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Abstract In recent years, various online social networks offering specific services have
gained great popularity and success. To enjoy more online social services, some users can
be involved in multiple social networks simultaneously. A challenging problem in social
network studies is to identify the common users across networks to gain better understanding
of user behavior. This is referred to as the anchor link prediction problem. Meanwhile, across
these partially aligned social networks, users can be connected by different kinds of links,
e.g., social links among users in one single network and anchor links between accounts of
the shared users in different networks. Many different link prediction methods have been
proposed so far to predict each type of links separately. In this paper, we want to predict the
formation of social links among users in the target network as well as anchor links aligning
the target network with other external social networks. The problem is formally defined as
the “collective link identification” problem. Predicting the formation of links in social net-
works with traditional link prediction methods, e.g., classification-based methods, can be
very challenging. The reason is that, from the network, we can only obtain the formed links
(i.e., positive links) but no information about the links that will never be formed (i.e., negative
links). To solve the collective link identification problem, a unified link prediction frame-
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work, collective link fusion (CLF) is proposed in this paper, which consists of two phases:
step (1) collective link prediction of anchor and social links with positive and unlabeled
learning techniques, and step (2) propagation of predicted links across the partially aligned
“probabilistic networks” with collective random walk. Extensive experiments conducted on
two real-world partially aligned networks demonstrate that CLF can perform very well in
predicting social and anchor links concurrently.

Keywords Link prediction · Transfer learning · PU learning · Data mining

1 Introduction

In recent years, there has been a surge of interest in studying multiple online social networks
simultaneously [14,34,35,39]. In part, this interest is driven by the burgeoning growth of var-
ious online social networks. Meanwhile, to enjoy more social network services, users nowa-
days are usually involved inmultiple online social networks at the same time, e.g., Foursquare,
Facebook andTwitter. These shared users of different online social networks are defined as the
“anchor users” [14] as they can act like “anchors” aligning the networks they participate in,
while the remaining unshared users are called the “non-anchor users”.Across partially aligned
online social networks, users are connected by various kinds of links: (1) intra-network links,
i.e., the social links among users within networks; and (2) inter-network links, i.e., the anchor
links [14] connecting the accounts of the anchor users across different networks.

Predicting the formation of links in online social networks has been a hot research topic
in recent years and many different kinds of link prediction methods have been proposed
so far, e.g., classification-based methods [2,9,34,35,39] built with links in the networks,
where “formed links” and links which will “never be formed” can be labeled as “positive
links” and “negative links” respectively. Actually, when predicting the formation of links in
social networks, we can only have the formed links (i.e., positive links) but no information
on links that will never be formed (i.e., negative links). Predicting the formation of links
merely with the existing formed links (i.e., positive links) is formally defined as the link
formation prediction problems. Many important services across aligned social networks
can be cast as link formation prediction tasks, e.g., anchor user identification [14] across
networks can be converted into an inter-network anchor link formation prediction task, friend
recommendation [34,35] within one network can be regarded as an intra-network social link
formation prediction task.

Furthermore, as discovered in [35], multiple link prediction tasks in the same networks
may be strongly correlated and can be done concurrently to improve the prediction results
throughmutual re-enhancement. Formally,wedefine theprocess of simultaneously predicting
multiple kinds of links among users across multiple partially aligned networks merely with
positive examples as the collective link identification problem. In this paper, the collective
link identification problem covers the following two different link formation prediction tasks
simultaneously:

• Social Link Formation Prediction discover social links to be formed among users in the
future in a network that we target on.

• Anchor Link Formation Prediction uncover the hidden anchor links connecting accounts
of anchor users between the target network and other aligned social networks.

Figure 1 gives an example of the collective identification problem. As illustrated in Fig. 1a,
we have two partially aligned social networks, both ofwhich contain some users. The network
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Fig. 1 Collective link identification across partially aligned networks. a Input networks, b existing anchor
and social links, c unconnected anchor and social links, d anchor and social links to be predicted (color figure
online)

at the top, which is new and has very few social links, is defined as the target network,
while the network at the bottom, which is well developed and contains many social links,
is defined as the source network. Some common users of the target and source networks
are connected by anchor links. In Fig. 1b, black dotted links across the networks are the
existing anchor links and the black solid lines in the target network are the existing social
links. All the possible anchor and social links among users in the target network and those
across different networks in the target network except the black ones can be viewed as the
unconnected potential anchor/social links, which are the blue dotted/dashed lines shown in
Fig. 1c. Furthermore, the red dotted/dashed lines are the anchor/social links to be predicted,
which are shown in Fig. 1d.

These two link formation prediction tasks covered in the collective link identification
problem are both of great importance for online social networks, especially when the target
network is very new and social connections among users in it are sparse: (1) anchor link
formation prediction can add more inter-network connections between different networks,
which is a crucial prerequisite for many cross-network applications, e.g., friend recommen-
dation and information diffusion across social networks, (2) social link formation prediction
can add more intra-network social connections among users in the target network, which is
helpful for inter-network anchor link identification [14].

To support such claims, we also conduct some statistical investigations on the information
distributions of two real-world partially aligned social networks: Foursquare and Twitter,
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(a) (b)

Fig. 2 Some statistical information about two partially aligned networks: Foursquare and Twitter. a The
anchor user number in Foursquare. b Degree distribution of users in both Foursquare and Twitter

where results are shown in Fig. 2. As shown in Fig. 2a, for a given random sample of
Foursquare users, about 60% of whom are also involved in Twitter (i.e., anchor users).
However, the remaining 40% Foursquare users’ aligned accounts in Twitter are unknown
and discovering the hidden anchor links for these 40% non-anchor users can be critical to
improve the quality of services for these users. Fig. 2b shows the degree distributions (i.e.,
number of social links) of users in both Twitter and Foursquare, which both follow the power
law. In addition, as the data used in the experiment, we crawled 5223 users’ information
in Twitter, and they posted 9,490,707 tweets, checked-in 297,182 locations and generated
164,296 social links. It means each user in Twitter has 1817.1 tweets, 56.9 locations and 31.5
social degree averagely. While according to the experiment data, each user in Foursquare
only has 9.04 tweets, 7.2 locations and 14.3 social degree averagely. It shows that social
information of users in Foursquare is much sparser than that in Twitter, and from Fig. 2b,
we can get the same observation too. Therefore, information transferred from Twitter can be
helpful for the social link prediction task in Foursquare [34,35].

