Broad Learning based Social Community
Detection
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Abstract In the real-world online social networks, users tend to form different so-
cial communities. Due to its extensive applications, community detection in online
social networks has been a hot research topic in recent years. In this chapter, we
will focus on introducing the social community detection problem in online social
networks. To be more specific, we will take the hard community detection prob-
lem as an example to introduce the existing models proposed for conventional (one
single) homogeneous social network, and the recent broad learning based (multiple
aligned) heterogeneous social networks respectively.
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1 Overview

“Birds of a feather flock together.” In the real-world online social networks, users
also tend to form different social groups [2]. Users belonging to the same groups
usually have more frequent interactions with each other, while those in different
groups will have less interactions on the other hand [62]. Formally, such social
groups form by users in online social networks are called the online social com-
munities [57]. Online social communities will partition the network into a number
of connected components, where the intra-community social connections are usu-
ally far more dense compared with the inter-community social connections [57].
Meanwhile, from the mathematical representation perspective, due to these online
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social communities, the social network adjacency matrix tend to be not only sparse
but also low-rank [51].

Identifying the social communities formed by users in online social networks
is formally defined as the community detection problem [57, 55, 16]. Community
detection is a very important problem for online social network studies, as it can
be crucial prerequisite for numerous concrete social network services: (1) better or-
ganization of users’ friends in online social networks (e.g., Facebook and Twitter),
which can be achieved by applying community detection techniques to partition
users’ friends into different categories, e.g., schoolmates, family, celebrities, etc.
[10]; (2) better recommender systems for users with common shopping preference
in e-commerce social sites (e.g., Amazon and Epinions), which can be addressed by
grouping users with similar purchase records into the same clusters prior to recom-
mender system building [36]; and (3) better identification of influential users [44]
for advertising campaigns in online social networks, which can be attained by se-
lecting the most influential users in each community as the seed users in the viral
marketing [35].

In this chapter, we will focus on introducing the social community detection
problem in online social networks. Given a heterogeneous network G with node
set ¥, we can represent the involved user nodes in network G as set Z C ¥'. Based
on both the social structures among users as well as the diverse attribute informa-
tion from the network G, the social community detection problem aims at partition-
ing the user set % into several subsets ¢ = {%, %, , %}, where each subset
U.,i€ {1,2,--- k} is called a social community. Term k formally denotes the total
number of partitioned communities, which is usually provided as a hyper-parameter
in the problem.

Depending on whether the users are allowed to be partitioned into multiple com-
munities simultaneously or not, the social community detection problem can actu-
ally be categorized into two different types:

e Hard Social Community Detection: In the hard social community detection prob-
lem, each user will be partitioned into one single community, and all the social
communities are disjoint without any overlap. In other words, given the commu-
nities € = {%, %, - - ,%} detected from network G, we have % = | J; %; and
UNU =0Ni,je{1,2, -k} Ni# j.

e Soft Social Community Detection: In the soft social community detection prob-
lem, users can belong to multiple social communities simultaneously. For in-
stance, if we apply the Mixture-of-Gaussian Soft Clustering algorithm as the
base community detection model, each user can belong to multiple communi-
ties with certain probabilities. In the soft social community detection result, the
communities are no longer disjoint and will share some common users with other
communities.

Meanwhile, depending on the network connection structures, the community de-
tection problem can be categorized as directed network community detection [28]
and undirected network community detection [62]. Based on the heterogeneity of
the network information, the community detection problem can be divided into the



Broad Learning based Social Community Detection 3

homogeneous network community detection [47] and heterogeneous network com-
munity detection [37, 42, 52, 58]. Furthermore, according to the number of networks
involved, the community detection problem involves single network community de-
tection [22] and multiple network community detection [57, 55, 16, 52, 58]. In this
chapter, we will take the hard community detection problem as an example to in-
troduce the existing models proposed for conventional (one single) homogeneous
social network, and especially the recent broad learning based (multiple aligned)
heterogeneous social networks [20, 53, 54, 60] respectively.

This chapter is organized as follows. At the beginning, in Section 2, we will in-
troduce the community detection problem and the existing methods proposed for
traditional one single homogeneous networks. After that, we will talk about the lat-
est research works on social community detection across multiple aligned heteroge-
neous networks. The cold start community detection [55] is introduced in Section 3,
in which we propose a new information transfer algorithm to propagate information
from other developed source networks to the emerging target network. In Section 4,
we will be focused on the concurrent mutual community detection [57] across mul-
tiple aligned heterogeneous networks simultaneously, where information from other
aligned networks will be applied to refine their community detection results mutu-
ally. Finally, in Section 5, we talk about the synergistic community detection across
multiple large-scale networks based on the distributed computing platform [16].

2 Traditional Homogeneous Network Community Detection

Social community detection problem has been studied for a long time, and many
community detection models have been proposed based on different types of tech-
niques. In this section, we will talk about the social community detection problem
for one single homogeneous network G, whose objective is to partition the user set
% in network G into k disjoint subsets € = {1, %, , %}, where % = \J; %
and % N%; =0,Vi,j € {1,2,--- ,k}. Several different community detection meth-
ods will be introduced, which include node proximity based community detection,
modularity maximization based community detection, and spectral clustering based
community detection.

2.1 Node Proximity based Community Detection

The node proximity based community detection method assumes that “close nodes
tend to be in the same communities, while the nodes far away from each other will
belong to different communities”. Therefore, the node proximity based community
detection model partition the nodes into different clusters based on the node prox-
imity measures [24]. Various node proximity measures can be used here, including
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Fig. 1 Example of Homogeneous Network (Nodes 1 and 3 are Structural Equivalent).

the node structural equivalence to be introduced as follows, as well as various node
closeness measures as introduced in [61].

In a homogeneous network G, the proximity of nodes, like u and v, can be calcu-
lated based on their positions and connections in the network structure.

Example 1. For instance, in Figure 1, we show an example of a homogeneous net-
work G involving 9 nodes and 14 links among them. For the nodes 1 and 3, they have
equivalent positions in the network structure. According to the connections around
1 and 3, we can observe the neighbors of node 1 are I'(1) = {2,3,4}, while the
neighbors of node 3 include I'(3) = {1,2,4}. They share two common neighbors
{1,2}, and also connect with each other. If we switch their positions, the network
structure will still be the same as the original one and the neighbors of nodes 1 and
3 will still remain the same.

Definition 1. (Structural Equivalence): Given a network G = (¥,&), two nodes
u,v € ¥ are said to be structural equivalent iff

1. Nodes u and v are not connected and « and v share the same set of neighbors (i.e.,
(u,v) ¢ &AL (u) =T (),

2. Or u and v are connected and excluding themselves, u and v share the same set
of neighbors (i.e., (u,v) € EAT () \{v} =T (v)\ {u}).

As mentioned before, for the nodes which are structural equivalent, they are sub-
stitutable and switching their positions will not change the overall network structure.
The structural equivalence concept can be applied to partition the nodes into differ-
ent communities. For the nodes which are structural equivalent, they can be grouped
into the same communities, while for the nodes which are not equivalent in their po-
sitions, they will be partitioned into different groups. However, the structural equiv-
alence can be too restricted for practical use in detecting the communities in real-
world social networks. Computing the structural equivalence relationships among
all the node pairs in the network can lead to very high time cost. What’s more, the
structural equivalence relationship will partition the social network structure into
lots of small-sized fragments, since the users will have different social patterns in
making friends online and few user will have identical neighbors actually.
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To avoid the weakness mentioned above, some other measures are proposed to
measure the proximity among nodes in the networks. For instance, as introduced in
[61], the node closeness measures based on the social connections can all be applied
here to compute the node proximity, e.g., “common neighbor”, “Jaccard’s coeffi-
cient”. Here, if we use “common neighbor” as the proximity measure, by applying
the “common neighbor” measure to the network G, we can transform the network
G into a set of instances 7 with mutual closeness scores {c(u,Vv)}, ey . Some ex-
isting similarity/distance based clustering algorithms, like k-Medoids (a variant of
k-Means), can be applied to partition the users into different communities.

2.2 Modularity Maximization based Community Detection

Besides the pairwise proximity of nodes in the network, the connection strength of
a community is also very important in the community detection process. Different
measures have been proposed to compute the strength of a community, like the
modularity measure [29] to be introduced in this part.

The modularity measure takes account of the node degree distribution. For in-
stance, given the network G, the expected number of links existing between nodes u

and v with degrees D(u) and D(v) can be represented as %. Meanwhile, in the
network, the real number of links existing between u and v can be denoted as entry
Alu,v] in the social adjacency matrix A. For the user pair (u,v) with a low expected
connection confidence score, if they are connected in the real world, it indicates that
u and v have a relatively strong relationship with each other. Meanwhile, if the com-
munity detection algorithm can partition such user pairs into the same group, it will
be able to identify very strong social communities from the network.

Based on such an intuition, the strength of a community, e.g., %; € € can be

defined as D(u)-D(v)
y (A[u,v}w). (1)

u,vewU;

Example 2. For instance, let’s take network shown in Figure 1 as an example. We as-
sume the network nodes are partitioned into two groups, i.e., € = {%, %}, where
% ={1,2,3,4} and 2%, = {5,6,7,8,9}. According to the network structure, we can
compute the expected number of links between user pairs within community % in
Table 1.

(u,v) (1, D], 2)|(1,3)|A,H[2, D2, 2)|(2, 3)[(2,4)|(3, D[3,2)[(3,3)|3, |4, D]

D(u), D(v) 3,313,2(3,3|3,4(2,3[2,2(2,3(2,4(3,3[3,2(3,3[3,4[4,3]---
Alu,v] 0 1 1 1 1 0 1 0 1 1 0 1 1
D(w)-D(v) 9 6 [ 9 | 12 9 4 6 8 9 6 9 12 12
204 28 | 28 | 28 | 28 | %8 | 28 | 28 | 28 | 28 | 28 | 28 | 28 | 728
Alu,v] — DDV 9 2 [ [ 1| 4]22]=8]L08 22 | =9 | 16 16
, 26 | 28 | 28 | 28 | 28 | 28 | 78 | 58 | 78 | 8 | 28 | 7 | 28 | 28

Table 1 Numerical Analysis of Community %; = {1,2,3,4}.
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According to the above equation, we can compute the strength of community
U ={1,2,3,4} as

D)
X (- 24L) —y5. o

Furthermore, the strength of the overall community detection result ¢’ = {%,, %, - - -

can be defined as the modularity of the communities as follows.

