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Abstract

In this paper, we will provide an introduction to the derivative-free optimization al-
gorithms which can be potentially applied to train deep learning models. Existing deep
learning model training is mostly based on the back propagation algorithm, which updates
the model variables layers by layers with the gradient descent algorithm or its variants.
However, the objective functions of deep learning models to be optimized are usually
non-convex and the gradient descent algorithms based on the first-order derivative can
get stuck into the local optima very easily. To resolve such a problem, various local or
global optimization algorithms have been proposed, which can help improve the training of
deep learning models greatly. The representative examples include the Bayesian methods,
Shubert-Piyavskii algorithm, DirecT, LIPO, MCS, GA, SCE, DE, PSO, ES, CMA-ES,
hill climbing and simulated annealing, etc. This is a follow-up paper of [18], and we will
introduce the population based optimization algorithms, e.g., GA, SCE, DE, PSO, ES
and CMA-ES, and random search algorithms, e.g., hill climbing and simulated annealing,
in this paper. For the introduction to the other derivative-free optimization algorithms,
please refer to [18] for more information.
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1. Introduction

This is a follow-up paper of [18]. To make it self-contained, we will briefly introduce
the learning settings again as follows. The training set for optimizing the deep learning
models can be represented as T = {(x1,¥y1), (X2,¥2), -, (Xn,¥n)}, which involves n pairs
of feature-label instances. Formally, for each data instance, its feature vector x; € R% Vi €
{1,2,---,n} and label vector y; € R% Vi € {1,2,---,n} are of dimensions d, and dy
respectively. The deep learning models define a mapping F(-;0) : X — ), which projects
the data instances from the feature space X to the label space ). In the above representation
of function F'(-,0), vector 8 € © contains the variables involved in the deep learning model
and © denotes the variable inference space. Formally, we can denote the dimension of
variable vector @ as dy, which will be used when introducing the algorithms later. Given
one data instance featured by vector x; € X, we can denote its prediction label vector
by the deep learning model as y; = F(x;;0). Compared against its true label vector y;,
we can denote the introduced loss for instance x; as ¢(y;,y;). Several frequently used loss
representations have been introduced in [19], and we will not redefine them here again. For
all the data instances in the training set, we can represent the total loss term as

LO)=LOT)= > L0 yi) (1)

(xi,yi)€T
And the deep model learning can be formally denoted as the following function:

min £(6), (2)

which is also the main objective function to be studied in this paper.
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We need to add a remark here, the above objective function defines a minimization
problem. Meanwhile, when introducing some of the optimization algorithms in the following
sections, we may assume the objective function to be a maximization function instead for
simplicity. The above objective can be transformed into a maximization problem easily by
introducing a new term £'(0) = —L£(0). We will clearly indicate it when the algorithm is
introduced for a maximization problem.

In the following part of this paper, we will introduce the derivative-free optimization
algorithms that can be potentially used to resolve the above objective function. To be more
specific, this paper covers the introduction to the population based algorithms (e.g., GA,
SCE, DE, PSO, ES and CMA-ES) and the random search based optimization algorithms
(e.g., hill climbing and simulated annealing). If the readers are interested in other derivative-
free optimization algorithms, you can refer to our previous article [18] for more information.

2. Population based Algorithm for Global Optimization

In this section, we will introduce a group of nature-inspired population based meta-heuristic
optimization algorithms, including GA (Genetic Algorithm), SCE (Shuffled Complex Evo-
lution), DE (Dierential Evolution), PSO (Particle Swarm Optimization), ES (Evolution
Strategy) and CMA-ES (Covariance Matrix Adaption-Evolution Strategy). Different from
the algorithms introduced in [18], which starts with one single solution candidate, the al-
gorithms introduced in this part will start with a group of solution candidates candidates
instead and propose to update them to improve the learning performance. When the ob-
jective variable space is too large to search exhaustively, the population based searches may
be a good alternative, which cannot guarantee the optimal solution even though.

2.1 Genetic Algorithm (GA)

Genetic algorithm (GA) [16] is a meta-heuristic algorithm inspired by the process of nat-
ural selection in evolutionary algorithms, which has also been widely used for learning the
solutions of many optimization problems. In GA, a population of candidate solutions will
be initialized and evolved towards better ones. GA has demonstrated its outstanding per-
formance in many learning scenarios, like non-convex objective function containing multiple
local optima, objective function with non-smooth shape, as well as a large number of pa-
rameters and noisy environments. GA consists of several main steps, including generation
initialization, crossover and mutation, fitness evaluation and selection, which can effectively
evolve good candidate solutions generation by generation. In this part, we will introduce
these three main steps in great detail.

2.1.1 POPULATION INITIALIZATION

Given the variable search space O, a group of candidate solutions to the objective function
can be generated via either random sampling from the space or the output from other exist-
ing learning algorithms if GADAM [20] is used as the optimization framework (as introduced
in the previous tutorial article [19]). Formally, we can denote the initial set of candidate
solutions sampled from © as G0 = {950), 0&0), e ,9,(,0)}, where p denotes the population
size and the superscript denotes the generation index. These solution vectors are treated as
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the chromosome, which can be evolved to achieve better solutions. Traditional GA works
well for the binary variable case, and several works also propose to extend GA to the real-
number variable scenarios. Depending on the objective variable search space, the variable
vectors 050) € O can contain either binary or real codes, and their corresponding sampling

approaches can be different as well.

(0)
i
be sampled via the Bernoulli distribution, i.e., 050) (j) ~ B(p),¥j € {1,2,--- ,dp}, where p
denotes the probability to sample value 1. Meanwhile, for the real number variable search

For the binary variable search space, i.e., © C {0, 1}d9, the entries in vector 6.’ can

space, i.e., © C R%, the entries in vector OEO) can be sampled via distributions like the
Gaussian distribution, i.e., 0§0)(j) ~ N(u,0%),¥j € {1,2,--- ,dp}, where p and o denote
the mean and standard deviation parameters of the distribution.

