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Abstract Many famous online social networks, e.g., Facebook and Twitter, have achieved
great success in the last several years. Users in these online social networks can estab-
lish various connections via both social links and shared attribute information. Discovering
groups of users who are strongly connected internally is defined as the community detection
problem. Community detection problem is very important for online social networks and has
extensive applications in various social services. Meanwhile, besides these popular social
networks, a large number of new social networks offering specific services also spring up
in recent years. Community detection can be even more important for new networks as high
quality community detection results enable new networks to provide better services, which
can help attract more users effectively. In this paper, we will study the community detection
problem for new networks, which is formally defined as the “New Network Community
Detection” problem. New network community detection problem is very challenging to
solve for the reason that information in new networks can be too sparse to calculate effec-
tive similarity scores among users, which is crucial in community detection. However, we
notice that, nowadays, users usually join multiple social networks simultaneously and those
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who are involved in a new network may have been using other well-developed social net-
works for a long time. With full considerations of network difference issues, we propose to
propagate useful information from other well-established networks to the new network with
efficient information propagation models to overcome the shortage of information problem.
An effective and efficient method, CAT (Cold stArT community detector), is proposed in
this paper to detect communities for new networks using information from multiple hetero-
geneous social networks simultaneously. Extensive experiments conducted on real-world
heterogeneous online social networks demonstrate that CAT can address the new network
community detection problem effectively.

Keywords Community detection · Cold start problem · Transfer learning · Data mining

1 Introduction

Clusters in a network are defined as groups of nodes which are strongly connected in the
group but loosely connected to nodes in other groups. Depending on specific disciplines,
networks studied in clustering problems can be very diverse, which include online social
networks, e.g., Twitter and Facebook [40]; biological networks, e.g., between-species inter-
action networks [37] and protein-protein interaction networks [16]; bibliographic networks,
e.g., DBLP [35]; e-commerce networks, e.g., Amazon and Epinions [15]. Discovering clus-
ters of user nodes in social networks can be formally defined as the community detection
problem [16, 21, 35, 37, 40].

Community detection is a very important problem for online social networks as it is
a crucial prerequisite for many concrete social services: (1) better organization of users’
friends in online social networks, e.g., Facebook and Twitter, which can be achieved by
applying community detection techniques to partition users’ friends into different clusters,
e.g., schoolmates, family, celebrities, etc.; (2) better group-level recommender systems for
users in e-commerce social sites, e.g., Amazon and Epinions, which can be reached by
grouping users with similar purchase interests into the same cluster; (3) better identification
of influential users [38] in online social networks, which can be attained by selecting the
most influential users in each community and these influential users can usually act as the
seed users in viral marketing [31].

Meanwhile, witnessing the incredible success of popular online social networks, e.g.,
Facebook and Twitter, a large number of new social networks offering specific services also
spring up overnight to compete for the market share. Generally, new networks are those
containing very sparse information and can be (1) the social networks which are newly con-
structed and start to provide social services for a short period of time; or (2) even more
mature ones that start to branch into new geographic areas or social groups [47]. The for-
mal mathematical definition of “new networks” and “developed networks” is available in
Section 3. These new networks can be of a wide variety, which include (1) location-based
social networks, e.g., Foursquare and Jiepang; (2) photo organizing and sharing sites, e.g.,
Pinterest and Instagram; (3) educational social sites, e.g., Stage 32.

Considering its wide applications in various concrete social services, community detec-
tion can be more important for new networks because high-quality community detection
results enable new networks to provide better services, which can help attract user reg-
istration effectively. However community detection in new networks is a novel problem
and conventional community detection methods for well-developed networks cannot be
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applied directly. In the new network, there is relatively little information about each user,
which results in an inability to classify users into communities. Therefore compared with
well-developed networks, information in new networks are too sparse to support tradi-
tional community detection methods to calculate effective closeness scores and achieve
good results. Meanwhile, as proposed in [12, 46, 47, 52], users nowadays usually partici-
pate in multiple social networks simultaneously to enjoy more social services. Users who
are involved in a new network may have been using other well-developed social networks
for a long time, in which they can have plenty of information.

In this paper, we will detect social communities for new networks with information
propagated across multiple partially aligned social networks, which is formally defined as
the “new network community detection” problem. Especially, when the network is brand
new, the problem will be the “cold start community detection” problem. Cold start prob-
lem is most prevalent in recommender systems [46], where the system cannot draw any
inferences for users or items about which it has not yet gathered sufficient information,
but few works have been done on studying the cold start problem in clustering/community
detection problems. We are the first to propose the concepts of “new network commu-
nity detection” problem and “cold start community detection” problem. Meanwhile, we
are also the first to study community detection problem across partially aligned het-
erogeneous networks. The “new network community detection” problem and “cold start
community detection” problem studied in this paper are both novel problems and totally
different from other existing works on community detection. A detailed comparison of the
“new network community detection” problem with some related problems is available in
Table 1.

Despite its importance and novelty, the “new network community detection” studied in
this paper is also very challenging to solve due to the following reasons:

– network heterogeneity problem: Proper definition of closeness measure among users
with link and attribute information in the heterogeneous social networks is very
important for community detection problems.

– shortage of information: Community detection for new networks can suffer from the
shortage of information problem, similar to the “cold start problem” in [46, 47].

– network difference problem: Different networks can have different properties. Some
information propagated from other well-developed networks can be useful for solving
the new network community detection problem but some can be misleading on the other
hand.

– high memory space cost: Community detection across multiple aligned networks can
involve too many nodes and connections, which will lead to high space cost.

To solve all the above challenges, a novel community detection method, CAT, is pro-
posed in this paper: (1) CAT introduces a new concept, intimacy, to measure the closeness
relationships among users with both link and attribute information in online social net-
works; (2) CAT can propagate useful information from aligned well-developed networks to
the new network to solve the shortage of information problem; (3) CAT addresses the net-
work heterogeneity and difference problems with both micro-level and macro-level control
of the link and attribute information proportions, whose parameters can be adjusted by CAT

automatically; (4) effective and efficient cross-network information propagation models are
proposed in this paper to solve the high space cost problem.

This paper is organized as follows. We first analyze the dataset in Section 2 and formulate
the problem in Section 3. Detailed description of the methods is introduced in Sections 4–6.
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Table 1 Summary of related problems

New Network Social Influence Clustering with Clustering with Clustering with

Community based Complete Links Incomplete Incomplete

Property Detection Clustering [54] & Attributes [53] Attributes [35] Links [17]

# networks multiple multiple single single single

original decomposed

networks networks

network type heterogeneous homogeneous heterogeneous heterogeneous heterogeneous

or bipartite

connections anchor links connections across n/a n/a n/a

across networks decomposed

subnetworks

network aligned? partially aligned n/a n/a n/a n/a

incomplete? yes no no yes yes

incomplete both links n/a n/a attributes only links only

information

and attributes

has cold start yes no no no no

problem?

