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ABSTRACT Network embedding task aims at learning low-dimension latent representations of vertices
while preserving the structure of a network simultaneously. Most existing network embedding methods
mainly focus on static networks, which extract and condense the network information without temporal
information. However, in the real world, networks keep evolving, where the linkage states between the
same vertex pairs at consequential timestamps have very close correlations. In this paper, we propose to
study the network embedding problem and focus on modeling the linkage evolution in the dynamic network
setting. To address this problem, we propose a deep dynamic network embedding method. More specifically,
the method utilizes the historical information obtained from the network snapshots at past timestamps to
learn latent representations of the future network. In the proposed embedding method, the objective function
is carefully designed to incorporate both the network internal and network dynamic transition structures.
Extensive empirical experiments prove the effectiveness of the proposed model on various categories of
real-world networks, including a human contact network, a bibliographic network, and e-mail networks.
Furthermore, the experimental results also demonstrate the significant advantages of the method compared
with both the state-of-the-art embedding techniques and several existing baseline methods.

INDEX TERMS Social network analysis, network embedding, link prediction, deep learning.

I. INTRODUCTION
Network structured data can effectively model various types
of linked data in the real world, in which nodes represent
entities and edges indicate connections. Mining information
from network is an important problem and is ubiquitous in
real-world applications. For example, the recommendation
system in Youtube or Amazon aims to predict the potential
videos/products users can be interested in, which can be
modeled as a user-item link prediction problem. The key
point for these applications is how to learn useful infor-
mation from network structures. One of the most effec-
tive representation learning approaches for networked data
is network embedding, which aims to map the network
into a low-dimensional space. Such a network embedding
method is proved to be very effective in link prediction or

classification tasks. It is generally applied to static networks
such as bibliographic network, email network and online
social network, etc.

As introduced in [1], few networks in the real-world are
actually static but keep evolving with time. For instance,
bibliographical network [2], online social network [3] and
email network [4] change non-linearly from each snap-
shots. Representation learning for dynamic network is not
an easy task, which needs to model both the network struc-
ture and temporal information properly to preserve network
information.

In the past decades, many network embedding methods
have been proposed. Most of these methods employ shallow
models, such as IsoMAP [5], Laplacian Eigenmaps (LE) [6]
and LINE [7]. They can efficiently extract information from
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a network since the shallow model structure has less cost
in computation. However, the underlying network structure
from high dimension to low-dimensional space is highly non-
linear [8], which cannot be effectively captured by these
methods because of their limited representation abilities.
To solve this problem, some of the deep models such as
SDNE [9], node2vec [10] and DeepWalk [11] have been
proposed. Due to the deep neural network structure, these
methods have a high ability to model the non-linear trans-
formation of network structure. They can preserve linkage
information for each node as well. However, these works
have thus far focused on representation learning for static
networks, in which they only have singular snapshot of nodes
and relationships. To the best of our knowledge, dynamic
network embedding is still an open problem to this context
so far. Some network evolving methods like tRBM [12],
ctRBM [3] are competent to capture the evolution pattern.
However, they have limited ability to predict links due to their
shallow learning process.

Learning embedding from dynamic networks faces the
following great challenges:
• Incorporating structure information: most embedding
approaches try to preserve information of network by
using its current structure. How to incorporate historical
and current dataset to learn future representation is a
great challenge for network embedding.

• Highly non-linear transformations: evolving non-
linearly over time is commonly seen in dynamic net-
works with periodic fluctuations. How to catch these
non-linearities in dynamic linkage changing patterns for
network representation learning is a difficult problem.

• Node interactions: a network can be presented as an
adjacencymatrix in each time slice, where the node local
neighborhood structure can be effectively captured by
the row vectors corresponding to the nodes in the adja-
cency matrix. Generally, most existing network embed-
ding methods take the matrix as an input on the premise
that vectors are independent to each other. However,
interactions between nodes also contain structure infor-
mation. How to model the correlation between nodes
along with the change of network is an important factor
for structure preservation.

In order to address structure information incorporation
problem, we propose to use historical linkage status and
current network structure tomodel network evolving patterns.
Then, employing the trainedmodel to infer the future network
structure. This is motivated by the recent success of dynamic
network learning method, which has been demonstrated to
have a powerful inference ability for link prediction [3].
In particular, our proposed model deploys previous structures
to learn the node presentations of future networks. After that,
the node representations can be used to infer the next linkage
status of network.