2.1.2 FITNESS EVALUATION AND SELECTION

Among all the candidate solutions in set G, some of them are good candidates for the
objective problem but some of them can be not. GA will evaluate the candidate solutions in
G to pick the good ones as the parents to generate the offsprings. For the objective function
mentioned in the Introduction section, we can evaluate the candidate solutions with the
objective function £(-) to be minimized. Formally, by applying the objective function on
candidate solution 950), we can denote the introduced function value as EEO) = L’(GEO)). The
loss terms introduced by function £(-) on all the candidate solutions can be denoted as a
tist [0, 6. 6D,

Generally, the solutions leading to smaller function values will have a larger chance to
be selected in GA. There exist different ways to define the selection probability of each
solution candidate. For instance, we can adopt the softmax equation to define the selection

probability for 01(-0) as follows:

o exp(—0")
b == 0)y " (3)
Zj:l eXP(_gj )
The selection probability of all the candidate solutions can be denoted as a list [pgo) , pgo), e ,pj(,o)],

based on which, % pairs of unit model pairs will be selected as the parents for the next
generation, which can be denoted as a set PO = {(BE?),GE-?)),(052),05-2)),---}, where
ibjla e € {172a e ap}

2.1.3 CROSSOVER AND MUTATION

GA generates the offsprings of the selected parent pairs via the crossover and mutation
operations, which imitate the chromosome crossover and mutation of creatures in the natural
world. Different kinds of crossover and mutation methods have been proposed already, and
in this part we will introduce the classic crossover and mutation operations used in GA
respectively.

Crossover: Given a parent variable pair, e.g., (052), Hg-z)) € P, by selecting one or several
crossover points, crossover aims at mix the variable values together to generate new children

variables. For instance, as shown in Figure 1, we can represent the parent variable pair as
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Figure 1: A Example of Crossover and Mutation Operations in GA.

the two sequences on the left-hand side (in blue and green colors respectively). By selecting
the crossover point(s), GA will exchange the sub-sequences of the variable values between
the parents to generate the children variable sequences, i.e., the ones on the right-hand side.
The crossover points are usually selected by random actually. Depending on the number
of crossover points finally selected, the crossover operation will create different offspring
variables. In the plot, we show the examples with (1) one crossover point, (2) two crossover
points, and (3) multiple crossover points, respectively, on the binary variables. Similar
operations can be done on real-number variables as well.

Mutation: GA models the gene mutation in the real-world with the mutation operation,
which can change a small number of the children variable values with a certain pre-specified
probability. Formally, given the mutation probability n € [0,1.0], GA will enumerate all
the variable positions and randomly select a number of them subject to the probability n
for mutation. For instance, in Figure 1, for the generated children variables, a number of
mutation spots are identified (in red color), the variable values at which are flipped (i.e., 1
changed to 0, and 0 changed 1). Some of the children variables have one single mutation
spot, some have none and some may have two mutation spots. When it comes to the real-
number variables, the variable mutation can be done in a similar way, where the bit flip
operation can be replaced with some real-number sampling operation instead to change the
variable values.

With the crossover and mutation operations, GA will generate a new group of candidate
variable solutions, which can be denoted as set G(1) = {0&1), 0&1), Sy 9;(,1)}. Such an iterative
process continues until convergence and the optimal variable in the last generation will be
outputted as the solution. The pseudo-code of GA is provided in Algorithm 1.

2.1.4 MOoRE DiscussioNs oN GA

Before we conclude this subsection on GA, we would like to provide the physical meanings
of the crossover and mutation operations. Crossover actually will relocate the variable
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Algorithm 1 Genetic Algorithm
Require: Variable Search Space ©.
Ensure: Model Parameter 6
1: Initialize a population G = {61,02,--- ,0,}
2: Initialize convergence tag = False
3: while tag = False do

4:  Evaluate the solutions in G to get the loss function values [¢1, 2, - - -, £})]
5:  Compute the sampling probability [pgo), pgo), cee pz(,o)}
6:  Sample the parent variable pairs P = {(6,,,0;,),(0i,,0;,), - - } subject to the probabilities
7: Generate the children variables G’ from pairs in P via crossover
8  Update the children variables G” from G’ via mutation
9: SetG=¢g"
10:  if convergence condition holds then
11: tag = True
12: end if

13: end while
14: Return 0" = argmingcg £(0)

positions in the search space, which allows the algorithm to explore broadly based on the
current feasible solutions. Meanwhile, to enable the algorithm to explore some regions
outside the hyper-cubes with current solutions as the vertices, GA adopts the mutation
operation which can change a small number of variable values in the learning process.

For instance, in Figure 2, we provide an example on optimization on a search space
{0,1}3, where the variables are a binary sequence of length 3 and the space include all the
8 vertices of the cube. Let’s assume, we are provided with two random variables 000 and
011, which correspond to the two vertices on the front-side of the cube. By using these two
variables as the parents, via the crossover operation, these two vertices can generate the
two children variables 010 and 001 (i.e., the remaining two vertices in blue and green colors
respectively at the front-side).

Here, we face a dilemma: no matter how we crossover the variables, we cannot explore
the remaining 4 vertices at the back-side. However, we discover that the mutation operation
allows GA to resolve such a problem actually. For instance, by flipping the first bit of the
variables from 0 to 1 in the children variables, GA will successfully reaches the back-side
of the cube (i.e., the two red points) and will be able to explore the remaining vertices for
learning the optimal solutions to the problem.

Traditional GA is usually very slow, and the learning process may involve a large number
of generations. In recent years, some works have been introduced to improve the slow
convergence problem of GA, including GADAM [20] and fast GA [2]. GADAM [20] adopts the
gradient descent algorithms to help reach the local optimum for each unit variable solutions
before the evolution; while fast GA [2] adopts a random mutation rate to enable the GA to
achieve a faster convergence rate. GADAM is also introduced in our previous tutorial article
[19], and the readers may refer to the cited articles for more detailed information about
these two mentioned algorithms.
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Figure 2: A Example to Illustrate the Physical Meanings of Crossover and Mutation in
Optimization.

2.2 Shuffled Complex Evolution (SCE) Algorithm

The Shuffled Complex Evolution (SCE) algorithm [3] to be introduced in this part is an
improvement over the genetic algorithm, which is based on a synthesis of four concepts
that have been proven to be successful for global optimization, including (1) combination
of probabilistic and deterministic approaches, (2) clustering, (3) systematic evolution of a
complex of points spanning the search space, and (4) competitive evolution. SCE is shown
to be much more effective, efficient and robust for a broad class of problems. In the following
part of this subsection, we will introduce the outline of the SCE algorithm, together with
the CCE (Competitive Complex Evolution) algorithm which will be used in SCE.

2.2.1 SCE ALGORITHM OUTLINE

The outline of the SCE algorithm is illustrated in Algorithm 2, which accepts p > 1,
m > dg+1 and the search space © as the input. The algorithm consists of several important
steps, which are listed as follows:

e Initialization: In the initialization step (i.e., line 1), SCE will compute the sample
size s =p X m.



