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Abstract
With the development of social media, data often come from a variety of sources in different modalities. These data contain
complementary information that can be used to produce better learning algorithms. Suchdata exhibit dual heterogeneity:On the
one hand, data obtained frommultiple modalities are intrinsically different; on the other hand, features obtained from different
disciplines are usually heterogeneous. Existing methods often consider the first facet while ignoring the second. Thus, in this
paper, we propose a novel multi-view cross-modal hashing method named Multi-view Collective Tensor Decomposition
(MCTD) to mitigate the dual heterogeneity at the same time, which can fully exploit the multimodal multi-view feature
while simultaneously discovering multiple separated subspaces by leveraging the data categories as supervision information.
We propose a novel cross-modal retrieval framework which consists of three components: (1) two tensors which model
the multi-view features from different modalities in order to get better representation of the complementary features and a
latent representation space; (2) a block-diagonal loss which is used to explicitly enforce a more discriminative latent space by
leveraging supervision information; and (3) two feature projection matrices which characterize the data and generate the latent
representation for incoming new queries. We use an iterative updating optimization algorithm to solve the objective function
designed for MCTD. Extensive experiments prove the effectiveness of MCTD compared with state-of-the-art methods.

Keywords Cross-modal hashing · Tensor factorization · Metric learning · Multi-view learning

1 Introduction

The development of social media has greatly enriched the
multi-source data. For example, a news coverage often con-
tains texts, images and videos. It is intuitive to use one
modality to retrieve the other semantically similar modality,
such as using texts to search for video clips, or search-
ing for the story behind an oil painting. Such procedure is
cross-modal retrieval, which has drawn much attention in
recent years. In the past few years, this has become a funda-
mental problem in several emerging applications including
visual search [2], image annotation [8,31] and object detec-
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tion/recognition [6]. Hashing method has been widely used
in cross-modal retrieval, which embeds multimodal data into
a common latent representation space and generates simi-
lar binary codes for similar objects [34]. However, this is a
challenging problem due to the existed dual heterogeneity:
For different modalities, the distribution of data is intrinsi-
cally different; for features obtained in multi-view, simple
concatenation cannot take full advantage of the information
for each feature. Thus, in this paper, we focus on how to mit-
igate the dual heterogeneity effectively in order to facilitate
the cross-modal retrieval procedure.

Most existing cross-modal retrieval methods only try to
overcome the heterogeneity among modalities, while failing
to fully exploit the useful multi-view features. However, the
features extracted through different views in each modality
can provide complementary information. In this paper, we
refer to the feature representations extracted from different
views as “multi-view features,” which are shown in Fig. 1.
For example, handcrafted features and deep-learned features
characterize the different aspects of image data [1,13,32].
Similarly, in textual data feature extraction, explicit features
and latent features play different roles. In order to fully utilize
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the multi-view features, an intuitive solution is to concate-
nate all the features together. But as the features are highly
nonlinear, such concatenation may let dense views dominate
the feature space and override the effects of the sparse ones.
Hence, we focus on effective fusion strategy which explores
feature interactions across different views.

In this paper, we also consider the supervision information
as a complementary information, like news article categories
as shown in Fig. 1. Supervised cross-modal retrieval meth-
ods take advantage of this feature and achieve better results
than unsupervised methods. Most existing methods enforce
the same-class samples lie as close as possible in the rep-
resentation space. However, separating different subspaces
that correspond to different classes is widely ignored. As a
result, these methods lose the interclass discriminant ability.
Motivated by this gap, we propose to embed the supervision
information into our framework to learn a more discrimina-
tive representation space.

In this paper, we proposed to fuse the multimodal and
multi-view data, along with the supervision information, in
order to facilitate the cross-modal retrieval procedure. It is a
challenging problem due to the following problems:

– As the distributions of multimodal multi-view features
are different, is there away to fuse these data properly and
explore the potential correlations to facilitate the cross-
modal retrieval task?

– How to embed the supervision information properly in
order to maintain a discriminative latent space?

– How to map the incoming new queries into the latent
representation space and obtain the hash code?

We propose a novel multi-view cross-modality hashing
method, called Multi-view Collective Tensor Decomposi-
tion (MCTD) in this paper, which uses a collective tensor
decomposition framework in order to fuse the multimodal
multi-view features. To our best knowledge, our work is
the first to introduce tensor decomposition into cross-modal
retrieval task. In order to embed the multi-view features
properly, we propose a fusion strategy which uses tensor
to model the multi-view feature from different modali-
ties and collectively learns a latent tensor space by using
tensor decomposition. Next, we enforce the supervision
information into the learning procedure by maintaining the
block-diagonal structure of the obtained latent tensor space.
A block-diagonal structure loss term is proposed upon the
above idea. Finally, for incoming new queries, two groups
of mapping matrices are proposed to map the features into
the latent space and generate the hash codes. Experimental
results demonstrate the effectiveness of the proposed method
MCTD and our fusion strategy.

This paper is organized as follows: The introduction
briefly introduces the background of multimodal data and

explains the perspective of multi-view feature interaction
and the necessity of learning. In the related work, the rele-
vant theoretical basis and algorithm of cross-modal retrieval
problem are summarized. Next, we discuss the preliminaries
of our method. Then, the proposed algorithm is introduced
in detail, including three parts: latent semantic space learn-
ing, structural learning and extension to new query data.
We also propose the overall architecture of the model and
the optimization process. After that, extensive experiments
demonstrate the effectiveness of the algorithm. Finally, we
talk about the conclusion and future work on this topic.

