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ABSTRACT
Online social networks can often be represented as hetero-
geneous information networks containing abundant informa-
tion about: who, where, when and what. Nowadays, people
are usually involved in multiple social networks simultane-
ously. The multiple accounts of the same user in di↵erent
networks are mostly isolated from each other without any
connection between them. Discovering the correspondence
of these accounts across multiple social networks is a crucial
prerequisite for many interesting inter-network applications,
such as link recommendation and community analysis using
information from multiple networks. In this paper, we study
the problem of anchor link prediction across multiple hetero-
geneous social networks, i.e., discovering the correspondence
among di↵erent accounts of the same user. Unlike most prior
work on link prediction and network alignment, we assume
that the anchor links are one-to-one relationships (i.e., no
two edges share a common endpoint) between the accounts
in two social networks, and a small number of anchor links
are known beforehand. We propose to extract heterogeneous
features from multiple heterogeneous networks for anchor
link prediction, including user’s social, spatial, temporal and
text information. Then we formulate the inference problem
for anchor links as a stable matching problem between the
two sets of user accounts in two di↵erent networks. An ef-
fective solution, Mna (Multi-Network Anchoring), is derived
to infer anchor links w.r.t. the one-to-one constraint. Ex-
tensive experiments on two real-world heterogeneous social
networks show that our Mna model consistently outperform
other commonly-used baselines on anchor link prediction.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications-
Data Mining
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1. INTRODUCTION
Online social networks, such as Facebook, Twitter and

Foursquare1, have become more and more popular in re-
cent years. Each social network can often be represented as
a heterogeneous network containing abundant information
about: who, where, when and what. Nowadays, people are
getting involved in more and more di↵erent kinds of social
networks simultaneously. For example, people usually share
reviews or tips about di↵erent locations or places with their
friends using Foursquare network. At the same time, they
may also share the latest news using Twitter network, and
share photos using Facebook network. Thus, each user often
has multiple separate accounts in di↵erent social networks.
However, these accounts of the same user are mostly isolated
without any connection or correspondence to each other.

Discovering the correspondence between accounts of the
same user is a crucial prerequisite for many interesting inter-
network applications, such as link recommendation and com-
munity analysis using information from multiple networks.
For example, in Foursquare network, the social connections
and activities of new users can be very sparse. The friend
and location recommendations for such users are very hard
using only one network. However, if we also know the user’s
Twitter account, his/her social connections and location data
in Twitter network can also be used to improve the recom-
mendation performances in the Foursquare network.

Figure 1 shows an example of two heterogeneous social
networks (Twitter and Foursquare) with six users. Each
user has two accounts in two networks separately. In each
network, users are connected with each other through social
links. Moreover, each user is also connected with a set of
locations, timestamps and text contents through online ac-
tivities. Note that the top two users in Figure 1 also have an-
other type of link, which connects the same user’s accounts
in two networks. We call these links as anchor links. Each
anchor link indicates a pair of accounts that belong to the
same user. The task of anchor link prediction is to discover
which pair of accounts, as shown with question marks in
Figure 1, belong to the same user in real-world.

The problem of anchor link prediction across multiple het-
erogeneous social networks has not been studied in this con-
text so far. Unlike most prior work on link prediction [9, 13,
10, 23, 14] and network alignment [3], we assume that an-
chor links are one-to-one relationships among the two sets
of user accounts (i.e., no two edges share a common end-

1https://foursquare.com
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Figure 1: Example of inferring anchor links across two heterogeneous social networks: Foursquare network
and Twitter network.

point2) and a small number of anchor links across networks
are known beforehand. A detailed comparison between an-
chor link prediction problem and other related problems is
shown in Table 1.

Despite its value and significance, the anchor link pre-
diction task across multiple heterogeneous social network is
very challenging due to the specific characteristics of the
task. The reasons are listed as follows.

• Lack of features. Most existing features for link predic-
tion, such as common neighbors and Jaccard’s coe�-

cient, apply only in single network settings. In order to
compute these features, the target links are required to
be many-to-many relationships among a set of nodes in
one single network. However, in anchor link prediction
problem, the anchor links are one-to-one relationships
across multiple networks. Existing features in link pre-
diction will reduce to a constant value, if we directly
apply them on anchor link prediction problem.

• Inference w.r.t. constraints. Another fundamental prob-
lem in anchor link prediction lies in the one-to-one con-
straint in the inference step. Conventional supervised
link prediction approaches usually assume that the tar-
get links to predict are many-to-many relationships.
Thus they cannot be directly used in anchor link pre-
diction problem, since the one-to-one constraint may

2We ignore the case that an individual can have multiple
accounts in the same network which is a di↵erent problem
[4].

not hold during the inference process. Note that in an-
chor link prediction tasks, the labels of di↵erent can-
didate anchor links are correlated and should be pre-
dicted collectively due to one-to-one constraint.

• Uncalibrated scores. Conventional supervised link pre-
diction methods can usually predict a ranking score for
each pair of nodes. However, these predicted scores are
uncalibrated in scale for anchor link prediction tasks.
In order to make accurate anchor link predictions, we
need to calibrate these scores in a meaningful way to
facilitate the inference process.