762//(}

Definition 2. (Modularity): Given the community detection result ¢ = {2, %, - , %},

the modularity of the community structure is defined as

1 D(u)-D(v)
)3 L. L (A[u,w -2 ) . 3

The modularity concept effectively measures the strength of the detected community
structure. Generally, for a community structure with a larger modularity score, it
indicates a good community detection result.

Example 3. By following the analysis provided in Example 2, we can also compute
the strength of community %% as

 D()-D()\ _
;% (A[u,v] F ) 4.857. 4)

Therefore, we can compute the modularity of community detection results 6 =

{7, } as

1

_ D(u)-D(v)
“gq L. X (4

(%) G

u,v) —

) =0.347. (5)

Another way to explain the modularity is from the number of links within and
across communities. By rewriting the above modularity equation, we can have

1 ~ D(u)-D(v)
Q(¢) = 2] 2/%);/ (A[u,v] BT ) (6)
| D(u) ~D(v)>
= Alu,v] — — =7 (7
2|®@| (%G%u,\;?/i [ ] %ig‘ﬁu,ve%i 2‘£|
1 1
= Alu,v] — —— D(u)- D(v ()
a1 (5,5, i 5, E oo 5 o0

1

=— uv—L u))?
_2I(§|<Z L A= L D())>' ®

U €C u,ye %,€C uc
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In the above equation, term Y, 4. A[u, v] denotes the number of links connect-
ing users within the community %; (which will be 2 times the intra-community links
for undirected networks, as each link will be counted twice). Term ¥,,c4, D(u) de-
notes the sum of node degrees in community %4, which equals to the number of
intra-community and inter-community links connected to nodes in community %;.
If there exist lots of inter-community links, then the modularity measure will have
a smaller value. On the other hand, if the inter-community links are very rare, the
modularity measure will have a larger value. Therefore, maximizing the community
modularity measure is equivalent to minimizing the inter-community link numbers.

The modularity measure can also be represented with linear algebra equations.
Let matrix A denote the adjacency matrix of the network, and vector d € R Ix1
denote the degrees of nodes in the network. we can define the modularity matrix as

dd’

B=A—_—.
2|&]

(10)

Let matrix H € {0, 1}/”1* denotes the communities that users in ¥’ belong to. In
real application, such a binary constraint can be relaxed to allow real value solutions
for matrix H. The optimal community detection result can be obtained by solving
the following objective function

1
max MTr(HTBH) (11)
st HH=I, (12)

where constraint H' H = I ensures there are not overlap in the community detection
result.

The above objective function looks very similar to the objective function of spec-
tral clustering to be introduced in the next section. After obtaining the optimal H,
the communities can be obtained by applying the K-Means algorithm to H to deter-
mine the cluster labels of each node in the network.

2.3 Spectral Clustering based Community Detection

In the community detection process, besides maximizing the proximity of nodes
belonging to the same communities (as introduced in Section 2.1), minimizing the
connections among nodes in different clusters is also an important factor. Different
from the previous proximity based community detection algorithms, another way
to address the community detection problem is from the cost perspective. Partition
the nodes into different clusters will cut the links among the clusters. To ensure the
nodes partitioned into different clusters have less connections with each other, the
number of links to be cut in the community detection process should be as small as
possible [45].
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2.3.1 Cut

Formally, given the community structure ¢’ = {%, %, -+ , %} detected from net-
work G. The number of links cut between communities %;,%; € ¢ can be repre-
sented as

cut(%, %) ="y, Y, 1(u,v), (13)

UEU VEU

where function I(u,v) = 1 if (u,v) € &; otherwise, it will be 0.
The total number of links cut in the partition process can be represented as

cut(€)="Y. cut(%, %), (14)
Uc€

where set % = € \ %; denotes the remaining communities except %;.

By minimizing the cut cost introduced in the partition process, we can obtain the
optimal community detection result with the minimum number of cross-community
links.

Fig. 2 Comparison of Cut, Ratio-Cut and Normalized-Cut Measures in Social Network Commu-
nity Detection.

Example 4. For instance, in Figure 2, we show 3 different community detection re-
sults (i.e., plots B-D) of the input network as illustrated in plot A. For the 9 nodes
in the network, plot B partition the node into 2 communities: € = {%,%}, where
U =19} and % = {1,2,3,4,5,6,7,8}. Link (7,9) is the only link between differ-
ent communities in the network. According to the above definition, the introduced
cut can be represented as

cut(€) = cut(%, %) + cut (U, %) = 2, (15)
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where @Z] = %2, ?/_2 = @/] and CMI(%],%Q) = |{(7,9)}| =1.

Meanwhile, for the community detection results in plot C, its introduced cut will
be 2 x 2, since two edges {(4,5),(4,6)} are between the two communities, i.e.,
U = {5,6,7,8,9} and % = {1,2,3,4}. Community detection results in plot D
introduces a cut of 8, and 4 edges {(5,7),(5,8),(6,7),(6,8)} connects those two
detected communities.

Considering that we don’t allow empty communities, and plot B actually identi-
fies the optimal community structure of the input network data, where the cut cost is
minimized. However, we can also observe that the achieved community structure is
also extremely imbalanced, where community % = {9} contains a singleton node,
while %, = {1,2,3,4,5,6,7,8} contains 8 nodes. Such a problem will be much
more severe when it comes to the real-world social network data. In the following
part of this section, we will introduce two other cost measures that can help achieve
more balanced community detection results.

2.3.2 Ratio-Cut and Normalized-Cut

As shown in the example, the minimum cut cost treat all the links in the network
equally, and can usually achieve very imbalanced partition results (e.g., a singleton
node as a cluster) when applied in the real-world community detection problem. To
overcome such a disadvantage, some models have been proposed to take the com-
munity size into consideration. The community size can be calculated by counting
the number of nodes or links in each community, which will lead to two new cost
measures: ratio-cut and normalized-cut.

Formally, given the community detection result € = {%, %, - , %} in net-
work G, the ratio-cut and normalized-cut costs introduced in the community detec-
tion result can be defined as follows respectively.

1 (%, U
ratio — cut(€) = - M, (16)
k Ue€ |?/l‘
where |%;| denotes the number of nodes in community %;.
1 (%, U
neur() = Ly % %) (17)

k =y vol (%)
where vol(%;) denotes the degree sum of nodes in community 7.

Example 5. For instance, by following the example as illustrated in Example 4 and
Figure 2. We have already computed the cut cost introduced by the community
detection results in plots B, C, D, which are 2, 4 and 8 respectively. Here, if we also
consider the node number of node degree volume of each community, we can get
the ratio-cut and ncut of these community detection results as follows:

e PlotB: % = {9} and % = {1,2,3,4,5,6,7,8}. We have cut (%, %) = cut (%, %) =
1. The sizes and volumes of these communities are |%| = 1, |%| = 8, and
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vol(741) = 1, vol(%,) = 27. Therefore, we have

. . 1 cut(%l,??l) Cut(%z,q/_z) . 1 l l . 2
ratio-cut(%€) = 3 ( ] + ] =517 + 2 = 16 (18)

‘ L (ew (%, W) | cu(W, %)\ 1 (1 1Y 14
”“”(Cg)2< vol@) " voltmy )" 2\ita) T 1Y

e PlotC: % ={5,6,7,8,9} and % = {1,2,3,4}. We have cut (2,74 ) = cut (%, %) =
2. The sizes and volumes of these communities are |%1| =5, |%| = 4, and
vol(%) = 16, vol(%,) = 12. Therefore, we have

_ L fau(%, %) | cut(U, )\ 11 1\ 9
ratio-cut(€) = 5 < 7] + A =513 + 1)~ 10 (20)
_ l Cul‘(@/l,oZ/_l) Cut(%g,?/_z) _ l i L _ l
neut () =5 ( vol(z) oy ) "2\16t12) Toe @D

e PlotD: 241 ={7,8,9} and % = {1,2,3,4,5,6}. We have cut (2, %) = cut (%, %) =
4. The sizes and volumes of these communities are |%,| = 3, |%| = 6, and
vol(74) = 20, vol(%,) = 8. Therefore, we have

, L (cur(%,P%) | cw(W, W)\ 1 (1 1) 1
ratio-cut(€) = 5 ( ] ] =503 + ) "1 (22)
1 cut(, %) cut(%, %) BYana
neut () = 2( volz)  vol(zm) )" 2\2078) Tg0r @

As shown in the above example, from the computed costs, we find that the com-
munity detected in plot C achieves much lower ratio-cut and ncut costs compared
with those in plots B and D. Compared against the regular cut cost, both ratio-cut
and normalized-cut prefer a balanced partition of the social network.

2.3.3 Spectral Clustering

Actually the objective function of both ratio-cut and normalized-cut can be unified
as the following linear algebra equation

min  Tr(H'LH), (24)
He{0,1}/71xk

where matrix H € {0, 1}1”1*¥ denotes the communities that users in % belong to.

Let A € {0,1}”1XI”1 denote the social adjacency matrix of the network, and
we can represent the corresponding diagonal matrix of A as matrix D, where D
has value D(i,i) = Y. ;A(i, j) on its diagonal. The Laplacian matrix of the network
adjacency matrix A can be represented as L = D — A. Depending on the specific
measures applied, matrix L can be represented as
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(25)

_ {L, for ratio-cut measure,

ST .
D2 LDz, fornormalized-cut measure.

The binary constraint on the variable H renders the problem a non-linear integer
programming problem, which is very hard to solve. One common practice to learn
the variable H is to apply spectral relaxation to replace the binary constraint with
the orthogonality constraint.

minTr(H' LH), (26)
stHHH=L (27)

As proposed in [38], the optimal solution H* to the above objective function
equals to the eigen-vectors corresponding to the k£ smallest eigen-values of matrix
L.

3 Emerging Network Community Detection

The community detection algorithms introduced in the previous section are mostly
proposed for one single homogeneous network. However, in the real world, most
of the online social networks are actually heterogeneous containing very complex
information. In recent years, lots of new online social networks have emerged and
start to provide services, the information available for the users in these emerging
networks is usually very limited. Meanwhile, many of the users are also involved
in multiple online social networks simultaneously. For users who are using these
emerging networks, they may also be involved in other developed social networks
for a long time [56, 50]. The abundant information available in these mature net-
works can actually be useful for the community detection in the emerging networks.
In this section, we will introduce the cross-network community detection for emerg-
ing networks with information transferred from other mature social networks [55].

