esti-
mation problems, where links predicted to be existent can have higher exis-
tence probabilities. Conventional methods aim at obtaining a link prediction
model, M , built with links in E and apply the model to the potential social
link set L to predict their labels and their existence probabilities. In other
words, social link prediction model M can map links in L to their labels in {1,
-1}, fM : L → {1,−1}, where if link l ∈ L is predicted to be existent, then
fM (l) = 1; otherwise, fM (l) = −1, or try to predict their existence probabilities
(or confidence scores) in [0, 1], gM : L → [0, 1].

2.3 Evaluation Metrics

For the prediction results, different evaluation metrics can be applied to measure
the performance of model M . Considering, for example, based on the given link
prediction results shown in confusion matrix (Table 2.1), the metrics that can
evaluate the performance of model M include:
Evaluation Metrics for Methods with Labels Output

• Accuracy : Accuracy = TP+TN
TP+FN+FP+TN , which is the number of correctly

classified instances in the test set divided by the total number of instances.

• Precision: Precision = TP
TP+FP , which is the number of correctly classi-

fied positive examples divided by the total number of examples that are
classified as positive.

• Recall : Recall = TP
TP+FN , which is the number of correctly classified

positive examples divided by the total number of actual positive examples
in the test set.

• F1-Score: F1 = 2·Precision·Recall
Precision+Recall , which is the harmonic mean of precision

and recall.

Evaluation Metrics for Methods with Score Output

• ROC Curve: ROC curve is a plot of the true positive rate (tpr) against
the false positive rate (fpr), where tpr = TP

TP+FN and fpr = FP
TN+FP .

• AUC : AUC denotes the area under the ROC curve. Larger AUC corre-
sponds to better classification results.
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Chapter 3

Link Prediction for
Homogeneous Networks

In this chapter, we will introduce the link prediction methods for homogeneous
networks, e.g., G = (V,E) containing users and social links among users. Ex-
isting link prediction methods for homogeneous networks can include massive
unsupervised link predicators [33], random walk based link prediction method
[22, 19, 31, 6, 47] and methods based on matrix factorization [1, 46, 17], etc.

3.1 Unsupervised Link Predicators

Traditional unsupervised link predicators can be divided into two main cate-
gories: (1) local neighbor based predicators and (2) global path based predica-
tors.

3.1.1 Local Neighbor based Predicators

Local neighbor based predicators are based on local social information, i.e.,
neighbors of users in the network. Consider, for example, given a social link
(u, v) in network G, where u and v are both users, neighbor sets of u, v can
be represented as Γ(u) and Γ(v) respectively. Based on Γ(u) and Γ(v), we
can obtain the following predicators measure the proximity of user u and v in
network G.

1. Preferential Attachment Index (PA) [7]:

PA(u, v) = |Γ(u)| |Γ(v)| .

PA(u, v) uses the product of the degrees of users u and v in the network
as the proximity measure, considering that new links are more likely to
appear between users who have large number of social connections.
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2. Common Neighbor (CN) [25]:

CN(u, v) = |Γ(u) ∩ Γ(v)| .

CN(u, v) uses the number of shared neighbor as the proximity score of
user u and v. The larger CN(u, v) is, the closer user u and v are in the
network.

3. Jaccard’s Coefficient (JC) [25]:

JC(u, v) =
|Γ(u) ∩ Γ(v)|
|Γ(u) ∪ Γ(v)|

.

JC(u, v) takes the total number of neighbors of u and v into account,
considering that CN(u, v) can be very large because each one has a lot of
neighbors rather than they are strongly related to each other.

4. Adamic/Adar Index (AA) [2]:

AA(u, v) =
∑

w∈(Γ(u)∩Γ(v))

1

log |Γ(w)|
.

Different from JC(u, v), AA(u, v) further gives each common neighbor of
user u and v a weight, 1

log|Γ(w)| , to denote its importance.

5. Resource Allocation Index (RA) [62]:

RA(u, v) =
∑

w∈(Γ(u)∩Γ(v))

1

|Γ(w)|
.

RA(u, v) gives each common neighbor a weight 1
|Γ(w)| to represent its

importance.

All these predicators are called local neighbor based predicators as they are
all based on users’ local social information.

3.1.2 Global Path based Predicators

In addition to the local neighbor based predicators, many other predicators
based on paths in the network have also been proposed to measure the proximity
among users.

1. Shortest Path (SP) [24]:

SP (u, v) = min{|pu v|},

where pu v denotes a path from u to v in the network and |p| represents
the length of path p.
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2. Katz [29]:

Katz(u, v) =

∞∑
l=1

βl
∣∣plu v∣∣ ,

where plu v is the set of paths of length l from u to v and parameter
β ∈ [0, 1] is a regularizer of the predicator. Normally, a small β favors
shorter paths as βl can decay very quickly when β is small, in which case
Katz(u, v) will be behave like the predicators based on local neighbors.

3.2 Random Walk based Link Prediction

In addition to the unsupervised link predicators which can be obtained from
the networks directly, there exists another category link prediction methods
which can calculate the proximity scores among users based on random walk
[22, 19, 31, 6, 47, 38, 25]. In this part, we will introduce the concept of random
walk at first. Next, we will introduce the proximity measures based on random
walk, which include the commute time [19, 38, 25], hitting time [19, 38, 25] and
cosine similarity [19, 38, 25].

3.2.1 Random Walk

Let matrix A be the adjacency matrix of network G, where Ai,j = 1 iff. social
link (ui, uj) ∈ E, where ui, uj ∈ V . The normalized matrix of A by rows will be
P = D−1

A A, where diagonal matrix DA of A has value (DA)i,i =
∑
j Ai,j on its

diagonal and Pi,j stores the probability of stepping on node uj ∈ U from node
ui ∈ U . Let entries in vector x(τ)(i) denote the probabilities that a random
walker is at user node ui ∈ V at time τ . Then [19, 38, 25],

x(τ+1)(i) =
∑
j

x(τ)(j)Pj,i.

In other words, the updating equation of vector x will be as follows:

x(τ+1) = Px(τ).

Keep updating x according to the following equation until convergence,{
x(τ+1) = PTx(τ),

x(τ+1) = x(τ).