JIAWEI ZHANG, IFM LAB DIRECTOR

Algorithm 2 SCE Algorithm

Require: Variable search space ©; Complex number p; Complex size: m.
Ensure: Model Parameter 6

el e e el el
O NPTy Q

Compute sample size s = p X m
Sample s variable points {61,802, -- , 05} from space ©
Evaluate the objective function £(-) at the variables, and get {£; = L(0;)}ict1,2,... s}
Sort the variables into an array D = {Oi}ie{1727... ,s} in an increasing order of {Ei}ie{w,... s}
Initialize convergence tag = False
while tag = False do
Partition D sequentially into p equal-sized complexes A = {A*, A% ... AP}
for each complex A’ € A do
Evolve A® with the CCE algorithm, i.e., A* = CCE(A?)
Add all the complexes in A into D again, i.e., D = |J_; A’
Evaluate variables in D, and get {¢; = £(0;)}e,cp
Resort variables in D in an increasing order of {{;}g,cp
end for
if convergence condition holds then
tag = True
end if
: end while
: Return 6* = arg mingep £(0)

Sample Generation: At line 2, s variable samples will be sampled from the search
space © (subject to the uniform distribution if no prior information is available).

Evaluation and Sorting: For each of the sampled variable point, SCE will evaluate
the objective function at them. Considering our objective function is a minimization
problem, the evaluation results will be used to sort the variable points in an increasing
order of their function values (as indicated in lines 3-4).

Complexes Partition: The learning process of SCE involves an iterative process,
which starts with a complex partition step as indicated in line 7. According to the
increasing order of the points in D, SCE sequentially partition these points into p
complexes A = { A, A2, .- | AP}, each of which contains m points.

Complex Evolution: SCE will call the CCE algorithm to evolve the points in
each complex to achieve better offspring variable solutions (i.e., in line 9). The CCE
algorithm will be introduced later.

Shuffle, Re-evaluate and Re-sort: Based on the evolved variables, SCE will merge
them together and re-evaluate the objective functions at these new points, which will
be re-sorted again for the next iteration.

Such a process continues until convergence or the maximum iteration number has been
met. The optimal variable in the last iteration will be outputted as the final solution, i.e.,
0™ = argmingep L£(0).
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Algorithm 3 CCE Algorithm

Require: Search space ©; Complex AF; Parent size g; Evolution iteration parameters o and 3; .
Ensure: Evolved complex A*
1: for external-evolution iteration index in {1,2,--- 5} do

2 Compute weights for points in complex A*, i.e., {pi}giyeAk
3 Randomly select ¢ parent points B = {u;,us,--- ,u,} from AF subject to the probabilities
4 for inner-evolution iteration index in {1,2,---,a} do
5: Sort the points in B in the order of increasing function value
6: Computing the centroid g of points in B excluding the worst point
7 Reflect the worst point with a new point r = 2g — u,
8 if r is not within © then
9: Compute the smallest hypercube H C IR%

10: Randomly sample point z from H

11: Setr =12z

12: end if

13: Evaluate function £(-) to get £, = L(r) and ¢, = L(uy)

14: if ¢, < {, then

15: Set u; =r

16: else

17: Compute ¢ = (gzu“), and evaluate . = L(c)

18: if . < {, then

19: Set u; =c

20: else

21: Randomly generate a point z from H

22: Set ug =z

23: end if

24: end if

25:  end for

26:  Replace the original points in A* with the evolved ones in B

27:  Resort A* according to the re-evaluated function values at points in A"
28: end for

29: Return A* as the output

2.2.2 CCE ALGORITHM OUTLINE

The CCE algorithm called in the SCE algorithm can effectively evolve the variable points in
each complex into a new stage in a manner similar to the genetic algorithm, which accepts
a complex A*, parameters 2 < g < m, o > 1 and § > 1 as the inputs. The output of CCE
will be the evolved complex in a similar data structure as the input A*, containing the
well-sorted variables. The pseudo-code of the CCE algorithm is provided in Algorithm 3.
The CCE algorithm consists of two evolution iterations. The external iteration of CCE
samples the parent variable points, which will be evolved with the internal iteration. The
key steps in CCE are introduced as follows:
External Evolution Iteration for § Rounds

e Weight Computation: Based on the position indexes of points in complex A*, CCE
will compute the sampling probabilities for these points, which can be denoted as
2(m +1—1)

Pi= Dy e L2 m), )
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where ¢ here denotes the index of a variable point. In other words, for the points
which are in the front (i.e., with smaller function evaluation values) will have a higher
sampling opportunity. For instance, for the first point in A¥, its sampling probability

will be ﬁ; while for the last point in A*, its sampling probability will be m(m2 -

e Parent Selection: A batch of points will be randomly selected from A* as the
parents, which is denoted as B = {uj, u, -+ ,u,} in line 3. Here, we use the notation
u instead of 8 to avoid the confusion about the subscripts in the representation.

e Internal Evolution Iteration: Offspring Generation for o Rounds

— Centroid Computing: Variable points in the parent batch B will be sorted,
which will all (except the worst point) be used to compute the centroid of the
complex, i.e.,

1 =

g 712111 (5)

=13

— Reflection Step: A new point will be computed based the worst point in B,
which can be denoted as r = 2g — u,.

— Mutation Step: If the new point r is not in the search space ©, CCE will
replace r with a new randomly selected point z from the smallest hypercube H
which covers all the points in AF.

— Contraction Step: In the case if r is better than u,, CCE will replace u, with

(g—|—2uq) (

r; otherwise, CCE will create a new point ¢ = i.e., the central point

between centroid g and the worst point uy).

— Mutation Step: If c is better than u,, CCE will replace u, with c; otherwise,
CCE will replace uy with a randomly selected point z € H.

e Parent Update: All the generated offsprings will be put back into A* to update
the variables. Complex A* will be updated, re-evaluated, and re-sorted for the next
iteration.

2.2.3 MORE DiscussioNs ON SCE

The SCE algorithm treats the global search of optimal solutions as a process of natural
evolution, where the sampled s points contribute a population. The population will be par-
titioned into several communities, each of which will evolve independently (which denotes
the process to search the space in different directions). After a certain number of genera-
tions, the communities will be forced to mix together, and new communities will be created
via a shuffling process. This procedure enhances survivability by a sharing of information
gained independently by each community.

The evolution process used in SCE is different from that in GA, where the parents
are in a batch instead of a pair. A subset of the points will be sampled from a complex
subject to the pre-computed probabilities, which serve as the parents in the evolution. The
offsprings are introduced at random locations of the feasible search space under certain
condition that the evolution will not be trapped by unpromising regions. Therefore, each

10
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mutation will help improve the community slightly in the evolution process, and the newly
generated points will replace the worst point in the community. It is very important for the
effectiveness of SCE in guiding the search process.

