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Abstract
The dominant graph neural networks (GNNs) over-
rely on the graph links, several serious perfor-
mance problems with which have been witnessed
already, e.g., suspended animation problem and
over-smoothing problem. What’s more, the in-
herently inter-connected nature precludes paral-
lelization within the graph, which becomes criti-
cal for large-sized graph, as memory constraints
limit batching across the nodes. In this paper, we
will introduce a new graph neural network, namely
GRAPH-BERT (Graph based BERT), solely based
on the attention mechanism without any graph con-
volution or aggregation operators. Instead of feed-
ing GRAPH-BERT with the complete large input
graph, we propose to train GRAPH-BERT with sam-
pled linkless subgraphs within their local contexts.
GRAPH-BERT can be learned effectively in a stan-
dalone mode. Meanwhile, a pre-trained GRAPH-
BERT can also be transferred to other applica-
tion tasks directly or with necessary fine-tuning if
any supervised label information or certain appli-
cation oriented objective is available. We have
tested the effectiveness of GRAPH-BERT on sev-
eral graph benchmark datasets. Based the pre-
trained GRAPH-BERT with the node attribute re-
construction and structure recovery tasks, we fur-
ther fine-tune GRAPH-BERT on node classification
and graph clustering tasks specifically. The ex-
perimental results have demonstrated that GRAPH-
BERT can out-perform the existing GNNs in both
the learning effectiveness and efficiency.

1 Introduction
Graph provides a unified representation for many inter-
connected data in the real-world, which can model both the
diverse attribute information of the node entities and the ex-
tensive connections among these nodes. For instance, the hu-
man brain imaging data, online social media and bio-medical
molecules can all be represented as graphs, i.e., the brain
graph [Meng and Zhang, 2019], social graph [Ugander et al.,
2011] and molecular graph [Jin et al., 2018], respectively.
Traditional machine learning models can hardly be applied

to the graph data directly, which usually take the feature vec-
tors as the inputs. Viewed in such a perspective, learning the
representations of the graph structured data is an important
research task.

In recent years, great efforts have been devoted to de-
signing new graph neural networks (GNNs) for effective
graph representation learning. Besides the network embed-
ding models, e.g., node2vec [Grover and Leskovec, 2016]
and deepwalk [Perozzi et al., 2014a], the recent graph neu-
ral networks, e.g., GCN [Kipf and Welling, 2016], GAT
[Veličković et al., 2018] and LOOPYNET [Zhang, 2018], are
also becoming much more important, which can further re-
fine the learned representations for specific application tasks.
Meanwhile, most of these existing graph representation learn-
ing models are still based on the graph structures, i.e., the
links among the nodes. Via necessary neighborhood informa-
tion aggregation or convolutional operators along the links,
nodes’ representations learned by such approaches can pre-
serve the graph structure information.

However, several serious learning performance problem,
e.g., suspended animation problem [Zhang and Meng, 2019]
and over-smoothing problem [Li et al., 2018], with the exist-
ing GNN models have also been witnessed in recent years.
According to [Zhang and Meng, 2019], for the GNNs based
on the approximated graph convolutional operators [Ham-
mond et al., 2011], as the model architecture goes deeper
and reaches certain limit, the model will not respond to the
training data and suffers from the suspended animation prob-
lem. Meanwhile, the node representations obtained by such
deep models tend to be over-smoothed and also become in-
distinguishable [Li et al., 2018]. Both of these two problems
greatly hinder the applications of GNNs for deep graph rep-
resentation learning tasks. What’s more, the inherently inter-
connected nature precludes parallelization within the graph,
which becomes critical for large-sized graph input, as mem-
ory constraints limit batching across the nodes.

To address the above problems, in this paper, we will pro-
pose a new graph neural network model, namely GRAPH-
BERT (Graph based BERT). Inspired by [Zhang et al., 2018],
model GRAPH-BERT will be trained with sampled nodes to-
gether with their context (which are called linkless subgraphs
in this paper) from the input large-sized graph data. Distinct
from the existing GNN models, in the representation learn-
ing process, GRAPH-BERT utilizes no links in such sampled



batches, which will be purely based on the attention mech-
anisms instead [Vaswani et al., 2017; Devlin et al., 2018].
Therefore, GRAPH-BERT can get rid of the aforementioned
learning effectiveness and efficiency problems with existing
GNN models promisingly.

What’s more, compared with computer vision [He et al.,
2018] and natural language processing [Devlin et al., 2018],
graph neural network pre-training and fine-tuning are still not
common practice by this context so far. The main obsta-
cles that prevent such operations can be due to the diverse
input graph structures and the extensive connections among
the nodes. Also the different learning task objectives also
prevents the transfer of GNNs across different tasks. Since
GRAPH-BERT doesn’t really rely on the graph links at all,
in this paper, we will investigate the transfer of pre-trained
GRAPH-BERT on new learning tasks and other sequential
models (with necessary fine-tuning), which will also help
construct the functional pipeline of models in graph learning.