We can obtain the final stationary distribution vector v to be:

v = PTv.

The above equation denotes that the final stationary distribution vector v
is actually a eigenvector of matrix PT corresponding to eigenvalue 1. Some
existing works have pointed out that if a markov chain is irreducible [19] and
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aperiodic [19] then the largest eigenvalue of the transition matrix will be equal
to 1 and all the other eigenvalues will be strictly less than 1. In addition, in
such condition, there will exist a unique stationary distribution which is vector
v obtained at convergence of the updating equations.
Definition 5 (Irreducible): Network G is irreducible if there exists a path from
every node to every other nodes in G [19].
Definition 6 (Aperiodic): Network G is aperiodic if the greatest common di-
visor of the lengths of its cycles in G is 1, where the greatest common divisor is
also called the period of G [19].

3.2.2 Proximity Measures based on Random Walk

1. Hitting Time (HT) [19, 38, 25]:

HT (u, v) = E
(

min{τ ∈ N+, X(τ) = v|X0 = u}
)
,

where variable X(τ) = v denotes that a random walker is at node v at
time τ .

HT (u, v) counts the average steps that a random walker takes to reach
node v from node u. According to the definition, the hitting time measure
is usually asymmetric, HT (u, v) 6= HT (v, u). Based on matrix P defined
before, the definition of HT (u, v) can be redefined as [19]:

HT (u, v) = 1 +
∑

w∈Γ(u)

Pu,wHT (w, v).

2. Commute Time (CT) [19, 38]:

CT (u, v) = HT (u, v) +HT (v, u).

CT (u, v) counts the expectation of steps used to reach node u from v and
those needed to reach node v from u. According to existing works, the
commute time, CT (u, v), can be obtained as follows

CT (u, v) = 2m(L†u,u + L†v,v − 2L†u,v).

where L† is the pseudo-inverse of matrix L = DA −A.

3. Cosine Similarity based on L† (CS) [19, 38]:

CS(u, v) =
xTuxv√

(xTuxu)(xTv xv)
.

where, xu = (L†)
1
2 eu and vector eu is a vector of 0s except the entries

corresponding to node u that is filled with 1. According to existing works
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[19, 38], the cosine similarity based on L† , CS(u, v), can be obtained as
follows,

CS(u, v) =
L†u,v√
L†u,uL

†
v,v

.

4. Random Walk with Restart (RWR) [19, 38, 25]: Based on the definition of
random walk, if the walker is allowed to return to the starting point with
a probability of 1− c, where c ∈ [0, 1], then the new random walk method
is formally defined as random walk with restart, whose updating equation
is shown as follows:{

x
(τ+1)
u = cPTx

(τ)
u + (1− c)eu,

x
(τ+1)
u = x

(τ)
u .

Keep updating x until convergence, the stationary distribution vector x
can meet

xu = (1− c)(I− cPT )−1eu.

The proximity measure based on random walk with restart between user
u and v will be [19, 38, 25]

RWR(u, v) = xu(v),

where xu(v) denotes the entry corresponding to v in vector xu.

3.3 Matrix Factorization based Link Prediction

Besides unsupervised link predicators and proximity measures based on ran-
dom walk, many other methods based on matrix factorization have also been
proposed to predict links in homogeneous networks [1, 46, 17].

Given the adjacency matrix A ∈ {0, 1}n×n of network G, we propose to use a
low-rank compact representation, U ∈ Rn×d, d < n, to store social information
for each user in the network. Matrix U can be obtained by solving the following
optimization objective function:

min
U,V

∥∥A−UVUT
∥∥2

F
,

where U is the low rank matrix and matrix V saves the correlation among the
rows of U, ‖X‖F is the Frobenius norm of matrix X.

To avoid overfitting, regularization terms ‖U‖2F and ‖V‖2F are added to the
object function as follows [46]:

min
U,V

∥∥A−UVUT
∥∥2

F
+ α ‖U‖2F + β ‖V‖2F ,

s.t.,U ≥ 0,V ≥ 0,
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where α and β are the weight of terms ‖U‖2F , ‖V‖2F respectively.
This object function is very hard to achieve the global optimal result for

both U and V. A alternative optimization schema can be used here, which can
update U and V alternatively. The Lagrangian function of the object equation
should be [46]:

F = Tr(AAT )− Tr(AUVTUT )

− Tr(UVUTAT ) + Tr(UVUTUVTUT )

+ αTr(UUT ) + βTr(VVT )− Tr(ΘU)− Tr(ΩV)

where Θ and Ω are the multiplier for the constraint of U and V respectively.
By taking derivatives of F with regarding to U and V respectively, the

partial derivatives of F will be

∂F
∂U

= −2ATUV − 2AUVT + 2UVTUTUVT

+ 2UVUTUVT + 2αU−ΘT

∂F
∂V

= −2UTAU + 2UTUVUTU + 2βV −ΩT

Let ∂F
∂U = 0 and ∂F

∂V = 0 and use the KKT complementary condition, we can
get [46]:

U(i, j)← U(i, j)

√
(ATUV + AUVT ) (i, j)

(UVTUTUV + UVUTUVT + αU) (i, j)
,

V(i, j)← V(i, j)

√
(UTAU) (i, j)

(UTUVUTU + βV) (i, j)
.

The low-rank matrix U captures the information of each users from the
adjacency matrix. Each row of U represents the latent feature vectors of users in
the network, which can be used in many link prediction models, e.g., supervised
link prediction models that will be introduced in the next chapter.
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Chapter 4

Link Prediction for
Heterogeneous Networks

Many social networks involving abundant information can be represented as
heterogeneous networks. In this chapter, we will introduce some classic method
and some newly proposed methods for link prediction in heterogeneous networks,
which include meta path based supervised link prediction methods and collective
link prediction framework in heterogeneous networks.

There exists many different heterogeneous social networks in the world but
to narrow the domain, we will use location-based social network, Foursquare,
as the link prediction target network, e.g., G = (U ∪ L,Es ∪ El), where U and
L are the sets of users and locations, Es and El are sets of the social link and
location link sets.