2.3 Differential Evolution (DE) Algorithm

Differential Evolution (DE) algorithm [15] is a new heuristic approach mainly having three
advantages; finding the true global minimum regardless of the initial parameter values,
fast convergence, and using few control parameters. DE algorithm is a population based
algorithm like GA using similar operators; crossover, mutation and selection. Meanwhile, in
searching for better solutions, traditional GA heavily rely on crossover operation for local
search; while DE relies more on the mutation operation instead. DE utilizes mutation
operation for the solution search purposes, and applies the selection operation to direct
the search toward the prospective regions in the variable space. In this subsection, we will
provide a brief introduction to the DE algorithm. The general algorithm framework of DE
is very similar to GA, and we will not provide its pseudo-code here but focus on introducing
the three main operations as follows.

2.3.1 MUTATION

Formally, let P*) = {ng), ng), e ,Hék)} denote a set of variables evolved to the k;, gener-
ation, where p denotes the population size. The variables in the initial generation, i.e., PpO)
are sampled randomly from the search space © if no prior knowledge about the problem
optimal solution is available.

The crucial idea behind DE is the mutation scheme for generating trial variable vectors.
DE generates new variable vectors by adding a weighted difference vector between two
population members to a third member. If the resulting vector yields a lower objective
function value than a predetermined population member, the newly generated vector will
replace the vector with which it was compared in the following generation. The comparison
vector can but need not be part of the generation process mentioned above. In addition,
the best parameter vector Bégt will be evaluated for every generation in order to keep track
of the progress that is made during the minimization process. Several different mutation
schemes are introduced in [15], and we will introduce them as follows.

(k) (k)

Scheme 1: For each variable vector 8, € P*) DE will generate a trial vector v, for it
as follows:
k
v =6 + £ (01 — o), (6)
where the indexes r1, r9, 73 are randomly selected from {1,2,--- ,p} and 71,72, 73 # i. Term

F is a real constant which controls the amplification of the differential variation term.
Scheme 2: Another scheme introduced in [15] is very similar to the above scheme 1,
which further considers the best variable in the current generation when generating the
trial vector vgk) for the variables. Formally, let 01(7215 denote the optimal variable in the
current generation P*), which introduces the lowest objective function value. We can
represent the generated vector for variable Gl(k) e PH) as

v — g® Ly (g _g®y 4 p. (o) _ o)), (7)

best ~ i r3

11
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Figure 3: A Example of Crossover Operations in DE.

where A is an additional introduced control parameter to control the greediness of the
scheme by incorporating the current best vector OE(,]th. This new term can be extremely
useful for objective functions where the global minimum is relatively easy to find.

2.3.2 CROSSOVER

Based on the generated vector {vz(k)}ie{m,._,,p} (with either scheme 1 or scheme 2), DE

)

proposes to crossover it with the original variable vector OEk . By randomly selecting the
crossover index point n as well as the crossover sequence length L, one segment of the

Ek) will be used to generate a new vector ul(»k) of length dy. To

(k)

()

variable values from vector v

be more specific, the entries in vector u;’ can be represented with the following equation:
(k) ; Vz(k)(.])7 1fj€{n7n+177n+L_1}7
u; ' (j) = (k) . (8)
0, (k), otherwise.

Example 1 For instance, as shown in Figure 3, given the two variable vectors vgk) (in

green color) and ng) (in blue color), by sampling the crossover starting index n and the

(k)

crossover segment length L, DE generates a new vector u;"”’ as shown at the right hand

12



IFM LAB TUTORIAL SERIES # 3, COPYRIGHT (©IFM LAB

(%)

7

(k)

7

(k)

side. The entries u; (5 : 10) are from vl(k), and the remaining entries in v, are from 6,

instead.

Algorithm 4 Sampling Approach of L
Require: Crossover probability p; Variable dimension dy; Starting index n
Ensure: Crossover segment length L
: L=1
while rand() <pA(n+ L) < dy do
L+ =1
4: end while
5: Return L

W

In the DE algorithm, the starting index n is usually sampled from set {1,2,---,dg}
subject to the uniform distribution. DE determines the crossover segment length with the
following pseudo-code in Algorithm 4.

In the algorithm, p is the crossover probability and rand() denotes a random number
sampled in range [0, 1] subject to the uniform distribution. According to the algorithm, the
probability to get a crossover segment of length no less than [ will be P(L > 1) = p!~%.

2.3.3 SELECTION

The selection operation in DE is very simple. Based on the original variable 0§k) and the

newly generated vector ul(k) for it, DE will select which one should be used in the next
generation, i.e., generation k 4 1, with the following equation:

(k) (k) ok
g+ _ {uz it L(ug™) < £(63Y), ©

Oik) , otherwise.

(k)

OEk) in the next generation; otherwise, 6

can lead to a smaller function value, it will be used to replace
(k)

)

In other words, if vector u

value is retained in the next generation.

2.3.4 MORE DiscussiONs ON DE

Traditional direction search algorithms, including GA, actually adopt a greedy strategy
for selecting good solutions, where variations are created on the solution vectors. Once a
variation is generated, the algorithm will evaluate its benefits, which will be accepted as new
solutions if it reduces the objective function value (for minimization problems). Such a kind
of algorithm can converge fast but may get trapped into the local minima. DE resolves such
a disadvantage by adopting a new mutation schema, which makes DE to be self-adaptive. In
DE, all the solutions have the same chance to be selected as the parents without dependence
of their fitness value. DE also adopts a greedy selection process: the better one of the new
solution and its parent wins the competition providing significant advantages of converging
performance over genetic algorithm. DE is a stochastic optimization algorithm, which can
optimize the objective function and considering the constraints on the variables. Compared
with other algorithms, DE has three advantages: (1) identifying true global minimum, (2)
fast convergence, and (3) a few control parameters.
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2.4 Particle Swarm Optimization (PSO) Algorithm

The PSO (Particle Swarm Optimization) algorithm mimics the social behavior of birds
flocking and fishes schooling starting from a randomly distributed set of particles (i.e., the
potential solution candidates). Similar to GA, the PSO algorithm will improve the solutions
according to a quality measure (i.e., the fitness function) by moving the particles around
the search space with a set of simple mathematical expressions. The PSO algorithm shares
a lot of common elements with GA:

e Both initialize a population in a similar manner;
e Both use an evaluation function to determine how fit a potential solution is;
e Both are generational by repeating the same set of processes.

The PSO algorithm has two main operators: velocity update and position update. During
each generation, each particle is accelerated toward the particle’s previous best position
and the global best position. In each generation, a new velocity value for each particle is
calculated based on (1) its current velocity, (2) the distance from its previous best position,
and (3) the distance from the global best position, which will be used to calculate the next
position of the particle in the search space. The pseudo-code of the PSO algorithm is
provided in Algorithm 5.