In Section 7, we show the experiment results. The related works are given in Section 8.
Finally, we conclude the paper in Section 9.

2 Observation

In this section, we analyze the data from both developed networks, for example, Twitter
and new networks, such as Foursquare, and get the following observations related to the
community detection.

1. The network structure of the new social network is sparse.

According to the market report from DRM1, by the end of 2013, the total number of
registered users in Foursquare has reached 45 million but these Foursquare users have only
post 40 million tips. In other words, each user has posted less than one tip in Foursquare
on average. Meanwhile, the 1 billion registered Twitter users have published more than 300
billion tweets by the end of 2013 and each Twitter user has written more than 300 tweets. We
also provide a statistics investigation on the datasets, including both Foursquare and Twitter,
used in this paper, whose basic information is listed in Table 2. The most straightforward
way to show the sparsity of a graph is the graph density, which is defined as D = |E|

|V|×(|V|−1)

in a directed graph, we first check this criteria of two networks. Twitter’s graph density is
0.6047 %, while this score of Foursquare is 0.2648%. Since the distinction between sparse
and dense graphs is rather vague, and depends on the context, in this situation, we can say

1http://expandedramblings.com

http://expandedramblings.com
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Table 2 Properties of the
Heterogeneous Social Networks Network

Property Twitter Foursquare

# node user 5,223 5,392

tweet/tip 9,490,707 48,756

location 297,182 38,921

# link friend/follow 164,920 76,972

write 9,490,707 48,756

locate 615,515 48,756

Foursquare is much more sparse than Twitter. We further study the information distribution
of two networks, and results are given in Figure 1. As shown in Figure 1a–c, users in Twitter
have far more social connections, posts and location check-ins than users in Foursquare. The
figures illustrate the shortage of information encountered in community detection problems
for new networks can be a serious obstacle for traditional community detection methods to
achieve good performance and is urgent to solve.

Figure 1 Information and anchor user distributions in Foursquare and Twitter. a: social degree distribution,
(b): number of check-ins distribution, (c): number of posts distribution, (d): number of anchor users in a
random sample of Foursquare users
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Figure 2 A Social Login Example

2. Different networks are connected by anchor links.

To describe the structure of networks sharing common users, we define the shared users
across different networks as the anchor users, while the remaining unshared users are for-
mally defined as the non-anchor users. Links between accounts of anchor users in partially
aligned networks are defined as the anchor links and networks partially aligned by the
anchor users are named as the partially aligned networks. Anchor users are abound in real-
world social networks. Most emerging social networks provide users with the option to log
in the network with their existing Facebook or Twitter accounts, via which these emerg-
ing networks can get aligned with Facebook and Twitter extensively. For example, when
users log in Spotify2, a music, podcast, and video streaming service, they can choose using
their Facebook accounts to log in, shown as Figure 2a. On the other hand, when users con-
nect their Facebook accounts with Spotify, Spotify icon will appear on the users’ app page,
which means their profiles are publicly available to Spotify, shown as Figure 2b. This widely
applied technique is called social login, which creates anchor links naturally and demon-
strate a large amount of networks are connected by anchor links in the real world. We further
study the effect of anchor links on the datasets used in this paper. As shown in Figure 1d,
we randomly sampled a proportion of users from Foursquare, in which the number of users
who are also involved in Twitter accounts for about 70 %. Most online social networks can
provide the APIs (Application Programming Interfaces) to allow external applications to
retrieve users’ information in them. For a new network, if there are other matured networks
which share some common user behavior, we may use the knowledge accumulated in the
matured network to help mine the new network. For example, Foursquare and Twitter share
some common user behavior as people participated in Foursquare often use Twitter to make
comments. In fact, our experimental results will validate this is indeed the case and can
prove what we claim.

3. Information in different networks have distinct properties.

Though different networks are connected by anchor links, information in them have
distinct properties, which need to be considered separately when propagating information
across different social networks. To demonstrate such claim, we also analyze the link (social
link) and attribute (visited location) information in the aligned network datasets used in

2http://www.spotify.com

http://www.spotify.com
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Figure 3 Link and attribute information in aligned networks, where (a) and (c) show the information of a
given Foursquare sample user set; (b) and (d) show the information of a given Twitter sample user set

this paper, whose results are given in Figure 3. In Figure 3a, for a given random sample of
Foursquare users, we extract all the social links among them in Foursquare and Twitter, the
unique links in Twitter only, denoted by “twitter - foursquare”, and common links existing
in both networks, denoted by “twitter ∩ foursquare”. As illustrated in Figure 3a, Twitter
does share common links with Foursquare but also contains lots of unique links that don’t
exist in Foursquare. Similar results can be obtained in Figure 3b–d. As a result, propagat-
ing useful information but discarding misleading one, which includes both link and attribute
information, from other well-developed networks to the new network can be what we desire.

3 Problem formulation

Before introducing the methods, we will give the definitions of many important concepts
and the formulation of the new network community detection problem first in this section.

3.1 Terminology definition

Definition 1 Attribute Augmented Heterogeneous Networks: Users in networks can
have both link and attribute information and the network studied in this paper are formu-
lated as attribute augmented heterogeneous networks G = (V, E,A), where V and E are
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the user set and directed social link set of G respectively. A = {a1, a2, · · · , am} is the set of
m different kinds of attribute information that users have in G and the ith attribute ai ∈ A
can have ni different values in the network.

Users in social networks, e.g., G, can be correlated with each other closely. In our paper,
this correlation is quantified as the intimacy score among users and stored in the intimacy
matrix.

Definition 2 Intimacy Matrix: In the network G, matrix H ∈ R
|V|×|V| is the intimacy

matrix among users in V , where H(i, j) is the intimacy score between ui and uj . The
intimacy score H(i, j) between user ui, uj ∈ V denotes the probability that ui is connected
with uj .

Our aim is to solve community detection problem in the new target network with the help
of the developed source network. Thus we first provide the definition of new or developed
networks, which are based on average degree. The average degree of a network denotes
the average number of edges connected to each node in the network, which can depict the
connection density of a network [39, 44].

Definition 3 Average Degree: The average degree of network G = (V, E,A) can be
defined as AD(G) = |E|

|V| .

Definition 4 New and Developed Networks: Concepts “new” and “developed” can depict
the sparsity of information in networks. In this paper, new networks (or well-developed
networks) are defined as networks whose average degree is lower than threshold εnew (or
larger than threshold εdev). In other words, network G = (V, E,A) is a new network iff
AD(G) < εnew and G is a developed network iff AD(G) > εdev .