2 Related work

Numerous papers have been published on cross-modal
retrieval over the past decades [2,5,12,16,18,19,21,31,33,40,
44,45]. Interested readers are referred to [35] for a compre-
hensive survey of various cross-modal retrieval methods. We
now discuss related work in rank-based, deep learning-based
and subspace learning-based methods.

Rank-basedmethods In [38], authors propose a cross-modal
retrieval method based on Local Regression and Global
Alignment. In [20], authors use cross-modal retrieval as a
sorting problem and propose a rank-based cross-modal algo-
rithm to optimize ranking loss.

Deep learningmethods In [5], authors proposeDeepVisual-
Semantic Hash (DVSH) to characterize the association
between visual data and natural language. In [4], authors use
quantitative methods to learn deep images and text represen-
tations. In [36], authors use Convolutional Neural Network
(CNN) feature of images to perform cross-modal retrieval
between images and text.

Subspace learning methods In [46], authors proposed to
perform cross-modal similarity search by employing Sparse
Coding and Matrix Factorization (SCMF) to bridge the
semantic gap and capture high-level latent semantic informa-
tion. In [19], the Non-negative Matrix Factorization (NMF)
was applied across the different modalities to tackle the
multimodal problem. In [39], authors proposed Semantic
Consistency Hashing (SCH) method by learning a shared
semantic space. A cross-modality hashing method based on
matrix factorization (SMFH) [33] was proposed to consider
the label consistency across different modalities. In [17],
authors proposed a ranking-based method which constructs
a common Hamming space where the cross-modal similarity
can be measured by using Hamming distance.

Our collective tensor decomposition differs from these
methods. On the one hand, we explore the correlations of the
input multi-view features. Different from traditional multi-
viewmethods [30],MCTDconsidersmulti-view features.On
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Fig. 1 Multi-view Tensor
Decomposition Hashing
(MCTD) for cross-modal
retrieval of images and text
sentences

the other hand, inspired by the idea of collective matrix fac-
torization, we propose to use tensor decomposition to learn
the latent space which captures a broader view of features.

The prior cross-modal hashing methods can be roughly
divided into three categories including unsupervised, semi-
supervised [41] and supervised cross-modal hashing.

Unsupervised cross-modal hashing [9] introduced a pro-
crustean approach called dubbed iterative quantization (ITQ)
to learn the binary codes for large-scale image retrieval.
[7] proposed to learn the unified hash codes by collective
matrix factorization with a latent factor model from differ-
ent modalities of one instance. Based on the assumption
that the hash codes of different modalities of one instance
are identical, [46] presented a novel Latent Semantic Sparse
Hashing (LSSH) to perform cross-modal similarity search by
using sparse coding and matrix factorization to learn seman-
tic features for images and text, respectively. [21] employed
a three-step approach called Regularized Cross-Modal Hash-
ing (RCMH),which can project annotation and visual feature
descriptors into a common Hamming space.

Supervised cross-modal hashing In [40], Semantic Cor-
relation Maximization (SCM) was proposed to seamlessly
integrate semantic labels into the hashing learning proce-
dure for large-scale data modeling. Semantics-Preserving
Hashing (SePH) was proposed in [18], which can transform
the given semantic affinities of training data into a proba-
bility distribution and approximate it with the hash codes
in Hamming space. Semi-paired Discrete Hashing (SPDH)
[29] jointly learns the latent features and hash codes with
a factorization-based coding scheme. Discrete Cross-modal
Hashing (DCH) was proposed in [37], which directly learns
discriminative binary codes while retaining the discrete con-
straints. As for deep learning methods, [12] presented a
deep hashing model to capture the cross-modal correspon-
dences between visual data and natural language. [43] used
GAN for unsupervised representation learning to exploit
the underlying manifold structure of cross-modal data. [24]
proposed a hierarchical network with multi-grained fusion
for cross-modal correlation learning. Cross-Media multiple
Deep Network (CMDN) was proposed in [23] to exploit

Table 1 List of basic symbols

Symbol Definition and description

x Each lowercase letter represents a scale

x Each boldface lowercase letter represents a vector

X Each boldface capital letter represents a matrix

X Each calligraphic letter represents a tensor, or space

[1 : K ] A set of integers in the range of 1 to K inclusively

[a; b] Denotes two vectors are concatenated by column

[a,b] Denotes two vectors are concatenated by row

◦ Denotes outer product

〈·〉 Denotes inner product

⊗ Denotes the Kronecker product of matrices

∗ Denotes Hadamard product

the cross-modal correlation by hierarchical learning. Cross-
modal Hybrid Transfer Network (CHTN), proposed in [10],
uses two subnetworks for transferring knowledge to both
two modalities simultaneously. [25] introduced reinforce-
ment learning into cross-modal retrieval task. [42] used
fine-grained ranking for different queries by weighted Ham-
ming distance.

As supervisedmethods can fully use the supervision infor-
mation, we only discuss the supervised cross-modal hashing
method.

In contrast to previous work, we maintain the intraclass
similarity and the interclass dissimilarity at the same time.
This allows us to learn more subtle variations in the data
structure and leads to amore accurate and efficient algorithm.

3 Preliminary

In this section, we first introduce some related concepts and
notations about tensor. Then, we describe the problem of
cross-model retrieval with multimodal data. Table 1 lists
some basic symbols that will be used throughout the paper.
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3.1 Basic concepts and notations

A tensor is a multidimensional array. More formally, a K th-
order tensor is an element of the tensor product of K vector
spaces, each of which has its own coordinate system. For
example, a vector is a first-order tensor and matrix is a
second-order tensor. According to [14], a K th-order tensor
is denoted by X ∈ R

J1×···×JK and its element is denoted
by x j1,..., jK . Some notations and operations about tensor are
given as follows which will be used in this paper.