We summarize our contributions of this paper as follows:

• New GNN Model: In this paper, we introduce a new
GNN model GRAPH-BERT for graph data representa-
tion learning. GRAPH-BERT doesn’t rely on the graph
links for representation learning and can effectively
address the suspended animation problems aforemen-
tioned. Also GRAPH-BERT is trainable with sampled
linkless subgraphs (i.e., target node with context), which
is more efficient than existing GNNs constructed for the
complete input graph. To be more precise, the training
cost of GRAPH-BERT is only decided by (1) training in-
stance number, and (2) sampled subgraph size, which is
uncorrelated with the input graph size at all.

• Unsupervised Pre-Training: Given the input unlabeled
graph, we will pre-train GRAPH-BERT based on to two
common tasks in graph studies, i.e., node attribute re-
construction and graph structure recovery. Node at-
tribute recovery ensures the learned node representations
can capture the input attribute information; whereas
graph structure recovery can further ensure GRAPH-
BERT learned with linkless subgraphs can still maintain
both the graph local and global structure properties.

• Fine-Tuning and Transfer: Depending on the specific
application task objectives, the GRAPH-BERT model
can be further fine-tuned to adapt the learned represen-
tations to specific application requirements, e.g., node
classification and graph clustering. Meanwhile, the pre-
trained GRAPH-BERT can also be transferred and ap-
plied to other sequential models, which allows the con-
struction of functional pipelines for graph learning.

The remaining parts of this paper are organized as fol-
lows. We will introduce the related work in Section 2. De-
tailed information about the GRAPH-BERT model will be
introduced in Section 3, whereas the pre-training and fine-
tuning of GRAPH-BERT will be introduced in Section 4 in
detail. The effectiveness of GRAPH-BERT will be tested in
Section 5. Finally, we will conclude this paper in Section 6.

2 Related Work
To make this paper self-contained, we will introduce some
related topics here on GNNs, TRANSFORMER and BERT.

Graph Neural Network: Representative examples of GNNs
proposed by present include GCN [Kipf and Welling, 2016],
GraphSAGE [Hamilton et al., 2017] and LOOPYNET [Zhang,
2018], based on which various extended models [Veličković
et al., 2018; Sun et al., 2019; Klicpera et al., 2018] have
been introduced as well. As mentioned above, GCN and
its variant models are all based on the approximated graph
convolutional operator [Hammond et al., 2011], which may
lead to the suspended animation problem [Zhang and Meng,
2019] and over-smoothing problem [Li et al., 2018] for
deep model architectures. Theoretic analyses of the reasons
are provided in [Li et al., 2018; Zhang and Meng, 2019;
Gürel et al., 2019]. To handle such problems, [Zhang and
Meng, 2019] generalizes the graph raw residual terms in
[Zhang, 2018] and proposes a method based on graph resid-
ual learning; [Li et al., 2018] proposes to adopt residual/dense
connections and dilated convolutions into the GCN architec-
ture. Several other works [Sun et al., 2019; Huang and Carley,
2019] seek to involve the recurrent network for deep graph
representation learning instead.

BERT and TRANSFORMER: In NLP, the dominant sequence
transduction models are based on complex recurrent [Hochre-
iter and Schmidhuber, 1997; Chung et al., 2014] or convolu-
tional neural networks [Kim, 2014]. However, the inherently
sequential nature precludes parallelization within training ex-
amples. Therefore, in [Vaswani et al., 2017], the authors pro-
pose a new network architecture, the TRANSFORMER, based
solely on attention mechanisms, dispensing with recurrence
and convolutions entirely. With TRANSFORMER, [Devlin et
al., 2018] further introduces BERT for deep language under-
standing, which obtains new state-of-the-art results on eleven
natural language processing tasks. In recent years, TRANS-
FORMER and BERT based learning approaches have been
used extensively in various learning tasks [Dai et al., 2019;
Lan et al., 2019; Shang et al., 2019].

Readers may also refer to page1 and page2 for more infor-
mation on the state-of-the-art work on these topics.

3 Method
In this section, we will introduce the detailed information
about the GRAPH-BERT model. As illustrated in Figure 1,
GRAPH-BERT involves several parts: (1) linkless subgraph
batching, (2) node input embedding, (3) graph-transformer
based encoder, (4) representation fusion, and (5) the func-
tional component. The results learned by the the graph-
transformer model will be fused as the representation for the
target nodes. In this section, we will introduce these key parts
in great detail, whereas the pre-training and fine-tuning of
GRAPH-BERT will be introduced in the following section.

1https://paperswithcode.com/area/graphs
2https://paperswithcode.com/area/natural-language-processing
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Figure 1: Architecture of the GRAPH-BERT Model. (Part 1: linkless subgraph batching; Part 2: node input vector embeddings; Part 3: graph
transformer based encoder; Part 4: representation fusion; Part 5: functional component. Depending on the target application task, the function
component will generate different output. In the sampled subgraphs, it covers both the target node and the surrounding context nodes.)