In this paper, we introduce a novel framework to tackle the
above issues. Di↵erent from existing link prediction meth-
ods, our approach, called Mna (Multi-Network Anchoring),
can extract heterogeneous features from multiple heteroge-
neous networks for anchor link prediction, including user’s
social, spatial, temporal and text information. We extended
some existing social features for link prediction into multi-
network settings, based upon the known anchor links. Then
we train a binary classifier on the training set for anchor
link prediction. In the inference step, we propose to formu-
late the anchor link inference problem as a stable matching
problem based upon the scores of the binary classifier. Mna
method can e↵ectively infer the anchor links w.r.t. one-to-
one constraint. We run extensive experiments on real-world
heterogeneous social networks. The results show that our
Mna model consistently outperforms other commonly-used
baselines.
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Table 1: Summary of related problems.
Inferring Link Network Relational Entity

Property Anchor Links Prediction [9, 13, 10, 23, 14] Alignment [3] Resolution [4]
target relationship one-to-one many-to-many one-to-one clustering
network heterogeneous homogeneous/heterogeneous homogeneous homogeneous/heterogeneous
#network multiple single/multiple multiple single
setting supervised supervised/unsupervised unsupervised unsupervised
target link type inter-network intra-network inter-network intra-network

The rest of the paper is organized as follows. We first
introduce the preliminary concepts, give the problem analy-
sis in Section 2. In Section 3, we propose the Mna method
for anchor link prediction across multiple networks. Then
Section 4 reports the experiment results on real-world social
networks. In Section 6, we conclude the paper.

2. PROBLEM FORMULATION
In this paper, we focus on studying the anchor link predic-

tion problem on two heterogeneous social networks, though
the proposed framework can easily be generalized to the set-
tings with more than two networks.

Suppose we are given a source network Gs and a target
network Gt, which are both heterogeneous social networks.
Formally, we represent each heterogeneous social network
as an undirected graph. The source network Gs = (Vs

, Es)
contains di↵erent types of nodes and links. Vs = Us[L[T[
W is the set of nodes in the source network, which includes
four types of nodes. Us = {us

1

, u

s
2

, · · · , us
N} is the set of

user accounts. L = {`
1

, `

2

, · · · , `L} is the set of L di↵erent
locations or places, where users have published their posts
at. T = {t

1

, t

2

, · · · } represents a set of time slots that users
have published posts at. Each time slot can be an hour of
a day, or a day in a month. W = {w

1

, w

2

, · · · } is the set
of words that users have used in their posts. Es ⇢ Vs ⇥ Vs

is the edges of di↵erent types in the heterogeneous social
network Gs. �s ⇢ Es is the set of user pairs that are friends
with each other in network Gs.

Similarly, we define the target network as Gt = (Vt
, Et).

U t denotes the set of user accounts in the target network.
Without loss of generality, we assume the source and target
network share the same sets of locations L, time slots T and
words W.

Anchor Link Prediction: Suppose we have two het-
erogeneous social networks Gs and Gt, with a small set of
known anchor links between the users accounts in two net-
works, A = {(us

i , u
t
j), u

s
i 2 Us

, u

t
j 2 U t}. Anchor links are

one-to-one relationships between user accounts in Us and U t,
i.e., no two anchor links share a same user account. (us

i , u
t
j)

denotes that the two user accounts belong to the same user.
The task of anchor link prediction is to predict whether there
is an anchor link between a pair of user accounts us

i and u

t
j ,

where u

s
i 2 Us

, u

t
j 2 U t.

The key issue of anchor link prediction is to learn a one-
to-one matching between the user accounts of two heteroge-
neous social networks. This problem formulation is di↵er-
ent from existing works on social link prediction [9, 13, 10,
23, 14] mainly in two-folds: First, the target links to pre-
dict are one-to-one relationships between two sets of nodes,
e.g., Twitter accounts and Facebook accounts. How can we
extract informative features for anchor link prediction task?
Existing features for link prediction, such as number of com-

mon neighbors and the shortest distance, require that the
target links should be many-to-many relationships. Second,
the prediction of all anchor links should be considered col-
lectively due to the one-to-one constraint. Supervised link
prediction methods usually make predictions on a set of links
independently, because there is no constraint on the degree
of each node in the network.

3. MULTI-NETWORK ANCHORING
We design a two-phase approach to address the major

challenges of anchor link prediction. The first phase tack-
les feature extraction problem, while the second phase takes
care of one-to-one constrained anchor link prediction. The
phase of feature extraction mainly explore two kinds of ideas
on multiple heterogeneous social networks. First, we exploit
social links in each network and the labeled anchor links
across the two networks to extract social features for an-
chor link prediction. Second, we exploit the heterogeneous
information in both networks to extract three sets of het-
erogeneous features for anchor link prediction, which cor-
respond to aggregated patterns of users on Spatial distri-
bution, temporal activity distribution and text content dis-
tribution separately. We use all the extracted features and
the pairs of accounts with known labels to learn a binary
SVM for anchor link prediction. Since the label predictions
of SVM don’t satisfy the one-to-one constraint, we use real-
value scores of the SVM as the input for the second phase,
and derive the anchor link predictions collectively according
to the one-to-one constraint.

3.1 Extracting Heterogeneous Features across
Networks

Most existing features for link prediction, such as number
of common neighbors, focus on single network settings, and
the target links are assumed to be many-to-many relation-
ships. These features cannot be directly used in anchor link
prediction across multiple networks.

3.1.1 Multi-Network Social Features
Users often have similar social links in di↵erent social net-

works, such as Twitter and Facebook, because such social
links usually indicate the user’s social ties in real life. We
can make use of the social similarity between two user ac-
counts from di↵erent social networks to help locate the same
user.

