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ABSTRACT
Cross-modal retrieval, which takes text queries to retrieve rel-
evant images or vice versa, has drawn much attention in recent
years. This topic exhibits dual-heterogeneity: heterogeneity
of different modalities and heterogeneous features obtained
from multiple views. To address this issue, we propose an
effective multi-view fusion method for cross-modal retrieval
based on tensor modeling (CMTM) for cross-modal retrieval
from the full-order feature interactions within the multimodal
data. In order to facilitate integration of heterogeneous fea-
tures from multiple views, we adopt the tensor structure to
model the full-order interactions among the multi-view fea-
tures effectively. Besides, a tensor factorization is applied to
derive model parameters. Extensive experiments demonstrate
the effectiveness of CMTM on cross-modal retrieval.

Index Terms— Cross modal retrieval, tensor modeling,
multi-view learning

1. INTRODUCTION

In a typical cross-modal retrieval task, each type of data is
treated as a single view, by using either deep model or shal-
low model. However, as multimedia data are often charac-
terized by multiple types of descriptors, each of which de-
scribes certain aspects of object features. For example, hand-
crafted features and deep-learnt features characterize the dif-
ferent aspects of image data [1, 2, 3]. Similarly, explicit and
latent features play different roles for text data characteriza-
tion. Simply concatenating the multi-view features may result
in that dense view dominate the feature space and potentially
override the effect of sparse view. In this paper, we focus on
the multi-view cross-modal retrieval problem, which benefits
from fusing multiple views, and provide a more comprehen-
sive information for understanding information entities.

The key challenge to this research is how to best reduce
the heterogeneity among the different views. Since data are
usually available in multiple views from a variety of feature
subsets, each view has different statistical properties—for
exmaple, the topic model vector of text is inherently dense,

while representation of TF-IDF is naturally sparse. This
makes it not applicable to apply algorithms designed for
single-view data. Thus it is important to model the interac-
tions/correlations between different views, wherein comple-
mentary information is contained.

Currently, many cross-modal methods have been pro-
posed. Hashing methods can compress high-dimensional
data into compact binary codes with similar binary codes for
similar objects [4, 5]. Subspace learning is to find a com-
mon latent space in which the different modal features can be
matched to each other [6, 7]. As different views can provide
complementary information, methods based on multi-view
learning have been proposed successively [8, 9]. But these
approaches fail to fully explore the interactions between fea-
tures across multiple views. In addition, label of paired data
such as class and tag, which is related to each other through
shared multimodal features, can be very helpful. Thus, a
unified method which considers both information across dif-
ferent modalities and views needs to be investigated.

In order to overcome the issues mentioned above, we pro-
pose a novel cross-modal retrieval method based on tensor
modeling, called CMTM, which considers the abundant inter-
actions between features from different modalities and views.
CMTM incorporates complementary features to characterize
data and to take advantage of the shared information across
different modalities. Specifically, we model the full-order in-
teractions (dyadic, triadic, tetradic, and higher) among multi-
ple labels and multiple views as a tensor structure, by taking
the outer product of their respective feature spaces. A factor-
ization is applied to prevent overfitting and deal with sparse
data effectively. Then, we apply the alternating block coordi-
nate descent method to optimize the objective function. We
evaluate the performance of CMTM on four datasets.

2. PROPOSED METHOD

Assuming the problem is associated with training data D =
{((xI1,xT1), y1), · · · , ((xIN ,xTN ), yN )}, a collection of
images and corresponding text, where yi is the label and N
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is the number of samples. Each image xIi has representa-
tions in V1 different views xIi = (xI

(1)
i , · · · ,xI

(V1)
i ), where

xI
(v1)
i ∈ Rdv1 is the image feature vector for the v1-th view,

and dv1 is the dimensionality of the v1-th view. Similarly,
each text xTi is represented as xTi = (xT

(1)
i , · · · ,xT

(V2)
i ),

where xT
(v2)
i ∈ Rdv2 is the image feature vector for the

v2-th view with dimensionality dv2 . The cross-modal re-
trieval problem aims at building a function f : XI → XT
(similar for f : XT → XI ) using the image-text pairs
{(xIi,xTi)} ∈ XI × XT as well as leveraging the com-
plementary among different views.

