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Abstract

This is a follow-up tutorial article of [5]. For better understanding of the topics covered
in this articles, we recommend the readers to first read our previous tutorial article [5]
on robot basics. Specifically, in this article, we will cover some more advanced topics on
robot kinematics, including robot motion, forward kinematics, inverse kinematics, and robot
dynamics. For the topics, terminologies and notations introduced in the previous article[5],
we will use them directly without re-introducing them again in this article. Also similar
to the previous article, math and formulas will also be heavily used in this article as well
(hope the readers are well prepared for the upcoming math bomb). After reading this
article, readers should be able to have a deeper understanding about how robot motion,
kinematics and dynamics. As to some more advanced topics about robot control, we will
introduce them in the following tutorial articles for readers instead.
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1. Introduction

According to the forecast report from UN (United Nations) [4], the world population aging
will become one of the most challenging global problem of the 21st century. In the upcoming
decades, the working age population growth of the major developing countries (e.g., China,
India) will gradually slow down and even start to decrease together with the major developed
countries (e.g., UK, France, Germany, Japan and USA). To fulfill the “tremendous gap”
between the supply and demand of working labor forces, various robots and automated
machines has been (and will continue to be) developed and employed for massive production
work globally. This is an irreversible trend for the 21st century. To accomplish such an
objective, educating and training researchers and practitioner on robotics is imperative and
critical at present.

1.1 This Article

This is a follow-up tutorial article of [5]. In the previous tutorial article, we have intro-
duced the basic knowledge about robot representation, robot rotation, position and orienta-
tion transformation and velocity transformation already. In this follow-up article, we will
introduce several advanced topics about robot kinematics for readers, which include robot
motion, forward kinematics, inverse kinematics, and robot dynamics.

A Reminder: Similar to [5], this article will also be very math-heavy. When you read
the equations in this article, it will be great for you to figure out their physical meanings
in mind as well. The math equations will deliver the same information to you just like the
textual descriptions. We prefer to use math equations, since they can deliver information
to readers in a more precise way.

For some more advanced topics about robotics, like robot control, trajectory generation,
motion planning, zero moment point, biped walking, robot manipulation and robot simu-
lation, we plan to introduce them in the follow-up tutorial articles. If the readers are
interested in robotics, we also have several textbooks recommended for you to read as well,
like [2, 3, 1].

1.2 Basic Notations

In the sequel of this article, we will use the lower case letters (e.g., ) to represent scalars,
lower case bold letters (e.g., x) to denote column vectors, bold-face upper case letters (e.g.,
X) to denote matrices. Given a vector x, its length is denoted as ||x|. Given a matrix X,
we denote X (7,:) and X(:, j) as its iz, row and jy, column, respectively. The (i, jin) entry
of matrix X can be denoted as either X(¢,j) or X; ;, which will be used interchangeably.
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We use X and x" to represent the transpose of matrix X and vector x. The cross product
of vectors x and y is represented as x X y. A coordinate system is denoted as X, and the
vector x in coordinate system X can also be specified as xZl. For a scalar z, vector x and
matrix X, we can also represent their first-order derivatives as #, x and X, and second-order
derivatives as #, x and X.

2. Robot Motion

Before we talk about the forward kinematics and inverse kinematics, we would like to discuss
about the rigid-body robot motion first in this section. We will revisit the homogeneous
transformation matriz defined in the previous tutorial article and discuss about some of its
properties in this section as well.

2.1 Homogeneous Transformation Matrix

In the previous tutorial article, most of the materials we have introduced are about the robot
rotation matriz and its transformation impact on changing the position, orientation, linear
velocity and angular velocity of the robot arm end point. We have also briefly introduced
the homogeneous transformation matriz for readers but we didn’t discuss much about its
property or usage in robot motion actually, which will be covered in this section.

2.1.1 SPECIAL ORTHOGONAL GROUP AND SPECIAL EUCLIDEAN GROUP

The set of rotation matriz we introduce in the previous article can also be clearly represented
as the special orthogonal group defined as follows.

Definition 1 (Special Orthogonal Group): The special orthogonal group SO(3), also
known as the group of rotation matrices in R3, denotes the set of all 3x 3 matrices R € R3*3
that satisfy (1) RTR =1 and (2) detR = 1.

In the above definition, the first constraint RTR = I denotes the rotation matriz R is
orthogonal and each column vector is a unit vector. Meanwhile, the second constraint
det R = 1 indicates that the rotation is a right-handed frame.

Meanwhile, based on the rotation matrix, we can also represent the set of homogeneous
transformation matriz as the special Fuclidean group as follows.

Definition 2 (Special Euclidean Group): The special Euclidean group SE(3), also
known as the homogeneous transformation matriz in R3, denotes the set of all 4 x4 matrices
T € R*** in the following form

Rin Rip Riz p1

T — [R p] _ |R21 Ro2 Ra3z po (1)
0 1 R31 R32 Rs3 p3|’
0 0 0 1
Ri1 Riz2 Rig P1
where the matric R = |Ro1 Raoa Raos| € SO(3) is a rotation matriz and p = |p3| €
R31 Rs2 Rsg3 P3

R? is a column vector denoting the robot arm position.
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Figure 1: An Example of Rigid-Body Robot Structure (involving 1 base link and 3 movable
links connected via joints a, b and ¢). The arm rotation angles are denoted as 6,
¢ and v, respectively.

In the above definitions, the numerical number 3 in the notations SO(3) and SE(3)
indicates that these matrices are defined in the R? space, and it doesn’t denote the dimen-
sions of the matrices. Like for a homogeneous transformation matrix T € SE(3), it actually
has a dimension of 4 x 4.

2.1.2 CHAIN RULE ON HOMOGENEOUS TRANSFORMATION MATRIX

The homogeneous transformation matriz defined across coordinate systems follows the chain
rule.

Example 1 Here, we will take a 4-link robot arm shown in Figure 1 as an example to
tllustrate the forward kinematics process. Specifically, the robot arm involves 1 base link
from the origin o of the world coordinate Yy to joint a, and 8 movable links connected via
joints a, b and c. Attached to each joint, we define a local coordinate with origin attached to

them, which are denoted as X, ¥y and ., respectively. Within the local coordinate systems,
o[ . .
L_fb, pl[)_tl, and p[cﬁ}e, respectively.

According to the previous tutorial article [5], based on the robot arm rotation angles,
we can define the homogeneous transformation matriz between the coordinate systems as
follows:

we can represent the robot arm links as vectors p

TEa=Su] _ R[Za—w] p([le] _ exp‘:’LEW] p([lgw] o)
0 1 0 1|’



JIAWEI ZHANG, IFM LAB DIRECTOR

5wl . . . .
Fa=Zw] — exp@a™ s obtained from the previous tutorial article

[5]. Notation o2 projects the angular velocity vector w([IEW] to the matrixz representation.

a
As introduced before, the angular velocity vector can also be represented as wLZ“'] = eLEW]q'a,

where e([lz“'] denotes the axis unit vector of the joint a and scalar ¢, denotes the angular
velocity with the unit rad/s.
Similar to the homogeneous transition matriz TEe=> introduced above, we can also

define the homogeneous transition matrices between other local coordinate systems, including

Ya by
=S _ [R[EWZ“] pfﬁl,] and Tl — [R[Eﬁz”] Pﬁi’l:] . (3)
1

where the rotation matriz R

0 0 1
Via the chain rule, we can obtain the homogeneous transition matriz TEe=Swl which

can be denoted as follows:

T[Ec_)EW} — T[Ea—>ZW]T[Eb—>Za]T[Ec—>Zb] . (4)

2.1.3 RoBOT ARM LINK PROJECTION ACROSS COORDINATE SYSTEMS

Via the homogeneous transformation matriz, we can project a robot arm from a local
coordinate to another local/world coordinate system.

Example 2 Still based on the example illustrated in Figure 1, with the end point’s current
position vector within the local coordinate X, we can calculate its end point’s position within
the world coordinate as

[Ew] [Zc]
pel :T[EC—>EW} pc1—>e _ (5)

In the above example, vector p[czj]e denotes the third movable robot arm link pointing

from the joint ¢ to the end point e in the local coordinate system ... Via the homogeneous
transformation matriz T~ we can project it to the world coordinate system and the
result vector p[ezw] pointing from the origin o of the world coordinate system Y, to the end
point e in Xy.

2.2 Robot Twist Velocity

At the last section of the previous tutorial article [5], we have introduced the transformation
of the robot arm end point’s linear velocity and angular velocity during the robot arm
rotation. The previous analytic representations of the linear velocity and angular velocity
are derived separately from each other. In this part, we will combine the robot linear
velocity and angular velocity together, which is also named as the twist of robots.

2.2.1 TwiST VELOCITY IN WORLD COORDINATE SYSTEM

Definition 3 (Twist): Formally, given the angular velocity w and linear velocity v of a
point in robot body, we can combine w and v into one vector, which defines the twist velocity
vector of the robot body:

. m € RS (6)



IFM LAB TUTORIAL SERIES # 9, COPYRIGHT ©IFM LAB

In the previous article, we introduce the operators A : w — RR' (or A:w — RRfl)
and V: RRT = w (or V: RR™" = w) to create the relationships between the angular
velocity vector w and the rotation matriz R. Here, we can introduce similar operators to
the twist vector v and the homogeneous transformation matriz T.

Definition 4 (Operator Definition): In this paper, we introduce ab operator A to project

the twist velocity vector v = [‘:} to its matriz representation as follows:

b [‘g g] (7)

The above matrix representation of v is closely correlated with the homogeneous trans-
formation matriz T actually, and their relationship will be analyzed as follows.

Example 3 To clearly explain the physical meanings of the terms to be derived below, we

] ' R[EQHEW] p[zw}
can take the homogeneous transformation matriz TEe—3wl — a as an

0 1

ezample. Let’s first calculate the product of matrices TEa—3w] (T[E“_)E“'})_l, which can be
represented as follows:

. —1

plBa—w] (T[Ea—>EW]) (8)

_ R g [mEEm)t (RIZ) 1= (9)
0 0 0 1

(10)

[R[EaﬁEqu[EaaEw])l I-)([lZw] _ R[EGHEW} (R[Eaﬁz“v])lp([;w]]
= 0 0 .

Considering that R[Za—2v] (R[EG_’EW])_1 = R[Ea—2v] (R[E“_E“‘})T = CJ([IEW] and @EIEW}pLEW} =

w s p= ihe above representation of matriz T=a=w](TEa=w])=1 tan be represented
with
_ 2w - [Bw Sw Zw
T[Eaﬁz\’v] (T[Eaﬁzw}) 1 _ [w([],E } pL ] — w([l ] X p[a }] (11)
0 0

The physical meaning of &3([12“'] = R[Ze3v] (R[EG_EW])i1 is very straight-forward and we

have introduced the operator in the previous article already. As to the term pLEW] — wLEW] X

pLEW], it actually denotes the linear velocity of joint a within the world coordinate system

Yw with the velocity caused by the rotation being excluded, i.e., w([lzw] X p?”. Such a linear
velocity can be caused by the movement of the robot arm base, which introduce extra velocity
for all points in the robot arm.

For simplicity, we can denote VLEW] = pLE“'] — w,[lzwl X pLEW}, so we can simlify rewrite

the homogeneous transformation matriz product as follows:

— NZw Sw
PlZa—Sw] (T[Eaﬁng 1 _ [w% ] VLO ]] ' (12)

7
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Based on the above analysis, we observe that with in the world coordinate system Xy,
we can apply the A operator to the twist velocity I/EZEW], the result matrix is identical as the
. . . -1
corresponding homogeneous matriz product TFa—>v] (T[EG_’EW}) actually:

N [Ew] [EW} . -1
[Ew] N A[ZW] — w Va . [Ea Ew] [Ea Ew}
(WP = plvl = [ “ | =T (T - ) . (13)

2.2.2 TwisT IN LocAL COORDINATE SYSTEM

In the above analysis, we multiply (T[E‘1_>E“’})71 on the right side of matrix TFa=3w],
Some readers may also wonder if we multiple it to the left side will affect the result or not?
In this part, we will answer this question.