Next we connect the new and developed heterogeneous network to a pair of partially
aligned networks through anchor links.

Definition 5 Partially Aligned Attribute Augmented Heterogeneous Networks: A pair
of partially aligned attribute augmented heterogeneous networks can be defined as G =
(Gs, Gt , Ls,t ), where Gs is the source attributed augmented heterogeneous network and Gs

is the target one. Both Gs and Gt can be formulated as one attribute augmented heteroge-
neous social network, e.g., Gt = (V t , E t ,At ) and its intimacy matrix is H. Ls,t is the set of
undirected anchor links between Gs and Gt .

Definition 6 Anchor Link: Undirected link (us, vt ) is an anchor link between Gs and Gt

if (us ∈ Vs) ∧ (vt ∈ V t ) and us, vt are the accounts of the same anchor user, where Vs ,V t

are the user sets of networks Gs and Gt respectively.

Users who join Gs and Gt simultaneously can be defined as the anchor users between
Gs and Gt .

3.2 New network community detection

New Network Community Detection problem aims at partitioning user set V t of the new
network Gt into K disjoint clusters, C = {C1, C2, · · · , CK }, based on the intimacy matrix,
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H, where
⋃K

i Ci = V t and Ci ∩ Cj = ∅,∀i, j ∈ {1, 2, · · · ,K}, i �= j . When the target
network Gt is brand new, i.e., E t = ∅ and At = ∅, the problem will be the cold start
community detection problem.

We study the new network community detection problem based on two real-world par-
tially aligned networks: Foursquare and Twitter, whose detailed information is available in
Section 7. The method CAT proposed to solve this problem will be introduced in detail in the
next three sections. CAT is based on the intimacy matrix, which can be efficiently calculated
in this paper. Intimacy score in CAT, which is each element in the matrix, captures network dis-
tance (factoring into fan out), other attributes, and cross network effect in a unified and cohe-
rent way. After that, we will introduce the clustering and parameter self-adjustment method.

4 Intimacy matrix of one network

Our paper aims to solve the new network community detection problem based on the inti-
macy matrix and with the help of another developed network. In this section, we will define
the intimacy scores and intimacy matrix from an information propagation perspective.

4.1 Intimacy matrix of one homogeneous network

Given one homogeneous network, e.g., G = (V, E), where V is the set of users and E is
the set of social links among users in V , we can define the adjacency matrix of G to be
A ∈ R

|V|×|V|, where A(i, j) = 1, iff (ui, uj ) ∈ E . Meanwhile, via the social links in E ,
information can propagate among the users within the network, whose propagation paths
can reflect the closeness among users [26]. Formally, we define

pij = A(i, j)
∑

n A(n, j)

to be the information transition probability from ui to uj . It can also be represented by the
transition matrix X(i, j) = pij . X = AD−1, where X ∈ R

|V|×|V|, and diagonal matrix

D ∈ R
|V|×|V| with value D(j, j) = ∑|V|

i=1 A(i, j).
Next, we introduce an information propagation model which can depict the influence

diffusion process effectively. The heat diffusion is a physical phenomenon that heat flows
from an object with high temperature to another object with low one. The spread of infor-
mation on social graph resembles the heat diffusion, which experts transfer their influence
to other majority.

Definition 7 Heat Diffusion on Social Graph: The model assumes that user ui ∈ V injects
a stimulation into network G initially and the information will be propagated to other users
in G afterwards. During the propagation process, users receive stimulation from their neigh-
bors and the amount is proportional to the difference of the amount of information reaching
the user and his neighbors over their degrees. Let vector f (τ ) ∈ R

|V| denote the states of
all users in V at τ , i.e., the proportion of stimulation at users in V at time τ . The change of
stimulation at ui at time τ + �t is defined as follows:

f (τ+�t)(i) − f (τ)(i)

�t
= α

∑

uj ∈V
pji(f

(τ)(j) − f (τ)(i)),

where α is the heat diffusion coefficient and can be set as 1. [54]



1418 World Wide Web (2017) 20:1409–1441

According to the above heat diffusion model, and based on the transition matrix X, we
define the social transition probability matrix.

Definition 8 Social Transition Probability Matrix: The social transition probability
matrix of network G can be represented as Q = X − D, where X is the transition matrix
defined above and diagonal matrix D ∈ R

|V|×|V| with value D(j, j) = ∑|V|
i=1 A(i, j).

Furthermore, by setting �t = 1, denoting that stimulation propagates step by step in a
discrete time framework through network, we can rewrite the propagation updating equation
as:

f (τ ) = f (τ−1) + α(X − D)f (τ−1) = (I + αQ)f (τ−1) = (I + αQ)τf (0).

The propagation process will stop when f (τ ) = f (τ−1), i.e., (I + αQ)(τ) = (I +
αQ)(τ−1).The smallest τ which can stop the propagation is defined as the stop step. To
obtain the stop step τ , we need to keep checking the powers of (I + αQ) until it does not
change as τ increases, which meets the stop criteria, and get the final intimacy matrix.

Definition 9 Intimacy Matrix: H = (I + αQ)τ ∈ R
|V|×|V| is defined as the intimacy

matrix of users in V , where τ is the stop step and H(i, j) denotes the intimacy score between
ui and uj ∈ V in the network.

4.2 Intimacy matrix of one attribute augmented heterogeneous network

We have discussed how to get intimacy matrix of a homogeneous network, but real-world
social networks usually contain various kinds of information. Thus we extend the model
from homogeneous networks to attribute augmented heterogeneous networks. They can
be formulated as G = (V, E,A) as introduced in Section 3. Attribute set A = {a1, a2,

· · · , am} and ai = {ai1, ai2, · · · , aini
} can have ni different values for i ∈ {1, 2, · · · , m}.

An example of attribute augmented heterogeneous network is given in Figure 4, where
Figure 4a is the attribute augmented heterogeneous network, Figure 4b–d show the attribute
information in the network, which include timestamps, text and location checkins. Including
the attributes as nodes provides a conceptual framework to handle social links and node
attributes in a unified framework.

The connections between users and attributes can be represented as the attribute
adjacency matrix Ai ∈ R

|V|×ni . Similar to the social transition probability matrix of
homogeneous network, we propose the attribute transition probability matrix based on Ai .

Definition 10 Attribute Transition Probability Matrix: We formally define the attribute
transition probability matrix from users to attribute ai to be Ri ∈ R

|V|×ni , where ni is the
size of attribute ai’s value. For the given user u and one attribute value j , the transition
probability is calculated as:

Ri (u, j) = Ai (u, j)
∑|V|

n=1 Ai (n, j)
.