To solve the cross-modal retrieval problem, it is straight-
forward to concatenate features from different views. How-
ever, transforming the multi-view data into a single-view
data would fail to leverage the correlations between different
views, which can provide complementary information. Al-
though some kernel-based methods can utilize the high order
interactions, they fail to explore the explicit correlations be-
tween features across multiple views. In the following, we
introduce a framework for cross-modal retrieval, which in-
trinsically models the interactions in multimodal data among
multiple views and different labels as a tensor structure.

2.1. Proposed Method

The data from each modal are available in multiple views
from a variety of sources or feature subsets. Thus, we
consider the instances from each modal are multi-view
data. That is, xI = (x

(1)
I , · · · ,x(V1)

I ) = {x(v1)
I }, xT =

(x
(1)
T , · · · ,x(V2)

T ) = {x(v2)
T }, where V1 is the number of

image views and V2 is the number of text views.
Without losing generality, for a single view input vector x

from label p, the linear model is given by fp(x) = xTwp =
〈wp,x〉, where wp is the label specific weight vector. We can
extend this linear model to the fusion problem of multi-view
data {x(v)}Vv=1. Here, we consider fusing all interactions up
to the full-order between V views.

Let x(v) ∈ Rdv denote the the input multi-view data,
where dv is the dimensionality of the v-th view and V is
the number of view. Similarly, denote fp({x(v)}Vv=1) =
〈W,Zp〉, where Zp = z(1) ◦ z(2) ◦ · · · ◦ z(V ) ◦ ep is the
full-order tensor. The multi-view data fusion function can be
represented as

fp({x(v)}Vv=1) =

P∑
s=1

d1∑
i1=0

· · ·
dV∑
iV =0

wi1,··· ,iV ,s(ep,sΠ
V
v=1z

(v)
iv

) (1)

where z(v) = [1; x(v)], ep = [0, · · · , 0, 1, 0, · · · , 0]T ∈ RP
(where P denotes the number of label) with only the p-th el-
ement is 1 to indicate the label, andW = {wi1,··· ,iV ,s} is the
weight tensor to be learned. It is worth noting that wi1,··· ,iV ,s
with some indexes satisfying iv = 0 encodes lower-order in-
teractions among views whose indexes satisfy iv > 0.

However, the dimensionality of parameter tensor W is
normally very high, which needs to be reduced for the sake
of less computational cost and avoiding overfitting. Hence,
based on the CP factorization [10], the W can be factorized
into R factors: W = JΘ(1), · · · ,Θ(V ),ΦK, where the factor
matrix Θ(v) ∈ R(dv+1)×R is the shared structure matrix for
the v-th view and the p-th row φp of Φ is the specific weight
vector for the data from label p. Based on the above factor-
ization representation, we rewrite the multi-view data fusion
function as

fp({x(v)}Vv=1)

=

P∑
s=1

d1∑
i1=0

· · ·
dV∑
iV =0

(

R∑
r=1

φs,rΠ
V
v=1θ

(v)
iv,r

)(ep,sΠ
V
v=1z

(v)
iv

)

=

R∑
r=1

〈θ(1)r ◦ · · · ◦ θ(V )
r ◦ φ:,r, z

(1) ◦ · · · ◦ z(V ) ◦ ep〉

(2)

Since ep,s = 1 only when p = s, we have

fp({x(v)}Vv=1) = φpΠ
V
v=1 ∗ (z(v)TΘ(v))T (3)

where ∗ is the Hadamard product. It should be noted that the
first row of Θ(v) is always associated with z(0)0 = 1 and rep-
resents the bias factors of the v-th view. Through the bias
factors, the lower-order interactions are explored in the pre-
dictive function.