Definition 1 (Outer product) The outer product of K vectors
x(k) ∈ R

Jk for k ∈ [1 : K ] is an K th-order tensor and defined
elementwise by

(
x(1) ◦ · · · ◦ x(K )

)
j1,..., jK

= x (1)
j1

· · · x (K )
jK

,

for all values of the indices.

Definition 2 (Matricization) Matricization is the process of
reordering the elements of a K -way array into a matrix.
Specifically, the mode-n matricization of a tensor X ∈
R

J1×···×JK is denoted byX(n) and arranges themodel-n fibers
to be the columns of the resulting matrix, which means that
the tensor element x j1, j2,..., jK maps to matrix element x jn ,l
where

l = 1 +
K∏

k=1
k �=n

( jk − 1)Lk wi th Lk =
k−1∏

m=1
m �=n

Jm

Definition 3 (n-Mode product) The n-mode product of a ten-
sor X ∈ R

J1×···×JK with a matrix U ∈ R
R×Jn is denoted by

X ×nU and is of size J1×· · ·× Jn−1× R× Jn+1×· · ·× JK .
Elementwise, we have

(X ×n U) j1··· jn−1r jn+1··· jK =
Jn∑

jn=1

x j1··· jK ur jn .

This idea can also be expressed in terms of unfolded tensors,
where the mode-n fiber X(n) is multiplied by the matrix U:

X ×n U ⇔ UX(n)

Definition 4 (Tucker decomposition) The Tucker Decompo-
sition can decompose a tensor into a core tensor multiplied
(or transformed) by a matrix along each mode. Thus, for a
tensor X ∈ R

J1×···×JK , we have

X = G ×1 A(1) ×2 A(2) · · · ×K A(K )

where G ∈ R
I1×···×IK is the core tensor and A(k) ∈ R

Jk×Ik

are the factor matrices for k ∈ [1 : K ].

In fact, the Tucker decomposition can be transformed into
the matricized forms by

X(n) = A(n)G(n)

(
A(K ) ⊗ · · · ⊗ A(n+1) ⊗ A(n−1) ⊗ · · · ⊗ A(1))T

(1)

whereX(n) andG(n) are themode-nmatricization of tensorX
andG, respectively, n ∈ [1 : K ] and⊗ denotes theKronecker
product of matrices.

4 Multi-view collective tensor
decomposition

Suppose that we have training data with n instances drawn
from two modalities I and T , where the data from each
modality are composed with V ∈ R views. Specifically,
XI = [X(1)

I ;X(2)
I ; · · · ;X(V )

I ] ∈ R
(m1

I+···+mV
I )×n and XT =

[X(1)
T ;X(2)

T ; · · · ;X(V )
T ] ∈ R

(m1
T +···+mV

T )×n are the training
datamatrices drawn frommodalityI andmodalityT , respec-
tively, where X(v)

I ∈ R
mv

I×n and X(v)
T ∈ R

mv
T ×n are the

data matrix for the vth view, mv
I and mv

T are the corre-
sponding dimensions of view v ∈ [1 : V ]. The goal of
MCTD is to learn two groups of hash functions for the
data from each modality that are able to generate unified
hash codes. i.e., f (KI ) : Rd1I ×···×dVI → {− 1,+ 1}RV

and
g(KT ) : Rd1T ×···×dVT → {− 1,+ 1}RV

, whereKI andKT are
the instances drawn from each modal, respectively, and RV

is the length of binary codes.
Multi-view Collective Tensor Decomposition (MCTD) is

a unified framework with three main components for super-
vised learning to hash, as shown in Fig. 2. The framework
accepts input in an image–text pairwise form and processes
them through latent representation learning: (1) collective
tensor decomposition to generate a common latent represen-
tation space between twomodalities represented in full-order
tensor form; (2) a block-diagonal loss for exploiting super-
vision information; and (3) two groups of linear projections
for mapping the new queries into the latent space.

4.1 Collective tensor decomposition

Most cross-modal hashing methods are built upon a rea-
sonable assumption that heterogeneous data with the same
semantic label share a common subspace [19,33,47], called
latent representation space. In the latent space, the seman-
tic representations of relevant data from different modalities
are close to each other. We follow this idea and pursue a
more general framework. In this part, we explore the corre-
lations onmulti-view across differentmodalities and propose
a novel latent representation space learning method by using
collective tensor decomposition.
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Fig. 2 MCTD constitutes: (1) collective tensor decomposition to gen-
erate a common latent representation space between two modalities
represented in full-order tensor form; (2) a block-diagonal loss for

exploiting supervision information; and (3) two groups of linear pro-
jections for mapping the new queries into the latent space

Modeling correlations on multi-view In order to capture
interactions among the features across multi-view on two
modalities, here we propose a fusion strategy by exploring
the concept of Factorization Machines [27] to capture the
second-order interactions as well as the concept of Multi-
view Machines [3] to capture higher order interactions.