The collective link identification problem studied in this paper is novel and conventional
classification-based link prediction models [2] cannot be applied to solve it directly due to
the following challenges. Firstly, in traditional classification-based methods [2,9], links in
social networks are assigned with different labels according to their physical meanings, e.g.,
friends vs enemies [27], trust vs distrust [30], positive attitude vs negative attitude [31], etc.
However, when predicting the formation of links in social networks, we can only have the
formed links (i.e., positive links) but no information about links that will never be formed (i.e.,
negative links). Secondly, traditional classification-based link predictionmodels are based on
the assumption that information in the target network is sufficient to build effective models.
This assumption will be seriously violated when the network is new, available information in
whichwould be very sparse [35]. Furthermore, traditional classification-based link prediction
modelsmostly focus on predicting one single type of linkswithout considering the correlation
between different link prediction tasks. In Table 1, we show the comparisons of the collective
link identification problemwith some correlated problems inmany aspects, andmore detailed
description is available in Sect. 5.

Despite its importance and novelty, the collective link identification problem is very chal-
lenging to solve due to the following reasons:
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Table 1 Summary of related problems

Property Collective link
prediction

[39] [22] [35] [34]

# Networks Multiple Multiple Single Multiple Multiple

Network
type

Heterogeneous Heterogeneous Homogeneous Heterogeneous Heterogeneous

Network
alignment

Partially Partially No Partially Fully

PU learning Yes Yes No No No

Link fusion Across networks Across networks n/a n/a n/a

Predicted
links

Social links in
target network +
anchor links
across networks

Social links in
target network

Social links Social links in
target network

Social links in
target network

• Lack of Negative Labeled Links Though there are plenty of missing links, it is difficult
to tell which links will never been formed (i.e. negative labeled links) and which are
not formed temporarily. A reasonable way to address this problem is using only positive
links to do prediction. However few work about it has been done before, and supervised
link prediction methods merely with positive links is still an open problem to this context
so far.

• Lacking Social Features for Anchor Links Information of users who form anchor links
is located in two different networks and is disjoint actually. Existing social features of
links defined for single-network setting cannot be applied to anchor links across multiple
networks directly.

• Partial Alignment of Networks Networks studied in this paper are partially aligned and
the new network that we target on contains both anchor users and non-anchor users.
Few works have been done to transfer information for non-anchor users in the new target
network yet.

• Collective Link Prediction The collective link identification problem studied in this paper
covers two tasks simultaneously. Analysis and utilization of the correlation between these
two tasks to help improve the prediction results mutually is critical.

To solve these challenges, a two-phase link prediction framework,CLF, is proposed in this
paper. In the first step,CLF predicts anchor and social links independently by (1) formulating
the link formation problemwith positive links as a Positive and Unlabeled (PU [19]) learning
problem, and (2) transferring information for social links formed by anchor users from other
source networks to the target network via existing anchor links. In the second step, CLF
propagates information across the partially aligned “probabilistic networks” constructedwith
the prediction results of the first step. With collective random walk, CLF can (1) transfer
information for both anchor users and non-anchor users, (2) fuse newly predicted results
of both anchor and social links for mutual enhancement, and (3) control the proportion of
information diffused across networks.

This paper is organized as follows. In Sect. 2, we will give the problem formulation.
Methods will be introduced in Sect. 3. Extensive experiments are done in Sect. 4. Section 5
is about the related works. Finally, in Sect. 6, we will conclude the paper.
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2 Problem formulation

2.1 Partially aligned heterogeneous networks

In this paper, we will follow the definitions of “anchor users”, “anchor links”, etc., proposed
in [14]. Different from [14], the major assumptions about the aligned networks in this paper
is partial alignment of networks: fully aligned networks rarely exist in the real world and
networks studied in this paper are partially aligned [39].

Aligned social networks first introduced in [14] are defined as G = ((G1,G2, . . . ,Gn),

(A1,2, A1,3, . . . , A1,n, A2,3, . . . , A(n−1),n)), where Gi = (V i , E i ), i ∈ {1, 2, . . . , n} is a
heterogeneous network containing multiple kinds of nodes and complex links and Ai, j is the
set of undirected anchor links between Gi and G j . If users in Gi and G j are all connected
by anchor links in Ai, j , then networks Gi and G j are fully aligned. Otherwise, Gi and G j

are partially aligned.
Link (u, v) is an anchor link between network Gi and G j iff (u ∈ Ui ) ∧ (v ∈ U j )∧ (u

and v are the accounts of the same user), where Ui and U j are the user sets of Gi and G j ,
respectively. If all users in one network (e.g., Gi ) are connected by anchor links with users
in another network (e.g., G j ) and all users in G j are connected by anchor links with users in
Gi as well, then networks Gi and G j are fully aligned. Otherwise, Gi and G j are partially
aligned.

The partially aligned heterogeneous social networks studied in this paper are Foursquare
and Twitter, which are used as the target and source networks respectively. According to
the definition of aligned heterogeneous networks in [14], networks studied in this paper can
be formulated as G = ((Gt ,Gs), (At,s)), where Gt , Gs are the target network and source
network, respectively, and At,s is the set of undirected anchor links between Gt and Gs .

Users in both Foursquare and Twitter can write posts online, which can contain text
information, timestamps and attached location check-ins. As a result, Gt and Gs can both be
formulated as G = ({U ∪ L ∪ W ∪ T }, {Eu,u ∪ Eu,l ∪ Eu,w ∪ Eu,t }) where U , L , W and T
are the sets of user, location, word and timestamp nodes in the network and Eu,u , Eu,l , Eu,w

and Eu,t are the sets of links among users and those between locations, words, timestamps
and users.