In order to capture the non-linear transformations from his-
torical snapshots, we propose a new deep model to learn ver-
tex representations for dynamic networks. This is motivated

by the temporal deep learning model Recurrent Neural Net-
work (RNN), which has achieved substantial success in
modeling sequential data in various disciplines, e.g., natu-
ral language processing and speech recognition. We design
a multi-layer architecture which consists of the encoder
and decoder layers respectively. The encoder layer accepts
sequence data input and learns the latent representation
through multiple non-linear functions successively. Then,
the output is fed to the up-layer for decoding. Since there are
various non-linear functions in encoder and decoder layers,
we can map the historical data into highly non-linear latent
space. As a result, the proposed deep model is able to learn
the complicated transformations of each vertex.

To preserve the information of node interactions, we fur-
ther propose to exploit interaction proximity in the learning
process. As is known that nodes contacted in the history tend
to connect in the future network. The interaction proximity
is designed to measure such contact closeness between two
nodes. Technically, traditional RNN-based deep models take
the input samples independently to each other. It is capable
to capture the transition pattern for each node, but ignores
the correlations between node vectors. Thus, the original
deep model may fail to utilize the abundant node correlation
information to model the evolving patterns and infer network
structure. To resolve such a shortcoming, a novel network
interaction proximity term is introduced in this paper, which
measures the correlations between nodes. The network inter-
action proximity term greatly enriches the proposed deep
dynamic network embedding model, and make it possible to
capture network internal connection structure.

To demonstrate our model’s potential in real world sce-
narios, we conduct experiments on various categories of
real-world networks and evaluate its performance on link
prediction task specifically. All these used network data are
dynamic in a certain time period. The result shows that com-
pared with the state-of-the-art and several existing baseline
methods, the proposed method can infer the networks to be
prominently better and achieve substantial gains on various
networks. Such a result demonstrates that our algorithm has
the capacity to capture the network dynamics the link predic-
tion task.

Our contributions are summarized as follows:
(1) We propose a deep learning model to perform embed-

ding on dynamic networks. The method is able to capture the
non-linear transformations of nodes and preserve dynamic
networks’ structure. To the best of our knowledge, we are
among the first to learn dynamic network representations.

(2) The proposed new deep architecture, which can be
employed as a generative model, to infer dynamic network
embedding by using historical snapshots. It demonstrates a
better performance on link prediction than traditional embed-
ding methods and generative models.

(3) To optimize our deep model, we further intro-
duce the interaction proximity concept, which preserves
the information of node interactions along an evolving
period. The results indicate that the deep model achieves
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substantial gains when interaction proximity has been
considered.

The rest of the paper is arranged as follows. We will first
define several concepts in Section II. Section III discusses
our proposed dynamic network embedding method for link
prediction. Section IV describes the experimental results,
while the conclusions are presented in Section V.

II. PROBLEM DEFINITION
We first generally declare the notations used in this paper,
then we formally define several important terminologies and
introduce the formulation of dynamic network embedding
problem.

A. NOTATIONS
In the sequel of this paper, we will use the lower case letters
(e.g., x) to represent scalars, lower case bold letters (e.g.,
x) to denote column vectors, bold-face upper case letters
(e.g., X) to denote matrices, and upper case calligraphic
letters (e.g., X ) to denote sets. Given a matrix X, we denote
X(i, :) and X(:, j) as the ith row and jth column of matrix X
respectively. The (ith, jth) entry of matrix X can be denoted
as either X (i, j) or Xi,j, which will be used interchangeably
in this paper. We use X> and x> to represent the transpose
of matrix X and vector x. For vector x, we represent its
Lp-norm as ‖x‖p = (

∑
i |xi|

p)
1
p . The Frobenius norm of

matrix X can be represented as ‖X‖F = (
∑

i,j |Xi,j|
2)

1
2 . The

element-wise product of vectors x and y of the same dimen-
sion is represented as x� y, while the element-wise product
of matrices X and Y of the same dimensions is represented
as X� Y.

B. DEFINITIONS
Definition 1 (Network):A network can be represented by a

graph: G =< V, E >, where V = {v1, . . . , vn} refers to a set
of nodes, and E ⊆ |V|×|V| represents a set of links among the
nodes. Each edge e ⊆ E is an unordered pair e = (vi, vj) and
is associated with a weightwij, which indicates the strength of
the relation. For unweighted graph wij = 1 and for weighted
graph, wij > 0.
Considering the input of our deep model is a matrix,

we denote the adjacencymatrix asX ∈ Rn×n. Each row of the
matrix indicates a user’s link vector, which can be presented
as X(i, :). Each element of X is written as Xij, which means
the link state between node i and node j.
Definition 2 (Dynamic Network): In dynamic networks,

we denote a series of snapshots as {Gt−N , . . . ,Gt−1,Gt },
which represent the state of the network at each time slice (N
denotes the target time window size). We follow the dynamic
network settings in [3] that the nodes V remain constant while
the edges Et change when network evolving. Hence, we can
represent graph G at each time t as Gt = (V, Et ).
The adjacency matrix in dynamic network is similar to the