According to the algorithm, in lines 1-5, the algorithm initializes a set of variables,
including the particle set, their variable, velocity and optimal variable vectors, respectively.
In the learning process, for each particle, the algorithm will evaluate the function at the
current variable to update the best seen variable (i.e., lines 9-11) as well as identify the local
optimal neighbor index (i.e., lines 13-18), which will be used to update both the velocity
vector as well as the variable vector with equations shown in lines 20-21. In the following
part, we will introduce the specific representations of the function v; = f(6;,v;, 07, 0;) and
function 8; = h(6;,v;) proposed in the existing works for different scenarios.

2.4.1 BINARY PSO ALGORITHM

In the case when the search space is binary, i.e., © = {0, 1}d9 , the corresponding PSO used
for learning the variable will be called the binary PSO algorithm [8]. In the algorithm,
the velocity vector v; for particle P; keep records of the current velocity, whose value is
determined by both the velocity in the previous round, the velocity of the historical best

seen variable, as well as the optimal neighbor variable value. To differentiate the velocity
()
i’?’
VET) = [vi(T)(l), vl-(‘r)(2), e ,vZ(T) (dp)], its jep entry VET) (7) will be updated with the following
equation:

vector in different iterations, we use v; ’ to denote the velocity in iteration 7. For vector

viD(G) = 167V VY or 67 (10)

(2 K3

VTG e (0:0) - 67 00)) + e (050) - 67 V()). (1)

where c1, ¢y denote the two weight parameters (usually set with value 2.0), and terms 1)1,
1o represent two random number drawn from a uniform distribution between 0.0 and 1.0.
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Algorithm 5 PSO Algorithm
Require: Variable search space O; Particle population g.
Ensure: Model Parameter 6

1: Initialize a set of particles P = {Py, Pa,--- , Py}

2: for each particle P; € P do
3:  Initialize 0;, v; and 6 from search space © for each particle P;
4: end for
5: Initialize convergence tag = False
6: while tag == False do
7:  for each particle P; € P do
8: /*Evaluate objective function £(6;) and update the optimal variable 8] */
9: if £(0;) < £(6) then
10: Set the best solution found so far 8] = 6,
11: end if
12: /*Set g to be the index of the optimal neighbor of P;*/
13: Set g =1
14: for particle P; in F;’s neighborhood set do
15: if £(07) < L£(8;) then
16: Update g = j
17: end if
18: end for
19: /*Update terms v; and 6;*/
20: Update the velocity v; term with the identified g, i.e., vi = f(8i,vi,0;,0))
21: Update the position 6; term, i.e., 8; = h(0;,v;)
22:  end for
23:  if Convergence condition holds then
24: Set tag = True

25:  end if
26: end while
27: Return 0" = argmax;cq2,... n} £(6;)

In many of the cases, there will exist a bound pair [Umin, Vmaesz| to constrain the possible
values of vector v; (values exceeding the bound will be smoothen accordingly).

Based on the updated velocity vector VET), the PSO algorithm will update the variable
value vector 6;. Generally, for the larger values in vector VZ(T), the corresponding entry in

vector 8; will be more likely to have value 1. The binary PSO algorithm will update the
()

variable entry 6, ’(j) with the following equation:

1, f < %7
07 (j) = n(o Y v{") = 1S ) (12)
0, otherwise;

where term 13 is a random number selected with the uniform distribution from range [0, 1.0].

2.4.2 STANDARD PSO ALGORITHM

In the case when the objective variables are real numbers, i.e., the search space is © = R%,
the variables will denote a point in the search space, and the PSO algorithm will be called
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the standard PSO algorithm [9]. Formally, in the standard PSO algorithm, the velocity
and variable vectors will be updated with the following equations respectively:

TIG) e (0:6) - 07V G)) + ez (0500 - 07V G)) s (13)

VG v G). (14)

v ) = v,
6. (j) = 6!
Similarly to the binary PSO, to avoid the oscillations of the velocity vector VZ(T), there

usually exist a tight lower and upper bounds [V, Umaz] for the entries, where the ones ex-
ceeding the boundaries will be smoothen effectively with values v, and vp,q. respectively.

2.4.3 PSO WITH INERTIA

In this part, we will introduce the PSO algorithm with inertia [14], which assigns the
historical velocity with a weight in the velocity vector updating equation. For a nonzero
weight, the algorithm will move the particles in the same direction as the previous iterations.
Meanwhile, a decreasing weight over iterations will introduce a shift from the global search
to the local search instead. Formally, the velocity and variable updating equation adopted
in the PSO algorithm with inertia can be denoted as follows:

viP(G) = 0@ vV G) e v (050) - 07700 ) o v (85) - 67V ) 5

(M) _ plr—=1),. () -
07 () =0V () +v ), (16)
where term w(™) denotes the inertia weight.

Generally, the weight term will be reduced linearly with iteration, from wggrt t0 Wepg
(Wstart and wepq are usually set with values 0.9 and 0.4 respectively). The updating equation
of term w(™) can be represented as follows

T ). _
w(»r) _ ( max T) T<wstart wend) T Wend, (17)
max

where T4, denotes the maximum iteration round allowed in the PSO algorithm. A the
algorithm continues, the value of w(™ will gradually reduces from wgigre 10 Wepg-

2.4.4 PSO wITH CONSTRICTION COEFFICIENT

Another PSO variant [1] to be introduced in this section incorporates the constriction
coefficient into the velocity updating equation, which will lead to particle convergence over
iterations, since the amplitude of the particle’s oscillations decrease as it focus on the
local and neighborhood previous best solutions. Meanwhile, the constriction coefficient also
prevents colapse if the right social conditions are in place. The particle will oscillate around
the weighted mean of the historical best solution and the optimal neighbor’s best solution
if they are near each other, which performs a local search in the space. On the other hand,
if these solutions are far away from each other, the PSO algorithm will perform a global
search instead. The constriction coefficient will balance between local search and global
search effectively depending on the constriction coefficient value.
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The updating equations of the velocity and variable vectors in the PSO with constriction
coefficient algorithm can be represented as follows:

vOU) = x G e v (0:0) - 07 7V0)) e (05) - 07 V())]

0" (j) =67V (j) + v (), (19)

7

where y = and ¥ = ¢1 + c2. Normally, variable k is set with value 1 and

2k
[2—tp— /29|

c1,co are assigned with value 2 in the algorithm.