Similarly, we can define the attribute transition probability matrix from attribute ai to
users in V as Si = RT

i .
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Figure 4 An example of attribute augmented heterogeneous network. a: attribute augmented heterogeneous
network, (b): timestamp attribute, (c): text attribute, (d): location checkin attribute

Various kinds of attributes comprise a heterogeneous network, therefore we then give
different weights to denote their importance: ω = {ω0, ω1, · · · , ωm}, where

∑m
i=0 ωi =

1.0, ω0 is the weight of social link information and ωi is the weight of attribute ai , for i ∈
{1, 2, · · · ,m}. Together with attribute transition probability matrix, we define the weighted
attribute transition probability matrix.

Definition 11 Weighted Attribute Transition Probability Matrix: Let naug = (|V | +∑m
i=1 ni) be the number of all nodes in the augmented network. With weights ω, we define

matrix R̃ = [ω1R1, · · · , ωnRn] ∈ R
|V|×(naug−|V|) to be the weighted attribute transition

probability matrix from users to all attributes. Similarly, S̃ = R̃T ∈ R
(naug−|V|)×|V| is the

weighted attribute transition probability matrix from all attribute to users.

Furthermore, the transition probability matrix of whole attribute augmented heteroge-
neous network G is defined as Q̃aug ∈ R

naug×naug :

Q̃aug =
[

Q̃ R̃
S̃ 0

]

,

where Q̃ = ω0Q ∈ R
|V|×|V| is the weighted social transition probability matrix of social

links in E .
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In the real world, heterogeneous social networks usually contain large amounts of
attributes, i.e., naug can be extremely large. The weighted transition probability matrix, i.e.,
Q̃aug , can be extremely high dimensions and can hardly fit in the memory. As a result, it is
impossible to update the matrix until it meets stop criteria to obtain the stop step and inti-
macy matrix. To solve such problem, we lower dimensional space by applying partitioned
block matrix operations with the following Lemma 1.

Lemma 1 (Q̃aug)
k =

[
Q̃k Q̃k−1R̃
S̃Q̃k−1 S̃Q̃k−2R̃

]

, k ≥ 2, where

Q̃k =
⎧
⎨

⎩

I, if k = 0,

Q̃, if k = 1,

Q̃Q̃k−1 + R̃S̃Q̃k−2, if k ≥ 2

and the intimacy matrix among users in V can be represented as

H̃aug =
(

I + αQ̃aug

)τ

(1 : |V |, 1 : |V |)

=
(

τ∑

t=0

(
τ

t

)

αt (Q̃aug)
t

)

(1 : |V |, 1 : |V |)

=
(

τ∑

t=0

(
τ

t

)

αt
(
(Q̃aug)

t (1 : |V |, 1 : |V |)
)
)

=
(

τ∑

t=0

(
τ

t

)

αt Q̃t

)

,

where X(1 : |V |, 1 : |V |) is a sub-matrix of X with indexes in [1, |V |], τ is the stop step,
achieved when Q̃τ = Q̃τ−1, i.e., the stop criteria, Q̃τ is called the stationary matrix.

Proof The lemma can be proved by induction on k [53]. Considering that (R̃S̃) ∈ R
|V|×|V|

can be pre-computed in advance, the space cost of Lemma 1 is O(|V |2), |V | 	 naug .

Since we are only interested in the intimacy and transition matrices among users, not
those between the augmented items and users, we create a reduced dimensional representa-
tion only involving users for Q̃k and H̃ such that we can capture the effect of “user-attribute”
and “attribute-user” transition on “user-user” transition. Q̃k is a reduced dimension repre-
sentation of Q̃k

aug , while eliminating the augmented items, it still maintains the “user-user”
transitions effectively.

5 Intimacy matrix of aligned networks

We have introduced how to get the intimacy matrix H̃ of one attribute augmented heteroge-
neous network, however when Gt is new, the matrix among users calculated based on the
information in Gt can be very sparse. To solve this problem, we propose to propagate useful
information from other well developed aligned networks to the new network in this section.
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5.1 Intimacy matrix across aligned networks

Information propagated from other aligned well-developed networks can help solve the
shortage of information problem in the new network [46, 47]. However, as proposed in [25],
different networks can have different properties and information propagated from other
well-developed aligned networks can be very different from that of the new network as well.

To handle this problem, we use weights, ρs,t , ρt,s ∈ [0, 1], to control the proportion of
information propagated between developed network Gs and new network Gt . If information
from Gs is helpful for improving the community detection results in Gt , we can set a higher
ρs,t to propagate more information from Gs . Otherwise, we can set a lower ρs,t instead.
The weights ρs,t and ρt,s can be adjusted automatically with method to be introduced in
Section 6.

Based on weights ρs,t and ρt,s , we get the weighted network transition probability matrix
of Gt and Gs to be

Q̄t
aug = (1 − ρt,s)

[
Q̃t R̃t

S̃t 0

]

, Q̄s
aug = (1 − ρs,t )

[
Q̃s R̃s

S̃s 0

]

,

where Q̄t
aug ∈ R

nt
aug×nt

aug and Q̄s
aug ∈ R

ns
aug×ns

aug , nt
aug and ns

aug are the numbers of all
nodes in Gt and Gs respectively.

To propagate information across networks, we define the anchor transition matrix:

Definition 12 Anchor Transition Matrix: Given a pair of partially aligned heterogeneous
networks G = (Gs,Gt , Ls,t ), Tt,s ∈ R

|V t |×|Vs | and Ts,t ∈ R
|Vs |×|V t | are defined as anchor

transition matrices between Gt and Gs . Tt,s (i, j) = Ts,t (j, i) = 1, iff (ut
i , u

s
j ) ∈ Ls,t , ut

i ∈
V t , us

j ∈ Vs .

Furthermore, the weighted anchor transition matrices between Gs and Gt are

T̄t,s = (ρt,s)

[
Tt,s 0
0 0

]

, T̄s,t = (ρs,t )

[
Ts,t 0
0 0

]

,

where T̄t,s ∈ R
nt

aug×ns
aug and T̄s,t ∈ R

ns
aug×nt

aug . Nodes corresponding to entries in T̄t,s and
T̄s,t are of the same order as those in Q̄t

aug and Q̄s
aug respectively.

Based on the above definitions, the transition probability matrix across aligned networks
is defined as

Q̄align =
[

Q̄t
aug T̄t,s

T̄s,t Q̄s
aug

]

where Q̄align ∈ R
nalign×nalign , nalign = nt

aug + ns
aug is the number of all nodes across the

aligned networks.
According to the definition of intimacy matrix, with Q̄align, we can obtain the aligned

network intimacy matrix H̄align of users in Gt to be H̄align = (I + αQ̄align)
τ (1 : |V t |, 1 :

|V t |), where H̄align ∈ R
|V t |×|V t |, τ is the stop step.