static network except the timestamps. For each time slice t ,
the adjacency matrix is presented as Xt . The element is

written as X tij, which means the link state between node i and
node j at time t .
In practice, a temporal deep model, like RNN, can be

used for sequence data and model its pattern of changes.
However, it treats each sample independently so that vertexes’
interaction over time can not be captured for a dynamic
network. Thus, we further proposed an interaction proximity
that can optimize the temporal deepmodel by taking samples’
correlation into account.
Definition 3 (Interaction Proximity): The interaction prox-

imity describes the closeness between vertexes. For vi and vj,
if they have any linkage at any snapshot, there exists positive
interaction proximity. If no edge is observed, their interaction
proximity is 0.
Intuitively, people are more likely to contact with someone

who has been acquainted before. Such a phenomenon has
been observed in many fields. For example, in co-authorship
network, researchers tend to cooperate with others who have
published papers together. In mail network, most e-mails are
sent to the people you have contacted before. The interaction
proximity considers connections through all snapshots, then it
use this contact frequency to define the acquaintance between
users. Therefore, it can highly enrich the relationship of
vertexes, and it is able to preserve contact information and
alleviate network embedding problem.
With a deep model and interaction proximity, we investi-

gate the problem of how to integrate them simultaneously to
model the structure evolving for dynamic network represen-
tation learning. Formally, the problem is defined as follows:
Definition 4 (Deep Dynamic Network Embedding): Given

a network with temporal information G, it can be sliced into
a series snapshots as {Gt−N , . . . ,Gt−1,Gt }. The dynamic net-
work embedding problem aims to learn the low-dimensional
latent representations Xt

∈ Rn×d by using historical net-
works Gh = {Gt−N , . . . ,Gt−1}. The latent embeddings with
dimension d � |V| are able to capture and recover the
network structure at time t . A general learning and inference
process is illustrated in Figure 1.

III. DDNE: DEEP DYNAMIC NETWORK EMBEDDING
In this section, we present a general framework, DDNE,
which is capable of learning desirable node representa-
tions in dynamic networks. This framework is inspired by
RNNsearch [13], which is proposed to cope with machine
translation problem. Most of the neural machine translation
models belong to a family of encoder-decoders [14], [15],
which takes each sample independently for both encoder and
decoder. However, our proposed method is well reshaped
and the correlations between samples are fully consid-
ered to preserve information of networks. In the subsec-
tion, we first introduce the gated recurrent unit. Then,
we explicitly describe the proposed new architecture of deep
dynamic embedding method. After that, we introduce the
loss functions and the optimization of the algorithm. At last,
we further discuss the training and inference of DDNE
model.
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FIGURE 1. Learning and inference process of link prediction.

TABLE 1. Terms and notations.

Before introducing the deep dynamic embedding model,
we define some of the terms and notations in Table 1 which
will be used later. Note that the adjacency vector con-
tains input and target vectors, which is divided by different
timestamps.

A. PRELIMINARY: GATED RECURRENT UNIT
A gated recurrent unit (GRU) was proposed by Cho et al. [17]
to make each recurrent unit to adaptively capture depen-
dencies of different time scales. Empirical experiments on
sequential datasets demonstrated that the RNNs with the
gating units (GRU-RNN and LSTM-RNN) clearly outper-
formed the traditional tanh-RNN in terms of prediction accu-
racy or convergence speed. Furthermore, the performance of
GRU and LSTM is so comparable but the GRU generally
makes faster progress than LSTM in terms of both the number
of updates and actual CPU time [18]. Thus, we take the GRU
as encoder units to modeling the dynamic network data.

The GRU structure is illustrated in Figure 2, and the func-
tions are defined as follows:

zt = σ (Wzxt + Uzht−1)
rt = σ (Wrxt + Urht−1)
h̃t = tanh(Wxt + U(rt � ht−1))
ht = (1− zt )� ht−1 + zt � h̃t

The GRU can be treated as a black box. Given the current
input xt and previous hidden state ht−1, theymerge two inputs
and compute the current hidden state ht in some way. This
mechanism provides an effective way to preserve historical

FIGURE 2. Framework of GRU [16].

information for each node, and we can use it to encode the
network evolution process.