4.1 Supervised Link Prediction

Supervised link prediction models first proposed in [24] has been widely used to
solve many link prediction problems [24, 39, 6, 48]. Supervised link prediction
models have two important components: feature extraction and classification.

4.1.1 Feature Extraction

In heterogeneous social networks, different kinds of features can be extracted
from the network. For example, from existing social connections among users,
all the proximity measures among users introduced in previous subsection can
be used as features, e.g., (1) features based on local neighbor information, like
common neighbor, Jaccard’s coefficient; (2) feature based on global path infor-
mation, like shortest path and Katz; (3) features based on random walk, like
commute time and random walk with restart proximity measure; (4) latent fea-
ture vectors obtained from matrix factorization. Besides these features extracted
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Figure 4.1: Schema of heterogeneous network.

from social connection information, from other types of information, e.g., loca-
tion check-ins in location based social networks like Foursquare [30, 60, 61], job
information in professional social networks like Linkedin [26], tweets information
in Twitter [27] and video information in Youtube [14], various heterogeneous fea-
tures can be extracted for social link prediction tasks. These features can be
too diverse that it is nearly impossible to introduce all of them in this survey.

In this part, we will extract a set of generalized features based on meta path
[44, 45], which can be applied to other heterogeneous networks.

Social Meta Path

Users in heterogeneous online social network can be extensively connected to
each other via different paths. In this part, we will categorize the diverse paths
connection users within one single network with the social meta paths concept
[44, 45].

For a given heterogeneous online social network, e.g., G, to describe its
structure more clearly, whose schema is defined to be SG = (T,R), where T ,
R are the sets of node types and link types in G. For example, if G = (V,E),
where V = U ∪ L contain user and location nodes, E = Eu,u ∪ Eu,l contains
the social links and location links, then SG = (T,R), T = {User, Location}
and R = {Social Link, Location Link}. A complete schema of the Foursquare
network is shown in Figure 4.1. In network G, nodes can be connected with each
other via extensive paths consisting of various links. To categorize all possible
paths in heterogeneous networks G, the concept of meta path based on schema
SG is defined as follows [44, 45]:
Definition 7 (Meta Path): Based on the given the network schema, SG =

(T,R), Φ = T1
R1−−→ T2

R2−−→ · · · Rk−1−−−→ Tk is defined to be the meta path of
network G, where Ti ∈ T, i ∈ {1, 2, · · · , k} and Ri ∈ R, i ∈ {1, 2, · · · , k − 1}.

Meanwhile, meta paths can be divided into two different categories depend-
ing on types of nodes and links that constitute them.
Definition 8 (Homogeneous and Heterogeneous Meta Path): For a given meta

13



path Φ = T1
R1−−→ T2

R2−−→ · · · Rk−1−−−→ Tk defined based on SG, if (T1, · · · , Tk are
all the same )∧ (R1, · · · , Rk−1 are all the same), then Φ is a homogeneous meta
path; otherwise P is a heterogeneous meta path.

In this part, we are mainly concerned about meta paths connecting user
nodes, which can be defined as the social meta path.

Definition 9 (Social Meta Path): For a given meta path Φ = T1
R1−−→ T2

R2−−→
· · · Rk−1−−−→ Tk defined based on SG, if T1 and Tk are both the “User”, then P is de-
fined as a social meta path. Depending on whether T1, · · · , Tk and R1, · · · , Rk−1

are the same or not, P can be divided into two categories: homogeneous social
meta path and heterogeneous social meta path.

Based on the schema of the Foursquare networks as shown in Figure 4.1,
many different kinds of homogeneous and heterogeneous social meta paths for
network G can be defined, whose physical meanings and notations are listed as
follows:
Homogeneous Social Meta Path

• ID 0. Follow : User
follow−−−−→ User, whose notation is “U → U” or Φ0(U,U).

• ID 1. Follower of Follower : User
follow−−−−→ User

follow−−−−→ User, whose nota-
tion is “U → U → U” or Φ1(U,U).

• ID 2. Common Out Neighbor : User
follow−−−−→ User

follow−1

−−−−−−→ User, whose
notation is “U → U ← U” or Φ2(U,U).

• ID 3. Common In Neighbor : User
follow−1

−−−−−−→ User
follow−−−−→ User, whose

notation is “U ← U → U” or Φ3(U,U).

Heterogeneous Social Meta Path

• ID 4. Common Words: User
write−−−→ Post

contain−−−−−→ Word
contain−1

−−−−−−→ Post
write−1

−−−−−→ User, whose notation is “U → P →W ← P ← U” or Φ4(U,U).

• ID 5. Common Timestamps: User
write−−−→ Post

contain−−−−−→ Time
contain−1

−−−−−−→
Post

write−1

−−−−−→ User, whose notation is “U → P → T ← P ← U” or
Φ5(U,U).

• ID 6. Common Location Checkins: User
write−−−→ Post

attach−−−−→ Location
attach−1

−−−−−−→ Post
write−1

−−−−−→ User, whose notation is “U → P → L← P ← U”
or Φ6(U,U).

Social Meta Path-based Heterogeneous Features

Meta paths introduced in the previous part can actually cover a large number
of path instances connecting users in the network. Formally, the fact that node
n (or link l) is an instance of node type T (or link type R) in the network can be
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denoted as n ∈ T (or l ∈ R). Identity function I(a,A) =

{
1, if a ∈ A
0, otherwise,

can

check whether node/link a is an instance of node/link type A in the network.
The Social Meta Path based Features are defined to be:
Definition 10 (Social Meta Path based Features): For a given link (u, v), the

feature extracted for it based on meta path Φ = T1
R1−−→ T2

R2−−→ · · · Rk−1−−−→ Tk
from the network is defined to be the expected number of formed paths between
u and v in the network:

x(u, v) = I(u, T1)I(v, Tk)∑
n1∈{u},n2∈T2,··· ,nk∈{v}

k−1∏
i=1

I((ni, ni+1), Ri).

Features extracted based on Φ = {Φ1, · · · ,Φ6} are named as the social meta
path based social features.