Hence, to fully utilize the complementary information
provided by multi-view, we use the full-order interactions
among all the V views to represent each of the data instead
of the direct concatenating. Specifically, for each instance
xI = [x(1)

I ; · · · ; x(V )
I ] from modality I, we can compose

the full-order interactions among different views through the
outer product of the feature vectors from different views as
follows:

1st order : x(v)
I ∀v ∈ [1 : V ]

2nd order : x(v1)
I ◦ x(v2)

I ∀v1, v2 ∈ [1 : V ], v1 �= v2

· · ·
V th order : x(1)

I ◦ · · · ◦ x(V )
I

(2)

It is easy to integrate all the interactions into a unified
tensor representation by adding a constant value “1” to each
feature vector x(v)

I , v ∈ [1 : V ]. Let k(v)
I = [1; x(v)

I ], we have
the tensor representation for each instance asKI = k(1)

I ◦· · ·◦
k(V )
I ∈ R

d1I ×···×dVI , where dv
I = mv

I + 1 for all v ∈ [1 : V ].
Different from directly modeling the interactions of feature
x(v)
I , nowwe can get feature interactionswith different orders

which reflect complementary insights.

Then, the data matrix from modality I can be trans-
formed into the data tensor XI = [KI1,KI2, . . . ,KI n] ∈
R
d1I ×···×dVI ×n . Similarly, we can get the tensor representa-

tion for the data matrix of modality T : XT ∈ R
d1T ×···×dVT ×n ,

where dv
T = mv

T + 1 for all v ∈ [1 : V ].
Learning latent representation space In cross-modal hash-
ing, heterogeneous data are mapped into a unified latent
representation space so that the similarity can be directly
compared. Learning such latent space is of great importance.
In this section, we propose amethod called Collective Tensor
Decomposition (CTD) to obtain the common representation.
We apply Tucker tensor decomposition, which can be consid-
ered as a higher order generalization of Principal Component
Analysis (PCA). It decomposes a tensor into a core tensor
multiplied by a matrix along each mode [14].

Suppose that we are given two heterogeneous data tensors
XI ∈ R

d1I ×···×dVI ×n and XT ∈ R
d1T ×···×dVT ×n . According to

[22], the results of CTD on XI and XT can be expressed by

{
XI ≈ V ×1 U

(1)
I ×2 U

(2)
I · · · ×V U(V )

I

XT ≈ V ×1 U
(1)
T ×2 U

(2)
T · · · ×V U(V )

T

(3)

where {U(v)
I ∈ R

dv
I ×R}Vv=1, {U(v)

T ∈ R
dv
T ×R}Vv=1 are the factor

matrices (which are usually orthogonal) and can be thought
of as the principal components in each view,V ∈ R

R×···×R×n

is the core tensor and its entries show the level of interac-
tion between the different components. The (V + 1)th-order
tensor V is the common latent representation of XI and XT .
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The average decomposition loss for CTD is defined as

Lctd = α||XI − V ×1 U
(1)
I · · · ×V U(V )

I ||2
+(1 − α)||XT − V ×1 U

(1)
T · · · ×V U(V )

T ||2 (4)

where α is a trade-off parameter.

4.2 Block-diagonal structure loss

It is natural to assume that the intrinsic representations of
data points from the same class are embedded in the same
subspace and that these subspaces are separated. Therefore,
it is straightforward to explicitly pursue the block-diagonal
structure of the latent tensor representation by exploring the
labeled data. A novel loss named block-diagonal structure
loss is proposed in this part.

Assume that these n data points are sampled from C
classes and each instance is labeled with one class label. To
better illustrate the block-diagonal structure, the labeled data
instances are arranged according to their labels. For the tensor
instances that belong to c classXI c andXT c, their ideal com-
mon representation is denoted by V∗

c ∈ R
r×···×r×nc , where

r is the dimensionality of each subspace, nc is the instance
number of class c and c ∈ [1 : C]. Since then, the ideal
block-diagonal structured tensor representation V∗ of data
tensors XI and XT is shown as follows:

V∗ = diag(V∗
1 ,V∗

2 , . . . ,V∗
C ) (5)

However, the dimension of V is defined by hash code
length, not by r . So we introduce a group of auxiliary matri-
ces Z(v) to change the mode of V into V∗ with arbitrary
dimension:

V∗ = V ×1 Z(1) · · · ×V Z(V ) (6)

where Z(v) ∈ R
rC×R and v ∈ [1 : V ]. To enforce the block-

diagonal structure of V , we propose a loss function. In detail,
let E0 ∈ R

rC×···×rC×n and E∗
c ∈ R

r×···×r×nc (c ∈ [1 : C])
be the tensors with all elements equal “1”. We first define an
indicator tensor as

E = E0 − diag(E∗
1 , E∗

2 , . . . , E∗
C ) (7)

Then, we have the loss of block-diagonal structure (BDS)
as follows:

Lbds = 1

2
||E ∗ (V ×1 Z(1) · · · ×V Z(V ))||2 (8)

in which ∗ is the Hadamard product, which denotes the ele-
mentwise multiplication operator.

In fact, the block-diagonal structure loss can be seen as a
global form of structural regularization that can influence the
representations of all the classes. In this step, pursuing block-
diagonal representations of the latent space guarantees that
the representations of data points from the same class will be
embedded in the same subspace and that different subspaces
can be easily separated.

4.3 New query projection

For new queries, we can map the original feature interactions
into the latent representation space by two groups of linear
projections, respectively:

{
VI = XI ×1 P

(1)
I ×2 P

(2)
I · · · ×V P(V )

I

VT = XT ×1 P
(1)
T ×2 P

(2)
T · · · ×V P(V )

T

(9)

where P(v)
I ∈ R

R×dv
I and P(v)

T ∈ R
R×dv

T are the projecting
matrix groups for all v ∈ [1 : V ].