Similar to the above analysis, we can first calculate the left multiplication of (T[E“_@W} ) -
to TEe=2w] a5 follows:

(i) iz (14)

_ -(R[EQ%EW})—I _(RIZmy-1pE] [REas] ol 1)
0 1 0 0

(R[Ea—>2w} )—1 R[Za—2w] (R[Ea—>2w] )~ 1 pg?w]

- 0 0 ] (16)

(RIZa=Su]) TRIZa— 5] (R[EaaE\V])Tp([le]

- ] | )

0 0
In the above representation, the physical meaning of term (R{ZG%EW])TI')LEW] = v([zza]
should be trivial for the readers to figure out. As to (RFe=>)TR[Fa=3w] a5 illustrated
o2l

as follows, it actually denotes w;

Bl — <(R[2,ﬁz“]) 1w§w)A (18)
_ <<R[Za—>2\v])—rwa§]w>/\ (19)
— (REE) TS (RIZa—S0]) (20)
_ (R[Ea—>2w])T (R[ZG%EW}(R[EQAEW])T> RI[Ea—5w] (21)
_ (R[EGAEW})TR[EGHEW] ((R[EQHEW])TR[EEﬁZW]) (22)
= (RIPa7Evl) TRPa=E0], (23)

Therefore, we observe that the left multiplication of the homogeneous transformation
matrix terms will be denoted as

-1 ~[a] < [Za] [Za] ]
[Sa—Sw] [Ba—Sw] _ |Wq Va _ |Wa _ (%l
(T ) T [ v ] [vl?a]] Dl (24)
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In other words, the left matrix multiplication (T[E“%EW})_1 TFa=>v] will be equivalent to

the result we can get by applying the A operator to the twist velocity I/LZ“] at joint a within

the local coordinate system X,.

2.3 Twist Velocity Transformation across Coordinate Systems

In the previous subsection, we introduce the twist velocity vector for readers, and also illus-
trate the twist velocity vector representations within different coordinate systems subject to
the new A operator. In this part, we will further discuss about the relationships between the
twist velocity vectors D) and P17 as well as between v and v, across coordinate
systems.

2.3.1 RELATIONSHIP BETWEEN pl-e Anp p(Pv]

Let’s first talk about the relationship between ELZ“] and 17?“'] in different coordinate systems.

Based on the detailed derivations in the previous two subsections, we know that
Dl = (T[Eﬁzw]) T plEesl, (25)

Meanwhile, since

\3

[(Zw] _ T[Ea—>2w} (T[EQ%ZW]>*1 ’ (26)

a

by multiplying T[«—~>w] to both sides of the above equation, we can get

EL‘EW]T[E,I*)EW] — T[EaaEw]' (27)
By replacing the representation of TZa=%w] in the above equation into Equation 25, we
can illustrate the relationship between 72 and 5] as follows:
plZ (T[za—@w])‘l TEa—50] (28)
— (T[Ea—)Ew]) -1 ﬁLE\n']T[ZaﬁEW] . (29)
From it, we can also obtain that
ﬁ([lEW] _ T[EGHEW]ELZCL](T[ZQHEW])fl' (30)

In other word, via the homogeneous transformation matriz, we can project the twist
velocity vectors subject to the A operator to each other.

2.3.2 RELATIONSHIP BETWEEN VLZG] AND VLZ“']

Based on the above analysis, we can further derive the relationship between the twist velocity

vectors v and v, By replace the terms ﬁgzw}, TZa=2v] and 17?“] with their concrete
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matrix representation into Equation 30, we can get

O [Ew} [EW}
[w (6 VaO ] (31)

[ gl ol o] [meomy —eesgl)
0 1 0 0 0 1
I | y&a W Ya a wl)— a wl)— Sw
_ R[zﬁz“]w([lz} R[Ea—i Iyl ]] [(R[z _0>2 -1 (R —>21 H=1pk ]] (39)

R[zaﬁzw]a?a}(R[zlﬁzw])q _R[zaazw]a?a](R[zaazw])quw] +R[Ea~>2\v]v([lza}]

0 0
' (34)
B _R[Eaezw]u/}?a}(R[Ea—>2w])T —R[E“_)ZW]QLE“}(R[E“_)Z“'])Tpgzw] —I—R[Z“_)EW]V([ZE“]]
0 0
' (35)
() i e ”
i 0 0
(37)

Based on some basic properties about cross-product and the A operator on the rotation

A
matrix, the term — (R[ZG_}EW}w?“D p([lz“'] can be rewritten as

_ (R[Za—)E“'] wgza]>/\ il — _ <R[2a—>zw] wgza}) « pl=v] (38)
— pi)x (RO uf) @)
— (pl=v)r (R[za—mw] w([}&]) (40)
_ BRI, (a1)

Therefore, from the above Equation 31, we can get that

[Ew] — R[Za—=2Ew] [Za]
{wa R We (42)

VLEW} — ﬁ([lzw]R[Za—)Ew]wLZa] + R[Ea—)Ew} V([lza]'

We can also represent the above Equation 42 with linear algebra representation, which
[Za] [Ew]

will illustrate the relationship between v * and vg ™' as follows:
w([lzw} B R[Ea—)EW] 0 LULLEG] 13
VI[IEW} - ﬁgzw} R[Ea —2w] R[Zaﬁzw] V([J,Ea] ( )

adjoint representation Ad(T[Ea —Xw] )

10
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Definition 5 (Adjoint Representation): Given the homogeneous transformation matriz

) R[Za—>2}w} LEW]
T[Eaﬁzw} — [ 0 p ) (44)

We can represent its adjoint representation as follows:

(45)

Ya—Yw
Ad(T[Za—)EW]) — [ R[ ] 0 ]

ﬁ([lzw]R[Ea—)Zw] R[Ea—>2“~]

The adjoint representation of the homogeneous transformation matrix will project the
twist wvelocity vectors across different coordinate systems. For instance, from the above
analysis, we can get that

v = Aq(TEamSw]yy [Pal, (46)

With a similar process, we can also obtain that
vl = Aq(TEv =)y B, (47)

2.4 Screw

We have been discussing about the robot body motion and twist velocity vector above.
Some questions may naturally arise in readers’ mind: “why do we need to study both
‘robot rotation’ and ‘robot motion’?”

To answer the question, we need to distinguish the differences between “robot rotation”
and “robot motion”. Asindicated by the name, “robot rotation” as introduced in [5] denotes
the rotational movement of the robot body (or part of the body). Meanwhile, “robot
motion” involves both the rotational movement, as well as the translational movement, so
it will be much more complicated to model than the the robot rotation.

2.4.1 A Toy EXAMPLE

Some readers probably may propose another question “Can we project the ‘robot motion’ as
a type of ‘robot rotation’ movement, or combine them and model them as one movement?”
In stead of directly answering the question, we can use a toy example below to illustrate
our answer.

Example 4 As shown in Figure 3, in the 3D space, we provide three coordinate systems:
(1) the world coordinate system Yo with origin o, (2) the local coordinate system ¥, before
motion with origin at point pg, = (1,2,0)7, and (3) the local coordinate system ¥ after
motion with origin at point p, = (2,1,0)7. As to the orientation, compared with the
world coordinate system X, coordinate system X, rotates in the counter clockwise direction
around azxis z with an angle of 30°, and X} rotates in he counter clockwise direction with
an angle of 60°.

Based on the orientation and positions of these two local coordinate systems, we can
define the homogeneous transformation matrices from them to the world coordinate system

11
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30°

Figure 2: A Example of Robot Motion. (The motion of coordinate ¥, to ¥, via both
rotation and translation can be modeled as a rotation around point g with an

angle of 6 degrees.)

as
cos30° —sin30° 0 1 cos 60°
TEa—S] _ sin30°  cos30° 0 2 TlZe—5u] _ sin 60°

0 0 1 0}’ 0

0 0 0 1 0

—sin 60°
cos 60°
0
0

O = O O

—_ O =N

Based on them, we can calculate the transformation matrix from 3, to Xy as

T[Ebﬁza] — (T[EGHEW})flT[Eb*}ZW]

[0.866 —0.5 0 2.134
0.5 0866 0 —1.232
0 0 1 0
0 0 0 1

[cos30° —sin30° 0 0.366
_|sin30°  cos30° 0 —1.366
- 0 0 1 0

0 0 0 1

(48)

So, according to matriz TZv—=>al looking from 4, the motion of the local coordinate sys-
tem from X, to Xy, involves both (1) a rotation in the counter clockwise direction with an an-
gle of 30° around the z azis, and (2) a translation with a position vector (0.366, —1.366,0)".

12
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—eq X p heq

h = pitch

= linear velocity /angular velocity

Example 5 Figure 3: An Example of Screw Rotational Movement. (Unit vector e: the
direction of the screw axis; Scalar ¢: rotation rate of screw; Scalar h: pitch of
screw and it equals to “linear velocity scalar along screw axis/angular velocity
scalar”; Vector p: it denotes a point on the screw axis.)

Meanwhile, looking from the world coordinate system Xy, it can also be modeled as a
pure rotational movement around the axis vector at point q, i.e., py = (3.37,3.37, O)T, m
the counter clockwise direction with an angle of 0 degrees actually.

In the above example, the movement involves both a rotational movement and a transla-
tional movement, which can be modeled as a pure rotational movement around certain axis
in the space. How about a pure translational movement without any rotations? Actually,
the translational movement can still be modeled as a rotational movement with the rotation
radius approaches +oo.

2.4.2 SCREW AXIS

To formally model the rigid robot motion as a rotational movement, in this part, we will
introduce the concept of screw axis and will also introduce two operators to project screw
axis with the transformation matriz.

If the readers still remember, when introducing the angular velocity vector w, we mention
that it can be represented as w = ge,,, where e, is a unit vector indicating the direction
of the angular velocity vector and scalar ¢ denotes the rate of ration around the axis with
the unit rad/s. It helps interpret the physical meaning of the angular velocity vector.
Meanwhile, when it comes to the twist velocity vector v, the readers probably may also
wonder if it can also be interpreted in a similar way or not. In this part, we aim to answer
this question and represent the twist velocity vector with the screw motion.
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The twist velocity vector contains both angular velocity and linear velocity, which may
remind us about the screw rotational movement. In Figure 3, we show an example of a screw
rotating around the axis with direction indicated by a unit vector es. The screw rotating rate
can be denoted by a scalar ¢ with unit rad/s, and the screw pitch is represented by another
scalar h in this example, which denotes the forward movement distance as the screw rotates
an angle of 360° degrees. One of the point on the axis is denoted by position vector p. The
collection of s = (p, es, h) together defines the screw axis representation, and ¢ denotes the
angular velocity scalar around the screw axis.

Screw Representation: Based on the above screw representation, given a twist velocity
vector v, by choosing proper elements of the screw azis, we can also represent it with the
screw axis together with the corresponding rotational angular velocity scalar ¢ as follows:

_|w ges
V= |:V:| o {—q'es X p+ hegq|” (52)

The physical meaning of ¢e; denotes the angular velocity of the screw in rotation, As to the
linear velocity representation —ges X p + hesq, it has two parts: (1) term hesg denotes the
translational linear velocity that the screw moves forward as it rotates, and (2) —ges x p
denotes the linear velocity at the origin due to the rotational movement about the axis.

2.4.3 SCREW AXIS REPRESENTATION SIMPLIFICATION

The above screw azis vector s and rotational velocity scalar ¢ representations carry concrete
physical meanings. Meanwhile, given a random twist velocity vector v, calculating the
configurations of the screw axis vector s and rotational velocity scalar ¢ that can make the
equation hold is not an easy task. In this part, we propose to simplify the above calculation
process.

Simplified Version 1: In application, for any twist velocity vector v = [:] input,

e if w = 0, there also exist an equivalent representation of the screw axis vector s and
rotational velocity scalar ¢ that can make Equation 52 hold, where e, = w/ ||w]],
§ = ||w||, and h = e/ v/{. Meanwhile, the position vector p is chosen so that the term
—ges X p provides the portion of v orthogonal to the screw axis;

e if w = 0, then the pitch h will be +00 and e; = v/ ||v|| and ¢ is interpreted as the
linear velocity ||v|| along es.

The readers may have also observe some potential problems with the above simplified
representation of the twist velocity vector as the screw axis and angular velocity representa-
tion, e.g., the pitch h can be 400, vector p is not unique, and the calculation process is very
cumbersome. Therefore, we will introduce to define the screw axis vector s as a normalized
version of any twist velocity vector v corresponding to the motion along the screw.

Simplified Version 2: For any twist velocity vector v = [‘:] input,

14
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o if w # 0, we define the screw aris s = v/ ||w| = ], and the angular velocity

scalar about the axis as ¢ = ||w]].