3.1 Notations
In the sequel of this paper, we will use the lower case letters
(e.g., x) to represent scalars, lower case bold letters (e.g., x)
to denote column vectors, bold-face upper case letters (e.g.,
X) to denote matrices, and upper case calligraphic letters
(e.g., X ) to denote sets or high-order tensors. Given a ma-
trix X, we denote X(i, ∶) and X(∶, j) as its ith row and jth
column, respectively. The (ith, jth) entry of matrix X can
be denoted as either X(i, j). We use X⊺ and x⊺ to rep-
resent the transpose of matrix X and vector x. For vec-
tor x, we represent its Lp-norm as ∥x∥p = (∑i ∣x(i)∣

p)
1
p .

The Frobenius-norm of matrix X is represented as ∥X∥F =

(∑i,j ∣X(i, j)∣2)
1
2 . The element-wise product of vectors x

and y of the same dimension is represented as x ⊗ y, whose
concatenation is represented as x ⊔ y.

3.2 Linkless Subgraph Batching
Prior to talking about the subgraph batching method, we
would like to present the problem settings first. Formally,
we can represent the input graph data as G = (V,E ,w, x, y),
where V and E denote the sets of nodes and links in graph
G, respectively. Mapping w ∶ E → R projects links to their
weight; whereas mappings x ∶ V → X and y ∶ V → Y can
project the nodes to their raw features and labels. The graph
size can be represented by the number of involved nodes,
i.e., ∣V∣. The above term defines a general graph concept.
If the studied G is unweighted, we will have w(vi, vj) =

1,∀(vi, vj) ∈ E ; whereas ∀(vi, vj) ∈ V × V ∖ E , we have
w(vi, vj) = 0. Notations X and Y denote feature space and
label space, respectively. In this paper, we can simply rep-
resent X = Rdx and Y = Rdy . For node vi, we can also
simplify its raw feature and label vector representations as
xi = x(vi) ∈ R

dx and yi = y(vi) ∈ R
dy . The GRAPH-BERT

model pre-training doesn’t require any label supervision in-
formation actually, but partial of the labels will be used for
the fine-tuning application task on node classification to be

introduced later.
Instead of working on the complete graph G, GRAPH-

BERT will be trained with linkless subgraph batches sampled
from the input graph instead. It will effectively enable the
learning of GRAPH-BERT to parallelize (even though we will
not study parallel computing of GRAPH-BERT in this paper)
on extremely large-sized graphs that the existing graph neural
networks cannot handle. Different approaches can be adopted
here to sample the subgraphs from the input graph as studied
in[Zhang et al., 2018]. However, to control the randomness
involved in the sampling process, in this paper, we introduce
the top-k intimacy sampling approach instead. Such a sam-
pling algorithm works based on the graph intimacy matrix
S ∈R∣V∣×∣V∣, where entry S(i, j) measures the intimacy score
between nodes vi and vj .

There exist different metrics to measure the intimacy
scores among the nodes within the graph, e.g., Jaccard’s co-
efficienty [Jaccard, 1901], Adamic/Adar [Adamic and Adar,
2003], Katz [Katz, 1953]. In this paper, we define matrix S
based on the pagerank algorithm, which can be denoted as

S = α ⋅ (I − (1 − α) ⋅ Ā)
−1
, (1)

where factor α ∈ [0,1] (which is usually set as 0.15). Term
Ā = AD−1 denotes the colum-normalized adjacency matrix.
In its representation, A is the adjacency matrix of the in-
put graph, and D is its corresponding diagonal matrix with
D(i, i) = ∑j A(i, j) on its diagonal.

Formally, for any target node vi ∈ V in the input graph,
based on the intimacy matrix S, we can define its learning
context as follows:

DEFINITION 1. (Node Context): Given an input graph G
and its intimacy matrix S, for node vi in the graph, we de-
fine its learning context as set Γ(vi) = {vj ∣vj ∈ V ∖ {vi} ∧
S(i, j) ≥ θi}. Here, the term θi defines the minimum intimacy
score threshold for nodes to involve in vi’s context.



We may need to add a remark: for all the nodes in vi’ learn-
ing context Γ(vi), they can cover both local neighbors of vi as
well as the nodes which are far away. In this paper, we define
the threshold θi as the kth entry of sorted(S(i, ∶)) (with vi
being excluded), i.e., Γ(vi) covers the top-k intimate nodes
of vi in graph G. Based on the node context concept, we
can also represent the set of sampled graph batches for all the
nodes as set G = {g1, g2,⋯, g∣V∣}, and gi denotes the subgraph
sampled for vi (as the target node). Formally, gi can be repre-
sented as gi = (Vi,∅), where the node set Vi = {vi} ∪ Γ(vi)
covers both vi and its context nodes and the link set is null.
For large-sized input graphs, set G can further be decomposed
into several mini-batches, i.e., B ⊆ G, which will be fed to
train the GRAPH-BERT model.

3.3 Node Input Vector Embeddings
Different from image and text data, where the pixels and
words/chars have their inherent orders, nodes in graphs are
orderless. The GRAPH-BERT model to be learned in this pa-
per doesn’t require any node orders of the input sampled sub-
graph actually. Meanwhile, to simplify the presentations, we
still propose to serialize the input subgraph nodes into cer-
tain ordered list instead. Formally, for all the nodes Vi in the
sampled linkless subgraph gi ∈ B, we can denote them as a
node list [vi, vi,1,⋯, vi,k], where vi,j will be placed ahead of
vi,m if S(i, j) > S(i,m),∀vi,j , vi,m ∈ Vi. For the remaining
of this subsection, we will follow the identical node orders as
indicated above by default to define their input vector embed-
dings.