Considering that multi-view features have their own dis-
tinctive contributions, we add term xTup into the predictive
function in Eq. (3), where x is the concatenated feature vector
from multiple views and up is the label-specific weight:

fp({x(v)}Vv=1) = xTup + φpΠ
V
v=1 ∗ (z(v)TΘ(v))T (4)

2.2. Multi-view Cross-Modal Retrieval

Above as we have discussed the linear model for a sin-
gle modal with multi-view data, then we will extend it to
cross-modal retrieval learning model based on Eq. (4). The
objective function for a given multi-view image-text pair
({I(v1)p }, {T(v2)

p }) from label p is shown by

Fp({I(v1)p }, {T(v2)
p }) = αpfp({x(v1)

p,I }) + (1− αp)fp({x(v2)
p,T }) (5)

where αp is the inter-modal label-specific weight that used to
trade off the influence between two modals.

Let πp,I = ΠV1
v1=1 ∗ (αpz

(v1)T
p,I Θ

(v1)
I )T and πp,T =

ΠV2
v2=1 ∗ ((1 − αp)z

(v2)T
p,T Θ

(v2)
T )T for convenience. Then,

according to Eq. (5), we get the final predictive function for
cross-modal retrieval as follows:

Fp({I(v1)p }, {T(v2)
p }) = xTp up + φpπp (6)

where xp = [αpxp,I ; (1−αp)xp,T ], up = [up,I ; up,T ], φp =
[φp,I ,φp,T ] and πp = [πp,I ;πp,T ].
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We name this model as Cross-Modal using Tensor
Modeling (CMTM). Clearly, the parameters of the inter-
actions among different labels and multiple views are jointly
factorized. Since the dependencies exist when the interac-
tions share the same labels or features, the joint factorization
benefits parameter estimation under sparsity. Therefore, the
model parameters can be effectively learned without direct
observations of such interactions especially in highly sparse
data. Further, there is no need to construct the input tensor
physically since the weight tensorW is factorized. Moreover,
the model complexity isO(R(V1+V2+dU+P )+

∑P
p=1N

f
p ),

where Nf
p = N I

p + NT
p , and N I

p and NT
p are the number of

image features and text features in the p-th label respectively.
It is linear in the number of parameters, which can help save
memory and also speed up the learning procedure.

Then, we can write the optimization model as follows:

minR =

P∑
p=1

Lp(Fp({I(v1)p }, {T(v2)
p }),yp)

+ λΩλ(Φ, {Θ(v1)
I }, {Θ(v2)

T }) + γΩγ(U)

(7)

where Lp is the prescribed loss function, {Θ(v)
I }, {Θ

(v)
T },

U, Φ can be obtained by solving the problem, λ and γ are
parameters to be tuned. The regularization terms Ωλ and Ωγ
can be Forbenius norm, `2.1 norm, or others.

2.3. Optimization Procedure

The optimization problem stated in Eq. (7) is hard to be di-
rectly solved due to its non-convexity with all the parameters.
Therefore, we apply the alternating block coordinate descent
approach [11] to solve our model.

STEP 1: With the U, Φ, α, and Θ
(v2)
T fixed, the mini-

mization over Θ
(v1)
I is given by

∂R
∂Θ

(v1)
I

=

P∑
p=1

∂Lp
∂Fp

∂Fp

∂Θ
(v1)
I

+ λ
∂Ωλ(Θ

(v1)
I )

∂Θ
(v1)
I

(8)

where ∂Lp

∂Fp
= 1

Np
[
∂`p,1
Fp,1

, · · · , ∂`p,Np

Fp,Np
]T ∈ RNp .

Let π(−v1)
I = ΠV1

v′1=1,v′1 6=v1
∗ (z

(v′1)T
I Θ

(v′1)
I )T ∈ RR.

Then, we have Π
(−v1)
p,I = [π

(−v1)
I,1 , · · · ,π(−v1)

I,Np
]T . Therefore,

∂Lp
∂Fp

∂Fp

∂Θ
(v1)
I

= αpZ
(v1)
p,I ((

∂Lp
∂Fp

φp,I) ∗Π
(−v1)
p,I ) (9)

Similarly, with the U, Φ,α, and Θ
(v1)
I fixed, we can min-

imize Θ
(v2)
T through

∂Lp
∂Fp

∂Fp

∂Θ
(v2)
T

= (1− αp)Z(v2)
p,T ((

∂Lp
∂Fp

φp,T ) ∗Π
(−v2)
p,T ) (10)

where Π
(−v2)
p,T = [π

(−v2)
T,1 , · · · ,π(−v2)

T,Np
]T .