0] .

v |, and the angular velocity scalar
Tvll

e if w = 0, we define the screw azis s = v/ ||v] = [

about the axis as ¢ = ||v||.

Based on the above simplified version, we can provide the formal definition of screw azis
as follows:

Definition 6 (Screw Axis): For a given coordinate system, a screw axis can be formally
defined as

s— M 20 (53)

where either (1) ||w| =1 or (2) w =0 and ||v|| = 1.

According to the above definition, the screw azis vector is actually a normalized version
of the twist velocity vector, and we have the equation v = ¢s hold. Also many of the
properties, operators and transformation that can be applied to the twist velocity vector
will also hold and applied to the screw axis vector, e.g., the A operator.

. . . w . . .
Given a screw axis representation s = [ ], we can represent 1ts matrix representation
v

subject to the A operator as follows:

0 —W3 w2

s=1|“ Vv , where @ = | ws 0 —wi]. (54)
0 0
—Ww?2 w1 0

With the adjoint representation of the homogeneous transformation matriz, we can also
convert the screw axis vectors across coordinate systems, e.g.,

S = Aq(TEe=SulyglBel and §F] = Aq(TEv2Ral)gln]] (55)

where 8 and 8P« denote two screw azis vectors in the coordinate systems Yy and
3., respectively. Terms TZe=5w] and TEw—¥al represent the homogeneous transformation
matrices between these two coordinate systems.

2.5 Motion Exponential and Logarithm

In the previous tutorial article [5], we have introduced that the rotation matriz R can be
represented as the exponential of its corresponding angular velocity vector w, i.e.,

R(t) = exp®’. (56)

Since we have modeled the rigid-body motion of robots as the rotational movement
in this section, the readers probably may also wonder if the homogeneous transformation
matriz T will also have similar exponential representations of the screw azis representation
s or not? This is what we plan to introduce in this part.

15
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2.5.1 MOTION EXPONENTIAL REPRESENTATION

We have spent lots of space introducing the rigid-body robot motion, twist velocity and the
screw axis before already. Here, instead of showing the detailed derivation steps, we will
directly define the exponential operator that will project the screw axis to the homogeneous
transformation matriz.

Definition 7 (Exponential Operator): Given the screw aris s = [L:] € RS and the

rotation angle q, we define a matriz exponential operator to project the screw rotation to
the corresponding homogeneous transformation matriz T € R4 as follows:

exp :sq — T. (57)

Specifically, for the screw axis s = [:], depending on its element values, we can also
provide the closed-form representation of term exp™ illustrated as follows:

o if |w| =1, we can also provide the closed-form representation of the exponential term
exp®? as follows:

_ . .
exp™ — exp“? (Iq + (1 —cosq)w + (¢ — sinq)w ) vl (58)

0 1
e if the angular velocity vector w = 0 and ||v|| = 1, the above matriz representation can

also be simplified as
Sq __ i vq
exp®? = {0 1] : (59)

Based on the exponential operator, given a screw axis vector, we can calculate the
corresponding homogeneous transformation matriz that can describe the identical robot
motion across coordinate systems.

2.5.2 MATRIX LOGARITHM REPRESENTATION

Let’s also look at the reversed direction. Given a homogeneous transformation matriz T =

R p
o
that exp™ = T? Besides the exponential operator, we will also introduce the a logarithm
operator here to achieve such an objective.

}, can we also find a screw azis s € R® and a rotation angle scalar ¢ € R such

Definition 8 (Logarithm Operator): Given a homogeneous transformation matrix T =
R . . . . .
[O I(j , via the logarithm operator, we can project T to a screw axis s € RS and a rotation

angle scalar ¢ € R shown as follows:
In: T — sq. (60)

Specifically, depending on the values in matriz T, we can also provide the closed-form
representation of the corresponding screw azis s € RS and rotation angle scalar q € R:
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e if R =1, then we can set w =0, v=p/|pl|, and ¢ = ||p|.

e otherwise, we can use the logarithm operator defined before for rotation matriz to
calculate the angular velocity vector and the angle scalar q as

w=(InR)" (61)
q = atan? (H(R?,z — Ra3,R13 — R31, Ra1 — R12)TH ,Ri1 + Ro2 + Rz — 1) . (62)

As to the linear velocity vector v, we can represent it as

v = G p, where matriz G = Iq + (1 — cos ¢)@ + (g — sin ¢)&°. (63)

2.6 Wrench

At the end of this section, we also plan to provide a brief introduction about the wrench of
robot motion, which illustrate the relationship between forces and torques. More detailed
information about force and torque will be discussed in the last section about robot dynamics
for readers.

2.6.1 WRENCH DEFINITION

From basic knowledge we learn from physics, given a force denoted by vector f. acting
on the end point e of a robot body, whose position can be denoted as vector p., we can
represent the generated torque as

Te = Pe X fo. (64)

Similar to twist velocity vector, the force and generated torque vectors can also be
organized into a vector of 6 elements, which is formally defined as the wrench vector as
follows:

W, = {T} € RS. (65)
fe

For the multiple wrenches are acting on the same body, the total wrench is defined as
the sum of these individual wrench vectors. Readers probably have also noticed that the
above wrench vector is very similar to the twist velocity vector, and the torque vector can
also be expressed as the cross-product of the force and the position vectors. Meanwhile,
they also have minor differences, e.g., (1) 7 = p x f (vector p is multiplied at the left side)
but v = w x p (vector p at the right side); and (2) in the wrench vector w, term 7 obtained
via p x f is at the top, but in the twist velocity vector v, the linear velocity v obtained
by cross product term w X p is at the bottom instead. Due to these differences, we cannot
simply apply the operators introduced before to the wrench vector here.

2.6.2 WRENCH TRANSFORMATION

Actually, via the power quantity that drives the motion, we can further illustrate the rela-
tionships between wrench and twist more clearly. The wrench vectors in different coordinate
systems can also be converted into each other via the homogeneous transformation matriz.
Given two coordinate systems X, and Y, we can represent two wrench vectors acting on

the end point e defined in each of them as WLE“] and WLZb], respectively. At the same time,
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we can also represent the twist vectors of the end point e in these two coordinate systems as
vectors I/[eza] and V[ezb}. We know that the power that drives the motion of the rigid-body
robot can be represented as

P=f] xv.=71/w.. (66)

Also the power P is scalar that is independent of the coordinate systems. Viewed in such
a perspective, we can get that

Sa\ T ;[ Za _ Sp\T 4,12

(v Twi! = () Twe : (67)
—_—— N————

(rD Tl ((F) Txvel 2P ) Tw (17 Tocv ™ <2p

According to the above Equation 46 and Equation 47, we know that

vPl = Ad(TEe= o)yl (68)
By replacing the above representation of VLEb] into Equation 67, we will have
(vf)) TwfPe] = (W) Tl (69)
= (Ad(TteDl) D)l (70)
= ()T AT ) Tl ()

Since the above equation should hold for any twist velocity vector V[ez"] € R, it can lead to

wlPel = Ad(TIFa=D]) Ty [B], (72)
With the same method, we can also derive that

wiPl = Ad(TEeBal) Ty Bl (73)

3. Forward Kinematics

In this section, we will talk about the forward kinematics for readers on robot motion.
Based on the robot motion introduced in the previous article [5], in this part, we will show
readers how the robot body (involving multiple joints and links) will move to the desired
position and state.

3.1 What is Forward Kinematics?

The rigid robot body can actually be viewed as mapping, which projects the input motor
movement parameters (e.g., desired angles q, velocity q and acceleration {) to the desired
robot position and state (e.g., position p, orientation R, velocity v and force f of certain
robot body parts).

Definition 9 (Forward Kinematics): Formally, forward kinematics is a calculation to

obtain the desired robot position, orientation and other properties of links in the body from
a giwen input parameter.
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Figure 4: The Robot Arm Example We Use Before.

If we represent the input parameters as a vector @(t), subject the pre-defined rigid robot
body, we can represent the desired robot outputs as

o(t) = g (6(t)). (74)

Since the input parameter and the desired output are both changing with time, we specify that
vectors O(t) and o(t) both have time as their variable. Meanwhile, the calculation process
of the mapping g () to achieve the output is called the forward kinematics process.

Robot forward kinematics serves as the basis for robot simulation and control. It helps
display the current state of the robot, calculate the center of mass of the robot body
and detect potential collisions of the robot with its body parts and the environment. In
this section, we will introduce the forward kinematics of robots in terms of the wvelocity,
orientation, velocity force and torque for readers, respectively.

3.2 Pose in Forward Kinematics

We have been discussing about the position and orientation changes of robot parts in both
the previous article [5] and in the previous Section 2 already. Here, we will just provide a
very brief introduction about updating robot pose, covering both position and orientation,
in forward kinematics with the chain rule and exponential representation, respectively.

3.2.1 CHAIN RULE

According to our previous discussions, readers should be able to understand how the rotation
matriz projects position vectors across coordinate systems. In some sense, the rotation
matriz also indicates the orientation (relative to the world coordinate system) of robot
actually within local or world coordinate systems.
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Definition 10 (Pose): The combination of both position and orientation defines the pose
of the robot, which can be represented as the position vector and rotation matrix pair (p,R).

p
0 1

also say the homogeneous transformation matriz T represents the pose of robots.

Since the homogeneous transformation matriz T = covers both p and R, we can

As introduced in the previous section, for the robot arm shown in Figure 1, the position
and orientation of its end point can be calculated via the chain rule, which will obtain the
homogeneous transition matriz Tl

T[ZCHEW] (75)
_ T[Ea—>2w}T[Zz,—)E,L}T[EC—)Eb} (76)
_ [rizemad pE [REmd plEd ][RIz plel (77)
0 1 0 1 0 1
R[Ea—SwIR[Ze—= S R[Ee— ] Bl | RIZa—=Tw]pEa | RISa=EWIR D6 Ta] 0]
_ Pa  + Py p T Ppse (78)
0 1

Since the rigid-body robot arm is normally straight, the orientation of the end point is
actually the same as the orientation of the joint that controls the last arm link. From the
above representation of the homogeneous transformation matriz Te>v] we can denote
the orientation of the end point of the arm with the rotation matrix

R[ZC—EW] — R[Ea—>zw]R[Eb—@a]R[ZC—@b]_ (79)

As introduced in the previous section, based on the end point’s current position vector
within the local coordinate ¥, we can calculate its end point’s position within the world
coordinate as

o

1 1

Se—Y =]
= TFe7Su] | Pesel (80)

The vector p[ezw] indicating the robot arm end point’s position can also be represented as

the following summation formula:

vl —plEul 4 REEwIpEel | RS SR [SeSalp ¥l (81)
n R[Za_)Zw]R[E;,—)EAR[EC—)Eb]p‘[:%}e' (82)

3.2.2 PrRODUCT OF EXPONENTIALS

In the above derivation, we assume the rotation matrix for each joint is known and can be
used for calculating both the orientation and position of the robot arm end point. Mean-
while, when the rotation matrices are unknown, we can still calculate the end point ori-
entation and position via the exponential operator we introduce in the previous article [5]
based on the rotation angles or the joints.
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As introduced in [5], the homogeneous transformation matriz of the robot arm joint can
be represented with its angular velocity vector with the exponential operator as follows:

Sw alEwl, Sw

TEa—>3w] — R[Fe5w] pEz } _ |exp®a e pg } (83)
0 1 0 I

where vector eL “ and scalar g denote the rotation axis and rotation velocity, respectively.

In a similar way, we can also represent the rotation matriz and homogeneous transfor-

mation matriz with origins at other joints with their corresponding angular velocity vector

as follows:
Ya ~[Zal Ya
TEs—=Ea] R[Zy] pg—]b _ |exp% P PL_J; , (84)
0 1 0 1
by ol b
0 1 0 1

By replacing them into the rotation matrix and end point position vector calculation,
we can obtain their representations as follows:

A[EV\] [ al ,\[ ]
RPe—>w] = <exp da oxp®h @ exp® qc) , (86)
) sEwl S "[ZV\] " [Ea] b
p[ezw} — p([lzw] + (expe“ da pz[za}b) + (exp q eXp ay p£j>}0> (87)
[E“] [ al [ l.
+ <exp da gxp® " B exp®e " de p[cz_f]e> . (88)

The above representations of rotation matrix and end point position vector is also named
as the product of exponentials of the joint angular velocity vectors.