B. ENCODER-DECODER OF DDNE
In this paper, we proposed a deep architecture to perform
dynamic network embedding, whose framework is shown
in Figure 3. In detail, to capture the historical dynamic pat-
tern, we leverage a GRU to map the input sequence to a
fixed-sized vector. This process can be treated as a GRU
unfolds along with a series of time slices. We feed the input
to the unit at each time slice and the unit calculates and
updates a hidden state over time. Since GRU is known to
learn problems with long range temporal dependencies and
fast convergence, it makes the encoder efficient to capture the
dynamic pattern by mapping the input to a highly non-linear
latent space. However, the learning process of GRU takes
each sample independently, while the correlations between
samples have not been considered. To address this problem,
we propose the interaction proximity to exploit the pair-
wise closeness between vertexes. Specifically, the proposed
interaction proximity tries to map two frequently-connected
vertexes into similar latent space. This can be achieved by
optimizing the similarity of the hidden states between two
vertexes. By using GRU units and computing interaction
proximity, the encoder can preserve the historical information
and capture the transitional patterns of dynamic networks.
Additionally, we further design the decoder component to
learn the embedding of future network, by leveraging the
transitional information captured by encoder. For the decoder
part, we extend a Deep Neural Network (DNN) to embed
the output of encoder into a hidden layer. This hidden layer
preserves all structure informations of new network and
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condense each node’s information into a k-dimension vec-
tor. The output of decoder is an inferable adjacency vector,
which can be used to fit the new linkage state. We define a
structure loss to describe the deviation between inference and
new linkage. By jointly optimizing the interaction proximity
and structure loss in the proposed encoder-decoder model,
DDNE can preserve the highly-nonlinear dynamic network
structure and generate the new networks embedding well.
In the following section, we will introduce how to realize the
supervised deep model in detail.

C. LOSS FUNCTIONS
The loss function for the supervised deepmodel has two com-
ponents. We first introduce the structure loss, which exploits
the nodes’ transitional patterns to preserve and predict the
network dynamic transition structures.

The structure loss refers to how precise the predicted
structure is. Thus, to minimize this deviation, it is required
to model neighborhood’s transition of each vertex. Given
a dynamic network G, we first slice it evenly into sev-
eral snapshots {Gt−N , . . . ,Gt−1,Gt }. Then, we can obtain
its adjacency matrix X = {Xt−N , . . . ,Xt−1,Xt

}. For
each adjacency matrix Xk , k ∈ [t − N , t], it contains n
instances Xk (i, :), . . . ,Xk (n, :). The value of each instance is
Xk (i, :) = {X kij }

n
j=1, X

k
ij > 0 if and only if there exists

connection between vi, vj during the time slice k . Therefore,
there are various neighborhood structures for each vertex in
a series of timestamps, and X provides the neighborhood
structure and the temporal information of each node. With
temporal adjacency matrices in X , we adapt the encoder-
decoder model to capture the transitional patterns and predict
new network structure.

To further analyze the preserving and inference process,
we briefly review the key idea of encoder-decoder model.
As we emphasized in the last section, the deep model is
composed of two parts, i.e. the encoder and the decoder. The
encoder is a GRU that reads each symbol of an input sequence
x sequentially. As it reads each symbol, the hidden state of the
GRU changes as:

ht = f (ht−1 + xt ), (1)

where f is a non-linear activation function. It is presented
as an assemblage of GRU functions. After reading the end
of the sequence, the output of encoder is a summary of
all hidden states of the GRU. The decoder also consists
of multiple non-linear functions, which maps the summary
hidden states into representation space to infer network struc-
ture. Specifically, for one node i, given the temporal inputs
X(i, :) = {Xt−N (i, :), . . . ,Xt−1(i, :)}, the summary state for
the encoder is shown as follows:

ci = [ht−Ni , . . . ,ht−1i ] (2)

hki = [
−→
h k
i ,
←−
h k
i ], k = {t − N , . . . , t − 1} (3)

−→
h k
i = f (

−→
h k−1
i +

−→
X k (i, :)), (4)

←−
h k
i = f (

←−
h k−1
i +

←−
X k (i, :)), (5)

where
−→
h k
i and

←−
h k
i are based on Eq.(1), but they are fed

with opposite time sequences as
−→
X (i, :) = {Xt−N (i, :),

. . . ,Xt−1(i, :)},
←−
X (i, :) = {Xt−1(i, :), . . . ,Xt−N (i, :)}. Two

reversed hidden states are concatenated into hki , then all
hidden states concatenated into the summary state ci. After
obtaining ci, the hidden representations for each layer of
decoder are presented as follows:

y(1)i = σ (W
(1)ci + b(1)) (6)

y(m)i = σ (W
(m)y(m−1)i + b(m)), m = 2, . . . ,M (7)

whereM is the number of hidden layer. After the calculation
process of decoder, we can obtain the output y(M )

i as the new
structure inference X̂t (i, :). The goal of decoder is minimizing
the prediction error so that the output X̂t (i, :) can fit the
linkage state Xt (i, :). We adopt cross entropy as the loss
function, which is formulized as:

`s = −

n∑
i=1

Xt (i, :)logX̂t (i, :)

= −

n∑
i=1

n∑
j=1

X t (i, j) log X̂ t (i, j) (8)

As a well-known assumption in dynamic network realms
demonstrated, each vertex has a unique transitional pattern
through time slices [3]. By mapping the relevant information
to latent space, the encoder has the exponential capability to
capture non-linear variance. Furthermore, by minimizing the
structure loss, the decoder can use the transition information
to perform embedding and infer structure of the new network.