The input vector embeddings to be fed to the graph-
transformer model actually cover four parts: (1) raw feature
vector embedding, (2) Weisfeiler-Lehman absolute role em-
bedding, (3) intimacy based relative positional embedding,
and (4) hop based relative distance embedding, respectively.

Raw Feature Vector Embedding
Formally, for each node vj ∈ Vi in the subgraph gi, we can
embed its raw feature vector into a shared feature space (of
the same dimension dh) with its raw feature vector xj , which
can be denoted as

e
(x)
j = Embed (xj) ∈R

dh×1. (2)

Depending on the input raw features properties, different
models can be used to define the Embed(⋅) function. For in-
stance, CNN can be used if xj denotes images; LSTM/BERT
can be applied if xj denotes texts; and simple fully connected
layers can also be used for simple attribute inputs.

Weisfeiler-Lehman Absolute Role Embedding
The Weisfeiler-Lehman (WL) algorithm [Niepert et al., 2016]
can label the nodes according to their structural roles in the
graph data, where the nodes with the identical roles will be
labeled with the same code (e.g., integer strings or node col-
ors). Formally, for node vj ∈ Vi in the sampled subgraph,
we can denote its WL code as WL(vj) ∈ N, which can be
pre-computed based on the complete graph and is invariant
for different sampled subgraphs. In this paper, we adopt the
embedding approach proposed in [Vaswani et al., 2017] and

define the nodes WL absolute role embedding vector as

e
(r)
j = Position-Embed (WL(vj))

= [sin(
WL(vj)

10000
2l
dh

) , cos(
WL(vj)

10000
2l+1
dh

)]

⌊
dh
2 ⌋

l=0

,
(3)

where e
(r)
j ∈ Rdh×1. The index l iterates throughout all the

entries in the above vector to compute the entry values with
sin(⋅) and cos(⋅) functions for the node based on its WL
code.

Intimacy based Relative Positional Embedding
The WL based role embeddings can capture the global node
role information in the representations. Here, we will in-
troduce a relative positional embedding to extract the local
information in the subgraph based on the placement orders
of the serialized node list introduced at the beginning of this
subsection. Formally, based on that serialized node list, we
can denote the position of vj ∈ Vi as P (vj). We know that
P (vi) = 0 by default and nodes closer to vi will have a small
positional index. Furthermore, P (⋅) is a variant position in-
dex metric. For the identical node vj , its positional index
P (vj) will be different for different sampled subgraphs.

Formally, for node vj , we can also extract its in-
timacy based relative positional embedding with the
Position-Embed(⋅) function defined above as follows:

e
(p)
j = Position-Embed (P(vj)) ∈Rdh×1, (4)

which is quite close to the positional embedding in [Vaswani
et al., 2017] for the relative positions in the word sequence.
Hop based Relative Distance Embedding
The hop based relative distance embedding can be treated as
a balance between the absolute role embedding (for global in-
formation) and intimacy based relative positional embedding
(for local information). Formally, for node vj ∈ Vi in the sub-
graph gi, we can denote its relative distance in hops to vi in
the original input graph as H(vj ; vi), which can be used to
define its embedding vector as

e
(d)
j = Position-Embed (H(vj ; vi)) ∈R

dh×1. (5)

It it easy to observe that vector e(d)j will also be variant for
the identical node vj in different subgraphs.

3.4 Graph Transformer based Encoder
Based on the computed embedding vectors defined above, we
will be able to aggregate them together to define the initial
input vectors for nodes, e.g., vj , in the subgraph gi as follows:

h
(0)
j = Aggregate(e(x)j ,e

(r)
j ,e

(p)
j ,e

(d)
j ). (6)

In this paper, we simply define the aggregation function as
the vector summation. Furthermore, the initial input vectors
for all the nodes in gi can organized into a matrix H(0) =

[h
(0)
i ,h

(0)
i,1 ,⋯,h

(0)
i,k ]

⊺ ∈ R(k+1)×dh . The graph-transformer
based encoder to be introduced below will update the nodes’
representations iteratively with multiple layers (D layers),
and the output by the lth layer can be denoted as



H(l)
= G-Transformer (H(l−1))

= softmax(
QK⊺

√
dh

)V +G-Res (H(l−1),Xi) ,
(7)

where
⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

Q =H(l−1)W
(l)
Q ,

K =H(l−1)W
(l)
K ,

V =H(l−1)W
(l)
V .