3.1 Background Knowledge

Witnessing the incredible success of popular online social networks, e.g., Facebook
and Twitter, a large number of new social networks offering specific services also
spring up overnight to compete for the market share. Generally, emerging networks
are the networks containing very sparse information and can be (1) the social net-
works which are newly constructed and start to provide social services for a very
short period of time; or (2) even more mature ones that start to branch into new geo-
graphic areas or social groups [54]. These emerging networks can be of a wide vari-
ety, which include (1) location-based social networks, e.g., Foursquare and Jiepang;
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Fig. 3 Information and anchor user distributions in Foursquare and Twitter. (a): social degree dis-
tribution, (b): number of check-ins distribution, (c): number of posts distribution.

(2) photo organizing and sharing sites, e.g., Pinterest and Instagram; (3) educational
social sites, e.g., Stage 32.

Community detection in emerging networks is a new problem and conventional
community detection methods for well-developed networks cannot be applied di-
rectly. Compared with well-developed networks, information in emerging networks
can be too sparse to support traditional community detection methods to calculate
effective closeness scores and achieve good results. According to the market report
from DRM!, by the end of 2013, the total number of registered users in Foursquare
has reached 45 million but these Foursquare users have only post 40 million tips. In
other words, each user has posted less than one tip in Foursquare on average. Mean-
while, the 1 billion registered Twitter users have published more than 300 billion
tweets by the end of 2013 and each Twitter user has written more than 300 tweets.
We also provide a statistics investigation on the a crawled dataset, which include
both Foursquare and Twitter, and the information distribution results are given in
Figure 3. As shown in Figures 3(a)-3(c), users in Twitter have far more social con-
nections, posts and location check-ins than users in Foursquare. The shortage of
information encountered in community detection problems for emerging networks
can be a serious obstacle for traditional community detection methods to achieve
good performance and is urgent to be solved.

In this section, we will introduce the social community detection for emerging
networks with information propagated across multiple partially aligned social net-
works, which is formally defined as the “emerging network community detection”
problem. Especially, when the network is brand new, the problem will be the “cold
start community detection” problem. Cold start problem is mostly prevalent in rec-
ommender systems [53], where the system cannot draw any inferences for users or
items, for which it has not yet gathered sufficient information, but few works have
been done on studying the cold start problem in clustering/community detection
problems. The “emerging network community detection” problem and “cold start
community detection” problem studied in this section are both novel problems and
very different from other existing works on community detection.

! http://expandedramblings.com
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3.2 Problem Formulation

Networks studied in this section can be formulated as two partially aligned attribute
augmented heterogeneous networks: 4 = ((G', G*), (A™*,A")), where G' and G*
are the emerging target network and well-developed source network respectively
and A", A% are the sets of anchor links between G' and G°. Both G’ and G* can
be formulated as the attribute augmented heterogeneous social network, e.g., G' =
(¥, 8", /") (where sets ¥, & and «/" denote the user nodes, social links and
diverse attributes in the network). With information propagated across ¢, we can
calculate the infimacy matrix, H, among users in ¥". emerging network community
detection problem aims at partitioning user set ¥ of the emerging network G' into
K disjoint clusters, € = {C},Cy, -, Cx}, based on the intimacy matrix, H, where
UKC;i =" and CGNCj=0,Yi,je{1,2,--- ,K},i # j. When the target network G’
is brand new, i.e., & = 0 and &' = 0, the problem will be the cold start community
detection problem. The “emerging network community detection” studied in this
section is also very challenging to solve due to the following reasons:

o network heterogeneity problem: Proper definition of closeness measure among
users with link and attribute information in the heterogeneous social networks is
very important for community detection problems.

e shortage of information: Community detection for emerging networks can suffer
from the shortage of information problem, i.e., the “cold start problem” [53, 54].

e network difference problem: Different networks can have different properties.
Some information propagated from other well-developed networks can be useful
for solving the emerging network community detection problem but some can be
misleading on the other hand.

e high memory space cost: Community detection across multiple aligned networks
can involve too many nodes and connections, which will lead to high space cost.

To solve all the above challenges, a novel community detection method, CAD,
will be introduced in great detail in this section: (1) CAD introduces a new concept,
intimacy, to measure the closeness relationships among users with both link and
attribute information in online social networks; (2) CAD can propagate useful infor-
mation from aligned well-developed networks to the emerging network to solve the
shortage of information problem; (3) CAD addresses the network heterogeneity and
difference problems with both micro-level and macro-level control of the link and
attribute information proportions, whose parameters can be adjusted by CAD auto-
matically; (4) effective and efficient cross-network information propagation models
are introduced in this section to solve the high space cost problem.

3.3 Intimacy Matrix of Homogeneous Network

The CAD model is built based on the closeness scores among users, which is for-
mally called the intimacy scores in this section. Here, we will introduce the intimacy
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scores and intimacy matrix used in CAD from a information propagation perspec-
tive.

For a given homogeneous network, e.g., G = (¥, &), where ¥ is the set of users
and & is the set of social links among users in ¥, we can define the adjacency matrix
of Gtobe A e RI”IXI7, where A(i, j) = 1, iff (u;,u;) € &. Meanwhile, via the social
links in &, information can propagate among the users within the network, whose
propagation paths can reflect the closeness among users [33]. Formally, term

_ A(,0)
VEnA(j,m) L, An,i)

is called the information transition probability from u; to u;, which equals to the
proportion of information propagated from u; to u; in one step.

We can use an example to illustrate how information propagates within the net-
work more clearly. Let’s assume that user u; € ¥ injects a stimulation into network
G initially and the information will be propagated to other users in G via the social
interactions afterwards. During the propagation process, users receive stimulation
from their neighbors and the amount is proportional to the difference of the amount
of information reaching the user and his neighbors. Let vector f () ¢ RI”l denote
the states of all users in ¥ at time 7, i.e., the proportion of stimulation at users in ¥
at 7. The change of stimulation at u; at time T + At is defined as follows:

SEAD () = ()
At

Dji (28)

=a Y pi(fO0) - %)), (29)

where coefficient o can be set as 1 as proposed in [64]. The transition probabilities
pijsi,j € {1,2,---,|¥|} can be represented with the transition matrix

1 1
X=(D"2AD™2) (30)
of network G, where X € RI” X7 X (i, j) = p;; and diagonal matrix D € RI” 1</
has value D(i,i) = ZLZ‘lA(i, Jj) on its diagonal.

Definition 3. (Social Transition Probability Matrix): The social transition probabil-
ity matrix of network G can be represented as Q = X — Dx, where X is the transition

matrix defined above and diagonal matrix Dx has value Dx (i,i) = Z‘]Z‘l X(i, j) on
its diagonal.

Furthermore, by setting A = 1, denoting that stimulation propagates step by
step in a discrete time through network, we can rewrite the propagation updating
equation as:

FO =T+ a(X D) = (14 aQ)f Y 3D
= (I+aQ) . (32)

7—1)

Such a propagation process will stop when f’ @) = (=1 je.,
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Fig. 4 An example of attribute augmented heterogeneous network. (a): attribute augmented het-
erogeneous network, (b): timestamp attribute, (c): text attribute, (d): location checkin attribute.

(I+aQ) = (I+aQ)" V. (33)

The smallest 7 that can stop the propagation is defined as the stop step. To obtain
the stop step T, CAD need to keep checking the powers of (I4+ aQ) until it doesn’t
change as 7 increases, i.e., the stop criteria.

Definition 4. (Intimacy Matrix): Matrix
H=(I+aQ)® e R/ (34)

is defined as the intimacy matrix of users in ¥, where 7 is the stop step and H (i, j)
denotes the intimacy score between u; and u; € ¥ in the network.

3.4 Intimacy Matrix of Attributed Heterogeneous Network

Real-world social networks can usually contain various kinds of information, e.g.,
links and attributes, and can be formulated as G = (¥, &, <) as introduced in Sec-
tion 3.2. Attribute set < = {aj,az, ---, am}, a; = {aj,an, -, apm;}, can have n;
different values for i € {1,2,--- ,m}. An example of attribute augmented heteroge-
neous network is given in Figure 4, where Figure 4(a) is the input attribute aug-
mented heterogeneous network. Figures 4(b)-4(d) show the attribute information



16 Jiawei Zhang and Philip S. Yu

in the network, which include timestamps, text and location checkins. Including
the attributes as a special type of nodes in the graph definition provides a concep-
tual framework to handle social links and node attributes in a unified framework.
The effect on increasing the dimensionality of the network will be handled as in
Lemma 3.4 in lower dimensional space.

Definition S. (Attribute Transition Probability Matrix): The connections between
users and attributes, e.g., a;, can be represented as the attribute adjacency matrix
A, € R 1<% Based on A, CAD formally defines the attribute transition proba-
bility matrix from users to attribute a; to be R; € RV/‘X”I’, where

1
VO A m)(E Ag(n, )

Similarly, CAD defines the attribute transition probability matrix from attribute a;
tousersin ¥ as S; = RiT.

The importance of different information types in calculating the closeness mea-
sure among users can be different. To handle the network heterogeneity problem,
the CAD model proposes to apply the micro-level control by giving different infor-
mation sources distinct weights to denote their differences: @0 = [y, @, - - - ,oom]T
where Yi" ) @; = 1.0, @y is the weight of link information and ; is the weight of
attribute a;, fori € {1,2,--- ,m}.

k)

Definition 6. (Weighted Attribute Transition Probability Matrix): With weights @,
CAD can define matrices

R=[oR, -, o,R,], (36)

S=[oS1, - ,0,S,)" (37)

to be the weighted attribute transition probability matrices between users and all
attributes, where R € RI” 1%t =171 '§ € RUtaw =17 Dx171 0 = (19| + X1 my) is
the number of all user and attribute nodes in the augmented network.

Definition 7. (Network Transition Probability Matrix): Furthermore, the transition
probability matrix of the whole attribute augmented heterogeneous network G is

defined as .

~ R

Qaug = |:(S2 0:| 5 (38)
where Qaug € RMaug *naug and block matrix Q = wyQ is the weighted social transition
probability matrix of social links in &

In the real world, heterogeneous social networks can contain large amounts of
attributes, i.e., g,y can be extremely large. The weighted transition probability ma-
trix, i.e., Qaug, can be of extremely high dimensions and can hardly fit in the mem-
ory. As a result, it will be impossible to update the matrix until the stop criteria
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meets to obtain the stop step and the intimacy matrix. To solve such problem, CAD
proposes to obtain the stop step and the intimacy matrix by applying partitioned
block matrix operations with the following Lemma 3.4.