However, such a supervised learning process cannot be
directly applied to our problems because of sparsity of net-
works. In the real-world networks, we observed that most
of the nodes have limited number of neighbors. Such a phe-
nomenon can be found in the adjacency matrix, in which the
number of non-zero elements is far less than that of zero
elements. Thus, if we directly use Xt (i, :) as the learning
target, the decoder is prone to predict the zero elements in
the output vector. To address this problem, we impose more
penalty to the prediction error of the non-zero elements than
that of zero elements. Accordingly, the revised cross-entropy
loss function is presented as:

Ls = −
n∑
i=1

Z(i, :)� Xt (i, :)logX̂t (i, :)

= −

n∑
i=1

n∑
j=1

Z (i, j)X t (i, j) log X̂ t (i, j) (9)

where Z(i, :) = {Z (i, j)}nj=1. If X (i, j) = 0, Z (i, j) = 1,
else Z (i, j) = α > 1. Now by using the enhanced decoder
model, the loss of non-zero elements can be highlighted and
the linkage information will be preserved. Thus, the nodes’
transitional patterns can be exploited to preserve and predict
the network dynamic structure.
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FIGURE 3. Framework of DDNE.

In a dynamic network, each node has a unique transitional
pattern, however, a node’s behavior is also influenced by
its local neighbors [3]. How to quantify the influence and
preserve network internal structure are important. We address
this problem by embedding the interaction proximity into
the deep learning structure. The interaction proximity can
be regarded as the closeness of a pair of nodes, which is
measured by using their links in the previous snapshots. Intu-
itively, two nodes that have frequent connections are more
likely to have similar latent representations. To formulate this
idea, we define the loss function as follows:

Lc =
n∑

u,v=1

Nij‖ci − cj‖2 (10)

where Nij is the connection frequency of node i and j. If i, j
have no edges in the historical network, Nij = 0, else Nij
is amount of edges. We impose a penalty when similar nodes
are mapped far away in the latent space. Thus, the frequently-
connected nodes can have similar embeddings and tend to
connect in the future network.

To capture the transition pattern and interaction proximity
simultaneously, we propose a deep model to combine two
loss functions and jointly minimize the following objective
function:

Lall = Ls + βLc + γLreg

= −

n∑
i=1

Z(i, :)� Xt (i, :)logX̂t (i, :)

+β

n∑
i,j=1

Nij‖ci − cj‖2 + γLreg (11)

where β and γ are hyper parameters to make a trade off all
loss functions. Lreg is an L2-norm regularizer term to prevent

overfitting problem, which is defined as follows:

Lreg = ‖Wz‖F + ‖Wr‖F + ‖W‖F

+‖Uz‖F + ‖Ur‖F + ‖U‖F +
M∑
m=1

‖W(m)
‖F (12)

D. TRAINING AND INFERENCE ON DDNE
Since our proposed deepmodel has an encoder-decoder archi-
tecture, training and inference is no more difficult than in
the sequence to sequence methods. We first make a forward
propagation to calculate the loss, then back propagate the
loss and update parameters to make model fit the inputs.
In detail, we use the stochastic gradient descent (SGD) algo-
rithm Adadelta [19] to automatically update and learn param-
eters. According to Eq.(1) to Eq.(7), the interaction proximity
loss Lc can be summarized as:

Lc = fen(Wz,Wr ,W,Uz,Ur ,U) (13)

Then, the structure loss is:

Ls = fall(Wz,Wr ,W,Uz,Ur ,U,W(m),b(m)) (14)

The regularizer function in Eq.(12) also can be presented as:

Lreg = freg(Wz,Wr ,U,Uz,Ur ,U,W(m)) (15)

Now, the updates for the weightsWz,Wr ,W,Uz,Ur ,U have
the same form as follows:

Wz =Wz − λ(∇fall(Wz)+ β∇fen(Wz)+ γ∇freg(Wz))

(16)

The parametersW(m),b(m) update as follows:

W(m)
= W(m)

− λ(∇fall(W(m))+ γ∇freg(W(m)))

b(m) = b(m) − λ∇fall(b(m)), (17)
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TABLE 2. Statistics of networks.

where λ is the learning rate, and ∇f (W) is the gradient of f
at W. We train the model following the update rules above.
After that, model parameters are fixed and predicting future
network status follows the similar reason with inferencing.
Specifically, we can shift the window one step towards future
to obtain a fixed observation which contains the previous
N − 1 snapshots and the current snapshot. We fix this known
observation as history, put it into deep model and perform a
forward inference to get the network embeddings at t + 1.
Now, these embeddings can be used to reconstruct network
structure at t + 1.