Our goal is to extract discriminative social features for a
pair of user accounts in two disjoint social networks. Intu-
itively, the social neighbors of each user account can only
involve user accounts from the same social network. For
example, the neighbors for a Facebook account can only in-
volve Facebook accounts instead of Twitter accounts. How-
ever, in anchor link prediction problem, we need to extract a

181



set of features about a pair of user accounts in two di↵erent
networks separately. The social neighbors for two user ac-
counts are two disjoint sets of user accounts in two separate
networks. There can not exist any shared nodes among the
neighbours of the pair of user accounts. In the following, we
propose to extend several social features to multi-network
settings.

Here we extend the definition of some commonly used so-
cial features in link prediction, i.e., “common neighbors”,
“Jaccard’s coe�cient” and “Adamic/Adar measure” [1].
• Extended Common Neighbors: CN(us

i , u
t
j) represents

the number of ‘common’ neighbors between u

s
i in the source

network and u

t
j in the target network. We denote the neigh-

bors of us
i in the source network as� s(u

s
i ), and the neighbors

of ut
j in the target network as� t(u

t
i). We define the mea-

sure of extended common neighor as the number of known
anchor links between� s(u

s
i ) and� t(u

t
i).

CN(us
i , u

t
j) =

��{(us
p, u

t
q) 2 A, u

s
p 2 �s(u

s
i ), u

t
q 2 �t(u

t
j)}

��

=

������s(u
s
i )

\

A

�t(u
t
j)

�����

It indicates how many pairs of user accounts belong to a
same user.
• Extended Jaccard’s coe�cient: We can extend the
measure of Jaccard’s coe�cient to multi-network setting us-
ing similar method of extending common neighbor. JC(us

i , u
t
j)

is a normalized version of common neighbors, i.e., CN(us
i , u

t
j)

divided by the total number of distinct users in� s(u
s
i ) [

�t(u
t
j):

JC(us
i , u

t
j) =

���s(u
s
i )

T
A �t(u

t
j)
��

���s(us
i )

S
A �t(ut

j)
��

where
������s(u

s
i )

[

A

�t(u
t
j)

����� = |�s(u
s
i )|+ |�t(u

t
j)|�

������s(u
s
i )

\

A

�t(u
t
j)

�����

• Extended Adamic/Adar Measure: Similarly, we also
extend the Adamic/Adar Measure into multi-network set-
tings, where the common neighbors are weighted by their
average degrees in both social networks.

AA(us
i , u

t
j) =

X

8(us
p,u

t
q)2�s(us

i )
T

A �t(ut
j)

log�1

✓
|�s(u

s
p)|+ |�t(u

t
q)|

2

◆

3.1.2 Heterogeneous Features across Networks
In addition to the social features mentioned above, hetero-

geneous social networks also involve abundant information
about: where, when and what. In the following, we propose
to exploit the spatial, temporal and text content informa-
tion about di↵erent user accounts to facilitate anchor link
prediction.
• Spatial distribution features: We notice that users in
di↵erent social networks usually publish posts at similar lo-
cations in real-life, such as their home, working places, trav-
eling spots, etc. We can make use of the similarity between
the spatial distributions of two user accounts from di↵erent
social networks to help locate the same user. Each location
can be represented as a pair of (latitude, longitude) = ` 2 L.

Algorithm 1 Multi-Network Anchoring

Input: two heterogeneous social networks, Gs and Gt.
a set of known anchor links A

Output: a set of inferred anchor links A0

1: Construct a training set of user account pairs with
known labels using A.

2: For each pair (us
i , u

t
j), extract four types of features.

3: Training classification model C on the training set.
4: Perform classification using model C on the test set.
5: For each unlabeled user account, sort the ranking scores

into a preference list of the matching accounts.
6: Initialize all unlabeled u

s
i in Gs and u

t
j in Gt as free

7: A0 = ;
8: while 9 free u

s
i in Gs and u

s
i ’s preference list is non-

empty do
9: Remove the top-ranked account u

t
j from u

s
i ’s prefer-

ence list
10: if u

t
j is free then

11: A0 = A0 [ {(us
i , u

t
j)}

12: Set us
i and u

t
j as occupied

13: else
14: 9us

p that ut
j is occupied with.

15: if u

t
j prefers us

i to u

s
p then

16: A0 = (A0 � {(us
p, u

t
j)}) [ {(us

i , u
t
j)}

17: Set us
p as free and u

s
i as occupied

18: end if
19: end if
20: end while

We propose to use three measures to evaluate the similar-
ity between the spatial distributions of two users accounts:
1) the number of shared locations; 2) the cosine similarity
between the two sets of locations; 3) the average distance
between the two sets of locations.
• Temporal distribution features: We also notice that
users in di↵erent social networks usually publish posts at
similar time slots in real-life, such as hours after work and
weekends, etc. Such temporal distribution indicates the
user’s online activity patterns. For example, some users may
like to send tweets at night, while other users may like to
write tweets at commuting time on the bus or train. The
temporal distribution of di↵erent user accounts can also help
us find the anchor links between two networks. We extract
similar measures about the spatial distributions for two user
accounts: 1) the number of shared time slots when publish-
ing posts; 2) the cosine similarity between the two vectors
of temporal activities.
• Text content features: The text content of posts by
users in di↵erent social networks can also hint for the anchor
links, because di↵erent users may have di↵erent choices of
words in their posts. We first convert the posts of each
user account into a bag-of-words vector weighted by TF-
IDF. Then for each pair user accounts, we compute two kinds
of similarities as features: 1) the inner product of the two
vectors; 2) the cosine similarity of the two vectors.