Lemma 1. (Qu)* = [ & Qk IR] k> 2, where

SQi-1 SQi 2R
I, ifk=0,
Q% =1Q, ifk=1, (39)

QQi1 +RSQr 2, ifk>2

and the intimacy matrix among users in ¥ can be represented as

Haug = (I+ aQaug) |7/‘71 : |%|) (40)

£)
(Z (@) (1: 7.1 m))) @)
y

—( (>MQ>, (43)
=0 \!

where X(1:|¥],1: |¥]) is a sub-matrix of X with indexes in range [1,|V|], T is
the stop step, achieved when Q¢ = Q:;_1, i.e., the stop criteria, Qz is called the
stationary matrix of the attributed augmented heterogeneous network.

o (Quug ) ) (L7, 1:071) (41)

Proof. The lemma can be proved by induction on k [63], which will be left as an
exercise for the readers. Considering that (RS) € R!”1XI”1 can be precomputed in
advance, the space cost of Lemma 3.4 is O(|7|?), where |¥| < ngyg.

Since we are only interested in the intimacy and transition matrices among user
nodes instead of those between the augmented items and users for the community
detection task, CAD creates a reduced dimensional representation only involving
users for Qg and H such that CAD can capture the effect of “user-attribute” and

“attribute-user” transition on “user-user” transition. Qy is a reduced dimension rep-
resentation of Q,m , while eliminating the augmented items, it can still capture the
“user-user” transitions effectively.

3.5 Intimacy Matrix across Aligned Heterogeneous Networks

When G’ is new, the intimacy matrix H among users calculated based on the infor-
mation in G' can be very sparse. To solve this problem, CAD proposes to propagate
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useful information from other well developed aligned networks to the emerging
network. Information propagated from other aligned well-developed networks can
help solve the shortage of information problem in the emerging network [53, 54].
However, as proposed in [32], different networks can have different properties and
information propagated from other well-developed aligned networks can be very
different from that of the emerging network as well.

To handle this problem, CAD model proposes to apply the macro-level control
technique by using weights, p*, p’* € [0,1], to control the proportion of informa-
tion propagated between developed network G° and emerging network G'. If in-
formation from G* is helpful for improving the community detection results in G,
CAD can set a higher p*” to propagate more information from G*. Otherwise, CAD
can set a lower p* instead. The weights p** and p’* can be adjusted automatically
with method to be introduced in Subsection 3.7.

Definition 8. (Anchor Transition Matrix): To propagate information across net-
works, CAD introduces the anchor transition matrices between G' and G° to be
t /S /S ot PR PR .

T% € R and T € R X7 where T/ (i, j) = T (j,i) = 1, iff (uf,u}) €

A€V us €V

Meanwhile, with weights p*' and p'*, the weighted network transition probabil-
ity matrix of G' and G® are represented as

N s Qt ﬁt
img:(l_pt7 ) |:St 0:| (44)
and ~
NS At QS R’
aug*(l P ) |:§s 0:| ) (45)

- 1 t - s S
where Q;,, € R"e*"ass and Q) € R"we™"as, p, - -and nj,, are the numbers of all
nodes in G' and G’ respectively.

Furthermore, to accommodate the dimensions, CAD introduces the weighted an-

chor transition matrices between G* and G’ to be

_ t,s
™ = (p") [TO 3] : (46)
_ s,
T = (p™) [To 3] : 47)

where T'* € R " and T* € R *"aus, Nodes corresponding to entries in T
and T*' are of the same order as those in Ql,,, and Q},,, respectively.

By combining the weighted intra-network transition probability matrices to-
gether with the weighted anchor transition matrices, CAD defines the transition

probability matrix across aligned networks as

_ N’ TS
Qulign = |:Tas€¢tg s :|

aug

(48)
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N Rglion XNali ot K :
where Qgjjgn € R"alisn™align ;0 = Ngug + Ny 18 the number of all nodes across
the aligned networks.

Definition 9. (Aligned Network Intimacy Matrix): Based on the previous remarks,
with Qgjign, CAD can obtain the the intimacy matrix, Hyjigy, of users in G' to be

ﬁalign = (I+aQalign)T(1 : |7/t|71 : |7/t|)a (4’9)
where Hyjgn € RI7'1XI71 1 is the stop step.

Meanwhile, the structure of (I+ aQalig,,) can not meet the requirements of
Lemma 3.4 as it doesn’t have a zero square matrix at the bottom right corner. As
a result, methods introduced in Lemma 3.4 cannot be applied. To obtain the stop
step, there is no other choice but to keep calculating powers of (I+ Oc(-)u;,-gn) un-
til the stop criteria can meet, which can be very time consuming. In this part, we
will introduce with the following Lemma 3.5 adopted by CAD model for efficient
computation of the high-order powers of matrix (I+ Oc(_)alig,,).

Lemma 2. For the given matrix (I1+ aQalign)) its k;, power meets
(I+ Quiign) P =PA* k> 1, (50)

matrices P and A contain the eigenvector and eigenvalues of (I1+ Oc(_)al,-gn). The
irp column of matrix P is the eigenvector of (I+ aQal,-g,,) corresponding to its iy,
eigenvalue A; and diagonal matrix A has value A(i,i) = A; on its diagonal.

Proof. The Lemma can be proved by induction on k [34] as follows:
Base Case: When k = 1, let p; and A; be the i, eigenvector and eigenvalue of matrix
Q respectively, where

Qp; = Aip;i. (51)

Organizing all the eigenvectors and eigenvalues of Q in matrix P and A, we can
have
Q'P=PA". (52)

Inductive Assumption: When k = m,m > 1, let’s assume the lemma holds when
k =m,m > 1. In other words, the following equation holds:

Q"P=PA". (53)

Induction: Whenk=m+1,m>1,
QP = QQ"P = QPA™ = PAA™ = PA("1D), (54)

In sum, the lemma holds for k > 1.

The time cost of calculating AXis O(naiign), which is far less than that required
to calculate (I+ OcQalign)k.
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Definition 10. (Eigen-decomposition based Aligned Network Intimacy Matrix): In
addition, if P is invertible, we can have

(14 0tQuiign)* = PA*P, (55)

where AX has A (i,i)* on its diagonal. And the intimacy calculated based on eigen-
value decomposition will be

Hyjign = (PATP™Y) (11 |77],1:|77)). (56)

where the stop step T can be obtained when PATP~! = PA™" P! i.e., stop criteria.

3.6 Approximated Intimacy to Reduce Dimension

Eigendecomposition based method proposed in Lemma 3.5 enables CAD to calcu-
late the powers of (I4+ Qs ) Very efficiently. However, when applying Lemma 3.5
to calculate the intimacy matrix of real-world partially aligned networks, it can suf-
fer from many serious problems. The reason is that the dimension of (I4+ @Qqign),
i.€., Malign X Nalign, is s0 high that matrix (I+ &¢Qig,) can hardly fit in the memory.
To solve that problem, CAD proposes to calculate the approximated intimacy matrix

ITIZZ’;;” with less space and time costs instead.

Let’s define the transition probability matrices of G' and G* to be Qimg and Qzug
respectively. By applying Lemma 3.4, we can get their stop step and the station-
ary matrices to be 1, 7%, ~’T, and Qtﬂ respectively. Stationary matrices Q’T,, Q’Ty
together with the anchor transition matrix, T and T'*, can be used to define a
low-dimensional reduced aligned network transition probability matrix, which only
involves users explicitly, while the effect of “attribute-user” or “user-attribute” tran-

sition is implicitly absorbed into Q’T, and QST_;-:

Auser __ (1 —pt7S)Qtt (pf-,S)Tt,s
align — (p”)TWT (1—p*) ~;S ) (57)

where Qi € RIVEHD and (|9 + | #9]) < Ratign-

Definition 11. (Approximated Aligned Network Intimacy Matrix): Furthermore,
with Lemma 3.5, we can get infimacy matrix of users in G’ based on QZ‘I‘fg’n to be:

Rerprox — (P*(A*)T(P*)_l) (1|7, 1:7Y), (58)

align

where (I4+ aQ%¢" ) = P*A*(P*)~! and 7 is the stop step.

align

The approximated intimacy matrix computation method introduced above can
greatly reduce the time and space costs. Let |#7| = r/, the size of intimacy matrix
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Algorithm 1 CAD with Parameter Self-Adjustment
Require: aligned network: ¢ = {{G', G*}, {A"*, A%'}}
parameters: @, p, ¥, &, B and method type M
Ensure: community detection results of G': ¢
L2 @y1q = 0, pora = P, Egta = o
2: for parameter § € @ U{p} do

3: while True do
4: 0 = (1+¥)0 and renormalize ® if § € ® to get Wyew, Pew
5: construct transition probability matrix Qq;gn
6: if M = approximation then
7: construct (_)fog’n with Q},, 7 calculated according to Lemma 1
8: calculate HZ7P'™ with Q47 according to Lemma 2
. T __ §yapprox
9: Hulign - Ha;i;n
10: else _ _
11: calculate Hyig, With Qgjig, according to Lemma 2
12: end if
13: get lower-dimensional latent feature vectors U
14: € = Kmeans(U)
15: Epew = — XK, P(i)log P(i), P(i) = ):K‘ffl‘Ufl Ui e
16: if E,.,, < E,;; then
17: Wo1d = @, Potd = P, Eo1g = Enpew
18: else
19: @ = Wold, P = Pold
20: break
21: end if
22: end while
23: end for

ﬁa,ign will be (nt)z. However, to obtain ﬁalign, we need to calculate the transition
probability matrix Qg in advance, whose size is (nalig,,)z.
Space Cost: In eigendecomposition based method, we have to calculated and store

matrices QZ’lf;Z, P, P!, A € Raisn*Malign  whose space costs are O(4nglign)‘ How-

ever, in the approximation based method, we just need to store matrices Q" c R
RY € R *Xim) § ¢ REim)*" x e {5,1}, as well as QPP ¢ RO +n)x(n +n%)

align
whose space cost will be O(max{(n' +n*)?,n' (¥;n!),n*(L;n})}) < O(4n§lign).
Time Cost: In eigendecomposition based method, the matrix eigendecomposition

of Qzlﬁ;: inversion P~! and multiplication of PA*P~ are all time-consuming oper-

ations, whose time costs are O(knﬁlign) [46], O(nﬁlign log(naiign)) [11] and O(anlign)
respectively. As a result, the time cost of eigendecomposition based method is about

O(2n2h. gn). However, in approximation based methods, we need to apply Lemma 2

to get H and A, whose time cost is
O(max{z((n')* + ('”t’)z(z,a?))vf((ns)3 + ("S)z(zaf))}), (59)

which is much smaller than that of eigendecomposition based methods.
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3.7 Clustering and Weight Self-Adjustment

Intimacy matrix H;g, (or I:IZZ’g’ZOX) stores the intimacy scores among users in ¥ and

can be used to detect the communities in the network. CAD will use the low-rank
matrix factorization method used proposed in [43] to get the latent feature vectors,
U, for each user. To avoid overfitting, CAD introduces two regularization terms to
the object function as follows:

. = 2
min | Elysign = UVU” ||+ 0 [U[[5 + B V[, (60)
5. U>0,V >0, 61)

where U is the latent feature vectors, V stores the correlation among rows of V, 6
and f are the weights of ||U||12p, ||VH% respectively.