4.1.2 Classification Algorithms

Based on meta paths {Φ1, · · · ,Φ6}, a set of features for links can be extracted
from the network, denoted as x = [xΦ1 , · · · , xΦ6 ]. According to the physical
meanings, links in social networks can be labeled as positive and negative links,
e.g., friends vs. enemies [52], trust vs. distrust [55], positive attitude vs. neg-
ative attitude [56] etc. For example, given a directed social link (u, v) in the
network, if u distrust v, then y(u, v) = −1; otherwise, y(u, v) = 1. For the given
feature label pairs, different classification algorithms can be used for supervised
link prediction. In this part, we will introduce SVM [10] as an example of the
classification algorithms [36].

SVM aims at finding the following linear function

f(x) = wTx + b,

where f : R|x| → R maps a vector to a real value, w ∈ R|x| is a weight vector
and b ∈ R is called the bias.

Function f can separate positive instances and negative instances well based
f , the label of a link given its feature vector xi can be determined according to
equation:

yi =

{
+1, if wTx1 + b ≥ 0,

−1, if wTx1 + b < 0.

In other words, the hyperplane wTx1+b = 0 is the decision boundary desired
by SVM. As introduced in [36], given training instances {(x1, y1), (x2, y2), · · · , (xn, yn)}
which are linearly separable, the optimal weight vector w can be obtained by
solving the following equation:

min
w

wTw

2
,

s.t., yi(w
Txi + b) ≥ 0, i ∈ {1, 2, · · · , n}.
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In the real-world situations, the data is usually noisy which can make the
SVM proposed above fail to work well as SVM cannot find a solution of the
optimization equation because the constraints cannot be satisfied. To solve this
problem, a slack variable, ξi ≥ 0, can be introduced to relax the strict constraint:

yi(w
Txi + b) ≥ 1− ξi, i ∈ {1, 2, · · · , n},

ξi ≥ 0, i ∈ {1, 2, · · · , n}.

To avoid large slack variables, penalty term of ξi is also added to the target
objective function

min
w

wTw

2
+ c

(
n∑
i=1

ξi

)k
,

s.t.,yi(w
Txi + b) ≥ 0, i ∈ {1, 2, · · · , n},

ξi ≥ 0, i ∈ {1, 2, · · · , n},

where k = 1 is usually used.
For instances that are not linearly separable, the SVM with linear hyperplane

may fail to work, which can be solved by SVM with nonlinear kernels. More
detailed information about the kernel techniques is introduced in [36].

4.2 Collective Link Prediction

Heterogeneous social networks can usually contain multiple kinds of links. As
proposed in [61], multiple link prediction tasks in social networks can be strongly
correlated and mutually influential to each other. As a result, multiple link pre-
diction tasks in heterogeneous can be done simultaneously. In this part, the
collective link prediction problem in heterogeneous networks will be introduced,
where both social links among users and location links between users and lo-
cations are to be predicted. The link prediction models used in this part are
supervised link prediction models.

Let G be the network studied in this part. The set of users and locations in
G are denoted as U and L, while the sets of existing social links and location
links in Gt are represented as Es and El. Collective link prediction problems
aim at predicting are a subset of potential social links among users in Gt: Ls ⊂
(U × U − Es) and a subset of potential location links in G: Ll ⊂ (U × L− El).
In other words,collective link prediction tasks want to build a mapping: fM :
{Ls,Ll} → {−1, 1} to decide whether potential links in {Ls,Ll} exist or not
and a confidence score function gM : {Ls,Ll} → [0, 1] denoting their existence
probabilities.

4.2.1 Correlation Between Different Tasks

When predicting a link, the classifiers will give a score within range [0, 1] to
show its existence probability. Newly predicted social links will update the
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(a) input network (b) social link pre-
diction

(c) location link pre-
diction

(d) collective link
prediction

Figure 4.2: An example of different link prediction methods. (a) is the input
network. (b)-(c) is independent social link and location link prediction result.
(d) shows the collective link prediction result.

social link existence probability information in the network, which can affect
other location link prediction tasks. For example, these updated social link
existence probabilities can change the extended common neighbors of a location
and a user. Similarly, the location link prediction task can also influence the
social link prediction result.

For example, in Figure 4.2, an example of different link prediction methods
is shown. Figure 4.2(a) is the input aligned networks, in which there are 4
users and some existing social links (u3, u4), (u1, u4) and location links (u2, l1),
(u3, l1), (u1, l2), (u1, l3) as well as many other potential links to be predicted.
Based on the information in the network, including social information (e.g.,
common neighbors), location information (e.g., co-checkins) and other auxiliary
information, traditional link prediction methods can predict social links and
locate links independently. Figure 4.2(b) shows the result of independent social
link prediction result, in which social link (u2, u3) and (u1, u3) are predicted to
be existent, while social link (u1, u2) and (u2, u4) are predicted to be nonexistent.
Figure 4.2(c) shows the independent location link prediction result and in the
result, location links (u2, l2), (u1, l1), (u4, l3) are predicted to be existent, while
(u2, l3) and (u3, l3) is predicted to be nonexistent.

From the results in Figures 4.2(b) and 4.2(c), some problematic phenomena
can be found. For example, user u2 and u1 are predicted to have visited locations
l1, l2 and they are also predicted to share a common neighbor: u3. Based on the
result, it is highly likely that the potential social link (u2, u3) will be predicted
to be existent. However, it is predicted to be nonexistent in Figure 4.2(b).
Another example is that many neighbors of user u3, both the originally existing
u4 and the newly predicted u1 both have visited or are predicted to have visited
l3. By using Friend-based Collaborative Filtering (FCF) [57], u3 is highly likely
to be predicted to have visited l3. However, the location link between u3 and l3
is predicted to be nonexistent in Figure 4.2(c).