Table 1. Mean Average Precision (MAP) and Precision@100
(P@100) for task I → T on four datasets

Method Wiki NUS-WIDE MIRFlickr Pascal VOC
MAP P@100 MAP P@100 MAP P@100 MAP P@100

JRL
SMFH
CMFH
LSSH
SCM orth
SCM seq
SePH
DCMH
CMTM

0.3387
0.2653
0.2208
0.1497
0.1331
0.2459
0.2891
0.3064
0.2927

0.2558
0.2168
0.2492
0.2078
0.1349
0.2276
0.2633
0.2875
0.3184

0.5499
0.5996
0.4491
0.4129
0.6903
0.7107
0.5687
0.6824
0.7093

0.5018
0.4673
0.4764
0.4358
0.6010
0.6834
0.5398
0.7012
0.7448

0.5842
0.6123
0.5643
0.5610
0.5789
0.6234
0.6783
0.6768
0.6921

0.6041
0.6113
0.6257
0.6324
0.6583
0.6045
0.7071
0.7513
0.7727

0.2270
0.3063
0.3135
0.4477
0.4040
0.4868
0.4780
0.4896
0.5194

0.2886
0.3033
0.3287
0.4225
0.4058
0.4517
0.4277
0.4813
0.5072

Table 2. Mean Average Precision (MAP) and Precision@100
(P@100) for task T → I on four datasets

Method Wiki NUS-WIDE MIRFlickr Pascal VOC
MAP P@100 MAP P@100 MAP P@100 MAP P@100

JRL
SMFH
CMFH
LSSH
SCM orth
SCM seq
SePH
DCMH
CMTM

0.2499
0.6136
0.5484
0.2719
0.1393
0.2410
0.6421
0.6424
0.6587

0.2536
0.5172
0.5213
0.2360
0.1272
0.2045
0.5871
0.6082
0.6215

0.5132
0.5574
0.4726
0.5231
0.6888
0.7406
0.6873
0.7234
0.7611

0.5210
0.4958
0.3787
0.5342
0.5263
0.6872
0.6342
0.7519
0.7767

0.6074
0.6213
0.5724
0.5791
0.5816
0.6345
0.7271
0.7433
0.7567

0.5708
0.5856
0.5409
0.5543
0.5622
0.6134
0.6583
0.7284
0.7553

0.2464
0.3086
0.3156
0.4962
0.4526
0.5455
0.5826
0.6019
0.6074

0.1942
0.3012
0.2953
0.4721
0.4866
0.5280
0.5439
0.5316
0.5464

STEP 2: With all the U, α, Θ
(v1)
I , and Θ

(v2)
T fixed, we

have

∂R
∂Φ

= [(
∂L1

∂F1
)TΠ1; · · · ; (

∂LP
∂FP

)TΠP ] + λ
∂Ωλ(Φ)

∂Φ
(11)

where Πp = [πp,1, · · · ,πp,Np ]T , ∀p ∈ [1 : P ].
STEP 3: With all the Φ, α, Θ

(v1)
I , and Θ

(v2)
T fixed, the

partial derivative ofR w.r.t. U is given by

∂R
∂U

= [X1
∂L1

∂F1
, · · · ,XP

∂LP
∂FP

] + γ
∂Ωγ(U)

∂U
(12)

where Xp = [Xp,I ;Xp,T ] is the concatenated feature.
STEP 4: When we obtain the U, Φ, Θ

(v1)
I , and Θ

(v2)
T ,

the partial derivative ofR w.r.t. α is given by

∂R
∂α

= [(
∂L1

∂F1
)T∆1, · · · , (

∂LP
∂FP

)T∆P )] (13)

where ∆p = Fp,I − Fp,T , ∀p ∈ [1 : P ] and ∆p ∈ RNp .

3. EXPERIMENTS

We conduct extensive experiments to evaluate the efficacy of
the proposed model with several state-of-the-art cross-modal
retrieval methods on four widely-used benchmark datasets.