IV. EXPERIMENTS
In this section, we present both quantitative and qualitative
experiment results on four real-word datasets. The experi-
ment results demonstrate the effectiveness of the proposed
DDNE model for dynamic network embedding.

A. DATASETS
In this paper, we use four datasets, including two email
networks, one collaboration network and one human contact
network, for two real-world applications, i.e. link prediction.
They are available online in the Koblenz Network Collection
(http://konect.uni-koblenz.de/). All networks have different
sizes and attributes. Their statistic properties are shown in the
Table 2.

The arXiv dataset [2], [20] is a collaboration graph of
scientific paper authors from the arXiv’s High Energy Physics
- Phenomenology (hep-ph) section. This dataset has 10 years
evolution history, ranging from 1991 to 2001, and the data
increase steady in recent years. Hence, we chose five years
(1995 - 1999) as five snapshots for our experiment. Each
snapshot contains one-year network structure, and the last
snapshot can be used as ground-truth of network inference.

Two email datasets (Enron and Radoslaw) contain email
communication networks from two companies. For Enron
email network [21], [22], it consists of 1,148,072 emails sent
among employees of Enron between 1999 and 2003. For
Radoslaw dataset [23], [24], it is the internal email commu-
nication network between employees of a mid-sized manu-
facturing company from 2010-01-01 to 2010-09-30. Nodes
in both networks are individual employees and edges are
individual emails. We sample five snapshots from Enron in
every half year during 2001-01 to 2002-06 and denote them
as E1 to E5. Radoslaw dataset is divided into nine slices (R1
to R9) ranging from January to September. We only extract
five snapshots(R1 to R5) for link prediction experiments.

The Haggle dataset [25], [26] is a real human contact net-
work. This undirected network represents contacts between
people measured by carried wireless devices. A node rep-
resents a person, and an edge between two persons shows
that there was a contact between them. This dataset contains
five-day records of 274 persons and we split it into five parts
(H1 to H5) based on each day.
To summarize, we adopt five snapshots of temporal

datasets for link prediction task. The first snapshot is used
to construct the basic network, which contains all the nodes
through all time slices. Snapshots 2, 3 and 4 are used for
training models. After model training, we move one step
forward, snapshots 3, 4 now can be adopted to inference
the embedding and structure of snapshot 5. The ground-truth
network structure in the last snapshot is used to validate
inference result.

B. EVALUATION SCHEME
For link prediction task, we are trying to leverage historical
linkage information to infer the embedding and structure
of current network. It is essentially a binary classification
problem. Given n nodes, we try to predict which pair of nodes
will generate an edge. However, only a very small fraction
of links actually exists, which will lead to a data imbalance
problem.

Our experiments show that the existing links only con-
stitute less than 1% of all possible links. This means
that if we set all prediction result to zero, we can still
achieve a high accuracy evaluation. Thus, in order to
evaluate the performance properly, we use the following
measurement:
• Area Under the ROC Curve (AUC): it is frequently
employed on classification problem because it relates
to the sensitivity (true positive rate) and the specificity
(true negative rate) of a classifier. This metric is strictly
bounded between 0 and 1. The larger the AUC is, the bet-
ter the model performs.

• Mean Average Precision (MAP): mean average preci-
sion is an extension of average precision (AP) where
we take average of all AP’s to get the MAP. It estimates
precision for every node and computes the average over
all nodes. Compared with AUC, it considers whether
all of the relevant items tend to get ranked highly. It is
calculated as follows:

MAP =

∑n
1 AP(i)
|V |

(18)

AP(i) =

∑
j precision@j(i) ·1i(j)

|{1i(j) = 1}|
(19)

where precision@j(i) =
|Epredi (1:j)∩Eobsi |

j , and Epredi and
Eobsi are the predicted and observed edges for node i
respectively. 1i(j) = 1 indicates that vi and vj have a
link. V is the query set for information retrieval. In our
experiments, it represents a node set.
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C. BASELINE METHODS
We use various methods as the baselines, which include
unsupervised learning methods such as Common Neighbors,
Katz [27], generative models tRBM and ctRBM, and net-
work embedding algorithms such as DeepWalk, node2vec
and SDNE. We make a full comparison with these baselines
to show the capability of our embedding method in the task
of link prediction. The brief introduction of baselines is listed
as follows:
• Common Neighbors (CN): The CN metric is one of the
most widespread measurements used in link prediction
problem. A large number of the common neighbors
make it easier to have a link between two nodes.