Since the tensors from different modalities that describe
the same objects have the same semantic representations, we
can present the loss for linear projections as

Llp = ||V − VI ||2 + ||V − VT ||2
= ||V − XI ×1 P

(1)
I · · · ×V P(V )

I ||2
+ ||V − XT ×1 P

(1)
T · · · ×V P(V )

T ||2 (10)

4.4 Overall objective function

The overall objective function, consisting of the collective
tensor decomposition termLctd inEq. (4), the block-diagonal
structure term Lbds in Eq. (8), the linear projection term Llp

in Eq. (10) and a regularization term, is given as follows:

minL = Lctd + μLbds + βLlp

+ λΨ ({U(v)
I }, {U(v)

T }, {P(v)
I }, {P(v)

T }, {Z(v)},V)

= α||XI − V ×1 U
(1)
I · · · ×V U(V )

I ||2
+ (1 − α)||XT − V ×1 U

(1)
T · · · ×V U(V )

T ||2
+ μ

2
||E ∗ (V ×1 Z(1) · · · ×V Z(V ))||2

+β(||V − XI ×1 P
(1)
I · · · ×V P(V )

I ||2
+ ||V − XT ×1 P

(1)
T · · · ×V P(V )

T ||2)
+ λΨ ({U(v)

I }, {U(v)
T }, {P(v)

I }, {P(v)
T }, {Z(v)},V)

(11)

where μ, β and λ are the trade-off parameters of the corre-
sponding terms, and the regularization term Ψ (·) is used to
prevent overfitting.
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The proposed formulation in (11) is hard to be directly
solved since it is not convex or smooth with matrices
{U(v)

I }Vv=1, {U(v)
T }Vv=1, {P(v)

I }Vv=1, {P(v)
T }Vv=1, {Z(v)}Vv=1 and

tensorV . Therefore,we adopt an iterativemultiplicative strat-
egy. Specifically, the optimization procedure can be divided
into the following steps:

Step 1With {P(v)
I }Vv=1, {P(v)

T }Vv=1, {Z(v)}Vv=1 and V fixed, the

minimization over {U(v)
I } and {U(v)

T } is given by

∂L
∂U(v)

I

= −2α

⎛

⎜⎜
⎝XI (v) − U(v)

I V(v)

⎛

⎜⎜
⎝⊗

1∏

v′=V+1
v′ �=v

U(v′)
I

⎞

⎟⎟
⎠

T⎞

⎟⎟
⎠

·

⎛

⎜⎜
⎝

⎛

⎜⎜
⎝⊗

1∏

v′=V+1
v′ �=v

U(v′)
I

⎞

⎟⎟
⎠VT

(v)

⎞

⎟⎟
⎠ + λ

∂Ψ
(
U(v)

I

)

∂U(v)
I

(12)

and

∂L
∂U(v)

T

= −2(1 − α)

⎛

⎜
⎜
⎝XT (v) − U(v)

T V(v)

⎛

⎜
⎜
⎝⊗

1∏

v′=V+1
v′ �=v

U(v′)
T

⎞

⎟
⎟
⎠

T⎞

⎟
⎟
⎠

·

⎛

⎜⎜
⎝

⎛

⎜⎜
⎝⊗

1∏

v′=V+1
v′ �=v

U(v′)
T

⎞

⎟⎟
⎠VT

(v)

⎞

⎟⎟
⎠ + λ

∂Ψ
(
U(v)
T

)

∂U(v)
T

(13)

where XI (v), XT (v) and V(v) are the mode-v matricization
of tensors XI , XT and V , respectively, ⊗ is the Kronecker
product of matrices, and U(V+1)

I = U(V+1)
T = E ∈ R

n×n is
the identity matrix.

Step 2 With {U(v)
I }Vv=1, {U(v)

T }Vv=1, {P(v)
I }Vv=1, {P(v)

T }Vv=1 and
{Z(v)}Vv=1 fixed, we have

∂L
∂V = −2α

(
(XI ×1 U

(1)T
I · · · ×V U(V )T

I − V
)

− 2(1 − α)
(
(XT ×1 U

(1)T
T · · · ×V U(V )T

T − V
)

+ 2β
(
(V − XI ×1 P

(1)
I · · · ×V P(V )

I )

+ (V − XT ×1 P
(1)
T · · · ×V P(V )

T )
)

+μ(E ×1 Z(1)T · · · ×V Z(V )T ) ∗ V + λ
∂Ψ

(
V

)

∂V
(14)

Step 3 With {U(v)
I }Vv=1, {U(v)

T }Vv=1, {P(v)
I }Vv=1, {P(v)

T }Vv=1 and
V fixed, the gradient w.r.t. {Z(v)} is shown as

∂L
∂Z(v)

= μ

⎛

⎜⎜
⎝E(v) ∗ Z(v)V(v)

⎛

⎜⎜
⎝⊗

1∏

v′=V+1
v′ �=v

Z(v′)

⎞

⎟⎟
⎠

T⎞

⎟⎟
⎠)

·

⎛

⎜
⎜
⎝

⎛

⎜
⎜
⎝⊗

1∏

v′=V+1
v′ �=v

Z(v′)

⎞

⎟
⎟
⎠VT

(v)

⎞

⎟
⎟
⎠ + λ

∂Ψ
(
Z(v)

)

∂Z(v)
(15)

in which E(v) is the mode-v matricization of tensor E and
Z(V+1) = E ∈ R

n×n is the identity matrix.