2.2 Integrated PU link prediction problem

The collective link identification problem studied in this paper includes the simultaneous
inference of both anchor links between Gt and Gs and social links in Gt merely with the
positive links. Across aligned networks, in addition to the positive links, we can identify
lots of unconnected links as well. For example, let Et

u,u and Ut be the sets of existing
links and users in Gt , we can represent the existing and unconnected social links to be
Et
u,u and U

t ×Ut − Et
u,u respectively. If these unconnected links are viewed as “unlabeled

links”, then the link formation prediction problem with positive and unlabeled links can be
formally defined as PU link prediction problems. In this paper, we formulate the collective
link identification problem as the integrated PU link prediction problem, which covers the
(1) PU anchor link prediction; (2) PU social link prediction simultaneously.
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links

z(link)

y(link)

positive links unlabeled links

Fig. 3 Example of connection states and labels of links in PU link prediction

3 Proposed methods

3.1 Preliminary

As introduced in [39], from networks, we can extract both existing and unconnected links.
To differentiate these links, a term named “connection state”: z ∈ {−1,+1} was introduced
in [39]. If a certain link (u, v) is an existing link in the network, then z(u, v) = +1; if (u, v)

is an unconnected link, then z(u, v) = −1. Meanwhile, besides the “connection state”, all
the links can also have their own labels, y ∈ {−1,+1}, e.g., friends vs enemies, trust vs
distrust, formed vs will never be formed, etc. In this paper, if link (u, v) has been/will be
formed, then y(u, v) = +1; if (u, v) will never be formed, then y(u, v) = −1. As shown
in Fig. 3, for all existing links in the network, their connection states z and labels y are all
+ 1, while the connection states z of all initially unconnected links are − 1 but the labels y
of these unconnected links can be either + 1 or − 1, as the unconnected links include both
links to be formed and links that will never be formed. These unconnected links are referred
to as the unlabeled links in the PU link prediction.

A PU social link prediction model applying spy technique [19] to extract reliable negative
links from the unconnected link set was proposed in [39]. However, the correlation between
links’ connection state and labels is not clearly addressed in [39], which will be analyzed
and derived in details in this paper. A new PU link prediction method based on the analysis
and derivations will be introduced in the next subsection, which can be applied to infer both
anchor and social links across multiple partially aligned networks.

3.2 Link formation probability inference

For each anchor/social link, a set of features (e.g., the features proposed in [14,34]) can be
extracted from the networks, e.g., the feature vector extracted for certain anchor/social link
(u, v) can be represented as x(u, v). As a result, each anchor/social link (u, v) in the networks
can be denoted as a tuple 〈x(u, v), y(u, v), z(u, v)〉. Let p(x, y, z) be the joint distribution
of x, y and z. As shown in Fig. 3, all the existing links (z = 1) are positive links (y = 1):

p(y = 1|x, z = 1) = p(y = 1|z = 1) = 1.0.
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A basic assumption about PU link prediction is that the existing positive links are randomly
sampled from the whole positive link set, which means that for two arbitrary positive links
(u1, v1) and (u2, v2) we have

p(z(u1, v1) = 1|x(u1, v1), y(u1, v1) = 1)

= p(z(u2, v2) = 1|x(u2, v2), y(u2, v2) = 1).

In other words, the conditional distribution p(z = 1|x, y = 1) is independent of variable
x, i.e.,

p(z = 1|y = 1) =
∑

link∈G
p(z = 1|x(link), y = 1)p(x(link)|y = 1)

=p(z = 1|x, y = 1) ·
∑

link∈G
p(x(link)|y = 1)

=p(z = 1|x, y = 1).

Meanwhile, the probabilities that link l is predicted to be “existing” (z = +1) and “formed”
(y = +1) can be defined as the “existence probability” (i.e., p(z = 1|x)) and “formation
probability” (i.e., p(y = 1|x)), respectively, as introduced in [39].

Definition 1 (Existence Probability) Probability that a link originally exists in the networks
is formally defined as the existence probability of the link, p(z = 1|x).

Definition 2 (Formation Probability) Probability that a link will be formed is formally
defined as the formation probability of the link, p(y = 1|x).

However, [39] fails to study the correlation between links’ “existence probability” and
“formation probability”, which can be represented as follows:

p(z = 1|x) = p(z = 1|x) · p(y = 1|x, z = 1) = p(y = 1, z = 1|x)

= p(y = 1|x) · p(z = 1|x, y = 1)

= p(y = 1|x) · p(z = 1|y = 1).

As a result, links’ formation probabilities can be inferred from their existence probabilities
if we know p(z = 1|y = 1) in advance.

Definition 3 (Bridging Probability) p(z = 1|y = 1) is formally defined as the bridging
probability between the existence probability and the formation probability.

The bridging probability can be inferred with the binary classification models built with
the existing (z = +1) and unconnected (z = −1) links [4]. We split all the existing and
unconnected links into “training set” and “validation set” via cross-validation. Classification
models built based on the training set can be applied to the validation set. Let Pos be the
subset of links that are positive in the validation set.We use themethod ofmoments to estimate
the bridging probability, and here is the inference equation:

p(z = 1|y = 1)

= 1

|Pos|
∑

link∈Pos
p(z = 1|y = 1) moment estimator

= 1

|Pos|
∑

link∈Pos
p(z = 1|x, y = 1), p(z = 1|y = 1) = p(z = 1|x, y = 1)
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Algorithm 1 PU Link Prediction (MLP)
Input: heterogeneous social networks: G

sets of positive and unlabeled: P , U
anchor link validation and test sets: V and T

Output: existence probabilities of links in V and T : p(y(V ) = 1|x(V )) and p(y(T ) = 1|x(T ))

1: extract feature vectors, x, for links in P , U , V and T
2: assign links in P , U with labels +1, −1 respectively
3: SV M.train([x(P), x(U )], [1, · · · , 1, −1 · · · ,−1]T )

4: p(z(V ) = 1|x(V )) = SV M.classi f y(x(V ))

5: calculate p(z = 1|y = 1) with the Bridging Probability Inference Equation
6: p(z(T ) = 1|x(T )) = c.classi f y(x(T ))

7: p(y(T ) = 1|x(T )) = p(z(T )=1|x(T ))
p(z=1|y=1)

8: return p(y(V ) = 1|x(V )) and p(y(T ) = 1|x(T ))

= 1

|Pos|
∑

link∈Pos
(p(z = 1|x, y = 1) · 1 + 0 · 0

= 1

|Pos|
∑

link∈Pos
(p(z = 1|x, y = 1)p(y = 1|x)

+ p(z = 1|x, y = −1)p(y = −1|x)) link ∈ Pos

= 1

|Pos|
∑

link∈Pos
p(z = 1|x). law of total probability

As a result, the average existence probabilities of links in Pos works as an estimator
of the bridging probability, which clearly clarifies the correlation between link’s existence
probability and formation probability. Based on the inferred bridging probability p(z =
1|y = 1), we can predict the formation probabilities of anchor and social links based on their
existence probabilities, which is totally different from the spy technique introduced in [39].