3.3 Velocity in Forward Kinematics

Let’s revisit the Equaton 74 provided at the beginning of this section, if we take the desired
output vector as the position vector p(¢) and the input as the angles of the joints q(t), we
can represent the desired output as follows:

p(t) = g(q(t)). (89)

3.3.1 JACOBIAN MATRIX

By taking the derivatives of both size of the above equation with regard to the time variable
t, we can obtain

o(t) = a% E]q) 6(;(;) _ a% E;q) a(t) (90)

= Jq4(t), (91)
o)
e

where term p(t) denotes the linear velocity vector and the matrix J = about the joint

variables q is called the Jacobian matrix.
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Example 6 For instance, let’s assume the length of the robot arm links starting from the
origin o, joints a, b and c are l1, lo, I3 and ly, respectively. Based on the rotation angles of
these links, we can provide the analytic representation of the end point position in the world
coordinate system as

ze =0, (92)
Ye = losin@ + I3 sin(0 + ¢) + lysin(0 + ¢ + ), (93)
ze =11 +1acos8 + I3cos(0 + @) + 1y cos(0 + ¢ + ). (94)

By taking derivatives of both sides of the above equations, we can obtain

de =0, (95)
Je = 120 cos 0 + 13(0 + &) cos(0 + ¢) + 14(6 + & + ) cos(0 + ¢ + ), (96)
be = —lofsing — 130 + §)sin(f + @) — 14(6 + ¢ + ) sin(f + ¢ + ). (97)

The above equations can also be represented in the form of p = Jq as follows:

e o 0 07]fe

U | = [J21 Jo22 J23 Pl (98)

Ze J31 J32 J33] |@

—— ——
P J q
where the matrix elements

Jo1 =1l2cos0+13c08(0 + @) + lacos(0 + ¢ + ), (99)
Joo =13c08(0 + @) + lycos(0 + ¢ + ), (100)
Joz =lycos(0 + ¢ + ), (101)
J31 = —losinf — lzsin(d + ¢) — lysin(d + ¢ + ), (102)
J392 = —l3 sin(@ + d)) — 1y sin(@ + ¢+ ¢), (103)
J373 = —ly sin(@ + ¢+ ’(ﬁ) (104)

Example 7 For instance, if the arm link length l1 = lo = I3 = 4 = 1, and the arm joint

angles 0 = 7, ¢ = 5 and ¢ = ‘%”, we can represent the corresponding Jacobian matriz as

follows:

0 0 0
J= (cosZT +cos3T +cos3T)  (cos 3T + cos ) (cos 3X) (105)
_(— sin 7 — sin 5f — sin 7”) (— sin 5 — sin 7“) (— sin 7”)
[0 0 0
- 0o 2 ol. (106)
1-v2 1-¥2 1
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3.3.2 VELOCITY KINEMATICS IN WORLD COORDINATE SYSTEM

As introduced in Section 2.2.1, the linear velocity and angular velocity of robots can be
described with its twist velocity, which can be represented with the homogeneous trans-
formation matriz effectively. In this part, we will discuss about the robot welocity within
the world coordinate system, whereas the wvelocity kinematics within the local coordinate
system will be introduced in the following subsection.

According to Equation 13 introduced in the previous Section 2.2.1, the twist velocity
vector of the robot end point can be represented as

a([izw} — T[Ec—)Ew} <T[Zc_>2w]) ! . (107)

Meanwhile, as introduced in the previous Section 2.5, the homogeneous transformation
matriz can also be effectively represented as the screw axis and rotation angle with the
exponential operator. Viewed in such a perspective, we can represent the matrix T[Ze=3w]

as follows:
T[ZC%EW] — T[Eaﬁzw}T[Z;,—}EAT[EC—)E” (108)
= exp % exp™® exp>edc Ty, (109)

where the constant matrix T( to represent the initial state of the robot when ¢, = q, =
qc = 0.

With the above exponential representation of matrix T
derivative with respect to the time as

[Be=Zwl we can represent its

. d - _ _ _ d - _
T[ECHZW] — (dt eXpSaQa> eXprQb eXpquC TO + eXpSaQa (dt eXprQb> eXpSCqC TO (110)

. . d -
1 expSeda expShd (dt eXpSch> T, (111)
= ( expgaQa gada engbqb eXp§ch + expgaQa engbe ngb engcqc (1 12)
+ expg"q“ expgbqb exp§ch §ch> T. (113)

. . —1
On the other hand, we can also represent the inverse of matrix (T[Zcﬁz“’]) as follows:

(T[zﬁzw}) - (T[zﬁzw}T[zbeza}T[zﬁzb}) ! (114)
_ (T[zﬁzb]) ! (T[sza}) ! (T[zﬁzw}) ! (115)
= Tal expSe%c exp % exp Sada (116)

Based on the above derivation, we can formally represent the twist velocity vector with
the above exponential representation as follows:

. —1
D= _ e (T[Eﬁﬁw]> (117)
— expﬁaqa Suda exp—§aqa + expga da engbe Sv eXp_ngb exp_gaQa (118)
+ expgaQa eXp/S\be exp§CqC /s\cqc exp*/s\c(Ic eXp*/S\bqb eXp*/S\aQa . (119)
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From the previous Section 2.3.1 and Section 2.3.2, we already know that for ﬁ([zz“'] =

T[Ea—}Ew]i)L{Ea}(T[Ea—}zw])_I’ we can get V[QZW] — Ad(T[Ea—}EW])I/LEa]. Since the screw axis
is also defined as a normalized twist velocity, with the V operator be applied to both sides
of the above equation, we can simplify the equation as

v = Ad(exp®e9e)s, Go + Ad(exp®9e exp™®)sy ¢, + Ad(exp®e9e exp®® exp®eie)s, g.

j([IEaHEw] j?b%zw] jl[:zc*)ZW]
(120)
. 1. PSS N6 IR Wl -
=3 4 gy 4 5 g (121)
DI ) [Zp—=Zw] :[Z.—2 o
= |jiRam ] g il Ees Bl g (122)
qe
J=w]
— J[EW}C.]. (123)

Definition 11 (Space Jacobian): Formally, the matriz
JET = [Ad(exp®ate)  Ad(expSade exp®®)s, Ad(expSate exp™® exp>)s,| (124)

we introduce above is also named as the space Jacobian matriz in the world coordinate
system. The column vectors in matriz =V actually denote the screw azes of different
joints of the robot body in the world coordinate, respectively.

3.3.3 VELoCITY KINEMATICS IN LOCAL COORDINATE SYSTEM

Meanwhile, according to Equation 24 introduced in the previous Section 2.2.2, we can also
obtain the twist velocity vector representation of the end point within a local coordinate
system Y., which can be denoted as follows:

D> = (i) s (125)

/N 7N

exp 5% exp =P G, expSe engch> da + (eXp_gcqc Sy engcqc) G+ (Sc) g (126)

= Ad (exp*§ch expfgbq”> SqGa + Ad (expfgcqc) Spdp + (8¢) e (127)
—~—
jZa—ze] jgzbw:c] jeel
Ta—Ec] 3[Ep—Ec] i[x e
= |l P ] g, (128)
de
J(=c]
= Jg. (129)
Definition 12 (Body Jacobian): Formally, the matriz
JE = [Ad (exp‘gcqc exp Sve)  Ad (eXp_gch) (80)] (130)

we introduce above is also named as the body Jacobian matriz in the local coordinate system
Y. that the end point lies in. The column vectors in matriz I actually denote the screw
azes of different joints of the robot body in the local coordinate ., respectively.
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3.4 Torque in Forward Kinematics

The Jacobian matriz also plays an important role in robot static analysis. Formally, at the
end of the robot arm, we can represent the generated force vector as f. and the joint torque
vector as Te.

3.4.1 STATIC ANALYSIS

According to the physics, in the rotational system, the system power equals to the product
of torque vector T. and the angular velocity vector w, of the end point, i.e.,

P=r1]w.. (131)

Meanwhile, the power of the end point can also be represented with its end point force
vector f. and its linear velocity vector v, i.e.,

P=flv,. (132)
These above two equations will derive that

flve =1 w.. (133)

3.4.2 FORCE-TORQUE RELATIONSHIP

Meanwhile, according to the Equation 90 we present before when defining the Jacobian
Matriz before, we know that the linear velocity vector v = Jwe, so we can have the
following equation,

£l Jw, =1] w.. (134)

The above equation holds for any angular velocity vector w, if
T
Te = (fJJ) =J7E,. (135)

The above equation calculates the required torque 7. needed to generate the desired
force f, at the end point. Meanwhile, when the Jacobian Matriz is not singular and its
transpose is invertible, we can also obtain

f,=0) lr.=3""Tr.. (136)

Such an equation indicates that, under the static equilibrium state, the force that can
be generated at the end point given the torques of the robot arm. This equation is very
important, and will be used in many scenarios. For instance, to pick up a box of certain
weight w, we need to decide the needed torques of each joint motors so the robot can hold
the box. More discussions about the robot torque and generated forces will be provided in
the following sections when talking about the robot dynamics.

4. Inverse Kinematics

In this section, we will introduce another important topic about robotic for readers, the
inverse kinematics. Just from the name, we can know that it is a reversed process of
forward kinematics introduced in the previous section. In this section, we will introduce
two different methods to address the inverse kinematics problem for readers, and also
provide detailed analysis of the Jacobian singularity.
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4.1 What is Inverse Kinematics?

We can still take the Equation 74 we use at the beginning of the previous Section 3 on
forward kinematics to explain “what is inverse kinematics” for readers.

e Forward Kinematics: Given the parameter inputs q(t), the process of calculating
the desired output o(t) of the robot body is called forward kinematics, i.e.,

o(t) = g (q(t)). (137)

e Inverse Kinematics: Given the desired output O(t), the problem to find the pa-
rameter solution q(t) that can satisfy

argq() 9 (a(t)) = O(), vt € {1,2,---}, (138)
is named as the inverse kinematics problem.

Compared with forward kinematics that give clear “instructions” (denoted by param-
eters q(t)) to robots that will perform accordingly to illustrate the outputs, inverse kine-
matics is more frequently used in real-world robot control, e.g., standing, walking, picking
up items. In this part, we will try to introduce how to find the parameter vector q(¢) that
will generate the output satisfying the constraint g (q(t)) = O(t).

4.2 Analytic Solution

Before we introduce the numerical solution to the inverse kinematics problem, we would
like to use a toy example to illustrate how to solve the problem analytically.

Example 8 As shown in Figure 5, we illustrate a robot arm in the 3D coordinate system
with two links of length 11 and lo, respectively. For the first arm link, it forms an angle of
0 degrees with respect to the y axis. Meanwhile, the second arm link further forms an angle
of ¢ degrees with the first arm link. We aim to configure the parameter values of the angles
0 and ¢ to make the end point reaches position denoted by coordinate pair (ze,ye,0) in the
space.

Analytic Solution: Based on the robot arm example shown in Figure 5, we will show
below about how to use the analytic solution to calculate the desired angles € and ¢.
First of all, for the triangle Aoae, according to the law of cosine, we know that

0e? = 0a® + ae* — 2(oa)(ae) cos B (139)
= yi+ 22 =13 +13—2hlycos B (140)
l2 l2 a2 2
— B=cos! |2 Tl ~ % . (141)
2419
Following the same law, we can also obtain that
ae® = 0a® + oe* — 2(oa)(oe) cos o (142)
— 3 =04 92+ 22— 2\/y2 + 22 cosa (143)
B+ye+22-13
-1 1 e e 2
= o = cos . (144)
< 2[1 \/ yg + Zg
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(07 y(i? Z@)

Figure 5: An Example of 2-Link Robot Ram.

Meanwhile, according to the coordinate of end point e, i.e., (0,ye, z¢), we can get that

tan2(a + 0) = (z¢, Ye) (145)
= (a+0) = atan2(ze, ye ). (146)

Based on the above analysis, we can easily obtain the representations of angles # and «
as follows:

0= (a+0)—a=atan2(ze,ye) — cos | =2 e _fe 2| 147

(@ +6) (o) (%JW 147
l2 l2— 2 _ 2

p=m—B=m—cos < Lr 22l1lze Ze) (148)

According to the above analysis, via the analytic method shown in the example, we can
obtain the closed-form solution of the inverse kinematics problem. The readers may have
also notice that the analytic method calculation process is already very cumbersome for the
2-link robot arm. When it comes to more complicated robot structures, like a 6-link robot
arm, it will become much more challenging to solve the problem analytically.