(8)

In the above equations, W(l)
Q ,W

(l)
K ,W

(l)
K ∈ Rdh×dh denote

the involved variables. To simplify the presentations in the
paper, we assume nodes’ hidden vectors in different layers
have the same length. Notation G-Res (H(l−1),Xi) repre-
sents the graph residual term introduced in [Zhang and Meng,
2019], and Xi ∈ R

(k+1)×dx is the raw features of all nodes
in the subgraph gi. Also different from conventional resid-
ual learning, we will add the residual terms computed for the
target node vi to the hidden state vectors of all the nodes in
the subgraph at each layer. Based on the graph-transformer
function defined above, we can represent the representation
learning process of GRAPH-BERT as follows:

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

H(0)= [h
(0)
i ,h

(0)
i,1 ,⋯,h

(0)
i,k ]

⊺,

H(l) = G-Transformer (H(l−1)) ,∀l ∈ {1,2,⋯,D},

zi = Fusion (H(D)) .

(9)

Different from the application of conventional transformer
model on NLP problems, which aims at learning the repre-
sentations of all the input tokens. In this paper, we aim to
apply the graph-transformer to get the representations of the
target node only. In the above equation, function Fusion (⋅)

will average the representations of all the nodes in input list,
which defines the final state of the target vi, i.e., zi ∈ Rdh×1.
Both vector zi and matrix H(D) will be outputted to the fol-
lowing functional component attached to GRAPH-BERT. De-
pending on the application tasks, the functional component
and learning objective (i.e., the loss function) will be differ-
ent. We will show more detailed information in the following
section on GRAPH-BERT pre-training and fine-tuning.

4 GRAPH-BERT Learning
We propose to pre-train GRAPH-BERT with two tasks: (1)
node attribute reconstruction, and (2) graph structure recov-
ery. Meanwhile, depending on the objective application tasks,
e.g., (1) node classification and (2) graph clustering as stud-
ied in this paper, GRAPH-BERT can be further fine-tuned to
adapt both the model and the learned node representations
accordingly to the new tasks.

4.1 Pre-training
The node raw attribute reconstruction task focuses on captur-
ing the node attribute information in the learned representa-
tions, whereas the graph structure recovery task focuses more
on the graph connection information instead.

Task #1: Node Raw Attribute Reconstruction
Formally, for the target node vi in the sampled subgraph gi,
we have its learned representation by GRAPH-BERT to be
zi. Via the fully connected layer (together with the activation
function layer if necessary), we can denote the reconstructed
raw attributes for node vi based on zi as x̂i = FC(zi). To en-
sure the learned representations can capture the node raw at-
tribute information, compared against the node raw features,
e.g., xi for vi, we can define the node raw attribute recon-
struction based loss term as follows:

`1 =
1

∣V∣
∑
vi∈V

∥xi − x̂i∥2 . (10)

Task #2: Graph Structure Recovery
Furthermore, to ensure such representation vectors can also
capture the graph structure information, the graph structure
recovery task is also used as a pre-training task. Formally,
for any two nodes vi and vj , based on their learned represen-
tations, we can denote the inferred connection score between
them by computing their cosine similarity, i.e., ŝi,j =

z⊺i zj

∥zi∥∥zj∥
.

Compared against the ground truth graph intimacy matrix de-
fined in Section 3.2, i.e., S, we can denote the introduced loss
term as follows:

`2 =
1

∣V∣2
∥S − Ŝ∥

2

F
, (11)

where Ŝ ∈R∣V∣×∣V∣ with entry Ŝ(i, j) = ŝi,j .

4.2 Model Transfer and Fine-tuning
In applying the learned GRAPH-BERT into new learning
tasks, the learned graph representations can be either fed into
the new tasks directly or with necessary adjustment, i.e., fine-
tuning. In this part, we can take the node classification and
graph clustering tasks as the examples, where graph clus-
tering can use the learned representations directly but fine-
tuning will be necessary for the node classification task.

Task # 1: Node Classification
Based on the nodes learned representations, e.g., zi for vi, we
can denote the inferred label for the node via the functional
component as ŷi = softmax(FC(zi)). Compared with the
nodes’ true labels, we will be able to define the introduced
node classification loss term on training batch T as

`nc = ∑
vi∈T

dy

∑
m=1

−yi(m) log ŷi(m). (12)

By re-training these stacked fully connected layers together
with GRAPH-BERT (loaded from pre-training), we will be
able to infer node class labels.

Task # 2: Graph Clustering
Meanwhile, for the graph clustering task, the main objec-
tive is to partition nodes in the graph into several different
clusters, e.g., C = {C1,C2,⋯,Cl} (l is a hyper-parameter pre-
specified in advance). For each objective cluster, e.g., Cj ∈ C,
we can denote its center as a variable vector µj = ∑vi∈Cj zi ∈

R
dh . For the graph clustering tasks, the main objective is to



(a) Node Reconstruction (b) Graph Recovery

Figure 2: Pre-training of GRAPH-BERT on node reconstruction and
graph recovery tasks (x axis: iteration; y axis: training loss).

group similar nodes into the same cluster, whereas the differ-
ent nodes will be partitioned into different clusters instead.
Therefore, the objective function of graph clustering can be
defined as follows:

min
µ1,⋯,µl

min
C

l

∑
j=1

∑
vi∈Cj

∥zi −µj∥2 . (13)

The above objective function involves multiple variables to
be learned concurrently, which can be trained with the EM
algorithm much more effectively instead of error backpropa-
gation. Therefore, instead of re-training the above graph clus-
tering model together with GRAPH-BERT, we will only take
the learned node representations as the node feature input for
learning the graph clustering model instead.