The pseudo code of the PU Link Prediction (MLP) method is available in Algorithm 1.

3.3 Inter-network social features for anchor links

Social information of users who form certain anchor links is located in different networks and
is disjoint as a result. Consider a certain anchor link (u, v) between Gt and Gs , for example,
we can get the neighbors of u and v from Gt and Gs , which are �(u) and �(v) respectively.
User u and v are in two different networks and their neighbors �(u) and �(v) are in different
networks aswell, i.e.,�(u)∩�(v) = ∅. In this case, traditional social features, like “Common
Neighbor” [9], “Jaccard’s Coefficient” [9] and “Adamic/Adar” [1], will not work. To solve
the problem, we use the extended definition of these three social features proposed in [14]
instead, which are named as the inter-network social features for anchor links in this paper.

• Extended Common Neighbor, which denotes the number shared “neighbors” of u and v:
ECN (u, v) = ∣∣�(u)

⋂
At,s �(v)

∣∣, and
∣∣�(u)

⋂
At,s �(v)

∣∣
= ∣∣{(u′, v′) ∈ At,s, u′ ∈ �(u), v′ ∈ �(v)}∣∣ .

• Extended Jaccard’s Coefficient: E JC(u, v) takes the size of�(u) and�(v) into account,
considering that ECN (u, v) can be very large because u and v both have lots of
neighbors rather than the strong correlation between them. Let

∣∣�(u)
⋃

At,s �(v)
∣∣ =

|�(u)| + |�(v)| − ∣∣�(u)
⋂

At,s �(v)
∣∣, E JC(u, v) can be represented as E JC(u, v) =

|�(u)
⋂

At,s �(v)|
|�(u)

⋃
At,s �(v)| .
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• Extended Adamic/Adar, which gives different “common neighbors” different weights:

E AA(u, v) = ∑
∀(u′,v′)∈�(u)

⋂
At,s �(v) log

−1
( |�(u′)|+|�(v′)|

2

)
.

From the definitions of these inter-network social features, we can find that social links
in both Gt and Gs are essential for the social feature extraction in PU anchor link prediction.

3.4 Strict co-existence transfer across networks

To solve the information sparsity problem in the new target network, we propose to transfer
information from source networks via the anchor links with the strict co-existence (of anchor
links) transfer method.

Given a certain social link (ut , vt ) in Gt , we can extract features for (ut , vt ), which are
represent as vector, x(ut , vt ). Meanwhile, we notice that by utilizing the anchor links At,s ,
we can locate the corresponding accounts of user ut and vt in Gs , which are us and vs ,
respectively (if both ut and vt are anchor users). The dense feature vector x(us, vs) together
with its label y(us, vs) extracted for social link (us, vs) from the more established Gs is
correlated with (ut , vt ) and can be transferred to Gt . A detailed description of the extracted
features for social links is available in the Appendix.

Furthermore, we notice that the existence information y(us, vs) of link (us, vs) is also
very important and can be transferred toGt to help improve the result.With full consideration
about the network differences, features from different networks are assigned with different
weights, which can be decided by classifiers, e.g., SVM [3], when training the model. With
the information in Gt and that transferred from Gs , we can get the formation probability of
link (ut , vt ) to be

p
(
y(ut , vt ) = 1| [x(ut , vt )T, x(us, vs)T, y(us, vs)

]T)
,

where, xT denotes the transpose of vector/matrix x.
According to the above descriptions, the strict co-existence transfer method can transfer

information for social links formed by anchor users effectively, but it can only work for social
links formed by anchor users inGt , as it needs anchor links to help locate users’ corresponding
accounts inGs . However, in real-world partially aligned networks,many users are non-anchor
users, in which case, strict co-existence transfer methodwill not work verywell. To overcome
the shortcomings of strict co-existence transfer method, we will propose a loose co-existence
transfer method and introduce the collective random walk to transfer information for both
anchor and non-anchor users across “aligned probabilistic networks” by relaxing the strict
co-existence requirements of anchor links.

3.5 Loose co-existence transfer across aligned probabilistic networks

As shown inFig. 4, collective anchor and social link prediction can addmanyuncertain anchor
links and social links across networks (i.e., the red dotted/dashed lines), whose weights are
represented as their “formation probabilities”.

Definition 4 (Aligned Probabilistic Networks) The original partially aligned social added
with the newly predicted anchor and social links are formally defined as the aligned prob-
abilistic networks, where weights of the originally existing links are 1 and those of newly
added ones are their inferred formation probabilities.

Traditional random walk approach has been shown to be effective in computing the sim-
ilarities between nodes and propagate information within one single network [2,5,6,15,26].
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Fig. 4 Collective link fusion across networks (color figure online)

Algorithm 2 Collective Link Fusion (C-RWR)
Input: sets of positive anchor and social links: Pa , Ps

parameters: αt , αs and c
probabilities: pa(y(Va) = 1|x(Va)), pa(y(Ta) = 1|x(Ta)), ps (y(Vs ) = 1|x(Vs )), ps (y(Ts ) =

1|x(Ts ))
Output: formation confidence: p̃a(y(Va) = 1|x(Va)), p̃a(y(Ta) = 1|x(Ta)), p̃s (y(Vs ) = 1|x(Vs )),

p̃s (y(Ts ) = 1|x(Ts ))

1: Initialize matrices W̄
t
, W̄

t,s
, W̄

s
and W̄

s,t
with existing links in Pa , Ps and probabilities in pa(y(Va) =

1|x(Va)), pa(y(Ta) = 1|x(Ta)), ps (y(Vs ) = 1|x(Vs )), ps (y(Ts ) = 1|x(Ts ))

2: W =
[

αt W̄
t

(1 − αs )W̄
st

(1 − αt )W̄
ts

αs W̄
s

]

3: while ∃ potential anchor/social link of user u do
4: Initialize vector q to be 0.
5: q[u] = 1
6: p = c [I − (1 − c)W ]−1 q