With consideration of the correlation between these two link prediction tasks
and predict social links and location links simultaneously, the predicted results
of social link (u1, u2) and location link (u3, l3) are highly likely to be predicted
as existent. In Figure 4.2(d), a potential result of collective link prediction
methods is shown.
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4.2.2 Collective Link Prediction

We formulate the sets of potential social links and potential location links to
be predicted as Ls and Ll in the problem formulation section. For links lts ∈
Ls and ltl ∈ Ll, the supervised models built with the existing information in
the network will give them the predicted labels: y(lts) and y(ltl ), as well as
the existence probability scores: P (y(lts) = 1) and P (y(ltl ) = 1). Traditional
methods predicting social links and location links independently aims at finding
the set of labels achieving the maximum probability scores for each kind of
links. In other words, let Ŷs ⊂ {−1, 1}|Ls|, Ŷl ⊂ {−1, 1}|Ll| be the sets of
optimal labels

Ŷs = argmax
Ys

P (y(Ls) = Ys)

Ŷl = argmax
Yl

P (y(Ll) = Yl)

where, P (yLs) = Ys) and P (y(Ll) = Yl) denote the probability scores achieved
when links in Ls and Ll are assigned with labels in Ys and Yl.

However, considering connections between these two link prediction tasks,
the inferred social link or location link information should all be used in other
link prediction tasks. The optimal selection of label sets Ŷs and Ŷl will be

Ŷs, Ŷl = arg max
Ys,Yl

P (y(Ls) = Ys|y(Ll) = Yl)

× P (y(Ll) = Yl|y(Ls) = Ys)

For the given optimization equation, there are many different solutions. In
this part, an iterative method, TRAIL, is proposed [61] to approach it, which
can predict the social links and location links iteratively until convergence. Let
τ be the τth iteration and the optimal label sets of social links and location links

achieved in the τth iteration be Ŷ(τ)
s and Ŷ(τ)

l , then

Ŷ(τ)
s = argmax

Ys

P (y(Ls) = Ys|Gt,y(Ls) = Ŷ(τ−1)
s ,

y(Ll) = Ŷ(τ−1)
l )

Ŷ(τ)
l = argmax

Yl

P (y(Ll) = Ys|Gt,y(Ls) = Ŷ(τ)
s ,

y(Ll) = Ŷ(τ−1)
l )
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Chapter 5

Link Prediction across
Aligned Networks

Nowadays, users are usually involved in multiple aligned social networks at the
same time. Link prediction with multiple sources first proposed in [39] has
become a hot research topic in recent years. Meanwhile, these networks sharing
common users are formulated as aligned heterogeneous networks in [30, 60, 61].

Given two aligned heterogeneous networks Gi and Gj , if all user accounts
in one network are related to accounts in the other network by anchor links
mutually, then Gi and Gj are fully aligned, in which case |U i| = |U j | = |Ai,j |
and the anchor links in Ai,j have an inherent one-to-one property [4]. While, if
some users in Gi do not have the corresponding accounts in Gj or some users in
Gj do not have the corresponding accounts in Gi, then Gi and Gj are partially
aligned and |Ai,j | ≤ min{|U i|, |U j |}.

Link prediction across multiple aligned heterogeneous networks has just been
proposed by Zhang et al. [30, 60, 61] in recent years. In this part, we will intro-
duce anchor link prediction at first. Then, we will introduce a link prediction
method with strict co-existence information transfer across networks [60, 61],
which can transfer useful information for anchor users from aligned networks.

5.1 Anchor Link Prediction

Suppose we have two heterogeneous social networks Gs and Gt, with a small
set of known anchor links between the users accounts in two networks, A =
{(usi , utj), usi ∈ Us, utj ∈ U t}. Anchor links are one-to-one relationships between
user accounts in Us and U t, i.e., no two anchor links share a same user account.
(usi , u

t
j) denotes that the two user accounts belong to the same user. The task

of anchor link prediction is to predict whether there is an anchor link between a
pair of user accounts usi and utj , where usi ∈ Us, utj ∈ U t. challenges that make
our problem

The key issue of anchor link prediction is to learn a one-to-one matching
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between the user accounts of two heterogeneous social networks. This problem
formulation is different from existing works on social link prediction [21, 34,
24, 49, 35] mainly in two-folds: First, the target links to predict are one-to-one
relationships between two sets of nodes, e.g., Twitter accounts and Facebook
accounts. How can we extract informative features for anchor link prediction
task? Existing features for link prediction, such as number of common neighbors
and the shortest distance, require that the target links should be many-to-many
relationships. Second, the prediction of all anchor links should be considered
collectively due to the one-to-one constraint. Supervised link prediction methods
usually make predictions on a set of links independently, because there is no
constraint on the degree of each node in the network.

A two-phase link prediction method is proposed in [30], where the first phase
tackles feature extraction problem, while the second phase takes care of one-to-
one constrained anchor link prediction. Next, these two phases will be intro-
duced one by one.

5.1.1 Heterogeneous Feature Extraction across Networks

As proposed in [30], from heterogeneous networks, different kinds of features can
be extracted, which include the extended definitions of “common neighbors”,
“Jaccard’s coefficient” and “Adamic/Adar measure” [2].
• Extended Common Neighbors: CN(usi , u

t
j) represents the number of

‘common’ neighbors between usi in the source network and utj in the target
network. The neighbors of usi in the source network can be denoted as Γs(u

s
i )

and the neighbors of utj in the target network can be denoted as Γt(u
t
i). The

measure of extended common neighbor is defined as the number of known anchor
links between Γs(u

s
i ) and Γt(u

t
i).

CN(usi , u
t
j) =

∣∣{(usp, usq) ∈ A, usp ∈ Γs(u
s
i ), u

s
q ∈ Γt(u

t
i)}
∣∣

=

∣∣∣∣∣Γs(usi )⋂
A

Γt(u
t
i)

∣∣∣∣∣
It indicates how many pairs of user accounts belong to a same user.
• Extended Jaccard’s coefficient: The extended measure of Jaccard’s co-
efficient to multi-network setting is defined using similar method of extending
common neighbor. JC(usi , u

t
j) is a normalized version of common neighbors,

i.e., CN(usi , u
t
j) divided by the total number of distinct users in Γs(u

s
i )∪Γt(u

t
j):

JC(usi , u
t
j) =

|Γs(usi )
⋂
A Γt(u

t
i)|

|Γs(usi )
⋃
A Γt(uti)|

where ∣∣∣∣∣Γs(usi )⋃
A

Γt(u
t
i)

∣∣∣∣∣ = |Γs(usi )|+ |Γt(uti)| −

∣∣∣∣∣Γs(usi )⋂
A

Γt(u
t
i)

∣∣∣∣∣
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•Extended Adamic/Adar Measure: Similarly, the extended the Adamic/Adar
Measure is defined into multi-network settings, where the common neighbors are
weighted by their average degrees in both social networks.