• Katz [27]: It is based on the ensemble of all paths, and
it counts all paths with different weights between two
nodes.

• temporal Restricted Boltzmann Machine (tRBM) [12] :
A RBM based model which takes adjacency matrixes as
inputs. It can be used to describe network’s dynamics
and predict network structure.

• conditional temporal Restricted Boltzmann
Machine (ctRBM) [3]: A tRBM based model embeds
the information of neighbor nodes.

• DeepWalk [11]: It adopts random walk and skip-gram
model to generate network representations. The repre-
sented embeddings can be used to predict linkage state
of network.

• node2vec [10]: Similar to DeepWalk, node2vec pre-
serves higherorder proximity between nodes by max-
imizing the probability of occurrence of subsequent
nodes in fixed length random walks [28].

• SDNE [9]: It is an autoencoder based deep model, which
defines loss functions of the first-order or second-order
proximity to preserve network internal and network
dynamic transition structures.

D. PARAMETER SETTINGS
We proposed a deep model in this paper, which can represent
network into a low dimension space. It has different embed-
ding sizewith different datasets. For the small datasets such as
Radoslaw (151 nodes) and Haggle (91 nodes), we set the out-
put has the same size as the input. For the large datasets such
as ArXiv (4122 nodes) and Enron(11670 nodes), the dimen-
sion of output is set to 1024. If we use higher dimensionality,
the performance almost remains unchanged or even becomes
worse. The hyper-parameters of α, β and γ are tuned by
using grid search on the validation set. For different datasets,
the parameters for baselines are different, and all are tuned to
be optimal. Other default settings include: the learning rate
of deep model is set as 0.0001; the history window size is
set to 2 so that we can infer the embedding by two historical
snapshots.

E. EXPERIMENTAL RESULTS
After setting the parameters, we conduct the link prediction
task in four real-world networks. We first leverage historical

TABLE 3. AUC on different datasets of the link prediction.

snapshots and current linkage status to train DDNE model.
After training, as all parameters are adapted to the dataset,
we shift the window one step towards future to obtain a fixed
observation which contains the previous N − 1 snapshots
and the current snapshot. Now, the DDNE is performed as
a generative model. We fix this known observation as history,
and put it into deep model, such that we can obtain the
representations for each vertex and then use the obtained
representations to predict the network status at t + 1. For the
generative models such as tRBM and ctRBM, we adopt the
same strategy for the experiments. For embedding methods
such as DeepWalk, node2vec, SDNE, a combined historical
network that merges all previous snapshots into one graph
is directly employed. As Wang et al. [9] and Grover and
Leskovec [10] demonstrated, they can learn the represen-
tations of each vertex and then make predictions for the
unobserved links.

Table 3 compares AUC performances over the four
datasets described in Section IV.A, in which DDNE-without
IP is the proposed model without Interaction Proximity.
The result shows that DDNE achieves the best among all
baselines regardless whether the network is very sparse
(Enron) or dense (Radoslaw, Haggle). It is worth noting that
conventional embedding methods do not perform better than
other baselines, since they only preserve the structure infor-
mation but ignore the transitional information of dynamic
networks. In the proposed method, both the structure infor-
mation and transition of networks are well considered so
that it is capable to infer the new networks’ status. Fur-
thermore, we find that the DDNE has better performances
than the DDNE-without IP, which indicates the interaction
information effectively facilitates the embedding and infer-
ence of new network. To further specify the AUC results
of DDNE model, we illustrate the Receiver Operating Char-
acteristic (ROC) on four datasets. The illustration is shown
in Figure 4. For each dataset, there are different number of
thresholds since they have different amount of samples. The
area under the ROC curve equals to the AUC result, which
is presented in Table 3. We adopt sklearn [29] to complete
the ROC calculation. It worth noting that sklearn sometimes
decides to drop some non-useful thresholds, resulting in
thresholds to be less than distinct values.

Table 4 reports MAP performances on link prediction.
Similar results can be achieved as in the AUC evaluation.
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FIGURE 4. Experiments on ROC curve. (a) ROC curve on arXiv. (b) ROC curve on Enron. (c) ROC curve on Radoslaw.
(d) ROC curve on Haggle.

TABLE 4. MAP on different datasets of the link prediction.

The proposed method achieves substantial gains than bench-
marks. An interest finding is that DDNE-without IP performs
slightly better than DDNE on Enron dataset. This is because
in the sparse network, the user interactions are rare through
all snapshots, DDNE may not capture these interactions in
training process.