/*update pe(Va), pe(Ta), pe(Vs ), pe(Ts ) with p*/
7: for anchor link (u, v) ∈ Va , Ta do
8: pa(u, v) = p[v]
9: end for
10: for social link (u, v) ∈ Vs , Ts do
11: ps (u, v) = p[v]
12: end for
13: end while
14: return p̃a(y(Va) = 1|x(Va)), p̃a(y(Ta) = 1|x(Ta)), p̃s (y(Vs ) = 1|x(Vs )), p̃s (y(Ts ) = 1|x(Ts ))

Based on the social links in the “probabilistic target network” (i.e., Gt ), we can construct
the adjacency matrix W t ∈ R

|Ut |×|Ut | of the network, where W t
j,i denotes weight of link

(ui , v j ), ui , v j ∈ Ut . We use vector
(
pt

)(τ ) ∈ R
|Ut | to store the probabilities of walking

from a certain starting user to other users in the Gt with τ steps. Let W̄
t = W t D−1 be the

column-normalized adjacency matrix of W t , where Di,i = ∑
j W

t
j,i and W̄

t
j,i denotes the

probability of walking from ui to u j in one step. Vector pt can be updated with the following
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Algorithm 3 Collective PU Link Fusion (CLF)
Input: two partially aligned heterogeneous social networks: G = ((Gt ,Gs ), (At,s ))

sets of positive and unlabeled anchor links: Pa , Ua
anchor link validation and test sets: Va and Ta
sets of positive and unlabeled social links: Ps , Us
social link validation and test sets: Vs and Ts
parameters: αt , αs and c

Output: formation confidence of links in Va , Ta , Vs and Ts : p̃a(y(Va) = 1|x(Va)), p̃a(y(Ta) = 1|x(Ta)),
p̃s (y(Vs ) = 1|x(Vs )), p̃s (y(Ts ) = 1|x(Ts ))
Step 1: PU anchor link prediction across networks

1:

(
pa(y(Va) = 1|x(Va))

pa(y(Ta) = 1|x(Ta))

)
= MLP(G, Pa ,Ua , Va , Ta)

Step 2: PU social link prediction across networks

2:

(
ps (y(Vs ) = 1|x(Vs ))
ps (y(Ts ) = 1|x(Ts ))

)
= MLP(G, Ps ,Us , Vs , Ts )

Step 3: collective link fusion across networks

3:

⎛

⎜⎝

p̃a(y(Va) = 1|x(Va)),

p̃a(y(Ta) = 1|x(Ta)),

p̃s (y(Vs ) = 1|x(Vs )),
p̃s (y(Ts ) = 1|x(Ts ))

⎞

⎟⎠ = C − RWR

⎛

⎜⎜⎜⎝

Pa , Ps , αt , αs , c,
pa(y(Va) = 1|x(Va)),

pa(y(Ta) = 1|x(Ta)),

ps (y(Vs ) = 1|x(Vs )),
ps (y(Ts ) = 1|x(Ts ))

⎞

⎟⎟⎟⎠

equation until convergence:
(
pt

)(τ+1) = W̄
t (

pt
)(τ )

.

Values in vector p at convergence denote the “formation confidence” scores of social links
between the starting user and other users within the target network Gt .

Furthermore, the newly added uncertain anchor link attached to non-anchor users can pro-
vide the opportunity to propagate information form Gs for non-anchor user in the new target
network Gt . We propose to extend the traditional random walk to aligned social networks.
Similar to Wt , we define W̄

ts
and W̄

st
to be the column-normalized adjacency matrices from

Gt to Gs and from Gs to Gt respectively. With W̄
ts
and W̄

st
, we can define the updating

equations of inter-network random walks from Gt to Gs and that from Gs back to Gt to be
(
ps

)(τ+1) = W̄
ts (

pt
)(τ )

,
(
pt

)(τ+1) = W̄
st (

ps
)(τ+1)

.

Vector pt obtained at convergence denotes the “formation confidence” scores of social links
between the starting user and other users within the target network Gt , while vector ps

obtained at convergence denotes the “formation confidence” scores of anchor links between
the starting user andother users in the source networkGs . Intra-network randomwalk together
with inter-network randomwalk are defined as collective randomwalk in this paper formally.

Different from strict co-existence transfer, the inter-network random walk across aligned
probabilistic networks relaxes the requirements of anchor links and is named as the loose
co-existence transfer in this paper.

3.6 Collective link fusion

Furthermore, as illustrated in Fig. 4, newly predicted information of both anchor and social
links can propagate within Gt and Gs as well as propagating across Gt and Gs . This process
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of fusing predicted information of anchor and social links across partially aligned networks
is formally defined as the collective link fusion (CLF) in this paper. By integrating the intra-
network random walks in Gt and Gs as well as the inter-network random walks from Gt

to Gs and from Gs and Gt (i.e., the collective random walk), we can obtain the updating
equations of CLF across the aligned probabilistic networks:

{
( ps)(τ+1) = αsW̄

s
( ps)(τ) + (1 − αs)W̄

ts (
pt

)(τ )
,

(
pt

)(τ+1) = αt W̄
t (

pt
)(τ ) + (1 − αt )W̄

st
( ps)(τ) ,

whereαt andαs denote theweights of informationwithinGt andGs , respectively, in updating
the vectors. Careful choice of αt and αs can control the usage of information from other
networks to avoid negative transfer problem effectively [23].

If the walkers are allowed to return to the starting point, then the integrated updating
equation will be

p(τ+1) = (1 − c)W p(τ ) + cq,

where W =
[

αt W̄
t

(1 − αt )W̄
st

(1 − αs)W̄
ts

αsW̄
s

]
constant c denotes the probability of returning

to the starting point, vector p(τ ) =
[((

pt
)(τ )

)T
,
(
( ps)(τ)

)T]T
stores the probabilities of

walking from the starting user to users in both Gt and Gs and vector q ∈ {0, 1}|Ut |+|Us |
is filled with 0 except the cell corresponding to the starting user, which is set as 1. Keep
updating p until convergence, we can get

p = c [I − (1 − c)W ]−1 q,

where matrix I ∈ {0, 1}(|Ut |+|Us |)2 is an identity matrix. Entries in vector p at convergence
store the “formation confidence” scores of potential anchor and social links connecting the
starting user with other users in Gs and Gt , respectively.