3.2 Inferring anchor links w.r.t. one-to-one
constraints

After extracting all the four types of heterogeneous fea-
tures in the previous section, we can train a binary classifier,
such as SVM or logistic regression, for anchor link predic-
tion. However, in the inference process, the predictions of
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the binary classifier cannot be directly used as anchor links
due to the following issues:

• The inference of conventional classifiers are designed
for constraint-free settings, and the one-to-one con-
straint may not necessarily hold in the label prediction
of the classifier (SVM).

• Most classifiers also produce output scores, which can
be used to rank the data points in the test set. How-
ever, these ranking scores are uncalibrated in scale to
anchor link prediction task. Previous classifier calibra-
tion methods [26] apply only to classification problems
without any constraint.

In order to tackle the above issues, we propose an inference
process, called Mna (Multi-Network Anchoring), to infer
anchor links based upon the ranking scores of the classifier.
Our solution is motivated by the stable marriage problem [8]
in mathematics.

We first use a toy example in Figure 2 to illustrate the
main idea of our solution. Suppose in Figure 2(a) we are
given the ranking scores from the classifiers. We can see in
Figure 2(b) that link prediction methods with a fixed thresh-
old may not be able to predict well, because the predicted
links do not satisfy the constraint of one-to-one relationship.
Thus one user account in the source network can be linked
with multiple accounts in the target network. In Figure 2(c),
weighted maximium matching methods can find a set of links
with maximum sum of weights. However, it is worth noting
that the input scores are uncalibrated, so maximum weight
matching may not be a good solution for anchor link predic-
tion problems. The input scores only indicate the ranking of
di↵erent user pairs, i.e., the preference relationship among
di↵erent user pairs.

Here we say ‘node x prefers node y over node z’, if the
score of pair (x, y) is larger than the score of pair (x, z). For
example, in Figure 2(c), the weight of pair a, i.e., Score(a) =
0.8, is larger than Score(c) = 0.6. It shows that user us

1

(the
first user in the source network) prefers u

t
1

over u

t
2

. The
problem with the prediction result in Figure 2(c) is that,
the pair (us

1

, u

t
1

) should be more likely to be an anchor link
due to the following reasons: (1) u

s
1

prefers u

t
1

over u

t
2

; (2)
u

t
1

also prefers us
1

over us
2

.
Definition (Blocking Pair): A pair (us

i , u
t
j) is a blocking

pair i↵ u

s
i and u

t
j both prefer each other over their current

assignments respectively in the predicted set of anchor links
A0.
Definition (Stable Matching): An inferred anchor link set
A0 is stable if there is no blocking pair.

We propose to formulate the anchor link prediction prob-
lem as a stable matching problem between user accounts in
source network and accounts in target network. Assume that
we have two sets of unlabeled user accounts, i.e., Us = {us

i}i
in source network and U t = {ut

j}j in target network. Each
u

s
i has a ranking list or preference list P (us

i ) over all the user
accounts in target network (ut

j 2 U t) based upon the input
scores of di↵erent pairs. For example, in Figure 2(a), the
preference list of node u

s
1

is P (us
1

) = (ut
1

> u

t
2

), indicating
that node u

t
1

is preferred by u

s
1

over ut
2

. The preference list
of node u

s
2

is also P (us
2

) = (ut
1

> u

t
2

). Similarly, we also
build a preference list for each user account in the target
network. In Figure 2(a), P (ut

1

) = P (ut
2

) = (us
1

> u

s
2

).
The proposed Mna method for anchor link prediction is

shown in Algorithm 1. In each iteration, we first randomly

0.8
0.6

0.1
0.4

source
network

target
network

rs u

t
1

r u

t
2

.

) u

s
1

r us
2

(a) input/ranking scores

1

2

1

2

1

2

source
network

target
network

a

c

(b) link prediction

1

2

1

2

source
network

target
network

b

c

(c) maximize sum of weights
(1:1 constrained)

1

2

1

2

1

2

source
network

target
network

a

d

(d) Mna method

Figure 2: An example of anchor link inference by
di↵erent methods. (a) is the input, ranking scores.
(b)-(d) are the results of di↵erent methods for an-
chor link inference.

select a free user account us
i from the source network. Then

we get the most prefered user node ut
j by u

s
i in its preference

list P (us
i ). We then remove u

t
j from the preference list, i.e.,

P (us
i ) = P (us

i )� u

t
j .

If ut
j is also a free account, we add the pair of accounts

(us
i , u

t
j) into the current solution set A0. Otherwise, ut

j is
already occupied with u

s
p in A0. We then examine the pref-

erence of ut
j . If u

t
j also prefers us

i over us
p, it means that the

pair (us
i , u

t
j) is a blocking pair. We remove the blocking pair

by replacing the pair (us
p, u

t
j) in the solution set A0 with the

pair (us
i , u

t
j). Otherwise, if ut

j prefers u

s
p over u

s
i , we start

the next iteration to reach out the next free node in the
source network. The algorithm stops when all the users in
the source network are occupied, or all the preference lists
of free accounts in the source network are empty.

4. EXPERIMENTS

4.1 Data Preparation
In order to evaluate the performance of the proposed ap-

proach for anchor link prediction, we tested our algorithm on
two real-world social networks as summarized in Table 2. We
chose Twitter and Foursquare as our data sources because
public tweets and Foursquare tips can be easily collected by
their APIs.