Meanwhile, the structure of (I + αQ̄align) can not meet the requirements of Lemma 1
as it does not have a zero square matrix at the bottom right corner. As a result, methods
introduced in Lemma 1 cannot be applied. To obtain the stop step, we have no choice but to
keep calculating powers of (I+αQ̄align) until the stop criteria can meet, which can be very
time consuming. In this part, we propose to solve the problem with the following Lemma 2.
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Lemma 2 For the given matrix (I + αQ̄align), its kth power meets

(I + αQ̄align)
kP = P�k, k ≥ 1,

matrices P and � contain the eigenvector and eigenvalues of (I + αQ̄align). The ith column
of matrix P is the eigenvector of (I + αQ̄align) corresponding to its ith eigenvalue λi and
diagonal matrix � has value �(i, i) = λi on its diagonal.

The proof of Lemma 2 can refer to the Appendix. The time cost of calculating �k is
O(nalign), which is far less than that required to calculate (I + αQ̄align)

k .
In addition, if P is invertible, we can have (I + αQ̄align)

k = P�kP−1, where �k has
�(i, i)k on its diagonal. Thus the intimacy calculated based on eigenvalue decomposition is

H̄align =
(

P�τ P−1
)

(1 : |V t |, 1 : |V t |).

where the stop step τ can be obtained when P�τ P−1 = P�τ−1P−1, i.e., stop criteria.

5.2 Approximated intimacy to reduce dimension

Eigendecomposition based method proposed in Lemma 2 enables us to calculate the powers
of (I+αQalign) very efficiently. However, when applying Lemma 2 to calculate the intimacy
matrix of real-world partially aligned networks, it can suffer from many serious problems.
The reason is that the dimension of (I +αQalign), i.e., nalign ×nalign, is so high that matrix
(I+αQalign) can hardly fit in the memory. To solve that problem, in this part, we propose to
calculate the approximated intimacy matrix H̄approx

align with less space and time costs instead.

Let’s define the transition probability matrices of Gt and Gs to be Q̃t
aug and Q̃s

aug respec-
tively. By applying Lemma 1, we can get their stop step and the stationary matrices to be
τ t , τ s , Q̃t

τ t and Q̃t
τ s respectively.

Stationary matrices Q̃t
τ t , Q̃t

τ s together with the anchor transition matrices Tt,s and Ts,t ,
can be used to define a low-dimensional reduced aligned network transition probability
matrix, which only involves users explicitly, while the effect of “attribute-user” or “user-
attribute” transition is implicitly absorbed into Q̃t

τ t and Q̃s
τ s :

Q̄user
align =

[
(1 − ρt,s)Q̃t

τ t (ρt,s)Tt,s

(ρs,t )Ts,t (1 − ρs,t )Q̃s
τ s

]

,

where Q̄user
align ∈ R

(|V|t+|Vs |)2
and (|V |t + |Vs |) 	 nalign.

Furthermore, with Lemma 2, we can get approximated aligned network intimacy matrix
of users in Gt based on Q̄user

align to be:

H̄approx
align =

(
P∗(�∗)τ (P∗)−1

)
(1 : |V t |, 1 : |V t |),

where (I + αQ̄user
align) = P∗�∗(P∗)−1 and τ is the stop step.

5.3 Space and time costs analysis

Let
∣
∣V t

∣
∣ = nt , the size of intimacy matrix H̄align will be (nt )2. However, to obtain H̄align,

we need to calculate the transition probability matrix Q̄align in advance, whose size is
(nalign)

2.
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Space cost In eigendecomposition based method, we have to calculated and store matri-
ces Q̄eigen

align , P, P−1, � ∈ R
nalign×nalign , whose space costs are O(4n2

align). However, in

the approximation based method, we just need to store matrices Q̃x ∈ R
nx×nx

, R̃x ∈
R

nx×(
∑

i nx
i ), S̃x ∈ R

(
∑

i nx
i )×nx

, x ∈ {s, t}, as well as Q̄approx
align ∈ R

(nt+ns)×(nt+ns), whose

space cost will be O(max{(nt + ns)2, nt (
∑

i nt
i ), n

s(
∑

i ns
i )}) < O(4n2

align).

Time cost In eigendecomposition based method, the matrix eigendecomposition of Q̄eigen
align ,

inversion P−1 and multiplication of P�kP−1 are all time-consuming operations, whose
time costs are O(kn2

align) [42], O(n2
align log(nalign)) [5] and O(2n3

align) respectively. As a

result, the time cost of eigendecomposition based method is about O(2n3
align). However, in

approximation based methods, we need to apply Lemma 2 to get H̄t and H̄t , whose time
cost is

O(max{τ((nt )3 + (nt )2(
∑

i

at
i )), τ ((ns)3 + (ns)2(

∑

i

as
i ))}),

which is much smaller than that of eigendecomposition based methods.

6 Clustering and weight self-adjustment

Intimacy matrix H̄align (or H̄approx
align ) stores the intimacy scores among users in V t and can

be used to detect the communities in the network. In this section, we will use two methods to
solve the user clustering problem in the target network: Spectral Clustering and Low-Rank
Matrix Factorization. Meanwhile, the weight self-adjustment method is also introduced to
get the better community detection result.

6.1 Spectral clustering

The first technique we used for community detection in this paper is Spectral Clustering[19,
22], which is a efficient method based on Laplacian Eigenmaps [2].

The target network has been model as a graph Gt and its intimacy matrix H̄align (or
H̄approx

align ), which stores the intimacy scores among users. Let D be the diagonal matrix with

the value dii = ∑
j H̄align[j, i] on the diagonal. The Laplacian matrix L = D − H̄align.

We define:
cut (A,B) =

∑

i∈A,j∈B

h̄ij ,

where h̄ij is the entry of intimacy matrix H̄align. Therefore the clustering problem can
be transformed to a mincut problem, which is choosing the partition {C1, · · · , Ck} to
minimizes

cut (C1, · · · , Ck) =
k∑

i=1

cut (Ci, C̄i),

where C̄ is the complement of a subset C. One of the most common objective functions
to address the mincut problem, which also explicitly request that the sets {C1, · · · , Ck} are
”reasonably large”, is normalized cut NCUT[33].