5 Experiments
To test the effectiveness of GRAPH-BERT in learning the
graph representations, in this section, we will provide ex-
tensive experimental results of GRAPH-BERT on three real-
world benchmark graph datasets, i.e., Cora, Citeseer and
Pubmed [Yang et al., 2016], respectively.
Reproducibility. Both the datasets and source code used can
be accessed via link3. Detailed information about the server
used to run the model can be found at the footnote4.

5.1 Dataset and Learning Settings
The graph benchmark datasets used in the experiments in-
clude Cora, Citeseer and Pubmed [Yang et al., 2016], which
are used in most of the recent state-of-the-art graph neural
network research works [Kipf and Welling, 2016; Veličković
et al., 2018; Zhang and Meng, 2019]. Based on the in-
put graph data, we will first pre-compute the node intimacy
scores, based on which subgraph batches will be sampled
subject to the subgraph size k ∈ {1,2,⋯,10,15,20,⋯,50}.
In addition, we will also pre-compute the node pairwise hop
distance and WL node codes. By minimizing the node raw
feature reconstruction loss and graph structure recovery loss,
GRAPH-BERT can be effectively pre-trained, whose learned

3https://github.com/jwzhanggy/Graph-Bert
4GPU Server: ASUS X99-E WS motherboard, Intel Core i7 CPU

6850K@3.6GHz (6 cores), 3 Nvidia GeForce GTX 1080 Ti GPU
(11 GB buffer each), 128 GB DDR4 memory and 128 GB SSD
swap.

(a) Training Accuracy (b) Testing Accuracy

Figure 3: The learning performance of GRAPH-BERT on node clas-
sification with 1-layer, . . . , 5-layer, and 10-layer, ⋯, 50-layer on
the Cora dataset. The x axis denotes the iterations over the whole
training set. The y axes denote the training and testing accuracy,
respectively.

Table 1: Learning Performance of GRAPH-BERT (based on different
graph residual terms) compared against existing baseline methods
on node classification. The results of GRAPH-BERT reported here
denotes the best observed scores obtained with subgraph size k ∈
{1,2,⋯,10,15,20,⋯,50}.

Methods Datasets (Accuracy)
Cora Citeseer Pubmed

LP ([Zhu et al., 2003]) 0.680 0.453 0.630
ICA ([Lu and Getoor, 2003]) 0.751 0.691 0.739
ManiReg ([Belkin et al., 2006]) 0.595 0.601 0.707
SemiEmb ([Weston et al., 2008]) 0.590 0.596 0.711
DeepWalk ([Perozzi et al., 2014b]) 0.672 0.432 0.653
Planetoid ([Yang et al., 2016]) 0.757 0.647 0.772
MoNet ([Monti et al., 2016]) 0.817 - 0.788
GCN ([Kipf and Welling, 2016]) 0.815 0.703 0.790
GAT ([Veličković et al., 2018]) 0.830 0.725 0.790
LOOPYNET ([Zhang, 2018]) 0.826 0.716 0.792
GRAPH-BERT 0.843 0.712 0.793

variables will be transferred to the follow-up node classifica-
tion and graph clustering tasks with/without fine-tuning. In
the experiments, we first pre-train GRAPH-BERT based on
the node attribute reconstruction task with 200 epochs, then
load and pre-train the same GRAPH-BERT model again based
on the graph structure recovery task with another 200 epochs.
In Figure 2, we show the learning performance of GRAPH-
BERT on node attribute reconstruction and graph recovery,
which converges very fast on both of these tasks.

Default Parameter Settings

If not clearly specified, the results reported in this paper are
based on the following parameter settings of GRAPH-BERT:
subgraph size: k = 7 (Cora), k = 5 (Citeseer) and k = 30
(Pubmed); hidden size: 32; attention head number: 2; hidden
layer number: D = 2; learning rate: 0.01 (Cora) and 0.001
(Citeseer) and 0.0005 (Pubmed); weight decay: 5e−4; inter-
mediate size: 32; hidden dropout rate: 0.5; attention dropout
rate: 0.3; graph residual term: graph-raw; training epoch:
150 (Cora), 500 (Pubmed), 2000 (Citeseer).



Table 2: Analysis of subgraph size k on Cora for model performance
(testing accuracy and testing loss) and total time cost.

Cora Dataset
k Test Accuracy Test Loss Total Time Cost (s)
1 0.804 0.791 3.64
2 0.806 0.708 4.02
3 0.819 0.663 4.65
4 0.818 0.690 4.75
5 0.824 0.636 5.20
6 0.834 0.625 5.62
7 0.843 0.620 5.96
8 0.828 0.653 6.54
9 0.814 0.679 6.87
10 0.819 0.653 7.26
20 0.819 0.666 12.31
30 0.801 0.710 17.56
40 0.768 0.805 23.77
50 0.759 0.833 31.59

Table 3: Learning performance of GRAPH-BERT with different
graph residual terms.