1) Foursquare: the first network we crawled is the Foursquare
website, a representative location-based social network
(LBSN). We collected a dataset consisting of 500 users
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using breadth first search over the social graph and
7,504 tips of these users. For each tip, the location
data (latitude and longitude) as well as the timestamp
are available. Moreover, Foursquare network also pro-
vides data about whether one user is following or a
friend of another user. These links can indicate the
social relationship among the users.

2) Twitter: The second network we crawled is Twit-
ter, an online social microblogging network. We col-
lected 500 users which correspond to the 500 users in
Foursqure and 741,529 tweets of the users. In Twitter
network, all tweets include time data, and some tweets
include location data. In total, we have 34,413 tweets
with location data (latitude and longitude), which is
about 4.6% of all the tweets we collected.

In order to conduct experiments, we pre-process these raw
data to obtain the ground-truth of users’ anchor links. In
Foursquare network, we can collect some users’ Twitter IDs
in their account pages. We use these information to build the
ground-truth of anchor links between user accounts across
the two networks. If a Foursquare user has shown his/her
Twitter ID in the website, we treat it as an anchor link
between this user’s Foursquare account and Twitter account.

Table 2: Properties of the Heterogeneous Social
Networks

network

property Twitter Foursquare

# node
user 500 500
tweet/tip 741,529 7,504
location 34,413 6,300

# link
friend/follow 5,341 2,934
write 741,529 7,504
locate 40,203 7,504

4.2 Comparative Methods
In order to study the e↵ectiveness of the proposed ap-

proach, we compare our method with eight baseline meth-
ods, which are commonly used baselines including both su-
pervised and unsupervised link prediction approaches. The
compared methods are summarized as follows:

• Multi-Network Anchoring(Mna): the proposed method
in this paper. Mna can explicitly exploit four types of
information from both networks to infer anchor links,
i.e., social, spatial, temporal and text data. In ad-
dition, Mna incorporates the one-to-one constraint in
the inference process. We argue that by combining the
four types of heterogeneous information as well as the
one-to-one constraints, the performance of anchor link
prediction can be e↵ectively improved.

• Mna without one-to-one constraint (Mna no): our
proposed method without the one-to-one constraint in
the inference step. The label predictions of the base
learners are directly used as final predictions for anchor
link prediction.

• Supervised link prediction methods: in order to ver-
ify the e↵ectiveness of di↵erent kinds of feature sets,
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Figure 3: Performance of inferring anchor links with
di↵erent sets of features.

we test supervised link prediction methods using four
types of feature sets separately. ‘Social’ indicates the
supervised link prediction method using social features
only. ‘Spatial’ uses only spatial features. ‘Time’ uses
temporal features. ‘Text’ uses text content features
only. In order to verify the contribution of di↵erent
features, we have also compared with di↵erent combi-
nations of the heterogeneous feature sets as baseline
methods. Details are shown in Figure 3.

• Unsupervised Link Prediction Methods: we also com-
pare with a set of unsupervised link prediction meth-
ods: Common Neighbor (CN), Jaccard Coe�cient (JC)
and Adamic/Adar (AA). Since the original algorithms
are designed for one single network. We modified these
methods by treating any pair of anchor-linked accounts
as one single node in the network and combining the
social links in both networks into one single network
among the users. Thus, we can use all the unsuper-
vised methods to make predictions on each pair of user
accounts.

For fair comparisons, LibSVM [6] of linear kernel with
the default parameter is used as the base classifier for all
the compared methods.

Evaluation Measures In order to evaluate the perfor-
mance of anchor links prediction, we evaluate di↵erent ap-
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Table 3: Performance comparison of di↵erent methods for inferring anchor links. We use di↵erent imbalance
ratios in both training and test sets. (imbalance ration = # positive account pairs / # negative account
pairs)

measure imbalance ratio

methods 1 2 3 4 10 20 30 40

F1

Mna 0.895±0.008 0.839±0.015 0.751±0.014 0.713±0.024 0.565±0.018 0.432±0.025 0.401±0.036 0.381±0.024
Mna no 0.631±0.014 0.584±0.006 0.525±0.009 0.492±0.015 0.362±0.030 0.229±0.023 0.210±0.024 0.206±0.014

Social 0.515±0.026 0.485±0.015 0.474±0.016 0.442±0.009 0.355±0.020 0.247±0.019 0.203±0.030 0.179±0.010

Spatial 0.529±0.179 0.492±0.100 0.394±0.086 0.343±0.045 0.250±0.034 0.161±0.071 0.260±0.012 0.184±0.010

Text 0.478±0.050 0.385±0.013 0.337±0.018 0.292±0.007 0.167±0.002 0.098±0.002 0.078±0.004 0.050±0.017

Time 0.455±0.045 0.380±0.011 0.353±0.028 0.303±0.022 0.165±0.005 0.096±0.001 0.055±0.018 0.051±0.006

Prec.

Mna 0.920±0.007 0.870±0.015 0.785±0.015 0.743±0.022 0.582±0.017 0.438±0.025 0.406±0.037 0.384±0.024
Mna no 0.777±0.028 0.639±0.032 0.511±0.015 0.445±0.018 0.275±0.039 0.146±0.020 0.135±0.020 0.135±0.011

Social 0.829±0.030 0.697±0.051 0.617±0.057 0.516±0.036 0.333±0.047 0.182±0.026 0.141±0.031 0.121±0.009

Spatial 0.756±0.185 0.528±0.237 0.599±0.318 0.544±0.363 0.463±0.406 0.240±0.343 0.088±0.022 0.092±0.021

Text 0.545±0.013 0.377±0.010 0.278±0.008 0.229±0.007 0.107±0.003 0.057±0.001 0.049±0.004 0.063±0.019

Time 0.549±0.009 0.371±0.009 0.266±0.008 0.222±0.007 0.104±0.003 0.054±0.001 0.046±0.013 0.044±0.008

Rec.