2.5 Evolution Strategy (ES) Algorithm

Evolution Strategy (ES) [4], also known as Evolutionary Strategy, is a search paradigm
inspired by the principles of the biological evolution, which also belongs to the population
based evolutionary algorithms. ES and GA work in a very similar way, involving selection,
mutation and crossover (called recombination in ES), which were developed independent
by two groups of researchers (ES was developed by the European computer scientists and
GA was introduced the the USA computer scientists). In most of the cases, GA adopts a
binary code for the solutions, while ES works well for the optimization functions with real-
number variables. A more detailed discussions on the differences and similarities between
ES and GA is available in [7]. In this subsection, we will first talk about the general
algorithm framework of ES, where the detailed parameter control strategies used in ES
will be introduced in the following subsection.

2.5.1 ALGORITHM OUTLINE

The ES algorithm involves an iterative procedure, where new individuals will be created
in each generation from the existing ones. Formally, to specify the learning settings of the
algorithm, ES can be normally denoted as (u/ p‘f/\)-ES. In the case where parameter p is
not specified, the ES algorithm can also be denoted as (1 A)-ES as well. Here, y, p and
A are positive integers, whose physical meanings are denoted as follows:

e 1: the number of individuals in the parent set, i.e., the parent population.
e p: the number of parent individuals selected (out of p parents) for recombination.
e )\: the number of offsprings generated in each iteration.

° + the two selection modes of the algorithm. If notation “+” is used (i.e., the “plus”
selection mode), the individual age is not considered in selection, and p best of the
# + X individuals will be selected as parents in each iteration. If notation “” is
used (i.e., the “comma” selection mode), the senior individuals will die out after each
iteration, and p out of the generated A offsprings will be selected as parents in each

iteration.

In the (u, A)-ES, p < X should always hold; while in the (u+ A)-ES, © < X is not necessary
any more and A = 1 is also a feasible setting for the algorithm. In some cases, a subscript will
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Algorithm 6 Evolution Strategy Algorithm

Require: Variable search space O; Variable dimension dy; Evolution parameters p, g and A
Ensure: Model Parameter 6

1: Initialize parent population P = {}

2: Initialize an instance with variable vector 8 € R% with control parameter s
3: Initialize convergence tag = False

4: while tag = False do

5. forie{1,2,---,A} do

6: 0;, s; = mutate(0, s)

7 ,P:'PU{(OZ,Sl,ﬁ(Gl))}

8: end for

9: P = select_by_age(P)
10: P = select_u_best(p, P)  // ** optional **
11: (0, s) = recombine(select_mate(P, p), 0, s)
12:  if Convergence condition holds then
13: Set tag = True

14:  end if
15: end while
16: Return 0" = argmingep £(0)

be attached to p to denote the combination modes: p; for intermediate recombination and pyw
for weighted recombination. Intermediate recombination is also the default recombination
mode if the subscript is not indicated.

The pseudo-code of the (11/pt A)-ES algorithm is provided in Algorithm 6, which accepts
dg, p, 1 and A as the input. At the beginning, the algorithm will initialize an individual
0 at the beginning. The algorithm will also create a parameter variable s for it, which
can covers control or endogenous strategy parameters, e.g., the success counter or a step-
size that primarily serves to control the mutation. As the algorithm continues, a group
of A\ offspring instances will be generated via the mutation operations, where the p good
instances will be selected to form the new parent set. The initial variable 8 and parameter
s will be updated with the selection and recombination operations. Detailed information
about the operations used in the pseudo-code will be introduced in detail as follows.

2.5.2 MATE SELECTION AND RECOMBINATION

Prior to the instance recombination, the ES algorithm adopts a mating selection step to
pick individuals from the population to become the new parents. Depending on whether
the function evaluation is involved in the mate selection or not, the existing mate selection
strategies can be divided into two categories:

e Fitness-based Mate Selection: Such a mate selection approach utilizes the fitness
ranking of the parent individuals to pick the good ones for recombination. The global
environment selection step (i.e., function call “select_p_best()” in Algorithm 6) can be
omitted if this mate selection strategy is adopted.

e Fitness-independent Mate Selection: This mate selection approach picks the
parent individuals doesn’t depend on the fitness values of the individuals, which can
be either deterministic or stochastic. For such a mate selection strategy, the global
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environment selection step (i.e., function call “select_u_best()” in Algorithm 6) will
be necessary and required.

Based on the selected individuals, ES will call the “recombine()” function to combines
information from several parents (the parent individual number is usually denoted by the
parameter p) to generate a single new offspring. There also exist different types of recombi-
nation operators in the ES algorithm, and several important ones are introduced as follows
respectively:

e Discrete Recombination: Such a recombination operator is also called the uniform
crossover in GA, which randomly pick a value from the parents’ corresponding variable
vector for each of the variable entries. Formally, given the p parents available for
recombination, for each entry 05(5),Vj € {1,2,--- ,dy} in the offspring variable vector,
the discrete recombination approach will select on individual from those p parents
(e.g., 0;) and fill in the entry with values from 0y (i.e., set 0}(j) = 0x(j)).

e Intermediate Recombination: This recombination operator computes the average
value of each variable of the selected p parent individuals as the corresponding variable
vector for the newly generated offspring. Formally, we can represent the offspring
variable vector as 6; = % > 0y, where the summation term will sums all the variable
vectors of the p selected parent individuals.

e Weighted Recombination: The weighted recombination operator is a generaliza-
tion of the intermediate recombination, which consider the variable vectors from all
the p parent individuals (usually p = p) via a weighted sum. The weight values are
computed based on the fitness ranking of the individuals, where the good individuals
will get a weight no less than that of the inferior ones.

Similar to the crossover operator in GA, the recombination operator in ES will create
variations in the population, which allows the algorithm to explore different regions of the
search space. The discrete recombination works quite similar to the crossover operator,
which adjust the search regions located at the vertices of the search region; while the
intermediate recombination and weighted recombination allow the algorithm to search along
the edges of the hyper-rectangle of the search region instead.

2.5.3 MUTATION AND PARAMETER CONTROL

The mutation operation will introduce some “small” variation to the variable vectors, which
allows the ES to jump to other search regions for further explorations. ES introduces
the perturbation vector from a multivariate normal distribution, e.g., ¢ ~ N(0, C), with
zero mean and covariance matrix C € R%*% . Formally, as shown in Algorithm 6, given
the variable vector @' obtained from the recombination, we can represent its corresponding
vector after mutation as 8” = 0’ +¢, which can be treated as a vector draw from distribution
0 + N(0,C) (or the equivalent distribution A/ (6', C2N(0,1))).