MLP together with C-RWRwill form the CLF framework, whose pseudo code is given in
Algorithm 3. As shown in Algorithm 3, in CLF framework, we conduct PU link prediction
of anchor links and social links at first, whose results are passed to C-RWR. In C-RWR, we
construct the aligned probabilistic networks and use random walk to propagate information
across probabilistic networks. Vector p at convergence contains the “formation confidence
scores” of potential anchor and social links connecting the starting user and other users.
These scores will be used as the prediction scores of these links returned to C-RWR (i.e., the
formation confidence returned in Algorithm 2) as well as the final output of CLF framework.

PU link prediction and RWR (random walk with restart) technique comprise the CLF
method. The PU learning for one bit matrix completion needs O(n2) time [10] and the time
complexity of second part RWR in calculating inverse and pseudoinverse is approximately
O(n3) [21], where n is the total number of nodes in the target network and source network.

4 Experiments

4.1 Data description

Datasets used in this paper include Foursquare, a famous location-based online social net-
works, and Twitter, the hottest microblogging social network. The anchor link between
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Table 2 Properties of the
aligned social networks

Property Network

Twitter Foursquare

# Node

User 5223 5392

Tweet/tip 9,490,707 48,756

Location 297,182 38,921

# Link

Friend/follow 164,920 76,972

Write 9,490,707 48,756

Locate 615,515 48,756

Foursquare and Twitter is obtained by crawling users’ Twitter accounts from their Foursquare
homepages, whose number is 3388. A more detailed comparison of these two datasets is
available in Table 2 [39]:

• Foursquare 5392 users, 48,756 tips and 38,921 locations are crawled from Foursquare.
These users generated 76,972 social links which means each user has about 14 friends
in Foursquare on average.

• Twitter 5223 users who generated 9,490,707 tweets are crawled from Twitter. Among all
these users, there exist 164,920 follow links.

In the experiment, social links in Foursquare and anchor links betweenFoursquare andTwitter
are used as the ground truth to evaluate the performance of CLF and other baseline methods.

4.2 Experiment setting

4.2.1 Comparison methods

We compare CLF with many different baseline methods in predicting both social links and
anchor links, in which SVM of linear kernel with optimal parameters is used as the base
classifier. The comparison methods used in the experiment include:

• Collective Link FusionCLF proposed in this paper includemultiple phases: (1) collective
multi-network link prediction; (2) collective link fusion across partially aligned proba-
bilistic networks. CLF can utilize the extended definition of social features for anchor
links in the PU anchor link prediction task, transfer information from the source network
for social links formed by both “anchor users” and “non-anchor users” in PU social link
prediction in the target network and can fuse the prediction results of both anchor and
social links with cross-network random walk.

• Multi-Network Link Prediction MLP extends the state-of-art PU link prediction method
proposed in [39] to infer the existence probabilities of both anchor and social links
independently with positive and unlabeled links.

• Collective Random Walk C-RWR is the second step of CLF and can propagate infor-
mation of both anchor and social links across networks. When C-RWR is used as a
baseline method, only the existing anchor and social links are used in constructing the
adjacency matrices. C-RWR can transfer information for “non-anchor users” with loose
co-existence transfer and can fuse the results of both anchor and social link prediction
across partially aligned networks.
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• Random Walk with Restart RWR (Random Walk with Restart) [26] can calculate the
“similarity” between any pairs of users within one network.

4.2.2 Evaluation methods

Considering that CLF,MLP, C-RWR and RWR can only output scores of both anchor links
and social links, we will use AUC and Precision@30 to evaluate their performance.

4.2.3 Experiment setups

Weuse all existing social links inGt as the sets of positive social links in the experiment. Then,
we randomly sampled a set of non-existent social links as the negative social link set from
Gt , which is of the same size as the set of positive social link. These links are partitioned into
3 parts with fivefold cross-validation: threefold as the training set, onefold as the validation
set and the remaining onefold as the test set. We randomly sampled a portion of links with
percentage γs (γs varies from 0.1 to 0.9) from the positive social links in the threefold as the
final positive training set. The remaining (1 − γs) positive social links are mixed with the
negative training links. Classifiers built with the γs sampled positive and mixed social links
(negative links and the remaining (1− γs) positive social links) are applied to classify social
links in the validation set and test set. Existence probabilities obtained on the positive social
links in the validation set are used to approximate the bridging probability, p(z = 1|y = 1),
which will be used to get the final formation probabilities of social links in both the validation
set and the test set. In a similar way, we can get the formation probabilities of anchor links
in the validation set and test set. The parameter used to control the percentage of positive
anchor links used to train models is γa (γa varies from 0.1 to 0.9). When predicting social
links, we set γa as 0.5 and vary γs from 0.1 to 0.9; meanwhile, when predicting anchor links,
we set γs as 0.5, but vary γa from 0.1 to 0.9

Based on the multi-network link prediction result, we further propagate the predicted
information across networks. The probabilities of propagating within Gt and Gs instead of
crossing the networks are αt , αs ∈ [0, 1.0]. The probability of returning to the starting point
is c ∈ [0, 1.0]. In the experiment, we setαt andαs as 0.6 and c is set as 0.1, whose sensitivities
will be analyzed in the following parts.

4.3 Experiment result

In Fig. 5, we show the ROC curve of the anchor and social link prediction results. In Fig. 5a,
we set γs = 0.5 and γa = 0.9 and in Fig. 5b, we set γa = 0.5 and γs = 0.9. We can find that
the area under the ROC curve of CLF is the largest among all the baseline methods.

Figure 6a, b show the precision of top {200, 400, 600, . . . , 2000} predictions of anchor and
top {500, 1000, 1500, . . . , 5000} predictions of social link respectively. Figures illustrate that
the increase in prediction number leads to the decrease of precision for all methods. However,
CLF can outperform others when evaluating by precision of all top predictions. Moreover,
the decline of CLF is the smallest. For example, when predicting anchor links, the precision
of CLF drops down from 0.88 at top 200 to 0.79 at top 2000, which the decrease is 10.23%.
While this number of MLP is 22.54% and C-RWR’s is 29.43%. It demonstrates that CLF
method has a good and consistent performance. The result of social link prediction leads to
the similar conclusion with the anchor link prediction.