Mna 0.870±0.008 0.810±0.016 0.721±0.014 0.684±0.025 0.549±0.018 0.425±0.025 0.396±0.036 0.377±0.024

Mna no 0.533±0.031 0.541±0.027 0.542±0.026 0.550±0.029 0.541±0.023 0.545±0.017 0.485±0.029 0.435±0.014

Social 0.375±0.026 0.374±0.026 0.388±0.023 0.389±0.022 0.388±0.023 0.394±0.024 0.375±0.021 0.343±0.007

Spatial 0.533±0.287 0.678±0.255 0.508±0.278 0.560±0.320 0.523±0.292 0.659±0.244 0.153±0.009 0.102±0.006

Text 0.435±0.098 0.395±0.035 0.437±0.068 0.404±0.014 0.375±0.021 0.372±0.026 0.200±0.038 0.059±0.032

Time 0.394±0.066 0.391±0.022 0.543±0.113 0.501±0.108 0.402±0.054 0.392±0.029 0.142±0.090 0.075±0.034

Acc.

Mna 0.898±0.007 0.896±0.010 0.881±0.007 0.890±0.009 0.923±0.003 0.947±0.002 0.962±0.002 0.970±0.001

Mna no 0.689±0.006 0.744±0.009 0.755±0.007 0.773±0.011 0.824±0.031 0.823±0.027 0.879±0.027 0.918±0.006

Social 0.648±0.014 0.735±0.011 0.785±0.013 0.804±0.011 0.870±0.019 0.884±0.018 0.902±0.022 0.923±0.004

Spatial 0.615±0.021 0.582±0.077 0.662±0.106 0.612±0.181 0.679±0.208 0.575±0.202 0.972±0.000 0.978±0.000
Text 0.534±0.008 0.580±0.016 0.575±0.036 0.608±0.013 0.658±0.024 0.676±0.021 0.847±0.037 0.950±0.016

Time 0.535±0.005 0.576±0.010 0.510±0.057 0.546±0.062 0.629±0.046 0.646±0.024 0.864±0.066 0.934±0.025

Auc

Mna 0.757±0.010 0.771±0.008 0.751±0.011 0.752±0.009 0.769±0.012 0.758±0.009 0.762±0.014 0.775±0.010
Social 0.688±0.061 0.680±0.046 0.711±0.025 0.694±0.032 0.698±0.032 0.712±0.026 0.715±0.007 0.688±0.029

Spatial 0.678±0.012 0.659±0.011 0.666±0.002 0.659±0.007 0.669±0.006 0.671±0.004 0.670±0.006 0.672±0.007

Text 0.545±0.012 0.546±0.005 0.542±0.004 0.543±0.006 0.538±0.003 0.544±0.006 0.544±0.004 0.552±0.006

Time 0.550±0.006 0.542±0.008 0.530±0.012 0.538±0.008 0.537±0.006 0.536±0.005 0.534±0.003 0.536±0.006

CN 0.656±0.014 0.638±0.008 0.634±0.009 0.638±0.011 0.634±0.004 0.646±0.012 0.646±0.005 0.644±0.010

JC 0.665±0.007 0.661±0.004 0.651±0.008 0.672±0.009 0.653±0.006 0.652±0.005 0.658±0.007 0.662±0.006

AA 0.641±0.004 0.649±0.004 0.654±0.007 0.651±0.005 0.640±0.005 0.643±0.004 0.651±0.006 0.652±0.002

proaches in terms of F1-measure (F1), Precision (Prec.),
Recall (Rec.), Accuracy (Acc.) and AUROC (Auc). The
first 4 measures can evaluate the link prediction perfor-
mances, while the AUROC evaluates the ranking perfor-
mances. Since unsupervised link prediction methods (i.e.,
CN, JC, AA) only predict a real-valued score without a la-
bel prediction for each pair of nodes , we only show the
AUROC performances of unsupervised methods. Moreover,
the only di↵erence between Mna and Mna no is on the con-
straints of label prediction, but they share the same ranking
scores, i.e., the real-value output of SVM. So for AUROC
measure, we use Mna to represent both methods.

4.3 Performance of Anchor Link Prediction
In our experiments, we partition the users into two groups

using 5-fold cross validation: one fold is used as training
data, the remaining folds are used as testing data. We report
the average results and standard deviations of 5-fold cross
validation on the dataset.

In real-world networks, there are only a small number
of known/labeled anchor links. In the first group of ex-
periment, we study the performance of the proposed Mna
method on anchor link prediction with di↵erent number of
labeled anchor links. In each round of the cross validation,
we randomly sample 10, 20, · · · , 80 users from the training
fold, and use them as the labeled anchor links. The results
of all compared methods are reported in Table 4. The best
performances on each of the evaluation criteria are listed
in bold. It shows that when there are a small number of
anchor links known in the two network, the proposed Multi-
Network Anchoring (Mna) method consistently outperforms
other baseline methods. This result supports the intuition
of this paper: Multiple heterogeneous social networks can

provide di↵erent types of information about the users. The
anchor link prediction can be greatly improved by exploiting
all four types of di↵erent information simultaneously.