AA(usi , u
t
j) =

∑
∀(us

p,u
s
q)∈Γs(us

i )
⋂

A Γt(ut
i)

log−1

( |Γs(usp)|+ |Γt(utq)|
2

)
.

5.1.2 Inferring Anchor Links w.r.t. One-to-one Constraint

After extracting all the four types of heterogeneous features in the previous
section, a binary classifier can be trained, such as SVM or logistic regression,
for anchor link prediction. However, in the inference process, the predictions of
the binary classifier cannot be directly used as anchor links due to the following
issues:

• The inference of conventional classifiers are designed for constraint-free
settings, and the one-to-one constraint may not necessarily hold in the
label prediction of the classifier (SVM).

• Most classifiers also produce output scores, which can be used to rank the
data points in the test set. However, these ranking scores are uncalibrated
in scale to anchor link prediction task. Previous classifier calibration meth-
ods [59] apply only to classification problems without any constraint.

In order to tackle the above issues, a novel inference process, called PUclf
(Multi-Network Anchoring), to infer anchor links based upon the ranking scores
of the classifier is introduced in [30], which is motivated by the stable marriage
problem [16] in mathematics.

Before introduce the method, a toy example is shown in Figure 5.1 to il-
lustrate the main idea of our solution. Suppose in Figure 5.1(a) the ranking
scores from the classifiers are given. As shown in Figure 5.1(b), link prediction
methods with a fixed threshold may not be able to predict well, because the
predicted links do not satisfy the constraint of one-to-one relationship. Thus
one user account in the source network can be linked with multiple accounts
in the target network. In Figure 5.1(c), weighted maximum matching methods
can find a set of links with maximum sum of weights. However, it is worth not-
ing that the input scores are uncalibrated, so maximum weight matching may
not be a good solution for anchor link prediction problems. The input scores
only indicate the ranking of different user pairs, i.e., the preference relationship
among different user pairs.

Here we say ‘node x prefers node y over node z’, if the score of pair (x, y) is
larger than the score of pair (x, z). For example, in Figure 5.1(c), the weight of
pair a, i.e., Score(a) = 0.8, is larger than Score(c) = 0.6. It shows that user us1
(the first user in the source network) prefers ut1 over ut2. The problem with the
prediction result in Figure 5.1(c) is that, the pair (us1, u

t
1) should be more likely

to be an anchor link due to the following reasons: (1) us1 prefers ut1 over ut2; (2)
ut1 also prefers us1 over us2.
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anchor links based upon the ranking scores of the classifier.
Our solution is motivated by the stable marriage problem [8]
in mathematics.

We first use a toy example in Figure 2 to illustrate the
main idea of our solution. Suppose in Figure 2(a) we are
given the ranking scores from the classifiers. We can see in
Figure 2(b) that link prediction methods with a fixed thresh-
old may not be able to predict well, because the predicted
links do not satisfy the constraint of one-to-one relationship.
Thus one user account in the source network can be linked
with multiple accounts in the target network. In Figure 2(c),
weighted maximium matching methods can find a set of links
with maximum sum of weights. However, it is worth noting
that the input scores are uncalibrated, so maximum weight
matching may not be a good solution for anchor link predic-
tion problems. The input scores only indicate the ranking of
di↵erent user pairs, i.e., the preference relationship among
di↵erent user pairs.

Here we say ‘node x prefers node y over node z’, if the
score of pair (x, y) is larger than the score of pair (x, z). For
example, in Figure 2(c), the weight of pair a, i.e., Score(a) =
0.8, is larger than Score(c) = 0.6. It shows that user us

1 (the
first user in the source network) prefers ut

1 over ut
2. The

problem with the prediction result in Figure 2(c) is that,
the pair (us

1, u
t
1) should be more likely to be an anchor link

due to the following reasons: (1) us
1 prefers ut

1 over ut
2; (2)

ut
1 also prefers us

1 over us
2.

Definition (Blocking Pair): A pair (us
i , u

t
j) is a blocking

pair i↵ us
i and ut

j both prefer each other over their current
assignments respectively in the predicted set of anchor links
A0.
Definition (Stable Matching): An inferred anchor link set
A0 is stable if there is no blocking pair.

We propose to formulate the anchor link prediction prob-
lem as a stable matching problem between user accounts in
source network and accounts in target network. Assume that
we have two sets of unlabeled user accounts, i.e., Us = {us

i }i

in source network and U t = {ut
j}j in target network. Each

us
i has a ranking list or preference list P (us

i ) over all the user
accounts in target network (ut

j 2 U t) based upon the input
scores of di↵erent pairs. For example, in Figure 2(a), the
preference list of node us

1 is P (us
1) = (ut

1 > ut
2), indicating

that node ut
1 is preferred by us

1 over ut
2. The preference list

of node us
2 is also P (us

2) = (ut
1 > ut

2). Similarly, we also
build a preference list for each user account in the target
network. In Figure 2(a), P (ut

1) = P (ut
2) = (us

1 > us
2).

The proposed Mna method for anchor link prediction is
shown in Algorithm 1. In each iteration, we first randomly
select a free user account us

i from the source network. Then
we get the most prefered user node ut

j by us
i in its preference

list P (us
i ). We then remove ut

j from the preference list, i.e.,
P (us

i ) = P (us
i ) � ut

j .
If ut

j is also a free account, we add the pair of accounts
(us

i , u
t
j) into the current solution set A0. Otherwise, ut

j is
already occupied with us

p in A0. We then examine the pref-
erence of ut

j . If ut
j also prefers us

i over us
p, it means that the

pair (us
i , u

t
j) is a blocking pair. We remove the blocking pair

by replacing the pair (us
p, ut

j) in the solution set A0 with the
pair (us

i , u
t
j). Otherwise, if ut

j prefers us
p over us

i , we start
the next iteration to reach out the next free node in the
source network. The algorithm stops when all the users in
the source network are occupied, or all the preference lists
of free accounts in the source network are empty.