This object function is hard to solve and obtaining the global optimal result
for both U and V simultaneously can be very challenging. CAD proposes to solve
the objective function by fixing one variable, e.g., U, and update another variable,
e.g.,V, alternatively. The Lagrangian function of the object equation can be repre-
sented as:

F = Tr(AaignH};q,) — Tr(Haig UV UT) (62)
—Tr(UVU"H;,,) + Tr(UVUTUVTUT) (63)
+0Tr(UUT) 4+ BTr(VVT) — Tr(OU) — Tr(QV) (64)

where @ and 2 are the multiplier for the constraint of U and V respectively. By
taking derivatives of .% with regarding to U and V, we can get

0F _ _
55 = —2(H}};,, UV + Hyie, UV = UV UTUV! —UVU UV - 0U) -0
(65)
0.7 TH T T T
V= —2(U"Hyig,U-U"UVU'U—-BV) - Q (66)
Let % =0and %—‘5 = 0 and use the KKT complementary condition, we can get
(ﬁz;lignUV + I:IalignUVT) (i7 ])
U@, j) < UG, J) (67)

(UVTUTUV +UVUTUVT +0U) (i, j)’

UTﬁai nU i’ /
V(i,j) « V(i,j)\/(UT(UvUTlé+L(V)J()i,j) . ©%
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The low-rank matrix U captures the information of each users from the intimacy
matrix and can be used as latent numerical feature vectors to cluster users in G* with
traditional clustering methods, e.g., Kmeans [15].

Meanwhile, to handle the information heterogeneity problem in each network and
the network difference problem across networks, CAD uses weights, @', ®°, p* and
p**, to denote the importance of information in G, G* and that propagated from G
and G* respectively. For simplicity, CAD sets @' = ®° = © = [y, @1, , @] and
p"* =p* =p in CAD. Let € be the community detection result achieved by CAD in
G'. The optimal optimal choices of parameters @ and p, evaluated by some metrics,
e.g., entropy [64], can be achieved with the following equation:

w,p= Igollfl)lE(Cg) (69)
The optimization problem is very difficult to solve. CAD proposes a method to adjust
® and p automatically to enable CAD to achieve better results.

The weight adjustment method used to deal with @ can work as follows:
for example, in network G’, we have relational information and attribute infor-
mation & and o/ = {A,Az,---,A,,}, whose weights are initialized to be ® =
{wy, @1, - ,0,}. For w; € @,i € {0,1,--- ,m}, CAD keeps checking if increasing
o; by aratio of 7, i.e., (1 + ¥) @;, can improve the performance or not. If so, (1+7)w;
after re-normalization is used as the new value of w;; otherwise, CAD restores the
old ®; before increase and study ;. In the experiment, ¥ is set as 0.05. Similarly,
for the weight of different networks, i.e, p, CAD can adjust them with the same
methods to find the optimal p. The pseudo code of CAD is available in Algorithm 1.

4 Mutual Community Detection

Besides the knowledge transfer from developed networks to the emerging networks
to overcome the cold start problem, information in developed networks can also
be transferred mutually to help refine the detected community structure detected
from each of them. In this section, we will introduce the mutual community detec-
tion problem across multiple aligned heterogeneous networks and introduce a new
cross-network mutual community detection model MCD. To refine the community
structures, a new concept named discrepancy is introduced to help preserve the con-
sensus of the community detection result of the shared anchor users [57].

4.1 Background Knowledge

In this section, we will focus on the simultaneous community detection of each
network across multiple partially aligned social networks simultaneously, which is
formally defined as the Mutual Community Detection problem. The goal is to distill
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relevant information from other aligned social network to compliment knowledge
directly derivable from each network to improve the clustering or community de-
tection, while preserving the distinct characteristics of each individual network. The
Mutual Community Detection problem is very important for online social networks
and can be the prerequisite for many concrete social network applications: (1) net-
work partition: detected communities can usually represent small-sized subgraphs
of the network, and (2) comprehensive understanding of user social behaviors: com-
munity structures of the shared users in multiple aligned networks can provide a
complementary understanding of their social interactions in online social world.

Besides its importance, the Mutual Community Detection problem is a novel
problem and different from existing clustering problems, including: (1) consensus
clustering [12,23, 31, 27, 26], which aims at achieving a consensus result of several
input clustering results about the same data; (2) multi-view clustering [4, 6], whose
target is to partition objects into clusters based on their different representations,
e.g., clustering webpages with text information and hyperlinks; (3) multi-relational
clustering [49, 3], which focuses on clustering objects in one relation (called target
relation) using information in multiple inter-linked relations; and (4) co-regularized
multi-domain graph clustering [7], which relaxes the one-fo-one constraints on node
correspondence relationships between different views in multi-view clustering to
“uncertain” mappings. Unlike these existing clustering problems, the Mutual Com-
munity Detection problem aims at detecting the communities for multiple networks
involving both anchor and non-anchor users simultaneously and each network con-
tains heterogeneous information about users’ social activities.

4.2 Problem Formulation

For the given multiple aligned heterogeneous networks ¢, the Mutual Community
Detection problem aims to obtain the optimal communities {‘5“),‘5(2), .- ,%”(")}

for {GV,G?),... G} simultaneously, where ) = {Ul(i)7 2<i>,...,Ulff?>} is a
partition of the users set D in GO, k) = ’g(i) s Ul(l) N U,,(;) =0,V Ime

{1,2,...,k9} and ka:')l U;l) = /) Users in each detected social community are
more densely connected with each other than with users in other communities. In
this section, we focus on studying the hard (i.e., non-overlapping) community de-
tection of users in online social networks.

The Mutual Community Detection problem studied in this section is very chal-
lenging to solve due to:

o Closeness Measure: Users in heterogeneous social networks can be connected
with each other by various direct and indirect connections. A general closeness
measure among users with such connection information is the prerequisite for
addressing the Mutual Community Detection problem.
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Table 2 Summary of HNMPs.

ID Notation Heterogeneous Network Meta Path  Semantics
1 U=U User M User Follow
2 U=-U—=U User M User M User Follower of Follower
) ~1

3 U=U<«+U User 227" User 2212 User Common Out Neighbor

. —1 "
4 U+~U—=U User % User M) User Common In Neighbor
5 U—P— W+« P« U User 2 Post <2 Word Posts Containing Common Words

: Post M) User
vrit ontai . P .
6 U—P—T«+ P« U User 5 Post — Time Posts Containing Common Timestamps
contain™! write ™!
—— Post ——— User

write, attach

7 U—=P—=L<+ P+ U User — Post —— Location Posts Attaching Common Location Check-ins

attach™! write™ !

——— Post —— User

contain™

e Network Characteristics: Social networks usually have their own characteristics,
which can be reflected in the community structures formed by users. Preservation
of each network’s characteristics (i.e., some unique structures in each network’s
detected communities) is very important in the Mutual Community Detection
problem.

e Mutual Community Detection: Information in different networks can provide us
with a more comprehensive understanding about the anchor users’ social struc-
tures. For anchor users whose community structures are not clear based on in
formation in one network, utilizing the heterogeneous information in aligned
networks to refine and disambiguate the community structures about the anchor
users. However, how to achieve such a goal is still an open problem.

To solve all these challenges, a novel cross-network community detection method,
McD (Mutual Community Detector), is proposed in this section. MCD maps the
complex relationships in the social network into a heterogeneous information net-
work [41] and introduces a novel meta-path based closeness measure, HNMP-Sim,
to utilize both direct and indirect connections among users in closeness scores cal-
culation. With full considerations of the network characteristics, MCD exploits the
information in aligned networks to refine and disambiguate the community struc-
tures of the multiple networks concurrently. More detailed information about the
McD model will be introduced as follows.

4.3 Meta Path based Social Proximity Measure

Many existing similarity measures, e.g., “Common Neighbor” [13], “Jaccard’s Co-
efficient” [13], defined for homogeneous networks cannot capture all the connec-
tions among users in heterogeneous networks. To use both direct and indirect con-
nections among users in calculating the similarity score among users in the hetero-
geneous information network, MCD introduces meta path based similarity measure
HNMP-Sim, whose information will be introduced as follows.
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In heterogeneous networks, pairs of nodes can be connected by different paths,
which are sequences of links in the network. Meta paths [41, 42] in heterogeneous
networks, i.e., heterogeneous network meta paths (HNMPs), can capture both direct
and indirect connections among nodes in a network. The length of a meta path is
defined as the number of links that constitute it. Meta paths in networks can start
and end with various node types. However, in this section, we are mainly concerned
about those starting and ending with users, which are formally defined as the social
HNMPs. A formal definition of social HNMPs is available in [60, 57, 59]. The
notation, definition and semantics of 7 different social HNMPs used in MCD are
listed in Table 2. To extract the social meta paths, prior domain knowledge about
the network structure is required.

These 7 different social HNMPs in Table 2 can cover lots of connections among
users in networks. Some meta path based similarity measures have been proposed
so far, e.g., the PathSim proposed in [41], which is defined for undirected networks
and considers different meta paths to be of the same importance. To measure the
social closeness among users in directed heterogeneous information networks, we
extend PathSim to propose a new closeness measure as follows.

Definition 12. (HNMP-Sim): Let &7;(x ~» y) and Z;(x ~> -) be the sets of path
instances of HNMP # i going from x to y and those going from x to other nodes
in the network. The HNMP-Sim (HNMP based Similarity) of node pair (x,y) is
defined as

(70)

HNMP-Sim(x, ) Zw’(wj XWY)JrI«@(ywx)I)’

|Zi(x )+ Py~ )

where @; is the weight of the i;;, HNMP and }; w; = 1. In MCD, the weights of
different HNMPs can be automatically adjusted by applying a similar greedy search
technique as introduced in Section 3.7.