In real-world link prediction problems, the data samples
are usually imbalanced. In the second experiment setting,
we test the performance of our method with imbalanced
datasets. In each round of the cross validation, we sam-
ple pairs of user accounts as the data samples according to
di↵erent imbalance ratios, i.e., #negative pairs

#positive pairs

. Table 3 shows
the performances of each of the models under di↵erent im-
balance ratios.

Moreover, in order to test the contribution of di↵erent
type of features, we also tested the performances of baselines
with di↵erent feature combinations. The result is shown in
Figure 3. In Figure 3(a), we can see that when more types of
features are used in the model, the better the performances
we can get for anchor link prediction. In Figure 3(b), we
notice that the performance of Mna is much better than
Mna no. It shows that by incorporating the one-to-one con-
straint in the inference process can further improve the per-
formance of anchor link prediction.

4.4 Case Study
We show a case study to demonstrate the e↵ectiveness of

the proposed method by combining four types of heteroge-
neous information from two networks. In Figure 4, we show
a case of five real-world users who have both Twitter and
Foursquare accounts. These five users are socially connected
in both networks, as shown in Figure 4(a). By considering
this social information, we can significantly shrink the search
space for anchor links if one or some of these users’ accounts
in both networks have already been labeled by anchor links.
In Figure 4(b), we show the spatial distribution of di↵erent
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Table 4: Performance comparison of di↵erent methods for inferring anchor links. We use di↵erent number
of labeled anchor links in the training set.

measure number of labeled anchor links

methods 10 20 30 40 50 60 70 80

F1

Mna 0.735±0.055 0.828±0.035 0.843±0.036 0.849±0.027 0.862±0.012 0.881±0.008 0.881±0.011 0.896±0.008
Mna no 0.502±0.083 0.510±0.095 0.522±0.032 0.584±0.021 0.584±0.042 0.583±0.030 0.616±0.027 0.609±0.016

Social 0.031±0.063 0.190±0.110 0.334±0.044 0.382±0.030 0.396±0.026 0.445±0.023 0.447±0.013 0.501±0.019

Spatial 0.259±0.317 0.430±0.197 0.455±0.267 0.425±0.203 0.592±0.161 0.593±0.160 0.597±0.157 0.680±0.004

Text 0.466±0.018 0.493±0.038 0.457±0.057 0.490±0.057 0.435±0.018 0.437±0.022 0.460±0.016 0.438±0.009

Time 0.559±0.011 0.553±0.021 0.529±0.036 0.485±0.080 0.523±0.061 0.492±0.069 0.507±0.051 0.455±0.063

Prec.

Mna 0.785±0.052 0.866±0.030 0.877±0.031 0.884±0.023 0.894±0.010 0.909±0.006 0.910±0.008 0.921±0.006
Mna no 0.559±0.034 0.654±0.080 0.680±0.069 0.670±0.019 0.717±0.054 0.727±0.033 0.715±0.034 0.754±0.032

Social 0.173±0.346 0.647±0.354 0.798±0.076 0.855±0.037 0.822±0.036 0.837±0.048 0.821±0.029 0.828±0.039

Spatial 0.223±0.274 0.818±0.218 0.544±0.316 0.826±0.205 0.642±0.172 0.660±0.157 0.678±0.159 0.595±0.021

Text 0.530±0.004 0.543±0.031 0.530±0.026 0.523±0.011 0.554±0.016 0.544±0.020 0.556±0.012 0.539±0.004

Time 0.530±0.007 0.525±0.006 0.527±0.016 0.521±0.012 0.530±0.013 0.526±0.010 0.529±0.005 0.529±0.020

Rec.

Mna 0.692±0.057 0.794±0.039 0.811±0.040 0.816±0.030 0.832±0.013 0.854±0.009 0.854±0.013 0.871±0.010
Mna no 0.482±0.143 0.460±0.173 0.429±0.049 0.520±0.037 0.508±0.098 0.491±0.052 0.547±0.055 0.513±0.035

Social 0.017±0.035 0.119±0.081 0.215±0.045 0.247±0.028 0.262±0.023 0.304±0.023 0.307±0.012 0.360±0.025

Spatial 0.316±0.395 0.437±0.345 0.504±0.352 0.417±0.331 0.711±0.278 0.674±0.263 0.655±0.249 0.797±0.040

Text 0.417±0.028 0.467±0.109 0.420±0.120 0.479±0.133 0.360±0.028 0.368±0.037 0.393±0.026 0.370±0.015

Time 0.593±0.027 0.587±0.049 0.539±0.079 0.478±0.162 0.533±0.114 0.474±0.115 0.495±0.089 0.410±0.108

Acc.

Mna 0.752±0.050 0.836±0.032 0.849±0.033 0.855±0.025 0.866±0.011 0.885±0.008 0.884±0.010 0.898±0.007
Mna no 0.544±0.021 0.589±0.020 0.609±0.026 0.631±0.011 0.646±0.010 0.651±0.010 0.662±0.006 0.671±0.008

Social 0.507±0.015 0.533±0.022 0.576±0.004 0.602±0.008 0.602±0.009 0.622±0.011 0.620±0.008 0.642±0.007

Spatial 0.530±0.039 0.578±0.010 0.576±0.045 0.586±0.019 0.584±0.010 0.604±0.017 0.618±0.020 0.625±0.016

Text 0.524±0.004 0.530±0.027 0.517±0.019 0.518±0.007 0.534±0.008 0.528±0.010 0.539±0.008 0.527±0.002