Ncut(C1, · · · , Ck) =
k∑

i=1

cut (Ci, C̄i)

vol(Ci)



1424 World Wide Web (2017) 20:1409–1441

where vol(C) = ∑
i∈C dii . The objective function tries to achieve that the clusters are

”balanced”, as measured by the edge weights.
When finding k > 2 clusters, we define the vectors zi = (z1i , · · · , znt i ) by

zij =
{

1/
√

Ci if i ∈ Ci

0 otherwise

The matrix Z contains those vectors as columns. We observe that the columns in Z are
orthonormal to each other, thus Z′Z = I . We can also check z′Dz = 1 and z′Lz =
2Cut(Ci, C̄i)/vol(Ci). Therefore we can rewrite the problem of minimizing NCUT as:

min T r(Z′LZ)

s.t. Z′DZ = I

where T r(·) denotes the trace of a matrix. The elements of F are constrained to be discrete
values, which makes it a NP-hard discrete optimization problem. The obvious relaxation is
to discard the condition on the discrete values in F and instead allow fi ∈ R. Thus when we
substitute F = D1/2Z, the optimization function is

min T r(F′D− 1
2 LD− 1

2 F)

s.t. F′F = I

After using eigenvalue decomposition(EVD), we can get the eigenvectors of L and the
simple k-means clustering algorithm has no difficulties to detect the clusters in this new
representation.

6.2 Low-rank matrix factorization

The other method is to use the low-rank matrix factorization method proposed in [36] to get
the latent feature vectors, U, for each user. To avoid overfitting, we add two regularization
terms to the object function as follows:

min
U,V

∥
∥
∥H̄align − UVUT

∥
∥
∥

2

F
+ θ ‖U‖2

F + β ‖V‖2
F ,

s.t.U ≥ 0, V ≥ 0,

where U is the latent feature vectors, V stores the correlation among rows of V, θ and β are
the weights of ‖U‖2

F , ‖V‖2
F respectively.

This object function is hard to solve because it is a great challenge that obtaining the
global optimal result for both U and V simultaneously. We propose to solve the objective
function by fixing one variable, e.g., U, and update another variable, e.g.,V, alternatively
[36], whose update equations are as follows:

We can get the Lagrangian function of the object equation as follows:

F = T r(H̄alignH̄T
align) − T r(H̄alignUVT UT )

−T r(UVUT H̄T
align) + T r(UVUT UVT UT )

+θT r(UUT ) + βT r(VVT ) − T r(�U) − T r(V)

where � and  are the multiplier for the constraint of U and V respectively.
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By taking derivatives of F with regarding to U and V, we can get

∂F
∂U

= −2H̄T
alignUV − 2H̄alignUVT + 2UVT UT UVT

+2UVUT UVT + 2θU − �T

∂F
∂V

= −2UT H̄alignU + 2UT UVUT U + 2βV − T

Let ∂F
∂U = 0 and ∂F

∂V = 0 and use the KKT complementary condition, we can get

U(i, j) ← U(i, j)

√
√
√
√

(
H̄T

alignUV + H̄alignUVT
)

(i, j)
(
UVT UT UV + UVUT UVT + θU

)
(i, j)

,

V(i, j) ← V(i, j)

√ (
UT H̄alignU

)
(i, j)

(
UT UVUT U + βV

)
(i, j)

.

The low-rank matrix U captures the information of each users from the intimacy matrix
and can be used as latent numerical feature vectors to cluster users in Gt with traditional
clustering methods, e.g., Kmeans [8].
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6.3 Weight self-adjustment

Meanwhile, to handle the information heterogeneity problem in each network and the net-
work difference problem across networks, we use weights, ωt , ωs , ρt,s and ρs,t , to denote
the importance of information in Gt , Gs and that propagated from Gt and Gs respectively.
For simplicity, we set ωt = ωs = ω = [ω0, ω1, · · · , ωm] and ρt,s = ρs,t = ρ in this paper.

Let C be the community detection result achieved by CAT in Gt . The optimal result C,
evaluated by some metrics, e.g., entropy [54], can be achieved with the following equation:

ω, ρ = min
ω,ρ

E(C).

The optimization problem is very difficult to solve. Next, we will propose a method to adjust
ω and ρ automatically to enable CAT to achieve better results.

The weight adjustment method used to deal with ω can work as follows: for exam-
ple, in network Gt , we have relational information and attribute information E and A =
{A1, A2, · · · , Am}, whose weights are initialized to be ω = {ω0, ω1, · · · , ωm}. For ωi ∈
ω, i ∈ {0, 1, · · · ,m}, we keep checking if increasing ωi by a ratio of γ , i.e., (1 + γ )ωi , can
improve the performance or not. If so, (1 + γ )ωi after re-normalization is used as the new
value of ωi ; otherwise, we restore the old ωi before increase and study ωi+1. In the experi-
ment, γ is set as 0.05. Similarly, for the weight of different networks, i.e, ρ, we can adjust
them with the same methods to find the optimal ρ.

The pseudo code of CAT is available in Algorithm 1.

7 Experiments

To demonstrate the effectiveness of CAT, in this section, we will conduct extensive
experiments on two real-world aligned online heterogeneous networks: Foursquare and
Twitter.

7.1 Dataset description

Foursquare is a famous location-based social networks offering geographic services [23].
Meanwhile, Twitter is hot social network providing microblogging service, which has
totally different characteristics and goals from Foursquare [14]. Both Foursquare and Twit-
ter users can make friends with other users, write online posts, which can have text content,
timestamps and location check-ins. However, as illustrated in the following statistical
information, the structure of Foursquare and Twitter can be very different.

– Foursquare: 5,392 Foursquare users are crawled, who have established 76,972 social
links. On average, each Foursquare user has 14 social links. All the 48,756 tips written
by these 5,392 Foursquare users are crawled and the average number of tips written
by each user is less than 9. Each tip can contain location checkins and the number of
location links is 48,756.

– Twitter: 5,223 Twitter users and 164,920 social links are crawled. On average, users
in Twitter can follow 32 friends, who are more densely connected than those in
Foursquare. These 5,223 Twitter user write 9,490,707 tweets in all and each Twitter
user has written 1817 tweets, whose number is much larger than that in Foursquare.
615,515 tweets can have location checkins, accounting for 6.49% of the total tweets.
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The datasets used in this paper are those proposed in [12, 46, 47], crawled during Novem-
ber, 2012. The anchor links are obtained by crawling the users’ Twitter IDs from their
Foursquare homepages, whose number is 3,388.

7.2 Experiment settings

In this part, we will introduce the experiment settings in details, which include comparison
methods, evaluation metrics and experiment setups.

7.2.1 Comparison methods

We have different implementations of CAT, which are compared with both state-of-art and
traditional community detection methods. All the comparison methods can be divided into
3 categories:

Methods with parameter adjustment

– CATS-A (Spectral clustering with exact intimacy matrix and parameter Adjustment):
CATS-A can calculate the exact intimacy matrix across aligned attribute augmented
networks based on eigenvalue decomposition as proposed in Subsection 5.1, and use
spectral clustering to detect communities and adjust parameters ρ and ω automatically.