Let A; be the adjacency matrix corresponding to the i;;, HNMP among users
in the network and A;(m,n) = k iff there exist k different path instances of the iy,
HNMP from user m to n in the network. Furthermore, the similarity score matrix
among users of HNMP # i can be represented as S; = B, o (AiJrAiT), where AiT
denotes the transpose of A; and B; represents the sum of the out-degree of user x and
y has values B;(x,y) = (¥, Ai(x,m) + ¥, Ai(y,m))". The o symbol represents the
Hadamard product of two matrices. The HNMP-Sim matrix of the network which
can capture all possible connections among users is represented as follows:

S=Y wS =Y o (Bio(A+A])). (71)
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4.4 Network Characteristic Preservation Clustering

Clustering each network independently can preserve each networks characteristics
effectively as no information from external networks will interfere with the clus-
tering results. Partitioning users of a certain network into several clusters will cut
connections in the network and lead to some costs inevitably. Optimal clustering
results can be achieved by minimizing the clustering costs.

For a given network G, let € = {U;,Us,...,U;} be the community structures
detected from G. Term U; = % — U; is defined to be the complement of set U; in
G. Various cost measure of partition %€ can be used, e.g., cut and normalized cut as
introduced in Section 4:

i B .
cut(€) = E;S(Ui,Ui) = %; 7S(u,v), (72)
= =lueU;vel;
1 & S(U,T) 1 & cur (UL T;)
neut(6)=—) ———=—) ————", (73)
k; S(U;, ) ki; S(Us,-)
where S(u,v) denotes the HNMP-Sim between u,v and S(U;,-) = S(U;, %) =

S(U,Uy) JrS(Ui,Ui).

For all users in %, their clustering result can be represented in the result con-
fidence matrix H, where H = [hy, hy, ..., ho|¥, n=|%|, hy = (hi1,hip, ... hix)
and £, ; denotes the confidence that u; € % is in cluster U; € €. The optimal H
that can minimize the normalized-cut cost can be obtained by solving the following
objective function [45]:

n&n Tr(H'LH), (74)
st. HHDH=1. (75)

where L = D — S, diagonal matrix D has D(i,i) = ¥.; S(i, j) on its diagonal, and I is
an identity matrix.

4.5 Discrepancy based Clustering of Multiple Networks

Besides the shared information due to common network construction purposes
and similar network features [55], anchor users can also have unique informa-
tion (e.g., social structures) across aligned networks, which can provide us with a
more comprehensive knowledge about the community structures formed by these
users. Meanwhile, by maximizing the consensus (i.e., minimizing the “discrep-
ancy”) of the clustering results about the anchor users in multiple partially aligned
networks, model MCD will be able to refine the clustering results of the anchor
users with information in other aligned networks mutually. We can represent the



28 Jiawei Zhang and Philip S. Yu

clustering results achieved in G(!) and G®?) as ¢! = {U ( ). Uk((ll))} and

2) = {Ul(z), Uz(z), e ’U1£(22)>} respectively.
Let u; and u; be two anchor users in the network, whose accounts in G and G®
are ul(l), ul@, uﬁl) and Mgz) respectively. If users ul(l) and uy)

same cluster in G(") but their corresponding accounts ”1@

are partitioned into the

@

and u;” are partitioned

into different clusters in G(z), then it will lead to a discrepancy [57, 37] between the

clustering results of ul(l), ul(z), ug.l) and uﬁz)

in aligned networks G!) and G,

Definition 13. (Discrepancy): The discrepancy between the clustering results of u;
and u; across aligned networks G(!) and G') is defined as the difference of con-
fidence scores of u; and u; being partitioned in the same cluster across aligned

(D

networks Considering that in the clustering results the confidence scores of u;
and u (u ) and u ) being pamtloned into k1) (k) clusters can be represented
as vectors hi ) and h (h ) and h ) respectively, while the confidences that u;
and u; are in the same cluster in G( ) and G can be denoted as hg ) (hﬁ-])) and
hgz) (h;z) )T. Formally, the discrepancy of the clustering results about u; and u ; is de-
fined to be d;;(¢1),¢?)) = (hgl)(hgl))T —h? (h§'2>)T)2 if u;,u; are both anchor

users; and d; j(%“),%(z)) = 0 otherwise. Furthermore, the discrepancy of %) and
%@ will be:

ROE)

d(¢ Z Z dij(¢ ), (76)
i

where n") = |% (V| and n® = |2 (?)|. In the definition, non-anchor users are not
involved in the discrepancy calculation

However, considering that d (‘5(1),‘5(2)) is highly dependent on the number of
anchor users and anchor links between G!) and G®), minimizing d(¢(),¢?)
can favor highly consented clustering results when the anchor users are abundant
but have no significant effects when the anchor users are very rare. To solve this
problem, we propose to minimize the normalized discrepancy instead.

Definition 14. (Normalized Discrepancy) The normalized discrepancy measure com-
putes the differences of clustering results in two aligned networks as a fraction of
the discrepancy with regard to the number of anchor users across partially aligned

networks:
d(fg(l) , (5(2))

A ¢ = . 77

M= a0 a1 ”
Optimal consensus clustering results of G(!) and G?) will be CKA(U,CKA@)

€1 €% —arg min nd(€¢",€?). (78)

21) @



Broad Learning based Social Community Detection 29
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Fig. 5 An example to illustrate the clustering discrepancy.

Similarly, the normalized-discrepancy objective function can also be represented
with the clustering results confidence matrices HY) and H® as well. Meanwhile,
considering that the networks studied in this section are partially aligned, matrices
H") and H® contain the results of both anchor users and non-anchor users, while
non-anchor users should not be involved in the discrepancy calculation according
to the definition of discrepancy. We propose to prune the results of the non-anchor
users with the following anchor transition matrix first.

Definition 15. (Anchor Transition Matrix): Binary matrix T(1.2) (or T ) is de-
fined as the anchor transition matrix from networks G(!) to G (or from G@ t
M), where T("2) = (T@D)T TOA(i, j) = 1if (u",ul”) € A0 and 0 other—
wise. The row indexes of T2 (or T(2D) are of the same order as those of H(!)
(or H®)). Considering that the constraint on anchor links is “one-fo-one” in this

section, as a result, each row/column of T(12) and T2 contains at most one entry
filled with 1.

Example 6. In Figure 5, we show an example about the clustering discrepancy of
two partially aligned networks G(!) and G(®, users in which are grouped into two
clusters {{uy,u3},{uz}} and {{ua,uc}, {up,up}} respectively. Users u;, us and us,
uc are identified to be anchor users, based on which we can construct the “anchor
transition matrices” T(-2) and T2 as shown in the upper right plot. Furthermore,
based on the community structure, we can construct the “clustering confidence ma-
trices” as shown in the lower left plot. To obtain the clustering results of anchor
users only, the anchor transition matrix can be applied to prune the clustering re-
sults of non-anchor users from the clustering confidence matrices. By multiplying
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the anchor transition matrices (TH2)T and (TG with clustering confidence
matrices H) and H® respectively, we can obtain the “pruned confidence matri-
ces” as show in the lower right plot of Figure 5. Entries corresponding anchor users
uy, us, us and uc are preserved but those corresponding to non-anchor users are all
pruned.

In this example, the clustering discrepancy of the partially aligned networks
should be 0 according to the above discrepancy definition. Meanwhile, networks
G and G are of different sizes and the pruned confidence matrices are of dif-
ferent dimensions, e.g., (T!2)TH(M) € R*? and (TZD)TH?) € R**2, To rep-
resent the discrepancy with the clustering confidence matrices, we need to fur-
ther accommodate the dimensions of different pruned clustering confidence ma-
trices. It can be achieved by multiplying one pruned clustering confidence matrices
with the corresponding anchor transition matrix again, which will not prune en-
tries but only adjust the matrix dimensions. Let H") = (T(:2)TH() and H® =
(T2 T(TZD)TH?), In the example, we can represent the clustering discrepancy

to be
Hﬁm (ﬁm)T —RE) (A2) r

=0, (79)

where matrix HH” indicates whether pairs of anchor users are in the same cluster
or not.

Furthermore, the objective function of inferring clustering confidence matrices,
which can minimize the normalized discrepancy can be represented as follows

2
Hﬁ(l) (ﬁm)T _|O® (ﬁ(2)>T
min E. (80)
R T (IR
st. N DOHY =1, H?)'DPH? =1. (81)

where D), D@ are the corresponding diagonal matrices of HNMP-Sim matrices
of networks G!) and G® respectively.

4.6 Joint Mutual Clustering of Multiple Networks

Normalized-Cut objective function favors clustering results that can preserve the
characteristic of each network, however, normalized-discrepancy objective function
favors consensus results which are mutually refined with information from other
aligned networks. Taking both of these two issues into considerations, the optimal
Mutual Community Detection results €1) and €2 of aligned networks G and
G@ can be achieved as follows:
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Algorithm 2 Curvilinear Search Method (¢. .#)
Require: X; Ci, O and function .#

parameters € = {p, N, 5, T, T, Tn }
Ensure: Xy, Cey1, Okt

15 Y(1) = (1+ 2A) ' (1- ZA) X,
2: while # (Y(1)) > Cr+pt%' ((Y(0))) do
3 1=961
4 Y(r)=(1+3A) (1-2A)X,
5: end while
6: Xit1 = Yi(7)
Ork+1 =10 +1

Cir1 = MG +F (Xit1)) / Qi
T = max (min(7, Ty ), Tn)

arg (Ilr)lin(z) o -ncut (V) + B -ncut () + 0 -nd (€, ¢?) (82)
[ ACN

where o, B and 0 represents the weights of these terms and, for simplicity, «, 8 are
both set as 1 in MCD.

By replacing ncut (€'")), ncut (€?)), nd(€V),€?)) with the objective equations
derived above, we can rewrite the joint objective function as follows:

H(Ill)lil?(z) o Tr(HDYTLOHD) 4 8- Tr(HP) 'L H?) (83)
_ _oNT _ N\
HH(l) (H(l)) —H® (H(Z))
2 2 = (84)
a2 (e 7 - 1)
s... (HNTDOHD =1, (H?)'DPH®? =1, (85)

where L) = D) — 81 1,(2) = D2 —§2) and matrices SV, $©) and DV, D) are
the HNMP-Sim matrices and their corresponding diagonal matrices defined before.