4.3 Inverse Position and Orientation Kinematics

Compared with the inverse kinematics, we have noticed that the forward kinematics cal-
culation process we introduce in the previous section is much simpler and easier. Readers
may also wonder if we can use forward kinematics introduced before to help identify the
solution to the inverse kinematics problem. This is also the problem we plan to study in
this part, and we will introduce a numerical solution that doesn’t need to analyze the
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< Repeat )
until Step

Ap AR

Parameter Error
Adjustment p* Calculation

Figure 6: Outline of the Numerical Solution in Updating Variable Vector via Forward Kine-

matics.

4.3.1 NUMERICAL SOLUTION METHOD

Before we introduce the detailed information about the numerical solution, we would like
to first provide the general framework of the numerical solution algorithm.

Step 1: Define the position vector pgier: and rotation matrix R of the robot’s
start position and orientation.

Step 2: Define the position vector pigrger and rotation matrix Rygrges Of the robot’s
target position and orientation.

Step 3: Initialize a variable vector q that denotes the angles of the robot’s link angles.

Step 4: Given the variable vector q and the current robot position and orientation,
calculate the robot position vector p and orientation matrix R outputs with forward
kinematics.

Step 5: Calculate the introduced error (or loss) term of the forward kinematics
outputs p, R compared with the target outputs ptarget, Riarget, €., 0P = P — Prarget
and (R =R — Rta'r’get‘

Step 6: If 6p and JR are sufficiently small (less than the pre-defined threshold), stop
the calculation and return the current variable vector q as the output.

Step 7: Otherwise, calculate the term dq with the introduced error terms dp and
6R, and update the current variable vector q = q 4+ dq and go to Step 4.
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An outline of the above algorithm is also illustrated in Figure 6. Such an iterative
adjustment process continues until the stop criteria is met. Meanwhile, the above algorithm
also create several new open questions:

1. Error Function: How to define “whether dp and R are sufficiently small”?
2. Adjustment Term: How to calculate the “dq” term to be used for updating q?

To address the first problem, a loss function is introduced to quantify “whether dp and
OR are sufficiently small” or not. Formally, given 6p = p — Ptarger and IR = R — Rygrget,
we can represent the introduced loss term to be

((5p,0R) = [|op|> + || (n 5R) |

(149)
According to the previous tutorial article, the “In” and “V” operators will project the
rotation matriz to the corresponding angular velocity vector, i.e., §(wt) = (IndR)Y. The
term w denotes the angular velocity vector of the interested point of the robot body. For
the loss term ¢(6p,dR) < v (where v = 1e7% is a pre-defined threshold parameter), then
the updating process will stop and we can also generally guarantee that the robot position
vector and orientation matrix approaches to the targets.

As to the second problem, we will introduce its solution in the following subsection for
readers with the Newton-Raphson Method.

4.3.2 NEWTON-RAPHSON METHOD
Let’s assume we change the parameter vector q with a very minor term dq, where éq — 0.

Its impact on the position vector q and orientation matrix R can be represented as

op = gp(q +0q) — gp(Q): (150)
d(wt) = gu(q+969) — gu(q). (151)

In the above equation, we already replace the term dR with the dw just to simplify the
representations below.

As introduced before in Equation 90 on welocity kinematics, if the term dq is small
enough and approaches to 0, we can actually combine the above two equations and rewrite

them as follows:
op | |v] _
sn] = o] = a e

where J € R%*" is the Jacobian matriz we introduce before and vectors v = p and w
denote the linear and angular velocity, respectively. The notation n denotes the number of
links in the robot, which is equal to the dimension of the variable vector q. The combined

vector v = L‘j is also the twist velocity vector we define before.

If matrix J is invertible, we can represent the term dq as follows:
_1-1|V| _ -1
dgq=1J [w} =J v (153)
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The above equation answer the second problem on “how to calculate the ‘6q’ term to be
used for updating q”. In application, instead of directly applying the calculated term dq to
update the variable vector q, we usually also includes a parameter A € (0,1) to control the
variable updating speed, i.e.,

q=q+A-0q. (154)

The introduced parameter A\ can stabilize the updating process and avoid drastic changes
to the variables, and this method is formally named as the Newton-Raphson method.

If the readers are familiar with mathematical optimization or gradient descent algo-
rithms, the Newton-Raphson method has been widely applied in parameter updating to
optimize the model performance. Meanwhile, in the above calculation process, we have a
strong assumption that “the Jacobian matriz J is invertible”. At the end of this section, we
will have a detailed analysis about the Jacobian matriz and discuss about how to update
the variables when J is singular.

4.4 Inverse Velocity and Torque Kinematics

In the previous Section 3.3 and Section 3.4, we discuss about the robot forward velocity
kinematics and forward torque kinematics, which calculates the robot part twist velocity
vector and generated force vector based on the inputs. In this part, we will talk about the
reversed process, i.e., the inverse velocity kinematics and inverse torque kinematics.

4.4.1 INVERSE VELOCITY KINEMATICS

From the name, we can know that inverse velocity kinematics literally denotes the process
to figure out the desired joint angular velocity to achieve the desired twist velocity vector.
From Equation 90 we provide in the previous section on defining the Jacobian matriz, we
already know the relationship between twist velocity vector and the joint angular velocity.
Furthermore, from Equation 152 in the previous subsection, we also know that if the Ja-
cobian matriz J is invertible, the joint angular velocity can be calculated from its twist
velocity as follows:

q=J"'v. (155)

Depending on the coordinate chosen to study the inverse velocity kinematics, the twist
velocity vector v can be defined as either T-I!T (the twist velocity in the local coordinate
system) or TT~! (the twist velocity within the world coordinate system) as we introduce
before. In the case if the Jacobian matriz J is not invertible, we will introduce the solution
in the following part at the end of this section for readers.

4.4.2 INVERSE TORQUE KINEMATICS

In the previous Section 3.4, we have also discussed about the relationship between the robot
torque and the force. In Equation 135 introduced before, via the Jacobian Matriz, we have
already calculate the required joint forque to generate the desired force for the end point,
1.€.,

Te=J'f,. (156)
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(@) The IMU (Inertial Measurement Unit) used in the Apollo Lunar Module.

MIDDLE

GIMBAL STABLE

IMU CASE
(CUTAWAY)

(b) The schematic of the IMU with three gimbals that rotates around three axes.

Figure 7: An Illustration of the IMU (Inertial Measure Unit) used in Apollo Lunar Module.

The above equation is derived based on pure static analysis, and no kinetic energy or
potential energy are considered actually. In the following section on robot dynamics, we will
further discuss about the robot wvelocity, torque and force for readers.

4.5 Singular Jacobian Matrix

In this part, we will talk about an important problem about the Jacobian matrix. According
to the previous discussion, the Jacobian matrix plays an important role in calculating (1)
twist velocity vector and force vector of the end point in forward kinematics, (2) needed
joint angle vector and torque vector to generate the twist velocity and force in inverse
kinematics. We make lots of assumption on the Jacobian matrix before in the derivation,
e.g., it is full rank and invertible. In this part, we will discuss about some potential problems
with Jacobian matrix, i.e., the singularity problem.

4.5.1 SINGULARITY AND GIMBAL LOCK

We can first use the classic “gimbal lock” problem to describe “what is singularity”. The
“gimbal lock” term becomes famous in the movie Apollo 13, which happens when the
rotational axis of the middle term in the sequence becomes parallel to the rotational axis
of the first or the third term.

Example 9 As illustrated in Figure 7, we show the IMU (inertial measurement unit) used
in the Apollo Lunar Module and its schematic representation, which is a mechanical gyro-
scope used for spacecraft navigation. This IMU has three orthogonal gyroscopes that hold it
at a constant orientation with respect to the universe. According to the orientations of these
three axes and the right-hand rule, we can mark them as the x, y and z axis, respectively.
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X axis = z axis

b)

Figure 8: An Illustration of the IMU Gimbal Lock Problem.

As the spacecraft pose changes in the universe, the stable member of the IMU will remain
relatively stable in terms of the orientation, but the outer, middle and inner gimbal will rotate
around their axes with certain angles. As shown in Figure 8, we can represent the rotation
angles around these three axes as 0, 8, and 0., respectively. From these rotation angles,
we will be able to infer the orientation of the spacecraft.

Meanwhile, when the middle gimbal rotates around the y axis with an angle 0, = /2,
we observe that the azis of the inner and outer gimbal (i.e., the x azis and z axis) will
be aligned and share the same rotation axis. For such a case, the IMU will have only two
degrees of freedom and one degree of freedom will be lost.

Such a degree of freedom lose in the above example can also be illustrated via the
mathematical representations of the rotation matrix about the IMU. For the rotation around
the x, y and z axis with angles of 0., 8, and 0, degrees, we can represent the corresponding
rotation matrix of the IMU to be

R = R, (0,)R,(0,)R.(0,). (157)

Such rotation matrix follows the cyclic rotation rules, i.e.,

Rx(ﬂ-/2)Ry(9)Rm(ﬂ-/2)T = Rz(e)v (158)
R, (7/2)R:(0)Ry(7/2)" = Ra(9), (159)
R.(7/2)Rs(0)R:(m/2)" = Ry(6); (160)
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as well as the anti-cyclic rotation rules, i.e.,

Ry(7/2) ' Ra(0)Ry(7/2) = R.(0), (161)
R.(7/2) Ry (6)R.(/2) = Ra(6), (162)
R.(1/2) ' R.(0)Ra(7/2) = Ry (6). (163)

We will not provide the proofs of the above rules, and readers can easily prove them with
the concrete representations of rotation matrices R,, R, and R, to calculate their product
result representations by yourselves.

According to the above rules as well as the orthogonality of rotation matrix, when the
middle gimbal rotation angle 8, = m/2, we can rewrite the rotation matrix of the IMU as
follows:

R = R.(6:)Ry(7/2)R:(0-) (164)
= Ra(0.)Ry (/2)R.(0.) (Ry (7/2) "Ry (7/2)) (165)
=R (0:) (Ry(n/2R-(0-) Ry (1/2) ) Ry (7/2) (166)
=R, (0:)R.(6.)Ry(7/2) (167)
= R, (0, + 0.)Ry(n/2) 168)

The above representation of the rotation matrix also indicates that the IMU will not be
able to represent the rotation in the z axis anymore and render the IMU fail to work. Such
a problem happens only at certain special circumstances, e.g., 8, = 7/2 as show above.

4.5.2 JACOBIAN SINGULARITY

A robot singularity is a physical blockage, not some kind of abstract mathematical problem.

Definition 13 (Robot Singularity): At a singularity, a robot loses one or more degrees
of freedom.

In the previous subsection, we have illustrate the singularity of a simple “robot”, i.e.,
the IMU with three degrees of freedom, which will lose one degree of freedom when the
middle gimbal rotates with an angle of 6, = 7/2 degrees.

Besides the simple IMU, singularity widely exists in many robots, like a robot arm or
a legged robot. Readers may also wonder what are the causes of the robot singularity. In
this part, we will illustrate that robot singularity is closely related to the singularity of the
corresponding Jacobian matriz.

Example 10 To illustrate the relationship of robot singularity with the Jacobian matriz,
we provide an example of robot arm in Figure 9, whose links are connected via the 6 joints,
and the DH parameters are illustrated in the figure as well.

A Note: We haven’t introduced the robot DH parameters for readers yet. For now, you just
need to know robot DH parameters can describe the pose and structure of rigid-body robots.
Once the DH parameters are specified, then we can build the mathematical model to recover
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Z6
Ve
D-H q d a a
1 q, d, 0 /2
2 % 0 0 | -m/2
3 q; d. 0 /2
4 g Am/2 0 0 | n/2
5 qs ds 0 /2
6 qstm/2 0 ag /2

Figure 9: An Example of 6-DOF Robot Arm and Its DH Parameter Table. (DOF: Degree
of Freedom).

the current pose and the full structure of the robot. More detailed information about DH
parameter will be described in detail in the follow-up tutorial articles instead.

In the DH parameter representation, the local coordinates are attached to the links on the
far-away side of the joints with the z axis collinear with the joint rotation axis. For some of
the azes not clearly indicated, readers can infer their orientation with the right-hand rule,
i.e., thumb: x axis, index finger: y axis, and middle finger: z axis.