In Fig. 7, we show the experiment results (mean ± std) of both anchor links and social
links of different method under the evaluation of AUC and Precision@30 over all links
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(a) (b)

Fig. 5 ROC curve of link prediction results. a ROC of anchor link, b ROC of social link

(a) (b)

Fig. 6 Precision of link prediction results. a Precision of anchor link, b precision of social link

of all users, where γa(γs) changes from 0.1 to 0.9. The performance of most methods will
increase as γa(γs) increases in Fig. 7. When γa(γs) is small, all the baseline methods cannot
work well, but CLF can still achieve good performance. Figure 7a, b shows the result of
anchor link prediction, in which γs = 0.5 and γa changes from 0.1 to 0.9, and Fig. 7c, d
shows the social link prediction result, where γa = 0.5 and γs change from 0.1 to 0.9.

In Fig. 7a, we show the performance evaluated by AUC. The AUC of CLF is over 40%
better thanMLP and over 50% better than C-RWR consistently in the whole changing range
of γa . It demonstrates that the combination of MLP and C-RWR can lead to better results.
In Fig. 7b, the performance of CLF is also better than both MLP and C-RWR under the
evaluation of Precision@30. In Fig. 7c, we show the social link prediction result under
the evaluation of AUC. CLF can perform well in predicting social links and outperform all
other baseline methods with a big advantage. Method C-RWR, which propagate information
of existing links across networks, can perform better than RWR, which shows that loose
co-existence transfer for “non-anchor users” can indeed improve the result. However, CLF
using the probabilistic network will further enhance the performance over C-RWR. This
shows the importance of the first step on using the multi-network link prediction to build
the probabilistic network. Similar to the result in Fig. 7b, d, CLF can beat all the baseline
methods and perform very well when γs is small. CLF can outperform C-RWR shows that
the multi-network link prediction step is essential and can work very well, while CLF can
outperformMLP demonstrates that the collective link fusion step can improve the prediction
results of both anchor and social links.
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(a) (b)

(c) (d)

Fig. 7 Anchor and social link prediction results. a AUC of anchor link, b prec.@30 of anchor link, c AUC
of social link, d prec.@30 of social link

(a) (b)

(c) (d)

Fig. 8 Analysis of parameters αt and αs . a AUC of anchor link, b AUC of social link, c AUC of anchor link,
d AUC of social link
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(a) (b)

Fig. 9 Analysis of parameter c. a AUC of anchor link, b AUC of social link

In sum, CLF can outperform all the baseline methods under the evaluation of both AUC
and Precision@30 within the changing range of γa and γs in predicting both anchor and
social links.

4.4 Parameter analysis

CLF has three parameters in all, which are c, αt , αs . To analyze the effects of parameters in
the experiment, we assign αt , αs with values in [0.1, 0.9], and assign parameter c with values
in {0.06, 0.08, 0.10, 0.12, 0.14} to compare the performance of CLF and C-RWR under the
evaluation of AUC. The results are available in Figs. 8 and 9, where Fig. 8a, d show the
effects of parameter αt and αs and Fig. 9a, b show the effects of parameter c.

In Fig. 8a, b, we only change αt with values in [0.1, 0.9] and fix all other parameters. Both
CLF and C-RWR can perform very stable within the changing range of αt but CLF in Fig. 8b
has an visible increasing trend when αt ∈ [0.1, 0.6] and stay stable when αt ∈ [0.6, 0.8] and
drops at 0.9. Fig. 8c, d show the effects of αs . The performance of CLF and C-RWR is more
stable compared with that in Fig. 8a, b, which shows that αt has a much more significant
effects than αs .

In Fig. 9a, b, we show the effects of parameter c in the experiment where αt and αs are
both set as 0.6. Performance of both CLF and C-RWR will vary as c changes, and they can
achieve the best performance around c = 0.1.

4.5 Case study

We show a case study to demonstrate that the two-phase method CLF can work well in
predicting both anchor and social links. As illustrated in Fig. 10, we have five real-world
users who own both Foursquare and Twitter accounts. Originally, the social connections
among users in Foursquare are identical to those in Twitter. As shown in Fig. 10a, to test the
effectiveness of CLF in predicting anchor and social links, all the social links in Foursquare
except the social link between “Nathan Levinson” and “Michelle Jacobson” and all the
anchor links between Foursquare and Twitter except those between “Nathan Levinson” and
“Nathan Levinson”, “Andrew Nystrom” and “Andrew Nystrom” are deleted. Many social
and anchor links in Fig. 10a are to be predicted. Figure 10b shows the prediction result
of PU link prediction method, MLP. We can find that precision@3 scores achieved by
MLP in predicting both anchor links and social links are 33.3%, as only the anchor link
between “Michelle Jacobson” and “Michelle Jacobson” and the social link between “Nathan
Levinson” and “Andrew Nystrom” are correctly predicted among the top-3 link prediction
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Michelle Jacobson

Nathan Levinson

Andrew Nystrom

Liza Sperling

Tristan Walker

Michelle Jacobson

Nathan Levinson

Andrew Nystrom

Liza Sperling

Tristan Walker
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Liza Sperling
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0.473
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0.668
0.597

0.331
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0.678

0.238
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0.0735

0.0488
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0.0531

0.0501
0.0622

0.0283

0.0199
0.0138

0.06977

0.0474

0.0165

(a) (b)

(c)

Fig. 10 Case study. a The input network, b the result of MLP, c the result of CLF

results. Based on the results in Fig. 10b, we further propagate predicted information across
networks, which is the second step of CLF. The results are shown in Fig. 10c, in which
the scores of both anchor links and social links have been updated. In the updated results,
precision@3 scores of CLF in predicting anchor links and social links are both 100%,
respectively, and links exists in the real world can get the highest scores among all the links
to be predicted.

5 Related works

PU learning has been studied for several years and dozens of papers on this topic have been
published. Liu et al. [19] proposed different settings to find the reliable negative instances in
text classification. Zhao et al. proposed to classify graphs with only positive and unlabeled
examples in [40]. Zhang et al. were the first to propose the concept of PU link prediction in
[39] and studied the PU social link prediction in multiple networks simultaneously. However,
[39] does not address the collective prediction of anchor links and social links together, which
we have studied in this paper. A new PU link prediction method is introduced in this paper,
which is totally different from the spy technique used in [39].