The objective function is a complex optimization problem with orthogonality
constraints, which can be very difficult to solve because the constraints are not
only non-convex but also numerically expensive to preserve during iterations. Mean-

1 1
while, by substituting (D<1)> “HO and (D(z)) "HO with X, X, we can trans-
form the objective function into a standard form of problems solvable with method
proposed in [48]:
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Algorithm 3 Mutual Community Detector (MCD)

Require: aligned network: ¢ = {{G(), G@}, {a(12) 42D},
number of clusters in GV and G®: k(D) and k( )
HNMP Sim matrices weight: o;
parameters: € = {p,1,0,T, Tn, T };
function .% and consensus term weight 6
Ensure: HD, H®
1: Calculate HNMP Sim matrices, Sf-l) and Sl(2>

2: S =y, a5, 8@ = 7, @5
3: Initialize X( ) and X( ) with Kmeans clustermg results on $(1) and §)
4: ImtlahzeC =0, Q =1an dC =0 Q0 =
5: converge = False
6: while converge = False do
70 [E update XM and X® with ‘KY/// */
M
X,(HSI’ k+1’Qk+1_(@py,%( k 7 k 7Qk ) 7 )
2
Xk+1’ k+1’Qk+1 _%y///( k 7 k ’Q €)
8 if X,i Jr)l and X,(( +>1 both converge then
9: converge = True
10:  endif

11: end while , ,
12: Hm:((D(l))—%) X<l>,H<z>:<(D<z>)—%) X®

min (Te(XTLOXD) 4 B Tr(XPH LX) (86)
x(1) x(2)
N T . T2
HT(nXm (T0x0)" T (Tx2)
VeI m—— ), 87)
2|5 (27 - 1)
st (X)X = (X)X =1, (88)
where L) = (DM)~2)TLO((DM)~3), L@ = (D)~ 3)"LO(DP)"2) and

1 1

T = (102N T (DW)=2, T@) = (T(1L2)HT (T<2 INT(D@)~2,

Wen et al. [48] propose a feasible method to solve the above optimization prob-
lems with a constraint-preserving update scheme. They propose to update one vari-
able, e.g., X(1), while fixing the other variable, e.g., X(?), alternatively with the
curvilinear search with Barzilai-Borwein step method until convergence. For ex-
ample, when X is fixed, we can simplify the objective function into

n;(inﬁ(X),s.t.(X)TX =1, (89)
where X = X(1) and .7 (X) is the objective function, which can be solved with the

curvilinear search with Barzilai-Borwein step method proposed in [48] to update X
until convergence and the variable X after the (k + 1), iteration will be



Broad Learning based Social Community Detection 33

—1
Xk+1:Y(Tk),Y(rk):<I+%A) (I—%A)Xk, (90)
0F(X)) or « T (Xe) g
A= X Xk_Xk(T)a On

Tr (X —Xe- )7 (Xe—X41))
| Tr((Xe—X—1)T (VZ (Xp)-V.F (Xi—1))) |
Borwein step size and 4 is the smallest integer to make T satisfy

where let £ = ( > 7, = ©6", § is the Barzilai-

Z (Y()) < Ce+puZ; (Y(0)). (92)

Terms C, Q are defined as Gy 1 = (NOxCi +F (Xi11)) /Oxy1 and Q1 = NQx +

1,00 = 1. More detailed derivatives of the curvilinear search method (i.e., Algo-

rithm 2) with Barzilai-Borwein step is available in [48]. Meanwhile, the pseudo-

code of method MCD is available in Algorlithm 3. Based on the achielved solutions
X@),

2 2

X1 and X@), we can get H) = (D<1>) 2X(1) gnd HO) = (D<2>)

5 Large-Scale Network Synergistic Community Detection

The community detection algorithm proposed in the previous section involves very
complicated matrix operations, and works well for small-sized network data. How-
ever, when being applied to handle real-world online social networks involving mil-
lions even billions of users, they will suffer from the time complexity problem a
lot. In this section, we will introduce a synergistic community detection algorithm
SPMN for multiple large-scale aligned online social networks [16].

5.1 Problem Formulation

The problem to be introduced here follows the same formulation as the one intro-
duced in Section 4, but the involved networks are of far larger sizes in terms of
both node number and the social connection number. Synergistic partitioning across
multiple large-scale social networks is very difficult for the following challenges:

e Social Network: Distinct from generic data, usually contains intricate interac-
tions, and multiple heterogeneous networks mean that the relationships across
multiple networks should be taken into consideration.

e Network Scale: Network size implies it is difficult for stand-alone programs to
apply traditional partitioning methods and it is a difficult task to parallelize the
existing stand-alone network partitioning algorithms.

e Distributed Framework: For distributed algorithms, load balance should be taken
into consideration and how to generate balanced partitions is another challenge.
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Algorithm 4 Edge Weight based Matching (&% .#)

Require: Network G,
Maximum weight of a node maxVW = n/k
Ensure: A coarser network Gy,
1: map() Function:
2: for node i in current data bolck do

3 if match[i) == —1 then

4 maxldx = —1

5: sortByEdgeWeight(NN(i))
6: for v; € NN(i) do

7 if match[j] == —1 and VW (i) + VW (j) < maxVW then
8 maxIdx = j

9: end if

10: matchli] = maxldx
11: matchmaxldx] = i
12: end for

13:  endif

14: end for

15: reduce() Function:
16: new newNodelD[n + 1]
17: new newVW(n+1]

18: setidx=1

19: foric {1,2,---,n} do
20:  ifi < matchli] then

21: set newNodelD|matchli]] = idx

22: set newNodelD[i] = idx

23: set newVW (i) = newVW [matchli]] = VW (i) + VW (matchli])
24: idx++

25:  endif

26: end for

To address the challenges, in this section, we will introduce a network struc-
ture based distributed network partitioning framework, namely SPMN. The SPMN
model identifies the anchor nodes among the multiple networks, and selects a net-
work as the datum network, then divides it into k balanced partitions and generate
(anchor node ID, partition ID) pairs as the main objective. Based on the objec-
tive, SPMN coarsens the other networks (called as synergistic networks) into smaller
ones, which will further divides the smallest networks into k balanced initial parti-
tions, and tries to assign same kinds of anchor nodes into the same initial partition as
many as possible. Here, anchor nodes of same kind means that they are divided into
same partition in the datum network. Finally, SPMN projects the initial partitions
back to the original networks.

5.2 Distributed Multilevel k-way Partitioning

In this section, we describe the heuristic framework for synergistic partitioning
among multiple large scale social networks, and we call the framework SPMN. For
large-sized networks, data processing in SPMN can be roughly divided into two
stages: datum generation stage and network alignment stage.

When got the anchor node set <7 (1.2) between networks G(V) and G(?), the SPMN
framework will apply a distributed multilevel k-way partitioning method onto the
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datum network to generate k balanced partitions. During this process, the anchor
nodes are ignored and all the nodes are treated identically. We call this process
datum generation stage. When finished, partition result of anchor nodes will be gen-
erated, SPMN stores them in a set-Map{anidx, pidx), where anidx is anchor node
ID and pidx represents the partition ID the anchor node belongs to. After the datum
generation stage, synergistic networks will be partitioned into k partitions accord-
ing to the Map{anidx, pidx) to make the synergistic networks to align to the datum
network, and during this process discrepancy and cut are the objectives to be mini-
mized. We call this process network alignment stage.

Algorithms guaranteed to find out near-optimal partitions in a single network
have been studied for a long period. But most of the methods are stand-alone, and
performance is limited by the server’s capacity. Inspired by the multilevel kK — way
partitioning (MKP) method proposed by Karypis and Kumar [19, 18] and based on
our previous work [1], SPMN uses MapReduce [9] to speedup the MKP method.
As the same with other multilevel methods, MapReduce based MKP also includes
three phases: coarsening, initial partitioning and un-coarsening.

Coarsening phase is a multilevel process and a sequence of smaller approximate
networks G; = (¥, &;) are constructed from the original network Gy = (¥, &) and
so forth, where |%| < |%_1|,i € {1,2,---,n}. To construct coarser networks, node
combination and edge collapsing should be performed. The task can be formally
defined in terms of matching inside the networks [5]. A intra-network matching can
be represented as a set of node pairs .# = {(v;,v;)},i # j and (v;,v;) € &, in which
each node can only appear for no more than once. For a network G; with a matching
MG, if (vj,vi) € A then vj and vy will form a new node v, € ¥4 in network G4
coarsen from G;. The weight of v, equals to the sum of weight v; and vy, besides, all
the links connected to v; or vy in G; will be connected to v, in G 1. The total weight
of nodes will remain unchanged during the coarsening phase but the total weight of
edges and number of nodes will be greatly reduced. Let’s define W(+) to be the sum
of edge weight in the input set and N(-) to be the number of nodes/components in
the input set. In the coarsening process, we have

W (&) = W (&) —W(A5), ©3)
N(is1) = N(H) = N(A). 94)

Analysis in [17] shows that for the same coarser network, smaller edge-weight
corresponds to smaller edge-cut. With the help of MapReduce framework, SPMN
uses a local search method to implement an edge-weight based matching (EWM)
scheme to collect larger edge weight during the coarsening phase. For the conve-
nience of MapReduce, SPMN designs an emerging network representation format:
each line contains essential information about a node and all its neighbors (NN),
such as node ID, vertex weight (VW), edge weight (W), et al. The whole network
data are distributed in distributed file system, such as HDFS [39], and each data
block only contains a part of node set and corresponding connection information.
Function map() takes a data block as input and searches locally to find node pairs
to match according to the edge weight. Function reduce() is in charge of node com-
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Algorithm 5 Synergistic Partitioning (. &)

Require: Network G,
Anchor Link Map Map < anidx, pidx >
Maximum weight of a node maxVW = n/k
Ensure: A coarser network G,
1: Call Synergistic Partitioning-Map Function
2: Call Synergistic Partitioning-Reduce Function

bination, renaming and sorting. With the new node IDs and matching, a simple
MapReduce job will be able to update the edge information and write the coarser
network back onto HDFS. The complexity of EWM is O(|#|) in each iteration and
pseudo code about EWM is shown in Algorithm 4.