According to the DH table, we can define its corresponding Jacobian matriz as follows:

(X X X X X X
X X X X X X
o x x X X X
|0 s —cisp —e3S1—Cla3  C1S24 — CaS13 + C1234 X ’
0 —c1 —s12 C13— 2813 S124 1 C1483 + 23451 X
|10 Co —S23 €3482 — C284 C2485 — C5523 + €35245 |

(169)
where the simplified notations of terms ¢; and s; denote cos q; and sinq;. Meanwhile, terms
Sijk... and Ciji... represent sin(q; + qj + qx + -+ ) and cos(q; + qj + qi + - - - ) instead.

Via symbolic computation, we can calculate the determinant of the Jacobian matriz as

det(J) = — cos(gs) sin(q2)I'(qq), where T'(qq) = (d3ds)/2 + d3ds cos(2q4) /2. (170)

In the derivation of inverse kinematics we introduce before, the inverse of the Jacobian
matrix play a critical role. We assumed the Jacobian matriz is invertible, whose inverse
will help calculate the desired joint angles, angular velocity and torque vector parameters.
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Meanwhile, the Jacobian matrix is invertible when Jacobian is not singular, and a matriz
is singular iff its determinant is 0. Therefore, we can derive the singularity condition to be

Condition 1 : cos(gs) =0 g5 = £7/2
det(J) =0 <~ Condition 2:sin(qy) =0 <= g2 =0 , (171)
Condition 3:T(qs) =0 q=—7/2

where assume the joint angles are all within the range [—7/2,7/2] and some cases like
g2 = ™ have been pruned from the results.

Based on the above solutions of the singularity conditions, as shown in Figure 11, we
can categorize the robot singularity into two main types:

e Boundary Singularity: The condition that qu = —m/2 will cause the robot arm
manipulator in a straight pose, as shown in Figure 11, where the end point of the
arm will actually reach the boundary of its workspace. Therefore, we also call such
singularity as the boundary singularity or workspace singularity. It is usually caused
by a full extension of a joint, and asking the manipulator to move beyond where it
can be positioned. An illustration of robot arm boundary singularity is also shown in
Figure 10.

—————— ~a Workspace
. - boundary

Singular region

Pull the manipulator back
to non-singular region

Figure 10: An Illustration of Robot Arm Boundary Singularity and Singular Region.

e Internal Singularity: Except the condition q4 = —7/2, the other conditions do not
yield a straight posture, and we name them as the internal singularity. The internal
singularity (also known as joint space singularity) are generally caused by an alignment
of the robots axes in space. The conditions derived above can introduce three different
internal singularity as follows:

— Case 1: g9 = 0, ¢4 # —7/2 and q5 # +n/2. When g2 = 0, the azes of
joints q1 and q3 will be collinear so the rotation of these two joints correspond
to the directions of the coordinate system is coupled in the y1-direction and the
z1-direction as illustrated in Figure 10.
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Boundary singularity Internal singularity

Figure 11: An Ilustration of Robot Arm Boundary Singularity and Internal Singularity.

— Case 2: ¢o # 0, q4 # —7/2 and q5 = +7/2. The azes joints q1 and qs (blue
color), as well as those of joints q3 and 1g (red color) will be collinear.

— Case 3: ¢ =0, q4 # —7/2 and q5 = +x/2. The collinear joint axes will include
a1, g3, and gs, or q1 and g3.

A Remark: The above derivation about the singularity conditions are obtained based on
the robot arm shown in Figure 9. For other robot arms with different structures, their DH
parameter table will be different, and we will also obtain very different derivation results
for the singularity conditions as well.

4.5.3 ROBOT SINGULAR POSE IN APPLICATION

Besides the robot arm, singularity also exist in other types of robots in real-world applica-
tions, like the legged robots.

Example 11 As shown in Figure 12, we show a biped legged robot, where each leg has 6
DOF and the trunk is just simply represented as a cuboid. In Plot (a), the robot right leg is
slightly raised and the angles of each joint are (0,0,—m/6,7/3,—7/6,0), respectively. We
aim to calculate the desired angular velocity of the robot leg joints so that the robot right
foot (i.e., the end point) can lift vertically with a linear velocity of 0.1m/s.

According to our previous discussion, we know that the robot joint angular velocity can
be represented as

q=J""v, (172)

36



IFM LAB TUTORIAL SERIES # 9, COPYRIGHT ©IFM LAB

(a) (b)

Figure 12: Velocity Inverse Kinematics of Legged Robot [2].

where vector v = [0,0,0.1,0,0,0]T denotes the twist velocity vector of the right foot end
point and the Jacobian matriz can be defined based on the current leg pose and its joint
angles (0,0, —7/6,7/3, —7/6,0).

With the above equation, we can calculate the vector q to be

0 0
0 0

4|01 —0.3333

a=J" 001 = | 06667 | (173)
0 ~0.3333
Lo] L 0 |

In other words, the angular velocity of the hip, knee and ankle joint should be —0.3333 rad/s,
0.6667 rad/s and —0.3333 rad/s, respectively.

Meanwhile, when it comes to the robot in the Plot (b) of Figure 12, we observe that its
right leg is fully stretched and the angles of the current joints are all zeros. If we calculate
the inverse of the corresponding Jacobian matriz and the angular velocity vector q with the
above equation, we can get

[inf inf inf inf inf inf] [ NaN]
inf inf inf inf inf inf NaN
1 inf inf inf inf inf inf . | NaN
I = inf inf inf inf inf inf|’ and q = | inf (174)
inf inf inf inf inf inf inf
|inf inf inf inf inf inf| | 0 |

From the result, we observe that the robot right leg is at its singular pose. The corresponding
Jacobian at the current pose is singular and its inverse doesn’t exist. If we still use it to
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(a) (b) (c)

Figure 13: Legged Robot Singularity Poses [2].

calculate the angular velocity vector q to achieve a vertical linear velocity of 0.1m/s, its
result will consists of either NaN (Not a Number) of inf (Infinity). It is also the reason why
the legged robots will always have their legs bended slightly to avoid be stretched too much
and suffer from the singularity.

In addition to such a singular pose, in Figure 13, we also show several other singular
poses of the legged robot.

e Case (a): As discussed above, the legs are fully stretched and cannot move vertically
due to singularity of the Jacobian matrix.

e Case (b): The hip yaw axis and the ankle roll axis are collinear, and the leg is also
in a singular pose.

e Case (c): The robot hip roll axis and ankle roll axis are collinear and it is at a
singular pose as well.

4.6 Singularity-Robust Inverse of Jacobian

By now, readers should know that the Jacobian matrix and its inverse plays an impor-
tant role in robot inverse kinematics. When the Jacobian matrix is singular, we will suffer
from lots of problems in calculating its inverse kinematics parameters. Meanwhile, in ap-
plications, people has almost zero tolerance for wired performance of the robots due to the
singularity problem. At the end of this section, we will introduce a singularity robust inverse
of the Jacobian matrix, which allows the robots still be able to work with no worries about
the singularity problem.
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Figure 14: An Illustration of Legged Robot Suffering from Singularity [2].

To illustrate the effectiveness, we also use an example in this part to compare the
performance of the robot using conventional Jacobian inverse in Newton Raphson Method
introduced in Section 4.3.2 and the new method to calculate the singular robust inverse of
Jacobian matrix.

Example 12 As illustrated in Figure 14, we aim to calculate the robot joint angularity
velocity to mowve the robot right foot forward from a non-singular pose with the Newton-
Raphson method. The right plot shows the angles of the hip joint, keen joint and ankle
joint at the given target foot position. The solid line denote the solution obtained by the
numerical method. For comparison, we also provide the analytic solution in the plot, which
1s denoted by the dotted line on the right-hand side when the robot reaches its singular pose.

We observe that the robot will reach the singularity, since the azes of the hip pitch, knee
pitch and ankle pitch will collinear. On the right plot, we observe that the angles of the hip,
knee and ankle angles vibrate and go off the chart.

Let’s take a look at the equation illustrating the relationship between the twist velocity
vector of the end point and the robot joint angular velocity:

v =J4. (175)

We aim to find the desired vector ¢ to make the above equation hold. When the Jacobian
matrix J is not singular, we can easily solve the problem with ¢ = J~'v. However, when
matrix J is singular, we have to find another way to calculate the optimal ¢ vector.

From the above description, some readers probably already get a sense that “can we
solve the problem as an mathematical optimization problem?”. Finding the solution to
equation v = Jq is actually equivalent to find the vector q that can make the error vector
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e equal to zero, where
e=v—Jq (176)

Making the error vector e = 0 is not an easy task. Sometimes, we will not be able to
find such a solution actually, which will render the robot failing to work. Then, can we
slightly relax our expectation? Instead of find the error vector q to make e = 0, we propose
to find the optimal vector q to make the error vector e as close to the zero vector 0 as
possible, i.e.,

min E(q), (177)
q
where we can introduce a loss function notation E(q) = %eTe to represent the optimization
objective function. If the function E(q) approaches 0, the error vector e will be close to the
zero vector as well, and vice versa.

The optimal variable g can be obtained by making the derivative of E(q) with respect

to variable q equal to zero, i.e.,

9E(q)
— 1
34 0 (178)
— —-Jv+J3'Jg=0 (179)
—1
— 4= (JTJ) Jv. (180)

Meanwhile, the matrix J'J is actually positive semidefinite, and it can still be singular.
Since det(J"J) = det(J ") det(J), if the Jacobian matrix J is singular, i.e., det(J) = 0, we
can easily get that det(JTJ) = 0, i.e., matrix product J'J is singular as well. In other
words, if J is singular, the above representation doesn’t exist neither.

If the readers have any experiences with mathematical optimization, especially with
variable regularizations, you probably can propose different definition of the loss function
E(q) definition. To address the above solution non-existence problem when J is singular,
we propose to modify the loss function slightly by incorporating a regularization term on
variable ¢ as follows:

) 1 AT,
E(g) = ieTe + §qTq. (181)
By solving the equation alggi) = 0, we can obtain the representation of the solution to be
9E(q)
=0 182
— 3T+ (JTJ+AI) q=0 (183)
-1
— 4= (JTJ + )\I) v (184)

We know J'J is positive semidefinite and if X # 0, their summation J'J + AI will be
positive definite and its inverse always exists, which ensures we can find a solution ¢ no
matter what the Jacobian matrix J is actually.
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Figure 15: An Illustration of Legged Robot that Gets Rid of Singularity [2].

We can introduce a new notation for the term (J TI+ )\I)fl JT as follows
Jt = (JTJ + AI) T (185)
and the solution can be represented with the new notation as
q=J. (186)

We also name Jt as the singularity-robust inverse of the Jacobian matrix J.

Example 13 Let’s come back to the example we show at the beginning of this part. As
shown in Figure 15, to move the robot right foot forward, with the new singularity-robust
inverse of the Jacobian matriz J, we can get rid of the singular pose of the robot perfectly in
the movement. As shown in the right plot of the joint angles, we can still control the robot
pretty without singularity problem at all.

5. Robot Dynamics

We have been introducing the robot joint rotation, robot motion, forward kinematics and
inverse kinematics for readers already, which covers the transformation of robot position,
orientation, linear velocity and angular velocity within as well as across coordinate systems.
Meanwhile, we didn’t discuss much about the driven forces that lead to such changes yet,
which will be the main topic to be studied in this section for readers, i.e., the robot dynamics.
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5.1 What is Robot Dynamics?

Formally, robot dynamics aims to study the relationship between the forces (or torques)
that act on a robot and the accelerations that they produce. For the robot studied in this
article, the forces covers both the internal forces, e.g., the driving forces of joint motors, as
well as external forces, e.g., the gravity of robot links and body, as well as the items the
robot end points trying to pickup. Meanwhile, the generated accelerations overtime will
create velocity and further change the pose of robot parts and body.

There exist different formulation methods of robot dynamics. In this section, we will
introduce two dynamics formulation methods for readers that are initially proposed in
Physics but can also be used for formulating robot dynamics as well, i.e.,

e Lagrangian Dynamics Formulation: In the Lagrangian dynamics, motion is de-
scribed by energies as scalars and it is based on the principle of least action. Gen-
eralized coordinates are used in Lagrangian dynamics instead of constraint forces,
and conservation laws can be derived easily. Lagrangian dynamics is not idea for
non-conservative forces, e.g., friction, and widely used in all areas of physics.

e Newton-Euler Dynamics Formulation: In the Newtonian dynamics, motion is
described by forces with vectors and it is based on the Newton’s laws of motion. New-
tonian dynamics involves constraint forces, and doesn’t have a systematic methods
for deriving conservation laws. Lagrangian dynamics handles non-conservative forces
very well, and mainly applicable to classic physics.