Table 2: Properties of the Heterogeneous Social
Networks

network

property Twitter Foursquare

# node
user 5,223 5,392
tweet/tip 9,490,707 48,756
location 297,182 38,921

# link
friend/follow 164,920 31,312
write 9,490,707 48,756
locate 615,515 48,756

4. EXPERIMENTS

4.1 Data Preparation
In order to evaluate the performance of the proposed ap-

proach for anchor link prediction, we tested our algorithm on
two real-world social networks as summarized in Table 2. We
chose Twitter and Foursquare as our data sources because
public tweets and Foursquare tips can be easily collected by
their APIs.

1) Foursquare: the first network we crawled is the Foursquare
website, a representative location-based social network
(LBSN). We collected a dataset consisting of 5,392
users and 94,187 tips. For each tip, the location data
(latitude and longitude) as well as the timestamp are
available. Moreover, Foursquare network also provides
data about whether one user is following or a friend
of another user. These links can indicate the social
relationship among the users.

2) Twitter: The second network we crawled is Twitter,
an online social microblogging network. We collected
5,223 users and 9,490,707 tweets. In Twitter network,
all tweets include time data, and some tweets include
location data. In total, we have 615,515 tweets with
location data (latitude and longitude), which is about
6.5% of all the tweets we collected.

In order to conduct experiments, we pre-process these raw
data to obtain the ground-truth of users’ anchor links. In
Foursquare network, we can collect some users’ Twitter IDs
in their account pages. We use these information to build the
ground-truth of anchor links between user accounts across
the two networks. If a Foursquare user has shown his/her
Twitter ID in the website, we treat it as an anchor link
between this user’s Foursquare account and Twitter account.

4.2 Comparative Methods
In order to study the e↵ectiveness of the proposed ap-

proach, we compare our method with eight baseline meth-
ods, which are commonly used baselines including both su-
pervised and unsupervised link prediction approaches. The
compared methods are summarized as follows:

• Multi-Network Anchoring(Mna): the proposed method
in this paper. Mna can explicitly exploit four types of
information from both networks to infer anchor links,
i.e., social, spatial, temporal and text data. In ad-
dition, Mna incorporates the one-to-one constraint in
the inference process. We argue that by combining the
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two real-world social networks as summarized in Table 2. We
chose Twitter and Foursquare as our data sources because
public tweets and Foursquare tips can be easily collected by
their APIs.

1) Foursquare: the first network we crawled is the Foursquare
website, a representative location-based social network
(LBSN). We collected a dataset consisting of 5,392
users and 94,187 tips. For each tip, the location data
(latitude and longitude) as well as the timestamp are
available. Moreover, Foursquare network also provides
data about whether one user is following or a friend
of another user. These links can indicate the social
relationship among the users.

2) Twitter: The second network we crawled is Twitter,
an online social microblogging network. We collected
5,223 users and 9,490,707 tweets. In Twitter network,
all tweets include time data, and some tweets include
location data. In total, we have 615,515 tweets with
location data (latitude and longitude), which is about
6.5% of all the tweets we collected.
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proach, we compare our method with eight baseline meth-
ods, which are commonly used baselines including both su-
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compared methods are summarized as follows:

• Multi-Network Anchoring(Mna): the proposed method
in this paper. Mna can explicitly exploit four types of
information from both networks to infer anchor links,
i.e., social, spatial, temporal and text data. In ad-
dition, Mna incorporates the one-to-one constraint in
the inference process. We argue that by combining the

anchor links based upon the ranking scores of the classifier.
Our solution is motivated by the stable marriage problem [8]
in mathematics.

We first use a toy example in Figure 2 to illustrate the
main idea of our solution. Suppose in Figure 2(a) we are
given the ranking scores from the classifiers. We can see in
Figure 2(b) that link prediction methods with a fixed thresh-
old may not be able to predict well, because the predicted
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Thus one user account in the source network can be linked
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1 (the
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2. The
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network. In Figure 2(a), P (ut

1) = P (ut
2) = (us

1 > us
2).

The proposed Mna method for anchor link prediction is
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Figure 5.1: An example of anchor link inference by different methods. (a) is
the input, ranking scores. (b)-(d) are the results of different methods for anchor
link inference.

Definition 11 (Blocking Pair): A pair (usi , u
t
j) is a blocking pair iff usi and

utj both prefer each other over their current assignments respectively in the
predicted set of anchor links A′.
Definition 12 (Stable Matching): An inferred anchor link set A′ is stable if
there is no blocking pair.

The anchor link prediction problem is formulated as a stable matching prob-
lem between user accounts in source network and accounts in target network
[30]. Assume that we have two sets of unlabeled user accounts, i.e., Us = {usi}i
in source network and U t = {utj}j in target network. Each usi has a ranking list
or preference list P (usi ) over all the user accounts in target network (utj ∈ U t)
based upon the input scores of different pairs. For example, in Figure 5.1(a), the
preference list of node us1 is P (us1) = (ut1 > ut2), indicating that node ut1 is pre-
ferred by us1 over ut2. The preference list of node us2 is also P (us2) = (ut1 > ut2).
Similarly, a preference list can be built for each user account in the target net-
work. In Figure 5.1(a), P (ut1) = P (ut2) = (us1 > us2).

The proposed PUclf method for anchor link prediction is shown in Algo-
rithm 1. In each iteration, a free user account usi is randomly selected from
the source network. Then the most preferred user node utj by usi in its prefer-
ence list P (usi ) is obtained. utj is then removed from the preference list, i.e.,
P (usi ) = P (usi )− utj .

If utj is also a free account, the pair of accounts (usi , u
t
j) is added into the

current solution set A′. Otherwise, utj is already occupied with usp in A′. We
then examine the preference of utj . If utj also prefers usi over usp, it means that
the pair (usi , u

t
j) is a blocking pair. The blocking pair is removed by replacing

the pair (usp, u
t
j) in the solution set A′ with the pair (usi , u

t
j). Otherwise, if utj

prefers usp over usi , the the next iteration is started to reach out the next free
node in the source network. The algorithm stops when all the users in the source
network are occupied, or all the preference lists of free accounts in the source
network are empty.
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Algorithm 1 Multi-Network Anchoring

Input: two heterogeneous social networks, Gs and Gt.
a set of known anchor links A

Output: a set of inferred anchor links A′

1: Construct a training set of user account pairs with known labels using A.
2: For each pair (us

i , u
t
j), extract four types of features.