Wiki dataset is collected from Wikipedia consisting of
2,866 multimedia documents. Totally 10 categories are con-
sidered in this dataset and each image-text pair is labeled by
one of them. Documents are considered to be similar if they
belong to the same category. NUS-WIDE dataset [12] con-
tains 81 concepts, which can be regarded as labels. Each
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Fig. 1. Precision-recall curves of cross-modal retrieval on
Wiki and NUS-WIDE.

image-text pair is annotated by at least one concept. Pairs
are considered to be similar if they share at least one con-
cept. We select 1000 most frequently used tags from 5,018
unique tags in this dataset. MIRFlickr [13] originally con-
tains 25,000 instances collected from Flickr, each being an
image with its associated textual tags. Each instance is man-
ually annotated with some of 24 provided unique labels. For
each instance, the image view is represented with a 150-D
edge histogram and the text view as a 500-D feature vector
derived from PCA on its binary tagging vector. Pascal VOC
[14] consists of 5011/4952 (training/ testing) image-tag pairs,
which are categorized into 20 different classes. Since some
images are multi-labeled, researchers usually select images
with only one object as the way in [15], resulting in 1865
training and 1905 testing data. The image features include
histograms of bag-of-visual-words, GIST and color. The text
features are 399-D tag features.

Evaluation Protocols: For Wiki dataset, each image is
represented by a 128-D SIFT histogram and a 1000-D CNN
feature generated by Alexnet [16], which is pretrained on Im-
ageNet. Each text is represented by a 500-D bag-of-words
feature and a 10-D topics vector generated by Latent Dirich-
let Allocation (LDA) model [17]. For other datasets, each
image is also represented by both shallow and deep feature.

For our method, the dimension of latent factors R = 20,
the maximum number of iteration is set as 200. Grid
search is applied to select optimal values for each regular-
ization hyperparameter from λ ∈ {10−3, 10−2, 10−1} and
γ ∈ {10−3, 10−2, · · · , 104}. For the dataset we compose
training set, validation set and testing set for each label.
Since these four datasets have been divided into training set
and testing set, we randomly select 20% of samples from
testing set for each task as validation set. Validation sets are
used for hyperparameter tuning for our method, and each of

the validation and testing sets does not overlap with any other
set so as to ensure the sanity of our experiments.

Compared Methods: We compare the performance of
our approach CMTM with seven state-of-the-art cross-modal
methods, including two subspace learning methods JRL [18]
and SMFH [7], and five hashing methods CMFH [19], LSSH
[5], SCM [20], SePH [21] and DCMH [22] .

Follow [20, 23], we evaluate the retrieval performance
based on three metrics: Mean Average Precision (MAP),
Precision@100 (P@100) and precision-recall curves of two
cross-modal retrieval tasks: image query on text database (I
→ T) and text query on image database (T → I). The code
length is 32 bits for hashing based methods.

Quantitative Results: Table 1 and Table 2 show the MAP
and P@100 results of all the comparison method on Wiki,
NUS-WIDE, MIRFlickr and Pascal VOC datasets. The best
results are presented in bold figure and the second best results
are marked by underline. We can observe that the proposed
CMTM method substantially outperforms all state-of-the-art
methods for two cross-modal tasks on almost all the bench-
marks datasets, which demonstrates its effectiveness. An in-
teresting observation is that our method performs better than
deep method DCMH. We assume that our model can use both
hand-crafted features and deep-learned features from multiple
views and exploit the complex feature correlations effectively.

The precision-recall curves for the two cross-modal tasks
I → T and T → I are shown in Figure 1 respectively. As
it is shown, the proposed CMTM method achieves the best
performance at almost all recall levels for both T→ I and I→
T tasks on both dataset, except when recall is close to zero.

4. CONCLUSION

In this paper, we present a novel tensor modeling based
method for cross-modal retrieval (CMTM), which can learn
the shared structure across the different modalities and model
the full-order interactions among different features obtained
in multiple views. Our method builds upon multi-view fea-
tures and models the correlations across them as a tensor
structure. Moreover, the labels of paired data are embed-
ded within the multimodal interactions. Experimental results
prove the effectiveness of our method.

Source codes will be publicly available.
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