There are two main problems that are studied in robot dynamics, which include

e Forward Dynamics: Given the known forces, calculate the acceleration (as well as
velocity and pose) of the robot generated by the forces.

e Inverse Dynamics: Given the desired acceleration (as well as velocity and pose),
figure out the needed forces to generate them.

Similar to the forward kinematics and inverse kinematics discussed before, the forward
dynamics is normally used for simulation, while the inverse dynamics has very diverse
usage in robot control.

In this section, we first will introduce Lagrangian dynamics formulation and Newton-
Euler dynamics formulation for readers. At the end, we will use a concrete example of
motor driven robot link to discuss about the forward dynamics and inverse dynamics for
readers, and the following subsections are also organized according to these topics.

5.2 Lagrangian Dynamics Formulation

In this part, we will introduce the Lagrangian formulation of dynamics and discuss about
how to use it to model the dynamics of robot arms.

5.2.1 EULER-LAGRANGE EQUATION

To use Lagrangian formulation of robot dynamics, the first step is to choose a set of inde-
pendent coordinates q € R™ that defines the robot configuration. The chosen coordinates
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can not only be the Cartesian coordinate but also other configurations of the robot, e.g.,
the angles of the joints, which are also named as the generalized coordinates. The set of all
potential configurations q will define the configuration space C.

Definition 14 (Lagrangian Dynamics): Formally, the Lagrangian dynamics formulates
a dynamics system as a pair (C, L), where C denotes the configuration space and L is the
Lagrangian function defined as follows:

L(q,q) = K(q,q) — P(q), where q € C. (187)

In the above equation, terms K(q,q) and P(q) denote the kinetic energy and potential
energy of the system, respectively. Notation q denotes the first-order derivative of term
qeC.

After choosing the generalized coordinates, we can also further define the generalized
forces f € R™ subject to the constraint that f'q corresponds to power. Depending on
the chosen generalized coordinates, the generalized forces f can not only represent regular
forces, but can also represent other properties of the robot, e.g., the torque of joints. For
instance, if generalized coordinates q denotes the position in Cartesian coordinate, then f
will be regular forces, since the product of forces and moving distance will denote the power.
Meanwhile, if q denotes the rotation angles, then f should represent the torques, since the
product of torque and rotation angles denotes the power.

Based on the Lagrangian function defined above, any equations of motion can now be
expressed in terms of the Lagrangian as follows:

_ 4oL oL (188)
dt 0q 0q

where f denotes the generalized forces. Such an equation is also referred to as the Fuler-

Lagrange equation.

Instead of forces, Lagrangian dynamics uses energy in the system formulation, and the
Lagrangian function defined above summarizes the dynamics of the entire system. Some
readers may wonder “why the Lagrangian function is defined as the kinetic energy minus
the potential energy?” According to Physics, defining Lagrangian function in this way will
allow us to generate the correct equations of motion in agreement with classic physical laws,
e.g., the “Newton’s laws of motion”.

Example 14 7To illustrate that the above Lagrangian function can be used to define the
equations of motion, we also provide an example of a particle of mass m that is moving
within a 1D space along a vertical line. We represent the position (i.e., the height) of
the particle as a variable q, while its speed and acceleration can be denoted as ¢ and {,
respectively. The gravitational force acting on the particle will generate an acceleration
represented by g. According to what we learn from high-school Physics course, we can
represent the motion of the particle as

f—mg=mg, (189)
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mo

Figure 16: Dynamics of Two-Link Robot Arm.

where f is the external force acting on the particle to drive its motion. If readers still
remember, the above equation is derived according to the classic Newton’s second law of
motion.

Meanwhile, the Euler-Lagrange equation introduced above will also help derive the identi-
cal representation of the external force. For the particle, we can represent its kinetic energy
and potential energy as follows:

. 1 .
K(q,q) = §mq2, P(q) = myq, (190)

which will define the Lagrangian function

L(q.q) = K(q,q) — P(q) = %m(f — mgq. (191)

According to Equation 211, we can represent the equation of motion as

d oL 0L
-2 192
f dt 0¢  Oq (192)
= mdg + mg, (193)

which is identical to Equation 189 derived from Newton’s second law of motion.

5.2.2 LAGRANGIAN DYNAMICS OF 2-LINK ROBOT ARM

In the previous subsection, we introduce the Lagrangian formulation about the dynamics
of a particle, which can derive the identical dynamic equation as Newton’s second law of
motion.
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Example 15 As illustrated in Figure 16, we provide a 2-link robot arm in a 2D space. The
positive T and y axis orientations are provided by the coordinate system with origin located
at the root of the arm. The length and mass of these two arm links are L1, my and La, ma,
respectively. In this example, we assume the mass of these two links are concentrated at the
links’ end points, i.e., the orange and green dots in the figure. The first link rotates in the
counter clockwise direction with an angle of 01 degrees, and the second link further rotates
with another angle of 0y degrees.

According to the link length and rotation angles, we can represent the position of the
these two arm links’ end points in the coordinate system as

)= [t [2] = [t ot o] o

The velocity of these two arm links’ end points can be represented as the derivative of the
position with respect to time, i.e.,

] = [ )

T _ -1 sin(@l.) — Ly sin(@l + 92) —Lo Sin(91 + 92) 9:1 (196)
U2 Ly cos(01)01 + Lacos(6h + 62)  Lacos(6y + 02) | |02]
where 91 = % and 92 = % denote the derivatives of #; and 0y with respect to the time.

Meanwhile, based on the above derivations, we can also calculate the current kinetic
energy and potential energy of the robot arm as

K| = %ml(fv% + 93 = %mlLléf, (197)
Ky = Jma(d +3) (198)

= %mg ((L% + 2L1 Ly cos(03) + L2)0? + 2(L3 + L1 Ly cos(62))010; + Lgég) . (199)
Py = mygy1 = migLy sin(6y), (200)
Py = mygy1 = mag (L1 sin(01) + Lo sin(61 + 62)) . (201)

By combining them together, we will be able to define the Lagrangian functoin

2
L(6,0) =) (K;— P,). (202)
i=1
By choosing the joint angles 8 = [21} as the generalized coordinates, as discussed in the
2
previous Section 5.2.1, then the corresponding generalized forces derived in Equation 211

will actually be the torques T = {:1} :
2

d oL 0L d oL 0L

= ———- — — - — = 203
dtog, 00, T2 dtos, 06 (203)

T1
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These two terms above together will define the torque vector 7 as follows

T =M(0)0 +c(6,0) +g(8), (204)
where
. _mlL% + mQ(L% + 2L1 L5 cos 69 + L%) mQ(LlLQ cos 0y + L%)
M(a) o mg(Lng COS(HQ) + L%) MQL% ’ (205)
symmetric positivejaeﬁnite mass matrix
. _—mngLg sin(Gg)(Qélég + 9%)
0,0) = . 206
C( ’ ) L mngLQO% sin(92) ( )
_ -—mQLlLQ sin(02)29192 —m2L1L2 sin(92).c9'§ (207)
I 0 maLy Lo sin(6,)6%
Corioli\sr torque centripetal torque
[(m1 + ma)L1g cos(01) + magLa cos(01 + 65)
0) = . 208
g( ) i mggLQ COS(91 + (92) ( )

gravitational torque

Formally, term M(0) € R?*? is a symmetric positive-definite mass matrix about the two
robot arm links; vector c(8, 0) € R? contains both the Coriolis torque and the centripetal
torque torque; and vector g(@) € R? is the gravitational torque. All these matrix and vectors
are defined based on the general coordinate vector 8 and its first-order derivative 6.

5.2.3 LAGRANGIAN DYNAMICS OF MULTI-LINK ROBOT ARM

In this part, we further provide a general Lagrangian formulation of robot arms with multiple
links. Specifically, we can denote the robot arm link number to be n (n > 2). Similar to
the previous subsection, we can denote the joint rotation angle vector @ € R"™ as the chosen
general coordinates. Meanwhile, the general forces calculated with the Fuler Lagrange
equation will represent the torques 7 € R" instead.

The Lagrangian function defined base don the chosen generalized coordinates can be
represented as

L(0,0) = K(6,0) — P(8), (209)
where
K(60,0) = % SO i (0)6i6; = %GTM(H)Q. (210)
i=1 j=1

Meanwhile, term P(0) denotes a vector of elements as represented similar to the P; and P
terms in Equation 197. The matrix M(0) € R™™" is the mass matrix with term m; ;(6) as
its (i, 7)¢ element, which will be discussed in detail in the following Section 5.3 instead.

According to the Fuler-Lagrange equation, we can represent the corresponding torque
vector as

T =M(0)d + 0 T(6)) + g(0), (211)
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Figure 17: Dynamics of Rigid Body.

where ¢(0) = g—f; and 0 denotes the second-order derivative of the coordinate vector 6. As
to I'(@) € R™* ™™, it is a 3-way tensor with the (i, 7, k)¢, element

1 (0mi;(0)  Omin(B)  Om;k(®)
2\ 06 90, 20; )’

Lijk(0) = (212)

The term QTI‘(O)Q used in the above equation will be a vector in the following form

0'T.(0)0

o' ry0)0

0'T(0)0 = , (213)

0'T,(0)0

where notation I';(8) € R™*"™ is a n x n matrix with I';;,(0) as its (j, k)., element.

5.3 Newton-Euler Dynamics Formulation

In this part, we will introduce another formulation method, i.e., the Newton-Euler method,
to model the robot dynamics. Different from the Lagrangian method, which models the
dynamics from the perspective of system energy, the Newton-Fuler method models the
dynamics based on the concepts and transformation of motion.

5.3.1 NEwWTON-EULER FORMULATION FOR RIGID BODY

In this part, we will take the single rigid body as an example to introduce the Newton-FEuler
formulation method for readers. The rigid body can be in various shapes depending on the
dimension of space we are studying the problem.

Example 16 As shown in Figure 17, a rigid body consists of a number of rigidly connected
particles. Depending on the dimension of space we are studying the rigid body, it can be in

47



JIAWEI ZHANG, IFM LAB DIRECTOR

different shapes, e.g., a line in 1D space as shown in the left plot of Figure 17 or a cashew
shaped diagram in 2D space as shown in the right plot of Figure 17.

To be general, we assume we are studying the problem within a 3D space. We can
represent the set of particles in the rigid body as S = {(m;,r;)}_;, where m; denotes
the mass of the iy, particles and r; = (z;,y;, 2;) denotes the initial position of the particles
within the local coordinate about the rigid body. Formally, the origin of the local coordinate
system is the unique point such that

n
> mir; = 0. (214)
=1

Such a point is also named as the center of mass about the rigid body.

Here, we assume the rigid body is moving with a body twist v, = [:b] (the subscript
b

b denotes the rigid body), then all the particles within the rigid body will also change their
position with time. For instance, for the iy, particle, we can represent its position as a
vector p;(t). Within the local coordinate system, we can also calculate the linear velocity,
acceleration, external force and torque about the 4;, particle in the rigid body as

Velocity : p; = v + wp X pi, (215)
d

Acceleration : p; = api (216)
d d d

= — —wp X Pi X —Pj 217

dtVb-i- PTha Pi +wy P (217)

= Vp +wp X pi +wp X P; (218)

=Vp+ wp X pP; + wp X (vb—i—wbxpi) (219)

=vVvy+ @bri + Wy + u’}zri, (220)

Force : f; = m;p;, = m; (Vb + L:Ybri + ‘vab + &\Jgrl) , (221)

Torque : 7; = r; x f; = 1;f;. (222)
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Furthermore, based on the force and torque representations of the i, particle, we can
further calculate the force acting on the whole rigid body as

n n
f, = Z f; = Z m; (Vb + wpr; + Wy + &\Jgrl>
=1 =1
n n n
= Z m; (Vy + Wpvp) + Z m; (d:brz') + Z m; (afl‘z)
=1 =1 =1

n n n
= Z m; (Vp + (:vab) — Z m;T;wp + Z miT;Wpwp
Z Z - (223)
= Z m; (Vy + @pvp) <Z mm) wp + <Z mlrl> wWpwy,
=1
=0 =0

n
=Y mi (Vi + @yvp)

i=1
In the above derivation, we use many properties about the A operator on vectors, e.g.,
(1) wpr; = —Fiy, (2) T = (Fi@p) T, and (3) (Tiwp)T = —Tiwp. Also we know that
> i, mr; = 0, by applying the A operator to both sides of the equation, we can get that
o Mty = 0, where 0 is an all-zero matrix.