Time 0.533±0.006 0.528±0.006 0.525±0.011 0.518±0.011 0.528±0.007 0.525±0.012 0.526±0.004 0.523±0.015

Auc

Mna 0.556±0.029 0.640±0.040 0.657±0.021 0.688±0.021 0.705±0.008 0.709±0.012 0.721±0.008 0.735±0.013
Social 0.507±0.015 0.534±0.021 0.572±0.029 0.628±0.029 0.627±0.039 0.651±0.021 0.670±0.029 0.667±0.024

Spatial 0.549±0.061 0.621±0.046 0.602±0.043 0.658±0.005 0.651±0.017 0.660±0.006 0.670±0.008 0.671±0.008

Text 0.529±0.005 0.533±0.031 0.510±0.043 0.530±0.003 0.544±0.006 0.537±0.009 0.540±0.011 0.543±0.003

Time 0.538±0.006 0.539±0.011 0.534±0.017 0.519±0.024 0.543±0.006 0.531±0.015 0.531±0.006 0.531±0.021

CN 0.527±0.005 0.541±0.004 0.581±0.007 0.591±0.003 0.599±0.004 0.617±0.012 0.634±0.005 0.627±0.006

JC 0.528±0.007 0.546±0.004 0.577±0.010 0.593±0.007 0.608±0.010 0.616±0.012 0.630±0.009 0.631±0.004

AA 0.524±0.004 0.552±0.008 0.575±0.007 0.585±0.012 0.601±0.010 0.610±0.009 0.619±0.007 0.631±0.009

users on both networks. We can see that the spatial distri-
butions of the same user are pretty similar to each other.
Michelle is mainly located in the middle states of America,
when sending tweets and foursquare tips. The spatial distri-
butions of her foursquare account and twitter accounts are
pretty similar. In Figure 4(c), we show the temporal dis-
tribution of the users. We can see that Tristan’s temporal
activities across both Twitter account and Foursquare ac-
count are very consistent, and his distribution is very di↵er-
ent from Lisa’s temporal activity patterns. In Figure 4(d),
we show some frequently used words by the users, where the
choices of words of the same user can be pretty consistent.
For example, Andrew seems to prefer to use ‘awsm’ instead
of ‘awesome’ when writing tweets and tips.

5. RELATED WORK
Social network analysis [16, 12], especially the link predic-

tion problem in social networks, has been intensively stud-
ied in recent years [13, 10, 23]. Typically some similarity
measures between pair of nodes are used. Upon whether
considering the label information, there are two types of ap-
proaches: unsupervised and supervised. Liben-Nowell and
Kleinberg [13] developed unsupervised link prediction meth-
ods based upon several topological features of a co-author
network. Many supervised link prediction methods have also
been proposed in recent years, [10], where the features used
in unsupervised approaches can be directly used to train a
binary classification model for link prediction. There are
many other recent e↵orts on link prediction problem in so-
cial networks. Lichtenwalter et. al. [14] have a detailed dis-
cussion over di↵erent challenges of link prediction problem.
Scellato et. al. [18] proposed to use place features for link
prediction in location-based social networks. [2] proposed a
supervised random walk method for link predictions in so-

cial networks. In addition, another line of research works
study the link prediction problems on multiple networks or
domains [5, 7, 20, 24, 21].

Network alignment problem has also been studied by many
works in recent years, which has many applications bioinfor-
matics [11, 19]. Bayati et. al. [3] proposed to use belief
propagation to solve sparse network alignment problems.
Most network alignment approaches focus on finding ap-
proximate isomorphisms between two graphs under unsu-
pervised settings. Because the intractability of the problem,
existing methods usually rely on practical heuristics to solve
the alignment problem.

Our work is also related to other lines of research. Location-
based social networks have been researched recent years [18,
25], which mainly focus on single network setting. Previous
works have also explored the multi-network problems, such
as user identification [22], profile matching [17] and match-
ing user footprints[15]. These research works focus mainly
on matching social network users based upon user profile in-
formation, such as sharing similar user names, sharing email
address, etc.. Our approach assumes heterogeneous informa-
tion in the networks is available, and focus on using social
links, location distribtutions and temporal distributions to
infer the account similarity. User profiles (e.g. username,
email) are excluded in our study.

6. CONCLUSION
In this paper we have described and studied the prob-

lem of inferring anchor links across multiple heterogeneous
social networks. We have studied two real-world social net-
works, Foursquare and Twitter, finding the correspondence
of di↵erent users accounts. Di↵erent from previous works in
link prediction and network alignment, we assumed that the
anchor links is an one-to-one relationships between the user
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word counts in both networks
user (Twitter, Foursquare)

Michelle Jacobson art (65,2), style (16,3)
audit (3,2), grill (19,2)

Nathan Levinson happy (27,5), enjoy (9,4)
week (18,4), shows (6,6)

Andrew Nystrom awsm (2,3), kids (20,3)
red (61,3), open (11,4)

Liza Sperling ask (6,5), co↵ee (8,3)
mochi (1,3), hangout (5,2)

Tristan Walker win (19,4), amazing (55,5)
awesome (51,4), please (9,4)
(d) Text

Figure 4: Case study: five real-world users with their social, spatial, temporal and text distributions.

accounts in two networks, and we know some existing anchor
links before the inference. By explicitly consider the users
heterogeneous data within the networks, i.e., social, spatial,
temporal and text information, our method can e↵ectively
predict the anchor links w.r.t. one-to-one constraint across
multiple heterogeneous social networks.
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