Link prediction first proposed by Liben-Nowell et al. [18] has been a hot research topic in
recent years. Predicting the labels of links with supervised models is formulated as a super-
vised link prediction problem [8]. Meanwhile, Xiang et al. [29] developed an unsupervised
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model to estimate relationship strength. In heterogeneous social networks, multiple types
of links can be predicted simultaneously. Namata proposed a collective graph identification
problem in [22]. Some works label links as positive and negative links according to their
physical meanings, e.g., friendship vs. antagonism [17], trust vs. distrust [25], and propose
to predict these links in online social networks. Hwang et al. [11] proposed a heterogeneous
label propagation algorithm for disease gene discovery. Xi et al. proposed a unified link
analysis framework for multi-type interrelated data objects in [28]. Extensive surveys of link
prediction problems are available in [7,9,16].

Entity identification across networks(communities) gets lots of attention in recent years.
Sahraeian et al. [24] introduces a scalable algorithm to align proteins across large-scale PPI
network. Zafarani et al. [32] proposed to connect corresponding identities across communi-
ties. Iofciu et al. [12] proposed to identify common users across social tagging systems. Liu
et al. [20] proposed an unsupervised to link users across communities. Kong et al. [14] notice
that users are involved in multiple social networks nowadays and propose to infer the links
between accounts of the anchor users. Zhang et al. [34,35] proposed transfer links across
networks to predict links for new users and new networks respectively. Furthermore, links
in multiple partially aligned social networks can be strongly correlated and Zhang et al. [39]
introduced an integrated PU link prediction framework to predict social links in multiple
social networks concurrently.

The work in this paper has made a great progress when comparing with our prior works.
Multiple aligned heterogeneous networks, first studied by Kong et al. [14], have become a
hot research topic in recent years. Kong et al. [14,36] were the first to propose the concepts
of “anchor link”, “aligned heterogeneous networks” and studied the link prediction problem
across aligned networks. But in [14], two networks are fully aligned. Zhang et al. [34,35,39]
were the first to study link prediction problem for new users, using information transferred
from other aligned source networks via anchor links. These works extended the problem
setting from fully aligned networks to partially aligned networks, which were much closer
to the real situation. Zhang et al. [35] can predict both social links and location links, while
Zhang et al. [39] canpredict the formationof social links inmultiple partially alignednetworks
simultaneously. However, unlike this paper, links to be predicted in prior works are limited
in social links and other heterogeneous links, none of them can predict anchor links across
networks.

Besides link prediction, other topic and applications on multiple social networks also
attract researchers interest. Zhang and Jin et al. [13,37,38] also proposed to study the com-
munity detection problems across aligned networks, where information from all these aligned
networks can be transferred to prune and refine the community structures of each network
mutually. In addition, Zhan et al. introduced the cross-aligned-network information diffusion
problem in [33], where multiple diffusion channels were extracted based on various types of
intra and inter-network meta paths.

6 Conclusion

In this paper,we study the collective link identification problemmerelywith formed links (i.e.,
positive links) in the networks. By using unconnected links in networks as the unlabeled links,
we propose a two-phase method, CLF, to infer the anchor and social links simultaneously.
Extensive experiments conducted on two real-world partially aligned networks, Foursquare
and Twitter, demonstrate that CLF can address the challenges of collective link identification
very well and achieve good results in predicting both anchor and social links.
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Appendix

Social features of anchor links have been introduced in previous part, in this part, we will
introduce the social features of social links and spatial distribution features, temporal dis-
tribution features and text usage features of both anchor links and social links.

6.1. Social features

See Table 3.

Table 3 Social features defined
for social link (u, v)

Features Descriptions

Degree count din(u), din(v), dout(u), dout(v)

Degree ratio din(u)/din(v), dout(u)/dout(v)

Common neighbor |�(u) ∩ �(v)|
Jaccard’s coefficient |�(u)∩�(v)|

|�(u)∪�(v)|
Preferential attachment |�(u)| · |�(v)|
Adamic/Adar

∑
∀w∈(�(u)∩�(v))

1
log|�(w)|

�(u) is the set of neighbors of user u.
In addition to social information, we also extract features from users’ location check-ins.

For a certain anchor/social link (u, v), we can get the locations that u and v have been to
�(u) and �(v), respectively. Since each user can visit a location many times, we construct
vector l(u) and l(v) for u and v, respectively, each cell in which record the times that u and
v visit a certain location in �(u) ∪ �(v).

6.2. Spatial distribution features

See Table 4.

Table 4 Spatial distribution
features for link (u, v)

Features Descriptions

Location count (LC) |�(u)| , |�(v)|
Extended CN (ECN) |�(u) ∩ �(v)|
Extended JC (EJC) |�(u)|∩�(v)

|�(u)∪�(v)|
Extended AA (EAA) |�(u)| · |�(v)|
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Similarly, we can get the set of locations that u has visited from the networks, �(u). For
a certain anchor/social link (u, v), we can extract the spatial distribution features for it with
those summarized in Table 3 except the “Adamic/Adar” measure based on �(u) and �(u).

6.3. Temporal distribution features

See Table 5.

Table 5 Other frequently
features for link (u, v)

Features Descriptions

Inner product (IP) x(u) · x(v)

Euclidean distance (ED) (
∑

k (x(u)k − x(v)k )
2)1/2

Cosine similarity (CS) x(u)·x(v)
‖x(u)‖·‖x(v)‖

Users’ temporal activity information is also used to extract features for link (u, v). Each
day is divided into 24 h slots, and the number of online posts published at certain hours is
stored in vector x(u) and x(v), from which we can extract I P(x(u), x(v)), ED(x(u), x(v))

andCS(x(u), x(v)) summarized in Table 5 as the temporal distribution features of link (u, v).

6.4. Text usage features

For a certain link (u, v), we can get the words that u and v have used in the past and group
them as two bag-of-words vectors, x(u) and x(v), weighted by TF-IDF. From x(u) and x(v),
we also extract I P(x(u), x(v)), ED(x(u), x(v)) and CS(x(u), x(v)) summarized in Table 5
as the text usage features of link (u, v).
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