Therefore, the covariance matrix C determines the mutation step in the ES algorithm,
and the selection of different type of matrix C will lead to different types of mutations in
ES. In Figure 4, we show several examples of the mutation distribution plots with different
covariance matrices C.
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Figure 4: Examples of ES Mutation Distribution.

e If the different dimensions of the mutation distribution are independent but with com-
mon variance, i.e., C = ¢-I (which denotes C is a diagonal matrix with constant ¢
on its diagonal), the corresponding distribution C:N (0,I) will be a re-scaled nor-
mal Gaussian distribution and its distribution plot will be in a spherical shape (as
illustrated in plot (a) of Figure 4).

e If the different dimensions of the mutation distribution are independent but with
different variances, i.e., C = diag(c?) (here diag(c?) denotes a diagonal matrix with
o? on its diagonal), the distribution region of distribution CiN (0,I) will be in a

ellipsoid shape with principal axes parallel to the coordinate axes (as illustrated in

plot (b) of Figure 4).

e If the covariance matrix is positive definite (i.e., x' Cx > 0,Vx € R%), which denotes
a general case covering the previous two special case as well, the corresponding distri-
bution plot will be in a spherical shape with principal axes pointing to any directions
(as illustrated in plot (c) of Figure 4).

In the ES algorithm, controlling the parameter C is the key to design the evolution strat-
egy. Several different parameter control approaches have been introduced, including the
1/5 success rule for parameter control [12], self-adaption [13], derandomized self-adaption
[10], cumulative step-size control (CSA) [11, 6], covariance matriz adaption (CMA) [5] and
natural evolution strategies (NES) [17]. In the following part, we will introduce one of
them, i.e., CMA, and the ES algorithm with CMA based parameter control is also called
the CMA-ES.

2.5.4 CMA-ES

In this part, we will take the CMA-ES algorithm [5] as an example to introduce a
concrete implementation of ES. The key necessary steps involved in CMA-ES include:
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Algorithm 7 CMA-ES Algorithm

Require: Variable search space O; Variable dimension dy; Evolution parameters p, g and A
Ensure: Model Parameter 6

e T e T e T e S =St

— =

19:
20:

21:

22:

23:
24:
25:
26:
27:
28:
29:

Set parameters to be used in the algorithm
Set evolution path vectors p(®) = 0 and q(®) = 0, covariance matrix C(® =T and g = 0
Initialize mean vector m(®) € R% with step-size ¢(®) € R
Initialize convergence tag = False
while tag = False do
Initialize population set P = {}
forie {1,2,---,A} do
// ** Sample population individuals: **
69t ~ m©@ 4 5@WN(0,C9)
P =PU{(6:L(6:))}

end for

// ** Update Mean Vector: **
m(9+1) = m(g) -+ Cm * Zf‘:l w; - (0§q+1) — m(g))

// ** Update covariance matrix: **
m+TD _m9

p(g+1) _ (1 _ Cc)p(g) + CC(2 - Cc);ueff o(9)

COD = (1 =y =, Yy wi)C) +erpploih | e, S0 wi(017H —mlot ) (97 -
m(g"l'l))—r

// ** Update step-size: **

_ 1 mGt _ 9
Q¥ = (1 —¢,) - Q9 + \/co(2 = Co)ptess - (CW) éimg(g)m
. (a0
ottt = (9 exp (éa <E|N(01)| -1

if Convergence condition holds then
Set tag = T'rue
end if
g=g+1
end while
Return 6" = argmingep £(0)

e Mutation: In CMA-ES, a population of new search points will be generated by

sampling a multivariate normal distribution. Formally, let m@), 69 and C@ denote
the updated mean vector, step size and covariance matrix from the gy, generation.
Based on them, we can generate the variable individuals in the (g + 1), generation
with

Yt L m©@ + J(Q)N(O, C(g)),\v’i €{1,2,---,\}L (20)

)

Therefore, we can represent the obtained population for generation g + 1 as a set
P = {0(9+1) 0(9+1) . 0(g+1)}
- 1 » Y9 ) s U\ .
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e Selection and Recombination: CMA-ES adopts the weighted recombination to
compute the algorithm new mean for generation g + 1, which can be denoted as

mt) =m®@ 1, . Zwl 69" — m®), (21)

where ¢, < 1 denotes the learning rate in CMA—ES, term w; denotes the weight of
individual OZ(QH) and we have ) % | w; = 1. Here, individuals in the population set P
will be sorted according to their evaluations of the objective function, and the top u
individuals are selected from the population set P. In other words, the mate selection
strategy used in CMA-ES is fitness dependent. Different ways can be used to define
the weight terms {wi, ws, -+ ,w,}, and setting w; = ﬁ,Vi € {1,2,---, u} will reduce
the recombination to the intermediate recombination.

e Covariance Matrix Adaption: CMA-ES updates the covariance matrix itera-
tively, and the updating equation considers information from three different perspec-
tives: (1) current covariance matrix, (2) covariance computed with the newly mutated
individuals, and (3) covariance computed with the evolution path. Formally, the co-
variance matrix updating equation can be represented as follows:

A A
Clo+l) — (1—c1—c, Z wi)c(g)+Clp(g+1)p(g+1)T_|_Cu Z wi(9§g+1) _m(g+1))(9§g+1)_m(g+1))T’
i=1 i=1
(22)
where these three terms denote the covariance matrices mentioned above, and c1, ¢,
represent the weights of the last two terms. Vector pl9t1) denote the evolution path
vector of the (g + 1), generation, and it can be denoted as

m@th) — m(9

0'(9) ) (23)

Pt = (1 — co)p@ + \/ee(2 — cotiess

where fierr = (3F, w?)™! is the variance effective selection mass and ¢, < 1 is a

weight term. The factor ce(2 — ¢¢)ptesy is a normalization constant for p. For ¢, =1
I+ (@)

and .y = 1, the factor reduces to 1 and p@tY reduces to pl9tl) = 5

e Step-Size Control: In addition to the covariance matrix adaption, CMA-ES will
also update the step-size which controls the variation scale in the mutation. Formally,
the updating equation of the step-size can be denoted with the following equation:

41 _ oo o]
o) = 59 exp ( (EHN(O il -11]. (24)

In the above equation, d, =~ 1 is the damping parameter, and vector q¥tD denote
the conjugate evolution path vector in generation g 4+ 1, which can be denoted as

1m0t - m)

(g+1) =(1-c¢) .q(g) +4/co(2— Ca)ueff (C( )) 7 (25)

0’(9)

where ¢, < 1 is a weight term.