As to the torque of the whole rigid body, we can represent it as

n n
~ . -~ —~ ~92
Ty = E T; = g rim; (vb + wpr; + wpvy + wbri>
i=1

i=1

n n
- (Z?Zml> (Vb + G)bvb) + Z?’m’ (d)bri + @grl)
=1

i=1

=0

(224)
= Zml I‘ wb — rlwbrzwb)

= E mz I‘ wb — wbr2wb)

n
= (— E mﬁf) wp + @y ( E mﬁf) wp
i=1 =1

In the above derivation, we use a property about vector cross-product that ax (b x (a x b))
bx(a x (a x b)) to convert T;@T;w; into @pT7wy. As to proof of equation ax (b x (a x b)) =
b x (a x (a x b)), we will leave it as an exercise for the readers.

5.3.2 ROTATIONAL INERTIA MATRIX

In the previous subsection, we try to derive the representations of wvelocity, acceleration,
force and torque of both particles in a rigid body, as well as the whole rigid body. For the
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torque of the rigid body, we can also simplify its representation derived in Equation 225 as

follows:
n n
~2 . ~ ~2
Ty = | — E m;r; | wp + Wp g m;r; | wy
< =1 l) (1:1 l) (225)

= Tywy + Wplwy.

In the above representation, we introduce a new matrix representation

n
L=-) mt; (226)
i—1
n 0 —z v 0 —z y
= — Z m; Z3 0 —X; Z 0 —X; (227)
i=1 -y v 0] |-y x 0
[ mai(yp +27) = mamys = 2 mw
= | —Ximamiriy dmyma(ad +2) = mayiz (228)
L — Z?:l mMiT;2; - Z?:l mMiYizi Z?:l mz(xf + ?JZQ)
_Iz:v I.ty I,
= Ly Iy Iy.| € R¥, (229)
_Izm Izy I..

which is also named as the rigid body’s rotational inertia matriz. For a given rigid-body,
we know that matrix I will be a constant and it is also symmetric and positive definite.

The rotational inertia matriz also provides a simple representation of the rotational
kinetic energy of the rigid body. Formally, for all the particles in the rigid body, we can
represent the rotational kinetic energy of the rigid body as

1 n
K=3 > mivivi (230)
=1
1 -
=3 Zmz(w X 1i)(w X r;) (231)
=1
1 n
3 > miw -1 x (w X 1;) (232)
=1
1 n
= iw . Z’I?’LZ’I'Z‘ X (—I‘i X w) (233)
=1
1 n
=gw- - Zm,ﬁ(ﬁw) (234)
=1
1 n
= Sw! (=Y mif)w (235)
=1
1
= inIbw. (236)

Via the rotational kinetic energy value, we can also transform the rotational inertia
matriz across different coordinate systems. Given two coordinate systems >, and 3., we
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can denote the rigid body’s angular velocity vectors in this two vectors as w!¥e) and w>e,
where wPel = RIFe=ZelyFal - Since the rigid body’s rotational kinetic energy in these two
coordinate systems should be equal, we can have

Kl = =] (237)
— %(w[Zd)TIF“UEa] _ ;wmcl)ﬁ?cwxc] (238)
— %(w[za])rll[)za}w[za] _ %(R[zﬁze]w[za])rlgc](R[zﬁzc]w[za]) (239)
— %(w[za])TII[)Ea}w[Ea] _ %(w[za])r ((R[zﬁzc})TII[)EC]R[Eﬁch wlSal (240)

Since the above equation holds for any angular velocity w®al, so we can get
I[[)Eg} — (R[EG%EC])TIIEEC]R[EG‘)EC]. (241)

As introduced before, the subscript b of the rotational inertia matriz representations above
denote it is defined for the rigid body.

In addition to transformation across coordinate systems, the rotational inertia matriz
can also be transformed within the same coordinate system but at a different point. In the
above derivation, matrix I is defined for the center of the rigid body, i.e., the center of the
local coordinate. Given another point q = (¢u, ¢y, ¢.) within the coordinate, we can also
define the rotational inertia matriz with point q as the new origin to be

L=L+m (qTqI - qu) : (242)
It is also referred to as the parallel axis theorem, we will leave its proof as an exercise for
the readers.

5.3.3 TwiST-WRENCH FORMULATION

The representation of force and torque acting on the rigid body we derive in Equation 223
and Equation 225 can also be organized and represented together as follows:

Ty| -Ib 0 1 -d)b- -&\Jb 0 | -Ib 0 ] _wb_
[fJ “lo w1 |w] o @) [0 mi||v, (243)
L 4 L70] L 4L 4 L7o]
Wbp
o _Ib 0 1 _wb_ _&\Jb 0 1 _Ib 0 ] _wb_
- _0 mI_ _Vb_ + _0 &\)b_ _0 mI_ L Vb | (244)
0 Gb -Ib 0 wyp
* [0 0} ) mI} [vb (243)
ZGbeZVbXVbZO
o Ib 0 | de LTJb Gb Ib 0 Wp
a I:O mI_ I:Vb:| + I:O &\Jb 0 ml Vp (246)
7> ~ T
_ Ib 0 wp . wp 0 Ib 0 Wy (247)
0 mlI| |vy vy, Wy 0 mI||vy|’
| TS S S S —— -
Gy 2 Ad(vy) Gy vy
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In the above equation derivation, we use many properties, e.g., (1) Vyv, = v X v, = 0 and

~ ~ ~T T —~ T
0 0 . .
(2) “b Vol = ff’r T =- Lﬁb | . Several notations are also introduced for the
0 wy v, @ vy Wp

terms used in the above equation, which can be further simplified as
wy, = Gy, — Ad(vy) " Gy, (248)

I,
0
R6%6 is the adjoint matrix representation of vector vy,.

With the G matrix, we can also represent the overall kinetic energy of the rigid body

. T
w 0
peaD } €
vV Wy

where Gy = [ 77(1)1] € R*C is the spatial inertia matriz and Ad(vy) = [

as
1 . 1 -
1 L, 0] [w,
= 5 [wb Vb] |:0 mI:| |:Vb:| (250)
1
= 5u{f(}bub. (251)

Furthermore, the matrix Gy define above can also be transformed across coordinate
systems. Given two coordinate systems ¥, and 3., we can represent the twist velocity
vectors of the rigid body in them as VIEE“] and VIEEC], respectively. According to the adjoint
representation of the homogeneous transformation matrix introduced in Equation 43 in the

previous Section 2.3.2, we know that
U = (Tl (252)

Meanwhile, since the kinetic energy of the rigid body is independent of the chosen coordinate
system, we can have

1

SO Ta ) = L T (253)
T

= % (Ad(r===dyy=d) - G (aari=e=d ) (254)

— %(VIEE@])T (Ad(T[Ea—)ZC])TGI[JEC]ACZ(T[EQ—)ZC])> Vl[)za]' (255)

Since the above equation should hold for any twist velocity vector I/ZEE“} € R, then we can

get
GI[)EQ] _ Ad(T[Za_}EC])TGZ[)ZC}Ad(T[E“_}EC])- (256)

5.4 A Practical Case Study: Robot Joint Actuator Dynamics

Finally, at the end of this section, we will use a concrete robot arm joint motor to illustrate
robot dynamics in practice. As shown in Figure 18, we provide the key components of
the robot arm joint DC motor, which include motor driver, motor, encoder, motor inertia,
motor friction, gearbox, output load inertia and output link. In the following part, we will
introduce these key components one by one for readers.

52



IFM LAB TUTORIAL SERIES # 9, COPYRIGHT ©IFM LAB

Output Motor
M_otor L(_)ad Load Output
Side | Side Inertia Link

0,w wi Td

G:1
Gearbox
Reduction
Ratio

Tm Wm

Motor

Driver Motor Encoder Motor Motor

Inertia Friction

Figure 18: An Example of Robot Arm Joint Components in the DC Motor.

5.4.1 ACTUATOR

We take the electrical DC motor as an example, whose input is the voltage u from the used
power supply. Depending on the power supply and motor used in the robot arm joint, the
voltage u value can be different, e.g., 5V, 24V or 48V. Nowadays, the DC motors we use are
normally current controlled, ¢.e., the current will control the motor pose, rotational speed
and output torque. Via the motor driver shown in Figure 18, we can calculate the current
into the motor as

im = Kq(u), (257)

where the mapping K, : V — A will calculate the output current corresponding to the
input voltage.

Meanwhile, the output torque by the motor is proportional to the current, which can
be represented as

Tm = Kin(im), (258)

where the mapping K,, : A — Nm calculates the output torque for the input current.

5.4.2 ANGULAR VELOCITY

The torque 7, will drive the motor and accelerate the rotational velocity of the motor
inertia I, to generate the angular velocity w,, and the motor current rotation angle 6.

According to the previous Equation 225, we have already illustrated the relationship
between the motor output torque and its angular velocity, which is rewritten for readers
below as well:

Tm = Lowm + @mILnwm. (259)

The angular velocity T,, and the current actuator position (i.e., the rotated angle) 6
will be outputted to high-level controller via the encoder of the motor.

53



JIAWEI ZHANG, IFM LAB DIRECTOR

5.4.3 FRICTION

In the real-world, as the motor actuator rotates, it will be affected by frictions, which can
be caused either by the wviscous friction or by the Coulomb friction. The frictions will be
related to the angular velocity of the motor, and will introduce an offset torque to oppose
the motion.

Formally, we can represent the torque created by the viscous friction can be represented

" T, = B(w). (260)

Here, mapping B : rad/s — Nm is also called the viscous friction mapping, which is a
linear function of the input with coefficient b.

Meanwhile, the torque caused due to the Coulomb friction depends on the rotation
direction and can be represented as

5 Jifw>0
T.=40 ,ifw=0, (261)
,ifw <0

where 7} and 7, are two constants.
In sum, we can represent the sum of torque caused by frictions as

Tf=Ty+ Te. (262)

By taking the frictions into consideration, we can represent the output torque by the
actuator as
T=Tm—Ts. (263)

5.4.4 GEARBOX

For the motors used in practice, there usually exist a gearbor attached to the motor as
the reducer to lower down the rotational velocity. The reducer is a gear train between the
motor and the machinery that is used to reduce the speed with which power is transmitted.
It is normally mechanical gadget and its essential use is to duplicate the measure of torque
produced by an information power source to expand the measure of usable work.

As shown in Figure 18, we assume the gearbox reduction ratio to be G : 1, i.e., the
motor shaft rotates G rounds, the output shaft will rotate 1 round. Due to the existence of
the gearboz, the quantities measured about the motor at the internal motor side and at the
output side will be different.

Let w;, wi, 71, Tcy, by and I; denote the angular velocity, angular acceleration, torque,
torque due to the Coulomb friction, viscous friction torque coefficient and inertia matrizc
measured at the output load side, respectively. With consideration about the reduction
ratio, those quantities measures at the motor side will be very different, which can be
denoted as follows:

wy=w/G, W =w)/G, (264)
T =1G, T/CJ =7.G, (265)
by =bG?* I =T1G> (266)
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mo

Figure 19: Dynamics of Two-Link Robot Arm.

5.4.5 MOTOR TORQUE BALANCE

Meanwhile, as to the output link, we have discussed about the dynamics of 2-link robot arm
in the previous Section 5.2.2 already. Furthermore, according to the previous Equation 204
we derive before, we can represent the torque at the end point of the 2-link robot arm as

T =M(6)0 + ¢(6,0) + g(6), (267)

Based on the above descriptions, we can summarize all the torques we derive above and
get the torque balance on the motor shaft as follows:

K (Ko(u) — (B(w; b)) + B(w; b /G?)) — (Te + Tey/G) — Ta/G = (L, + 1;/G*)w. (268)

The dynamics of the motor can be analyzed based on the above torque balance equation.
According to the dynamics analysis result, we can further control the robot joint motor
to perform the necessary movement according to our task requirements. As to the robot
control methods, we will introduce them in the follow-up articles instead.

6. What’s Next?

By now, we have introduced the robot motion, forward kinematics, inverse kinematics, and
robot dynamics. In the next articles, we will further talk about several advanced topics about
robotics, including robot control, trajectory generation, motion planning, zero moment point,
biped walking, robot manipulation and robot simulation.
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