Methods Datasets (Accuracy)
Models Residual Cora Citeseer Pubmed

GRAPH-BERT
none 0.804 0.616 0.786
raw 0.817 0.653 0.786
graph-raw 0.843 0.712 0.793

5.2 Node Classification without Pre-training
GRAPH-BERT is a powerful mode and it can be applied to
address various graph learning tasks in the standalone mode.
To show the effectiveness of GRAPH-BERT, we will first pro-
vide the experimental results of GRAPH-BERT on the node
classification task without pre-training here, whereas the pre-
trained GRAPH-BERT based node classification results will
be provided in Section 5.4 in more detail. Here, we will fol-
low the identical train/validation/test set partitions used in the
existing graph neural network papers [Yang et al., 2016] for
fair comparisons.

Learning Convergence of Deep GRAPH-BERT
In Figure 3, we illustrate the training records of GRAPH-
BERT for node classification on the Cora dataset. To show
that GRAPH-BERT is different from other GNN models and
GRAPH-BERT works with deep architectures, we also change
the model depth with values from {1,2,⋯,5,10,20, ⋅,50}.
According to the plots, GRAPH-BERT can converge very fast
(with less than 10 epochs) on the training set. What’s more,
as the model depth increases, GRAPH-BERT will not suffer
from the suspended animation problem. Even the very deep
GRAPH-BERT (50 layers) can still respond effectively to the
training data and achieve good learning performance.

Main Results
The learning results of GRAPH-BERT (with different graph
residual terms) on node classification are provided in Ta-
ble 1. The comparison methods used here cover both clas-
sic and state-of-the-art GNN models. For the variant models
which extend GCN and GAT (with new learning settings,
include more training data, re-configure the graph structure

Table 4: Learning performance of GRAPH-BERT with different ini-
tial embedding inputs.

Methods Datasets (Accuracy)
Models Embedding Cora Citeseer Pubmed

GRAPH-BERT

hop distance 0.307 0.348 0.445
position 0.323 0.331 0.395
wl role 0.457 0.345 0.443
raw feature 0.795 0.611 0.780
all 0.804 0.616 0.786

Table 5: Clustering results of GRAPH-BERT without pre-training
solely based on node raw features (MI: mutual information).

Metrics Datasets
Cora Citeseer Pubmed

Rand 0.080 0.249 0.281
Adjusted MI 0.130 0.287 0.313
Normalized MI 0.133 0.289 0.313
Homogeneity 0.133 0.287 0.280
Completeness 0.132 0.291 0.355

or use new optimization methods), we didn’t compare them
here. However, similar techniques proposed by these exten-
sion works can be used to further help improve GRAPH-BERT
as well. According to the achieved scores, we observe that
GRAPH-BERT can out-perform most of these baseline meth-
ods with a big improvement on both Cora and Pubmed. On
Citeseer, its perofrmance is also among the top 3.

Subgraph Size k Analysis
As illustrated in Table 2, we provide the learning performance
analysis of GRAPH-BERT with different subgraph sizes, i.e.,
parameter k, on the Cora dataset. According to the results, pa-
rameter k affects the learning performance of GRAPH-BERT
a lot, since it defines how many nearby nodes will be used
to define the nodes’ learning context. For the Cora dataset,
we observe that the learning performance of GRAPH-BERT
improves steadily as k increases from 1 to 7. After that, as k
further increases, the performance will degrade dramatically.
For the good scores with k = 1, partial contributions come
from the graph residual terms in GRAPH-BERT. The time
cost of GRAPH-BERT increases as k goes larger, which is
very minor actually compared with other existing GNN mod-
els, like GCN and GAT. Similar results can be observed for
the other two datasets, but the optimal k are different.

Graph Residual Analysis
What’s more, in Table 3, we also provide the learning results
of GRAPH-BERT with different graph residual terms. Ac-
cording to the scores, GRAPH-BERT with graph-raw residual
term can outperform the other two, which is also consistent
with the experimental observations on these different residual
terms as reported in [Zhang and Meng, 2019].

Initial Embedding Analysis
As shown in Table 4, we provide the learning performance
of GRAPH-BERT on these three datasets, which takes differ-
ent initial embeddings as the input. To better show the per-
formance differences, the GRAPH-BERT used here doesn’t



Table 6: Performance comparison of GRAPH-BERT on fine-tuning tasks with/without pre-training. For all the models shown here, we will
only use 1

5
of the normal training max epochs as used by GRAPH-BERT in Table 1. For KMeans, the epoch denotes its max-iter parameter.

Methods Datasets (Accuracy/Rand & Epoch)
Pre-Train Task Fine-Tune Task Cora Citeseer Pubmed

Node Reconstruction Node Classification 0.827 30 0.649 400 0.780 100
Graph Clustering 0.400 30 0.312 400 0.027 100

Structural Recovery Node Classification 0.823 30 0.662 400 0.788 100
Graph Clustering 0.123 30 0.090 400 0.132 100

Both Node Classification 0.836 30 0.672 400 0.791 100
Graph Clustering 0.177 30 0.203 400 0.159 100

None Node Classification 0.805 30 0.654 400 0.786 100
Graph Clustering 0.080 30 0.249 400 0.281 100

involve any residual learning. According to the results, us-
ing the Weisfeiler-Lehman role embedding, hop based dis-
tance embedding and intimacy based positional embedding
vectors along, GRAPH-BERT cannot work very well actu-
ally, whereas the raw feature embeddings do contribute a lot.
Meanwhile, by incorporating such complementary embed-
dings into the raw feature embedding, the model can achieve
better performance than using raw feature embedding only.