– CATE-A (matrix factorization with exact intimacy matrix and parameter Adjustment):
Similar to CATS-A, CATE-A also obtains the exact intimacy matrix, but it detects com-
munities with matrix factorization method. The parameters are adjusted automatically
too.

– CATA-A (matrix factorization with Approximated intimacy matrix and parameter
Adjustment): CATA-A is similar to CATE-A except that CATA-A calculate the inti-
macy matrix with the lower-dimensional reduced aligned network transition probability
matrices method as proposed in Section 5.2.

Methods without parameter adjustment

– CATS (Spectral clustering with exact intimacy matrix): CATS is the same with CATS-A

except in CATS, ω and ρ are fixed as { 1
4 , 1

4 , 1
4 , 1

4 } and 0.8 respectively.
– CATE (matrix factorization with exact intimacy matrix): CATE is identical to CATE-A

except that in CATE, ω and ρ are fixed as { 1
4 , 1

4 , 1
4 , 1

4 } and 0.8 respectively.
– CATA (matrix factorization with Approximated intimacy matrix): CATA is identical to

CATA-A except that in CATA, ω and ρ are fixed as { 1
4 , 1

4 , 1
4 , 1

4 } and 0.8 respectively.

Single network clustering methods

– SINFL (Social Influence-based clustering): SINFL proposed in 2013 [54] can detect the
communities with the influence matrix calculated based on the new network only.

– NCUT (Normalized Cut): NCUT [32] aiming at minimizing the normalized cut between
different clusters can be used to detect the communities based on the influence matrix
obtained by SINFL in the new network.

– KMEANS (Kmeans): KMEANS [8] is a traditional clustering methods, which can also
detect social communities in online social networks based on the influence matrix
obtained by SINFL in the new network.
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– LPA (Label Propagation Algorithm): LPA [30] starts from local neighborhood to rec-
ognize communities automatically and adopts an asynchronous update strategy where
nodes join in groups under their neighbors’ choices.

– TOPLEADER (Top Leaders): TOPLEADER [10] finds communities according to local
leader groups. It gradually associates nodes to the nearest leaders and locally reelects
new leaders during each iteration.

7.2.2 Evaluation metrics

Evaluation metrics used to evaluate the performance of all the comparison methods in the
experiment include:

– normalized Davies-Bouldin index (ndbi):

ndbi(C) = 1

K

K∑

i=1

min
j �=i

d(ci, cj ) + d(cj , ci)

σi + σj + d(ci, cj ) + d(cj , ci)
,

where ci is the centroid of Ui ∈ C, d(ci, cj ) is the distance between ci and cj , σi

denotes the average distance between items in Ui and centroid ci [54].
– Silhouette index (silhouette):

silhouette(C) = 1

K

K∑

i=1

(
1

|Ui |
∑

u∈Ui

b(u) − a(u)

max{a(u), b(u)} ),

where a(u) = 1
|Ui |−1

∑

v∈Ui,v �=u

d(u, v) and

b(u) = minj,j �=i

(
1

|Uj |
∑

v∈Uj
d(u, v)

)
[18].

– Entropy (E) [54]:

E(C) = −
K∑

i=1

P(i) log P(i), whereP (i) = |Ui |
|V | .

7.2.3 Experiment setups

In the experiment, Foursquare and Twitter are regarded as the new network and well devel-
oped network respectively. As proposed in [46, 47], to represent different information we
know about the new network, we randomly sample a proportion of its information, which
include social links, and the attribute information, e.g., location checkins, text used and
timestamps, from the new network and delete all the remaining information under the con-
trolled of σF (σT ) ∈ [0, 1]. Actually, σF (σT ) can also represent εnew defined in Section 3.
Take the new network Foursquare as an example, if σF = 0.0, Foursquare is brand new
and no information about it exist; if σF = 0.8, 80% of the information is preserved in the
network. In addition, considering the abnormally large number of locations and words in
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each network, only top 5000 locations that users frequently visited and top 5000 words that
users often used in each network are used to construct transition probability matrix. Dif-
ferent methods applied to the new network can obtain the clustering results of the users
in it. To check whether these clustering methods can discover the communities in the real
world, we evaluate the clustering results based on the similarity matrix among users calcu-
lated with original complete social information and the similarity measure used is Jaccard’s
Coefficient. If methods can obtain enough reliable information from the new network or
other well-developed networks, then their performance should be very good evaluated by
different metrics based on the similarity matrix.

7.3 Experiment results

The experiment results are shown in Tables 3 and 4. Parameter K is fixed as 50 and the
ratio of anchor links σA is fixed as 0.8 but the information sampling rate (i.e., σF ) changes
with values in {0.0, 0.1, · · · , 1.0} to create severe newness situations and the results are
evaluated by metrics: ndbi, entropy and silhouette.

As shown in Table 4, clustering method SINFL, NCUT, KMEANS, LPA and TOPLEADER

cannot work when σF = 0.0, where the Foursquare network is brand new and users in it
have no information (neither social link nor other attribute). However, CATS-A, CATE-A,
CATA-A, CATS, CATE and CATA, based on the intimacy matrix across aligned networks,
can still work well. For example, when σF = 0.0, the ndbi score of CATE-A is 0.973;
the entropy is 3.337; the silhouette is −0.383, which are very good even compared with
algorithms for single network at σF = 0.5.

Compared with CATE (or CATA, CATS), CATE-A (or CATA-A, CATS-A) can perform bet-
ter in most cases when evaluated by ndbi, silhouette and entropy. For example, when σF =
0.8, the ndbi of CATE-A is 0.991, which is 3.6% higher than that of CATE; the silhouette
of CATE-A is −0.216, which is 20% better than that of CATE. CATE-A (or CATA-A, CATS-
A) can always perform better that CATE (or CATA, CATS) for σF ∈ {0.0, 0.1, · · · , 1.0}
when evaluated by entropy, as entropy is used as the metric when adjusting the parame-
ters. This shows CATE-A (or CATA-A, CATS-A) is effective in handling network difference
to avoid negative transfer as well as information heterogeneity to identify the relevant
information.

By comparing CATE, CATA, CATS with CATE-A, CATA-A, CATS-A respectively, meth-
ods based on approximated intimacy matrix can achieve very similar results as those based
on matrix eigendecomposition. Meanwhile, as shown in Table 3 the memory space and
time needed by CATA and CATA-A to calculate H̄approx

align is much less than that of CATE

and CATE-A to calculate the exact intimacy matrix. So, calculating intimacy matrix with
approximation would not harm the performance very much but can do save lots of space
and time.

Table 3 Space and time costs in
calculating H̄align Method

New network Cost Exact Approx.

Foursquare space cost(MB) 19526 1627

time cost(s) 65996.17 6499.97

Twitter space cost(MB) 23081 2057

time cost(s) 71128.29 7901.94
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Similar results can be obtained in Tables 3 and 5 , when Twitter is used as the new
network and Foursquare is used as the well developed network.