After several iterations, a coarsest weighted network Gy consisting of only hun-
dreds of nodes will be generated. For the network size of G, stand-alone algorithms
with high computing complexity will be acceptable for initial partitioning. Mean-
while, the weights of nodes and edges of coarser networks are set to reflect the
weights of the finer network during the coarsening phase, so G; contains sufficient
information to intelligently satisfy the balanced partition and the minimum edge-
cut requirements. Plenty of traditional bisection methods are quite qualified for the
task. In SPMN, it adopts the KL method with an O(|&|*) computing complexity to
divide Gy into two partitions and then take recursive invocations of KL method on
the partitions to generate balanced k partitions.

Un-coarsening phase is inverse processing of coarsening phase. With the ini-
tial partitions and the matching of the coarsening phase, it is easy to run the un-
coarsening process on the MapReduce cluster.

5.3 Distributed Synergistic Partitioning Process

In this section we will talk about the synergistic partitioning process in SPMN based
on the synergistic networks with the knowledge of partition results of anchor nodes
from datum network. The synergistic partitioning is also a MKP process but quite
different from general MKP methods.

In the coarsening phase, anchor nodes are endowed with higher priority than non-
anchor nodes. When choosing nodes to pair, SPMN assumes that anchor nodes and
non-anchor nodes have different tendencies. Let G? be the datum network. For an
anchor node v; in another aligned networks, at the top of its preference list, it would
like to matched with another anchor node v;, which has the same partition ID in
the datum network, i.e., pidx(G?,v;) = pidx(G?,v;) (here pidx(G“,v;) denotes the
community label that v; belongs to in G“). Second, if there is no appropriate anchor
node, it would try to find a non-anchor node to pair. When planing to find a non-
anchor node to pair, the anchor node, assuming to be v;, would like to find a correct
direction, and it would prefer to match with the non-anchor node v;, which has lots
of anchor nodes as neighbors with the same pidx with v;. When being matched
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Algorithm 6 Synergistic Partitioning-Map

Require: Network Gj
Anchor Link Map Map < anidx, pidx >
Maximum weight of a node maxVW = n/k
Ensure: A coarser network Gy,
1: map() Function:
2: for node i in current data bolck do

3 if match[i] == —1 then

4 set flag = false

5: sortByEdgeWeight(NN(i))

6: if vi € Map < anidx, pidx > then

7: for v; € NN(i) & match[j] == —1 do

8 if v; € Map < anidx, pidx > & Map.get(v;) == Map.get(v;) & VW (i) + VW (j) < maxVW then
9: matchli] = j,match[j] =i

10: flag = true, break

11: end if

12: end for

13: if flag == false, no suitable anchor node then

14: for v; € NN(i) & match[jl == —1 & VW (v;) + VW (v;) < maxVW do
15: indirectNeighbor = NN(v;)

16: sortByEdgeWeight(NN(i))

17: for v; € indirectNeighbor do

18: if vi € Map < anidx, pidx > & Map.get(v;) == Map.get(v) then
19: matchli| = j,match[j] =i

20: flag = true, break

21: end if

22: end for

23: if flag == true then

24: break

25: end if

26: end for

27: end if

28: else

29: sortByEdgeWeight(NN(i))

30: for v; € NN(v;) & v; ¢ Map < anidx, pidx > & VW (i) + VW (j) < maxVW & match|j] == —1 do
31: matchli] = j, match[j] = i, break

32: end for

33: end if

34:  endif

35: end for

together, the new node will be given the same pidx as the anchor node. To improve
the accuracy of synergistic partitioning among multiple social networks, an anchor
node will never try to combine with another anchor node with different pidx.

For a non-anchor node, it would prefer to be matched with an anchor node neigh-
bor which belongs to the dominant partition in the non-anchor node’s neighbors.
Here, dominant partition in a node’s neighbors means the number of anchor nodes
with this partition ID is the largest. Next, a non-anchor node would choose a gen-
eral non-anchor node to pair with. At last, a non-anchor node would not like to
combine with an anchor node being part of the partitions which are in subordinate
status. After combined together, the new node will be given the same pidx as the
anchor node. To ensure the balance among the partitions, about % of the nodes in
the coarsest network are unlabeled.

Example 7. In Figure 6, we show a diagrammatic sketch of synergistic partitioning
process. Take network Gy for example, nodes v| — v7 and the corresponding links
information are stored on the same server and the other nodes are stored on another
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Algorithm 7 Synergistic Partitioning-Reduce

Require: Network Gj
Anchor Link Map Map < anidx, pidx >
Maximum weight of a node maxVW = n/k
Ensure: A coarser network Gy,
: reduce() Function:
: new newNodelD[n+ 1]
: new newVW(n+1]
D osetidx =1
: for i € newNodelD[| do
if i < matchli] then
set newNodelD[matchli]] = idx
set newNodelD]i] = idx
set newV W |i] = newVW [matchli)] = VW (i) + VW (matchli[)
idx++
end if
. end for
. new newPuritylidx+ 1]
. new newPidx[idx+ 1]
: for i € [1,idx| do

purity[i)VW (i)+purity[j]+VW (j)

.—.—ﬁ.—.—.—_ﬁ.—
XTI DAERL—OPRIRNH YT

newPurityli] = VIO
newPidx|i] = max{pidx[i], pidx[matchli]] }
. end for

server. Nodes in pairs (vq,v;) and (vj9, v ) are all with the same pidx, so they should
be tackled first. vg and vi5 choose a correct direction to make a pair. Then, v3 can
not pair with vy, so it chooses to combine with v4. Finally, after searching locally, v;
can not find a local neighbor to pair, but has to make a pair with its remote neighbor
Vs.

In addition to minimizing both the discrepancy and cut discussed before, SPMN
also tries to balance the size of partitions are the objectives in synergistic partition-
ing process. However, when put together, it is impossible to achieve them simulta-
neously. So, SPMN tries to make a compromise among them and develop a heuristic
method to tackle the problems.

e First, according to the conclusion smaller edge-weight corresponds to smaller
edge-cut and the pairing tendencies, SPMN proposes a modified EWM (MEWM)
method to find a matching in the coarsening phase, of which the edge-weight is
as large as possible. At the end of the coarsening phase, there is no impurity
in any node, meaning that each node contains no more than one type of anchor
nodes. Besides, a “purity” vector attribute and a pidx attribute are added to each
node to represent the percentage of each kind of anchor nodes swallowed up by
it and the pidx of the new node, respectively.

e Then, during the initial partitioning phase, SPMN treats the anchor nodes as la-
beled nodes and use a modified label propagation algorithm to deal with the
non-anchor nodes in the coarsest network.

e At the end of the initial partitioning phase, SPMN will be able to generate bal-
anced k partitions and to maximize the number of same kind of anchor nodes
being divided into same partitions.

e Finally, SPMN projects the coarsest network back to the original network, which
is the same as traditional MKP process.
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Fig. 6 An Example of Synergistic Partition Process. In coarsening phase, the networks are stored
in two servers, Vi = {v(j)|j < [V!|/2} are stored on a sever and the others are on the other server.
Anchor nodes are with colors, and different colors represent different partitions. Node pairs encir-
cled by dotted chains represent the matchings. Numbers on chains mean the order of pairing.

The pseudo code of coarsening phase in synergistic partitioning process is avail-
able in Algorithm 5, which will call the Map() and Reduce() functions in Algo-
rithms 6 and 7 respectively.

6 Related Works

Clustering aims at grouping similar objects in the same cluster and many different
clustering methods have also been proposed. One type is the hierarchical clustering
methods [14], which include agglomerative hierarchical clustering methods [8] and
divisive hierarchical clustering methods [8]. Another type of clustering methods
is partition-based methods, which include K-means for instances with numerical
attributes [15].

In addition, clustering is also a very broad research area, which include various
types of clustering problems, e.g., consensus clustering [27, 26], multi-view clus-
tering [4, 6], multi-relational clustering [49], co-training based clustering [21], and
dozens of papers have been published on these topics. Lourenco et al. [27] propose
a probabilistic consensus clustering method by using evidence accumulation. Lock
et al. propose a bayesian consensus clustering method in [26]. Meanwhile, Bickel
et al. [4] propose to study the multi-view clustering problem, where the attributes of
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objects are split into two independent subsets. Cai et al. [6] propose to apply multi-
view K-Means clustering methods to big data. Yin et al. [49] propose a user-guided
multi-relational clustering method, CrossClus, to performs multi-relational cluster-
ing under user’s guidance. Kumar et al. propose to address the multi-view clustering
problem based on a co-training setting in [21].

Clustering based community detection in online social networks is a hot re-
search topic and many different techniques have been proposed to optimize certain
measures of the results, e.g., modularity function [30], and normalized cut [38].
Malliaros et al. give a comprehensive survey of correlated techniques used to detect
communities in networks in [28] and a detailed tutorial on spectral clustering has
been given by Luxburg in [45]. These works are mostly studied based on homoge-
neous social networks.

In recent years, many community detection works have been done on heteroge-
neous online social networks. Zhou et al. [63] propose to do graph clustering with
relational and attribute information simultaneously. Zhou et al. [64] propose a social
influence based clustering method for heterogeneous information networks. Some
other works have also been done on clustering with incomplete data. Sun et al. [40]
propose to study the clustering problem with complete link information but incom-
plete attribute information. Lin et al. [25] try to detect the communities in networks
with incomplete relational information but complete attribute information.

7 Summary

In this chapter, we focus on the community detection problem in online social net-
works. Community detection has been demonstrated as an important research prob-
lem especially for online social networks. Section 2 summarizes several existing
community detection methods for one single homogeneous networks, which are
based node proximity, community modularity maximization and spectral cluster-
ing respectively. These single-homogeneous network community detection meth-
ods provides the basis for addressing the problem in more complicated problem
settings, e.g., heterogeneous networks and multiple networks, to be covered in Sec-
tions 3, 4 and 5. Section 3 introduces a novel problem setting based on multiple
aligned heterogeneous social networks, i.e., the emerging network community de-
tection, where the target network lacks sufficient information for detecting effective
community structure in it. In Section 4, we talk about the mutual community detec-
tion of multiple aligned heterogeneous social networks, where information across
these networks can be utilized for mutual community structure refinement. Finally,
Section 5 introduces the synergistic community detection of large-scale social net-
works involving millions even billions of users. Three novel community detection
algorithms CAD, MCD and SPMN have also been introduced in great detail in these
three sections. These three proposed community detection algorithms learn the so-
cial community structures of the multiple aligned networks with the (strong/weak)
supervision of anchor links, based on the assumption that anchor users tend to be
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involved into relatively similar communities in different networks. Meanwhile, they
also take considerations of the network properties at the same time, where each
social network can maintain their characteristics as well.
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