5.3 Graph Clustering without Pre-Training

In Table 5, we show the learning results of GRAPH-
BERT on graph clustering without any pre-training on the
three datasets. Formally, the clustering component used in
GRAPH-BERT is KMeans, which takes the nodes’ raw fea-
ture vectors as the input. The results are evaluated with sev-
eral different metrics shown above.

5.4 Pre-training vs. No Pre-training

The results reported in the previous subsections are all
based on the GRAPH-BERT without pre-training actually.
Here, we will provide the experimental results on GRAPH-
BERT with pre-training to show their differences. Accord-
ing to the experiments, given enough training epochs, mod-
els with/without pre-training can both converge to very good
learning results. Therefore, to highlight the differences, we
will only use 1

5
of the normal training epochs here for fine-

tuning GRAPH-BERT, and the results are provided in Table 6.
We also show the performance of GRAPH-BERT without pre-
training here for comparison.

According to the scores, for most of the datasets, pre-
training do give GRAPH-BERT a good initial state, which
helps the model achieve better performance with only a very
small number of fine-tuning epochs. On Cora and Citeseer,
pre-training helps both the node classification and graph clus-
tering tasks. Meanwhile, for Pubmed, pre-training helps node
classification but degrades the results on graph clustering.
Also pre-training with both node classification and graph re-
covery help the model to capture more information from the
graph data, which also lead to higher scores than the models
with single pre-training tasks.

6 Conclusion
In this paper, we have introduced the new GRAPH-BERT
model for graph representation learning. Different from ex-
isting GNNs, GRAPH-BERT works well in deep architec-
tures and will not suffer from the common problems with
other GNNs. Based on a batch of linkless subgraphs sam-
pled from the original graph data, GRAPH-BERT can effec-
tively learn the representations of the target node with the
extended graph-transformer layers introduced in this paper.
GRAPH-BERT can serve as the graph representation learn-
ing component in graph learning pipeline. The pre-trained
GRAPH-BERT can be transferred and applied to address new
tasks either directly or with necessary fine-tuning.
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Arantxa Casanova, Adriana Romero, Pietro Liò, and
Yoshua Bengio. Graph Attention Networks. International
Conference on Learning Representations, 2018.

[Weston et al., 2008] Jason Weston, Frédéric Ratle, and Ro-
nan Collobert. Deep learning via semi-supervised embed-
ding. In Proceedings of the 25th International Conference
on Machine Learning, ICML’08, page 1168?1175, New
York, NY, USA, 2008. Association for Computing Ma-
chinery.

[Yang et al., 2016] Zhilin Yang, William W. Cohen, and
Ruslan Salakhutdinov. Revisiting semi-supervised learn-
ing with graph embeddings. CoRR, abs/1603.08861, 2016.

[Zhang and Meng, 2019] Jiawei Zhang and Lin Meng. Gres-
net: Graph residual network for reviving deep gnns from
suspended animation. ArXiv, abs/1909.05729, 2019.

[Zhang et al., 2018] Jiawei Zhang, Limeng Cui, and
Fisher B. Gouza. SEGEN: sample-ensemble genetic
evolutional network model. CoRR, abs/1803.08631, 2018.



[Zhang, 2018] Jiawei Zhang. Deep loopy neural network
model for graph structured data representation learning.
CoRR, abs/1805.07504, 2018.

[Zhu et al., 2003] Xiaojin Zhu, Zoubin Ghahramani, and
John Lafferty. Semi-supervised learning using gaussian
fields and harmonic functions. In Proceedings of the
Twentieth International Conference on International Con-
ference on Machine Learning, ICML’03, page 912?919.
AAAI Press, 2003.


	Introduction
	Related Work
	Method
	Notations
	Linkless Subgraph Batching
	Node Input Vector Embeddings
	Raw Feature Vector Embedding
	Weisfeiler-Lehman Absolute Role Embedding
	Intimacy based Relative Positional Embedding
	Hop based Relative Distance Embedding

	Graph Transformer based Encoder

	Graph-Bert Learning
	Pre-training
	Task #1: Node Raw Attribute Reconstruction
	Task #2: Graph Structure Recovery

	Model Transfer and Fine-tuning
	Task # 1: Node Classification
	Task # 2: Graph Clustering


	Experiments
	Dataset and Learning Settings
	Default Parameter Settings

	Node Classification without Pre-training
	Learning Convergence of Deep Graph-Bert
	Main Results
	Subgraph Size k Analysis
	Graph Residual Analysis
	Initial Embedding Analysis

	Graph Clustering without Pre-Training
	Pre-training vs. No Pre-training

	Conclusion