3: Training classification model C on the training set.
4: Perform classification using model C on the test set.
5: For each unlabeled user account, sort the ranking scores into a preference list of

the matching accounts.
6: Initialize all unlabeled us

i in Gs and ut
j in Gt as free

7: A′ = ∅
8: while ∃ free us

i in Gs and us
i ’s preference list is non-empty do

9: Remove the top-ranked account ut
j from us

i ’s preference list
10: if ut

j is free then
11: A′ = A′ ∪ {(us

i , u
t
j)}

12: Set us
i and ut

j as occupied
13: else
14: ∃us

p that ut
j is occupied with.

15: if ut
j prefers us

i to us
p then

16: A′ = (A′ − {(us
p, u

t
j)}) ∪ {(us

i , u
t
j)}

17: Set us
p as free and us

i as occupied
18: end if
19: end if
20: end while

5.2 Link Transfer across Aligned Networks

5.2.1 Supervised Link Prediction

Traditional supervised link prediction methods by using one single network im-
plicitly or explicitly assume that information in the target network itself is
enough to build effective link prediction models. These methods use the ex-
tracted features of existing links in the target network to train classifiers, which
will be applied to predict other potential links. For example, the existence
probability of a social link (uti, u

t
j) in the target network Gt can be predicted to

be:
P (y(uti, u

t
j) = 1|Gt)

where y(uti, u
t
j) is the label of link (uti, u

t
j). From Gt, a set of heterogeneous

features can be extracted for social link (uti, u
t
j). Then

P (y(uti, u
t
j) = 1|Gt) = P (y(uti, u

t
j) = 1|x(uti, u

t
j))

where x(uti, u
t
j) = [x(uti, u

t
j)

1
, x(uti, u

t
j)

2
, · · · , x(uti, u

t
j)
n
]T , n = |x(uti, u

t
j)| and

x(uti, u
t
j)
k
, k ∈ {1, 2, · · · , n} is the kth feature extracted from the target net-

work for social link (uti, u
t
j). Usually, feature x(uti, u

t
j)
k

can be the summarized
properties of social link (uti, u

t
j), e.g., extended common neighbors.
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Similarly, for a certain location link (uti, l
t
j) in Gt, the extracted features

can be used for it from the target network, x(uti, l
t
j), to predict its existence

probability.
P (y(uti, l

t
j) = 1|Gt) = P (y(uti, l

t
j) = 1|x(uti, l

t
j))

If the target network is quite new, the features vectors extracted for both
social links and location links can be very sparse, which can hardly build good
link prediction models. Next, information transferred from the aligned source
network can be used to solve the problem.

5.2.2 Link Transfer across Aligned Networks

With the anchor links, users’ corresponding accounts in the aligned source net-
work can be located, information in which can be transferred to the target net-
work. Suppose, for instance, we want to predict a potential social link (uti, u

t
j)

by using information in both networks. By taking advantages of the anchor
links, the corresponding accounts of uti and utj in the aligned source network
can be obtained: usi and usj . If usi and usj both exist in Gs, then information
related to the corresponding social link (usi , u

s
j) in the aligned source network

can be transferred to the target network, which is represented as a feature vec-
tor extracted from Gs for link (usi , u

s
j): x(usi , u

s
j). Noticing that the existence

information of link (usi , u
s
j) in the aligned source network, y(usi , u

s
j), can be very

useful, it is defined as pseudo label of link (uti, u
t
j).

Definition 13 (Pseudo Label): Let (nti, n
t
j) be a link in Gt, where nti, n

t
j are

nodes in it and they can be users, locations, etc., the corresponding link of
(nti, n

t
j) in the aligned source networkGs will be (nsi , n

s
j). The existence indicator

of link (nsi , n
s
j) in Gs: y(nsi , n

s
j) is defined as the pseudo label of link (nti, n

t
j).

The pseudo label is used as an extra feature added to the extended feature
vector, obtained by merging feature vectors extracted from Gt and Gs.

P (y(uti, u
t
j) = 1|Gt, Gs)

= P
(
y(uti, u

t
j) = 1|

[
x(uti, u

t
j)
T ,x(usi , u

s
j)
T , y(usi , u

s
j)
]T)

Similarly, for a certain location link (uti, l
t
j), we have

P (y(uti, l
t
j) = 1|Gt, Gs)

= P
(
y(uti, l

t
j) = 1|

[
x(uti, l

t
j)
T ,x(usi , l

s
j)
T , y(usi , l

s
j)
]T)

Actually, the pseudo label can also be used as the prediction result of link
(nti, n

t
j) in Gt and the method is called the Naive, which will be used as a

baseline in our experiment.
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Chapter 6

Future Works

6.1 Class Imbalance Problem

Supervised link prediction methods introduced in this article may suffer from
the class imbalance problem a lot, as the number of unconnected links is almost
the square of the number of existing links. This problem can be solved with
existing works, e.g., down sampling method [11], cost sensitive techniques [28].
Another promising method to deal with such problem is to apply PU learning
techniques [37] to link prediction tasks, where existing and unconnected links
are regarded as positive and unlabeled links respectively.

6.2 Information Transfer for Non-anchor Users

Existing link prediction methods [60, 61] can only transfer useful information for
anchor users. Transferring useful information for both anchor and non-anchor
users can be what we desire. One possible approach to achieve such goal can be
information propagation method, e.g., random walk [22, 19, 31, 6, 47], or inter-
network meta paths [58, 44]. Another possible method is to extend and adapt
traditional transfer learning techniques [41] to the setting of multiple aligned
networks.

6.3 Network Difference Problem

Different Networks can have different characteristics and, as a result, informa-
tion transferred from other networks can be useful for the target network but can
be misleading as well, which is called the domain/network difference problem
[41, 56]. Selecting useful information, e.g., feature selection [23], or controlling
the proportion of misleading information transferred from the aligned networks,
e.g., adjusting the weights of different features [51], can be possible methods to
solve the negative transfer problem [20].
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