Step 4 Similarly, with all the {U(v)
I }Vv=1, {U(v)

T }Vv=1, {Z(v)}Vv=1
and V fixed, we can obtain

∂L
∂P(v)

I

= −2β

⎛

⎜⎜
⎝V(v) − P(v)

I XI (v)

⎛

⎜⎜
⎝⊗

1∏

v′=V+1
v′ �=v

P(v′)
I

⎞

⎟⎟
⎠

T⎞

⎟⎟
⎠

·

⎛

⎜⎜
⎝

⎛

⎜⎜
⎝⊗

1∏

v′=V+1
v′ �=v

P(v′)
I

⎞

⎟⎟
⎠XT

I (v)

⎞

⎟⎟
⎠ + λ

∂Ψ
(
P(v)
I

)

∂P(v)
I

(16)

and

∂L
∂P(v)

T

= −2β

⎛

⎜⎜
⎝V(v) − P(v)

T XT (v)

⎛

⎜⎜
⎝⊗

1∏

v′=V+1
v′ �=v

P(v′)
T

⎞

⎟⎟
⎠

T⎞

⎟⎟
⎠

·

⎛

⎜⎜
⎝

⎛

⎜⎜
⎝⊗

1∏

v′=V+1
v′ �=v

P(v′)
T

⎞

⎟⎟
⎠XT

T (v)

⎞

⎟⎟
⎠ + λ

∂Ψ
(
P(v)
T

)

∂P(v)
T

(17)

in which P(V+1)
I = P(V+1)

T = E ∈ R
n×n is the identity

matrix.
The optimization procedure of MCTD is summarized in

Algorithm 1.
Overall, for any new instance xI = [x(1)

I ; · · · ; x(V )
I ] and

xT = [x(1)
T ; · · · ; x(V )

T ] drawn from each modality, we first
transfer them into the full-order interactions presented in the
form of tensor representations KI and KT according to Eq.
(2). Then, theMCTD is to learn two groups of hash functions
for the data from each modality that are able to generate uni-
fied hash codes, i.e., f (KI ) = sign(KI×1P

(1)
I · · ·×V P

(V )
I ) :

R
d1I ×···×dVI → {−1,+1}RV

and g(KT ) = sign(KT ×1

P(1)
T · · · ×V P(V )

T ) : Rd1T ×···×dVT → {−1,+1}RV
, where dv

I
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Algorithm 1 MCTD
Require: Image feature matrix XI and text feature matrix XT both in

V views, the length of hash codes R, the category C , and the model
parameters α, β, μ and λ.

Ensure: Unified hash codes H, and the projection matrix groups
{P(v)

I }Vv=1 and {P(v)
T }Vv=1.

1: Transforming the data matrix XI and XT into the tensor representa-
tions XI and XT .

2: Randomly initializing {U(v)
I }, {U(v)

T }, {P(v)
I }, {P(v)

T }, {Z(v)} and V ,
respectively.

3: while not converged do
4: for v := 1 to V do
5: Fixing {P(v)

I }, {P(v)
T }, {Z(v)} and V , update U(v)

I and U(v)
T .

6: end for
7: Fixing {U(v)

I }, {U(v)
T }, {P(v)

I }, {P(v)
T } and {Z(v)}, update V .

8: for v := 1 to V do
9: Fixing {U(v)

I }, {U(v)
T }, {P(v)

I }, {P(v)
T } and V , update Z(v).

10: end for
11: for v := 1 to V do
12: Fixing {U(v)

I }, {U(v)
T }, {Z(v)} and V , update P(v)

I and P(v)
T .

13: end for
14: end while
15: Generating the hash codes by H = sign(V(V+1)).

and dv
T are the dimensions of mode-v fiber of tensorsKI and

KT , and RV is the length of binary codes.

4.5 Complexity analysis

In the application, MCTD firstly generates the latent repre-
sentation for a new query based on the achieved projection
matrix groups {P(v)

I } and {P(v)
T }, and then the hash codes can

be obtained. The main time consumption of the proposed
MCTD is the tensor decomposition, and its complexity is
O(ΠV

v=1(d
v
I + dv

T )RV−1n2). The parameters in Algorithm 1
are updated simultaneously, which indicates that the compu-
tation procedure can be paralleled. Therefore, the complexity
caused by the interaction across V views is ameliorated. The
convergence criterion used in our experiments is that the
number of iterations is greater than a threshold (e.g., 200) or
the decrease of the objective function value is smaller than a
threshold.

5 Experiments

In this section, we conduct extensive experiments to evaluate
the effectiveness of the proposed method MCTD comparing
with several state-of-the-art hashing methods on two public
cross-modal datasets.

5.1 Datasets

Experiments are conducted to validate the advantages of the
proposed cross-modality hashing method on two real-world
datasets.

Wiki1 Wiki dataset is collected from Wikipedia consisting
of 2173/693 (training/testing) multimedia documents. Each
document contains a single image and at least 70 words.
Totally ten categories are considered in this dataset, and each
image–text pair is labeled by one of them. Documents are
considered to be similar if they belong to the same category.

Pascal VOC2 The dataset [11] consists of 5011/4952 (train-
ing/testing) image–tag pairs, which can be categorized into
20 different classes. Since some images are multi-labeled,
researchers usually select images with only one object as
the way in [28], resulting in 1865 training and 1905 test-
ing data. The image features include histograms of bag of
visual words, GIST and color. The text features are 399-D
tag occurrence features.