In sum, parameter adjustment can do improve the clustering results; clustering with
approximated intimacy matrix can save lots of memory space but will not harm the clus-
tering results very much; clustering with intimacy matrix across aligned networks can
do perform better than those based on intimacy matrix within one single heterogeneous
network.

7.4 Parameter analysis

In the experiment, we have two other parameters to analyze, which are the number of clus-
ters K and the ratio of anchor links existing between networks, σA. In this part, σF and σT

are both fixed as 0.5.
To show the effects of σA, we fix K = 50 but change σA ∈ {0.1, 0.2, · · · , 1.0}. The

results are shown in Figure 5. As shown in Figure 5a–c, all these methods’ performance will
vary as σA changes. These methods can achieve the best performance at σA = 0.1 when
evaluated by ndbi; at σA = 0.4 when evaluated by entropy and at σA = 1.0 when evaluated
by silhouette.

To show the effects of parameter K on clustering results, we fix σA = 0.8 but change K

with values in {10, 20, · · · , 100}. The results are shown in Figure 6. As shown in Figure 6a–
c, different methods can achieve the best performance at different Ks when evaluated by
different metrics. For example, in Figure 6a when evaluated by ndbi, CATE-A can perform
the best at K = 70, but CATE performs the best at K = 90. In Figure 6b, CATE-A performs
the best at K = 10 when evaluated by entropy and in Figure 6c under the evaluation of
silhouette, CATE-A can achieve the best performance at K = 60.

7.5 Case study

We show a case study to demonstrate the effectiveness of the proposed method CAT in
community detection by introducing information from developed network.

In Figure 7, we show a case of three real-world users who have both Twitter and
Foursquare accounts. To protect their privacy, we only list their first names. These users are
not completely connected in Foursquare, but they follow each other in Twitter, as shown
in Figure 7a. By considering this we can complete their social network in Foursquare. In
Figure 7b, we show the spatial distribution of different users on both networks. We can see
though the spatial distributions of the same user are similar, Twitter can still provide more
information. For example, according to Emily’s Foursquare check-ins, we may think she is
in west coast, but by combining locations in Twitter, we prove that she lives in Chicago.
In Figure 7c, we show some frequently used words by the users, and Twitter network can
also provide extra information. For example, it seems that Peter does not use Foursquare
frequently according to his check-in and text, and it is hard to classify him into a group.
While using Twitter information, we discover that he lives in Chicago and likes running and
other sports. The information differences between two networks are because Foursquare is
a location-based service and many people check in at one place when traveling or first time
being there, while Twitter records users’ every day life better.

If we only use information in Foursquare, these three users belong to different commu-
nities. But the ground truth is that they all live in Chicago and belong to the same running
club. After introducing Twitter information, our method CAT obtained the result that they
are in the same community.
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Figure 5 Experiment results with different σA
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Figure 6 Experiment results with different K
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Figure 7 Case Study: three
real-world users with their social,
spatial and text distributions
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8 Related work

Clustering aims at grouping similar objects in the same cluster and many different cluster-
ing methods have also been proposed.The hierarchy clustering algorithms ([4, 6] etc.) form
communities in a multi-level structure progressively on the basis of the original graph. This
process falls into two types, i.e. agglomeration or division, depending on their construction
order of the hierarchy structure. Another type of clustering methods is partition-based meth-
ods, which include K-means for instances with numerical attributes [8]. Other clustering
methods include density-based clustering methods [1] and fuzzy clustering [7]. Meanwhile,
according to the manner that the similarity measure is calculated, the hierarchical cluster-
ing methods can be further divided into single-link clustering [34], complete-link clustering
[11] and average-link clustering [43].

Clustering has also been widely used to detect communities in networks [41]. Direct
partitioning methods separate the entire network into disjoint communities [28, 29]. Clique
percolation methods assume communities are constructed by multiple adjacent cliques [13,
24]. Shi et al. introduce the concept of normalized cut and discover that the eigenvectors of
the Laplacian matrix provide a solution to the normalized cut objective function [32]. Meila
et al. propose to use random to solve the spectral clustering problem [20]. Chakrabarti et al.
propose a information theoretic based clustering method in [3].

In recent years, many community detection works have been done on heterogeneous
online social networks. Zhou et al. [53] propose to do graph clustering with relational and
attribute information simultaneously. Zhou et al. [54] propose a social influence based clus-
tering method for heterogeneous information networks. Some other works have also been
done on clustering with incomplete data. Sun et al. [35] propose to study the clustering prob-
lem with complete link information but incomplete attribute information. Lin et al. [17] try
to detect the communities in networks with incomplete relational information but complete
attribute information.

Multiple aligned heterogeneous networks first studied by Kong et al. [12] have become
a hot research topic in recent years. Kong et al. [12, 48] are the first to propose the concept
of “anchor link”, “aligned heterogeneous networks” and study the anchor link prediction
problem across aligned networks. Zhang et al. [46, 47, 50, 52] are the first to study link
prediction problem for new users with information transferred from other aligned source
networks via anchor links. Zhang and Jin et al. [9, 49, 51] also propose to study the commu-
nity detection problems across aligned networks, where information from all these aligned
networks can be transferred to prune and refine the community structures of each network
mutually. In addition, Zhan et al. introduce the cross-aligned-network information diffusion
problem in [45], where multiple diffusion channels are extracted based on various types of
intra and inter network meta paths.

9 Conclusion

In this paper, we have studied the community detection problems for new networks. A novel
community detection method, CAT, has been proposed to solve the problem. CAT can cal-
culate the intimacy matrix among users across aligned attribute augmented heterogeneous
networks with efficient information propagation model. CAT can handle the network het-
erogeneity and difference problems very well with micro-level and macro-level controls,
whose parameters can be adjusted automatically. Extensive experiments have been done on
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real-world partially aligned networks and the results demonstrate effectiveness of CAT in
address the new network community detection problem.
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Appendix

A Proof of Lemma 2

Proof The Lemma can be proved by induction on k [27] as follows:
Base Case: When k = 1, let pi and λi be the ith eigenvector and eigenvalue of matrix Q
respectively, where Qpi = λipi . Organizing all the eigenvectors and eigenvalues of Q in
matrix P and �, we can have Q1P = P�1.

Inductive Assumption: When k = m, m ≥ 1, let’s assume the lemma holds when
k = m, m ≥ 1. In other words, the following equation holds:

QmP = P�m.

Induction: When k = m + 1,m ≥ 1,

Q(m+1)P = QQmP = QP�m = P��m = P�(m+1).

In sum, the lemma holds for k ≥ 1.
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