Based on these steps introduced above, we can provide the pseudo-code of the CMA-ES
algorithm in Algorithm 7.
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Algorithm 8 Hill Climbing Algorithm

Require: Variable search space O;
Ensure: Model Parameter 6

1: Initialize a random variable vector 6 € ©

2: Initialize the stop tag = False

3: while tag = False do

4:  Compute the neighbor set I'(8) of 8
Evaluate the function and compute {£(6;)}e,cr (o)
Set @’ to be the optimal neighbor in I'(8) with the largest function evaluation value
if £(0') < L£(0) then

Set tag = True

else
10: Set 6 = 6’
11:  end if
12: end while
13: Return 0 as the solution

3. Random Search Algorithms

In this part, we will introduce several other derivative-free optimization algorithms based
on generic random search, which don’t belong to the above three categories of algorithms
that we have introduced before in this paper and in [18]. Many of the algorithms introduced
above actually may also belong to the random search algorithm category, e.g., GA and ES.
Random search algorithms are useful for many ill-structured global optimization problems
with continuous and/or discrete variables. The random search algorithms to be introduced
here include Hill Climbing and Simulated Annealing.

3.1 Hill Climbing

The hill climbing algorithm to be introduced here has a close relation with the gradient
descent algorithms we introduced in the previous tutorial article [19], which all search for
the solutions via an iterative search to maximize/minimize the function evaluation at the
current state. Meanwhile, hill climbing is also very different from gradient descent, since
it doesn’t require any derivative computation in the optimization process. In hill climbing,
starting at the base of a hill, we walk upwards until we reach the top of the hill. In other
words, hill climbing starts with initial state and keeps improving the solution until reaching
its (local) optimum.

The pseudo-code of the hill climbing algorithm is provided in Algorithm 8. The algo-
rithm involves several key steps:

e Initialization: The hill climbing algorithm starts with a random point in the search
space, which can be denoted as 8 € O.

e Neighborhood Exploration: Based on the current state, the hill climbing algorithm
iteratively searches the nearby points of € to determine the moving direction for the
next step. Formally, these nearby points define the neighbor set of 8, which can be
denoted as I'(0). Different ways can be used to define the “neighbor” in hill climbing.
For instance, given a vector @, we can enumerate all the entries in the vector to
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f(x)

Figure 5: An Example of the Hill Climbing Algorithm.

add/minus 1 to define a group of new nearby vectors as the neighbors, which can be
denoted as {[0(1),0(2),---,0(i) £1,---,0(dg)]| }icf1,2, dy}-

e Neighborhood Evaluation: Hill climbing will evaluate the objective function £(-)
at these neighbor points, and pick the optimal one with the minimum function eval-
uation, e.g., 0'.

e Stop Criterion: If the optimal neighbor variable is better than the current variable,
i.e., £(0') > L(0), the algorithm will moves to that neighbor point. Otherwise, the
algorithm will stop and return the current variable as the output.

Example 2 For instance, in Figure 5, we provide an example to illustrate how the hill
climbing algorithm works in learning the optimal variable to the single-variable function
f(x). Let A denote the starting point, where optimization process starts. The hill climbing
algorithm will select its neighbor point B as the successor to evaluate the function. We
know that f(B) > f(A). The algorithm will move the current state to B and the search
process will continue to point C. Noticing that f(C) < f(B), the climbing algorithm will
stop there and return B as the optimal solution, which is actually a local mazimum point
of the function.

3.2 Simulated Annealing

According to the above description as well as Example 2, we can discover that the hill climb-
ing algorithm is a greedy algorithm and can be short-sighted in the optimization process,
especially for the non-convex functions. For instance, in Example 2, the algorithm is only
able to identify a local maximum B but fail discover the global optima FE, which is nearby
to B actually. In this part, we will introduce the simulated annealing algorithm, which is
a probabilistic technique for approximating the global optimum of a given function. Sim-
ulated annealing allows the continuous search in the worse-regions subject to a decreasing
probability.
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Algorithm 9 Simulated Annealing Algorithm
Require: Variable search space ©; Temperature decreasing factor « € [0, 1]; Max iteration I,q,
Ensure: Model Parameter 6

1: Initialize a random variable vector 6 € ©

2: Initialize iteration count ¢ =0

3: while iteration ¢ < I,,,, do

4:  Compute the neighbor set I'(0) of 6

5. Select a point 8’ from set I'(0)

6: if £(6') > L(6) then

7: Set 6 =6’

8 else )

9: if exp (w) > random(0,1) then
10: Set 6 =6’

11: end if

12:  end if

13: Update T =a-T

14: Updatec=c+1

15: end while

16: Return 6 as the solution

The name, i.e., “simulated annealing”, and inspiration come from annealing in metal-
lurgy, a technique involving heating and controlled cooling of a material to increase the size
of its crystals and reduce their defects. The simulation of annealing can be used to find an
approximation of a global minimum for a function with a large number of variables. The
simulated annealing algorithm allows the search in the region which is worse than the cur-
rent state, but the probability for such a kind of worse-region search decreases step by step.
This notion of slow cooling implemented in the simulated annealing algorithm is interpreted
as a slow decrease in the probability of accepting worse solutions as the solution space is
explored. Accepting worse solutions is a fundamental property of meta-heuristics because
it allows for a more extensive search for the global optimal solution.

In general, the simulated annealing algorithms work as follows.

e The algorithm initializes the search by randomly selecting one point in the search
space.

e At each time step, the algorithm randomly selects a solution close to the current
one, measures its quality, and then decides to move to it or to stay with the current
solution.

e During the search, the temperature is progressively decreased from an initial positive
value to zero and affects the worse-region exploration probabilities, i.e., the probability
of moving to a worse new solution is progressively changed towards zero.

The pseudo-code of the simulated annealing algorithm is provided in Algorithm 9.
According to the pseudo-code, the algorithm accepts the temperature decreasing factor
a € [0,1] and the maximum iteration I, as the input. Via an iterative search, the al-
gorithm will accept a new neighbor point @ iff (1) £(0') > L£(6); or (2) L(0') < L(6)

but random(0,1) < exp (w). In other words, the algorithm will explore to 6’
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if it leads to a better performance, or it will explore a worse region with probability
P(T;0',6) = exp (M). The probability term P(T’;0’,0) depends on both the func-
tion evaluations at points 8’ and 0, as well as the temperature term 7. Noticing the T term

will be updated iteratively with T' =T X « to 0 as the algorithm continues, which will lower
down the probability value P(T") for worse-region exploration steadily.

Example 3 For instance, we can still use the example shown in Figure 5, where A is the
starting point for search. The hill climbing algorithm will stop at B since further exploration
will lead to worse results. However, the simulated annealing algorithm allows us to take the
risk in further searching the region after C with a certain probabilities, e.g., D and E, even
though C and D are both worse than B. It will allow the algorithm to reach the global
optimum E at the final.

4. Summary

In this paper, as a follow-up of [18], we have introduce several other categories of derivative-
free optimization algorithms, including both the population based algorithms and several
other random search based algorithms. Many of these introduced algorithms can be po-
tentially applied to learn the deep neural network models. This tutorial article will also be
updated accordingly as we observe more new developments on this topic in the near future.
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