5.2 Comparedmethods

We compare the performance of our method with several
state-of-the-art hashing-based cross-modal retrieval methods
includingCMFH3 [7],LSSH4 [46], SCM [40], SePH5 [18],
SMFH6 [33] andDCMH7 [12], which can be organized into
three categories:

– Unsupervised hashing LSSH is an unsupervised
method, which learns a joint abstraction space for image
and text by using sparse coding and matrix factorization.

– Supervised hashing (with shallow architecture) SCM
is a representative supervised method for cross-modal
hashing, which is proposed to seamlessly integrate
semantic labels into the hashing learning procedure.
CMFH and SMFH are two methods based on matrix
factorization, which both learn a common latent space
for image and text. SePH uses the semantic affinities of
training instances into a probability distribution and aims
to approximate it in Hamming space. In the experiments,
we use RBF kernel and take 500 as sampling size as
advised in [18].

– Supervised hashing (with deep architecture) DCMH
is the most recent work on deep cross-modal hashing,
which integrates feature learning and hash-code learning
into the same framework.

As existing cross-modal hashingmethods cannot dealwith
the multi-view, we concatenate the features to fit the model.

1 http://www.svcl.ucsd.edu/projects/crossmodal/.
2 http://www.cs.utexas.edu/~grauman/research/datasets.html.
3 http://ise.thss.tsinghua.edu.cn/MIG/code_data_cm.zip.
4 http://ise.thss.tsinghua.edu.cn/MIG/LSSH_code.rar.
5 https://bitbucket.org/linzijia72/.
6 We thank the authors for kindly providing the codes.
7 https://github.com/jiangqy/DCMH-CVPR2017.
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Table 2 Mean Average
Precision (MAP) for
cross-modal retrieval tasks on
two datasets

Task Method Wiki Pascal VOC

16 bits 32 bits 64 bits 128 bits 16 bits 32 bits 64 bits 128 bits

I → T CMFH 0.2115 0.2230 0.2238 0.2351 0.1575 0.1508 0.1490 0.1429

LSSH 0.1541 0.1546 0.1544 0.1521 0.2988 0.3083 0.3194 0.3166

SCM_orth 0.1527 0.1331 0.1216 0.1172 0.4063 0.4040 0.4067 0.4144

SCM_seq 0.2257 0.2459 0.2461 0.2510 0.3842 0.4868 0.3972 0.4115

SePH 0.2562 0.2654 0.2793 0.2823 0.4356 0.4424 0.4242 0.4245

SMFH 0.2507 0.2646 0.2715 0.2787 0.2291 0.2477 0.2586 0.2500

DCMH 0.2798 0.2809 0.2910 0.2993 0.4564 0.4613 0.4793 0.4801

MCTD 0.2919 0.3048 0.3068 0.3138 0.4921 0.4927 0.5194 0.5072

T → I CMFH 0.5351 0.5445 0.5586 0.5616 0.1576 0.1550 0.1523 0.1463

LSSH 0.2641 0.2723 0.2795 0.2803 0.6145 0.6177 0.6042 0.5906

SCM_orth 0.1532 0.1393 0.1297 0.1273 0.4791 0.4526 0.4962 0.4721

SCM_seq 0.2341 0.2410 0.2445 0.2554 0.4816 0.5455 0.4526 0.4866

SePH 0.6276 0.6324 0.6513 0.6514 0.6476 0.6524 0.6153 0.6571

SMFH 0.4481 0.4827 0.4920 0.5038 0.4189 0.4942 0.6035 0.7388

DCMH 0.6292 0.6524 0.6674 0.6720 0.6513 0.6504 0.6638 0.6708

MCTD 0.6482 0.6832 0.6898 0.6972 0.6567 0.6553 0.7074 0.7464

Items in bold indicate the best performance

5.3 Evaluation protocols

ForWiki dataset, each image is represented by a 128-D SIFT
histogram and a 128-D CNN feature. We use the output of
layer fc8 in the AlexNet [15], which is pre-trained on Ima-
geNet. Each text is represented by a 200-D bag-of-words
feature and a 10-D topics’ vector generated by Latent Dirich-
let Allocation (LDA) model [26]. For Pascal VOC dataset,
each image is also represented by both handcrafted features
and deep features. The ground-truth neighbors are defined as
those image–text pairs which share category label.

We perform two cross-modal retrieval tasks: using image
queries to search relevant text (I → T ) and text query on
image databases (T → I ). Following [18,33,40], we eval-
uate the retrieval performance based on two metrics: Mean
Average Precision (MAP) and precision–recall curves. In our
experiments, we repeat ten times for each group of parame-
ters and report themeanMAP score. The results of numerical
experiments are summarized in Table 2.

For our method, based on the rule of thumb, we set the
parameters r = 2, α = 0.5 and λ = 0.05 throughout the
paper. The grid searching is applied to identify optimal values
for the parameters from μ ∈ [0.001, 10] and β ∈ [1, 200].

5.4 Quantitative results

We evaluate all methods with different lengths of hash codes,
i.e., 16, 32, 64 and 128 bits, and report their MAP results in
Table 2, where the best results are presented in bold figures.

From the experimental results, we can see that the effec-
tiveness of the proposed MCTD method is proved through
that it substantially surpasses all the compared methods for
cross-modal retrieval tasks. Specifically, compared to the best
results of CMFH, LSSH, SCM_orth, SCM_seq, SePH and
SMFH,MCTD achieves absolute increases of 1.66%/2.44%
and 3.36%/3.24% in average MAP score for two cross-
modal tasks I → T and T → I on Wiki and Pascal VOC
datasets. This can show that our feature fusion strategy is of
great importance and very practical.