To further explore the experimental results, we conduct a
statistical analysis to examine whether the DDNE’s perfor-
mance is significantly different from baselines. Generally,
there are several tests to investigate statistical significance,
such as student’s t-test, ANOVA tests etc. We decide to
use two-sample t-test since it can determine whether two
population means are different. Specifically, we first conduct
30-time experiments for each method and each dataset
so that we obtain 30 samples for a method-dataset pair.

TABLE 5. P value analysis about AUC.

Then, we adopt t-test to compare our proposed model DDNE
with each baseline. The output of t-test is a p-value, which
indicates the strength of observations against null hypothesis.
In our experiments, a small p-value (typically ≤ 0.05) indi-
cates that the means of two method-dataset results are signif-
icantly different. Table 5 and Table 6 present the statistical
results of two metrics. Some elements in the table have the
type like xE − y, which means x ∗ 10−y. From the tables,
we can see that except for the AUC result with DDNE and
Katz (p-value=0.058), the proposed model performs signif-
icantly different than all baselines in terms of four datasets.
These p-values also give strong backing to the AUC andMAP
results in Table 3 and Table 4.

F. PARAMETER SENSITIVITY ANALYSIS
We further investigate the parameter sensitivity in this
section. Specifically, we evaluate how different length of
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FIGURE 5. Experiments on parameters sensitivity. (a) The performances on Radoslaw with increasing historical snapshots. (b) The performances
on four datasets with increasing α. (c) The performances on four datasets with increasing β.

TABLE 6. P value analysis about MAP.

the historical time and different values of hyper-parameter
α and β can affect the link prediction results.

1) INFLUENCE OF HISTORY LENGTH
In our work, three datasets are split into five snapshots, while
only Radoslaw dataset has nine time slices. Thus, we conduct
this experiment on Radoslaw to examine how the differ-
ent choices of parameters affect the performance of DDNE.
We vary the number of historical snapshots from 1 to 7,
to demonstrate the effect of varying this parameter. Except
for the parameter being tested, all other parameters assume
default values. The result shows that DDNE is not very
sensitive to the number of historical snapshots. As we can see
in Figure 5(a) there is no significant accuracy improvement
after the number of snapshots increases. The reason is that a
small dense network may have similar linkage states in each
snapshot, and the increment of historical links does not enrich
the information for network inference.

2) INFLUENCE OF HYPER PARAMETER α
In our model, we set α as a hyper parameter to control the
inference weight of the non-zero elements in training graph.
The larger the α, the model will more prone to predict the
non-zero elements. The result is shown in Figure 5(b). For
the sparse networks such as ArXiv and Enron, we can see
that the performance raises and then keep stable when the
weight of the non-zero elements increases. This is intuitive
as the model pay more attention on linked nodes so that it
can preserve linkage information among tremendous non-
link node pairs. However, for the dense networks (Radoslaw
and Haggle), the performance has no improvement and even

being worse when the weight α increases. This is because the
non-zero and zero elements in training network is balanced,
too large a weight on non-zero elements may overwhelm the
zero elements and also introduce noises to deteriorate the
performance. Therefore, it is always important to determine
the weight of non-zero elements for each type of networks.

3) INFLUENCE OF HYPER PARAMETER β
The parameter of β balances the weight of the structure loss
and interaction proximity. When β = 0, the performance
is totally determined by structure loss. The larger the β,
the more the model concentrates on interaction proximity.
When β = 1, both loss functions have same contributions
to the performance. As we can see from Figure 5(c), the eval-
uation metric AUC raises when the parameter β increases.
However, when the weight of interaction proximity contin-
uously increases, the performance starts to drop slowly. The
reason is that too much interaction proximity may overwhelm
the structure loss, and then it deteriorates the performance.
It also demonstrates that both structure loss and interaction
proximity are essential for network embedding methods to
characterize and infer the network structure.

V. CONCLUSIONS
In this paper, we propose a Deep Dynamic Network Embed-
ding, namely DDNE, for link prediction task. Specifically,
to model the evolving pattern of each node, we design a
new deep architecture, which can leverage historical linkage
to make an embedding for new links. To further address
the neighbor’s influence problem, we exploit the interaction
proximity in the hidden state to measure the similarity of
nodes. By jointly optimizing them and put more weight on
non-zero elements of output, the learned embeddings are
new-linkage-preserved and are robust to sparse networks.
Empirically, we compare the proposed model with traditional
embeddingmethods and state-of-the-art link predictionmeth-
ods in a variety of datasets. Experiment results demonstrate
that we achieve significant gains than other baselines.

Our future work will focus on how to learn representa-
tions for heterogeneous networks which have different type
of nodes and edges. Furthermore, we will try to reduce the
computation complexity of the proposed deep model.
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