We find our method performs better than the deep method
DCMH.We speculate that the reason behind is that ourmodel
incorporates both the handcrafted features and deep-learned
features and exploit the correlations of the features. To con-
firm the above two assumptions, we further test the effect of
correlations on multi-view in Sect. 5.5.

The precision–recall curves with 32 bits for the two cross-
modal tasks I → T and T → I on these two datasets
are presented in Fig. 3, respectively. We can observe from
the results that MCTD is highly competitive compared with
alternative methods.

We then validate the convergence of MCTD with 32 bits
on these two datasets. In order to show the result clearer, we
adjust the objective value to the log value, which is shown in
Fig. 4. We can see that our method can converge in less than
20 iterations on both datasets in the optimization procedure,
which is a satisfactory convergence rate.

Finally, the training time of all these methods is tested.
The experiments are conducted on the Wiki dataset and run
on a PCwith 2.5GHz Intel Core i7 CPU and 16GBRAM.As
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Fig. 3 Precision–recall curves
of cross-modal retrieval on Wiki
and Pascal
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Fig. 4 Curves of convergence validation: objective function value@32
bits on both datasets

for the deep method DCMH, we use a server with NVIDIA
GeForce GTX 1080 Ti GPU. We did not record the training
time of DCMH. Here, we only evaluate the case that the
code length is 32 bits. The results are reported in Table 3.
We can observe that the time consumption of MCTD is of
the same order of magnitude as that of CMFH and SMFH,
both of which involve the computation of matrix inversion.
The time cost is acceptable in comparison with that of LSSH

Table 3 Training time (s) of each method on Wiki

Method Dataset

Wiki Pascal VOC

CMFH 14.02 16.38

LSSH 432.22 361.86

SCM_orth 2.90 29.72

SCM_seq 2.11 8.76

SePH 189.85 154.40

SMFH 39.02 60.78

MCTD 45.33 73.24

and SePH. As MCTD needs to compute the tensor structure
of multi-view, it spends more time than others in the training
phase. And the space cost will grow as the number of views
grows.

5.5 Effect of correlations onmulti-view

In order to validate our assumption that the correlations
on multi-view features can boost the performance of the
proposed method, we present two variants of MCTD for
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Table 4 Effect of correlations on multi-view

Task Method Wiki

16 bits 32 bits 64 bits 128 bits

I → T MCTD_c 0.2594 0.2783 0.2817 0.2909

MCTD_h 0.2708 0.2865 0.2902 0.2944

MCTD 0.2919 0.3048 0.3068 0.3138

T → I MCTD_c 0.5536 0.6054 0.6231 0.6504

MCTD_h 0.6024 0.6365 0.6592 0.6467

MCTD 0.6482 0.6832 0.6898 0.6972

Items in bold indicate the best performance

comparison. The first one uses concatenated features and the
second one only uses highest order correlations among all
the views, where these twomethods are denoted asMCTD_c
and MCTD_h. We use MAP scores to evaluate the perfor-
mance on the dataset Wiki with various hash code lengths.
The results are summarized in Table 4. We can see that the
correlations on multi-view produce positive results and the
full-order correlations can lead to better performance by pro-
viding more comprehensive information, which verifies the
effectiveness of the proposed fusion strategy.

5.6 Parameter sensitivity

We analyze the influence of two important parameters β and
μ by computing the MAP score on 32 bits on both cross-

modal retrieval tasks. We can see that the parameters in our
method are not sensitive andMCTD can achieve satisfactory
results in a wide range of parameter settings. The results are
shown in Fig. 5.

6 Conclusion

Fusing multimodal multi-view features is a new and chal-
lenging job in cross-modal retrieval. In this paper,we propose
a novel cross-modal hashing method called MCTD, which
is a first attempt to use collective tensor decomposition to
model the multi-view features and learn the latent space.
In addition, our method can embed the supervised infor-
mation into the learning procedure and enforce multiple
separated subspaces. Our contributions are shown as follows:
Firstly, we use two tensors to model the multi-view features
and collective tensor decomposition to learn a latent tensor
representation. Secondly, a block-diagonal structure loss is
introduced to exploit the supervision information and main-
tain the global structure of the subspace. Thirdly, two groups
of mapping matrices are proposed to project the incoming
new queries to the latent space and generate corresponding
hash codes. We also propose an optimization algorithm to
solve the proposed objective function, which can effectively
update multiple parameters simultaneously. We have con-
ducted extensive experiments to validate the effectiveness of
our method and the proposed feature fusion strategy.

Fig. 5 Parameter sensitive
analysis: the MAP score @32
bits on both the cross-modal
retrieval tasks
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Source code is available online: https://github.com/
cuilimeng/MCTD.

7 Limitations and future work

Multimodal data provide a broad platform for machine learn-
ing. With the popularity of smart phones and the enrichment
of online image resources, it is easier to collect related data.
The proposed method is presented and evaluated based on
the visual and textual data, but they can also be applied to a
wider range of data. Based on this paper, we can continue to
study and explore the following aspects:

– In this problem setting, each image has only one specific
category label. However, in the real world, each image
often contains multiple objects, which is reflected in the
multi-label problem. This problem poses new challenges
to potential semantic subspace learning.We can combine
feature learning to model the association between tags to
provide guidance for multi-label cross-modal retrieval
problems.

– In addition, we only conduct experiments on the two data
modalities in this paper and we can expand the model to
other data modalities such as audio and video.
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