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ABSTRACT
Inferring the links among entities in networks is an important re-
search problem for various disciplines. Depending on the specific
application settings, the links to be inferred are usually subject to
different cardinality constraints, like one-to-one, one-to-many and
many-to-many. However, most existing research works on link pre-
diction problems fail to consider such a kind of constraint. In this
paper, we propose to study the link prediction problem with gen-
eral cardinality constraints, which is formally defined as the CLP
(Cardinality Constrained Link Prediction) problem. By minimizing
the projection loss of links from feature vectors to labels, the CLP
problem is formulated as an optimization problem involving mul-
tiple variables, where the cardinality constraints are modeled as
mathematical constraints on node degrees. The objective function
is shown to be not jointly convex and the optimal solution subject to
the cardinality constraints can be very time-consuming to achieve.
To solve the optimization problem, an iterative variable updating
based link prediction framework ITERCLIPS (Iterative Constrained
Link Prediction & Selection) is introduced in this paper, which in-
volves the steps on link updating and selection alternatively. To
overcome the high time cost problem, a greedy link selection step is
introduced in this paper, which picks links greedily while preserv-
ing the link cardinality constraints simultaneously. Meanwhile, to
ensure the effectiveness of ITERCLIPS on large-scale networks, a
distributed implementation of ITERCLIPS is further presented as a
scalable solution to the CLP problem. Extensive experiments have
been done on three real-world network datasets with different types
of cardinality constraints, and the experimental results achieved by
ITERCLIPS on all these datasets can demonstrate the effectiveness
and advantages of ITERCLIPS in solving the CLP problem.
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1. INTRODUCTION
In the real-world, information entities are extensively connected

to each other via various kinds of links, which together will form
different categories of information networks in different disciplines.
Depending on the application settings, the physical meaning of
links in information networks can be quite diverse. For instance, the
co-author links in bibliographic networks denote the collaboration
relations among researchers [18]; the supervision links among the
employees in enterprise organizational charts denote the manage-
ment relations from managers to subordinates [26]; while the an-
chor links connecting users across different social platforms repre-
sent the corresponding relationships between accounts of the same
users [28]. What’s more, according to the specific physical mean-
ings, these different kinds of links introduced above are usually
subject to different cardinality constraints. Cardinality constraint
is one of the most important constraints in link conceptual model-
ing. In addition to constraining the population of links, cardinality
constraints help illustrate the meaning of the link types, and they
also play an important role in steering the link formation among
information entities.

Three most common cardinality constraints that links (e.g., the
co-author links, supervision links and anchor links) are subject to
are provided as follows:

• Many-to-Many Constraint: In traditional bibliographic net-
works [18], researchers can collaborate with each other to
carry out research projects and write academic papers. Gen-
erally, there are no limitations on the number of co-authors
that researchers can work with. Viewed in this perspective,
the cardinality constraint on co-author links in bibliographic
networks is many-to-many.

• One-to-Many Constraint: In real-world companies, the man-
agement relationships among the employees can be repre-
sented as the enterprise organizational charts involving em-
ployees and the directed supervision links from managers
to subordinates. Generally, for companies employing tree-
structured organizational charts, each employee only needs
to report to one single manager; meanwhile, each manager
can supervise multiple subordinates at the same time. There-
fore, the cardinality constraint on the supervision links among
the employees in organizational charts is one-to-many [26].

• One-to-One Constraint: Across different online social net-
works, the correspondence relationships between the shared
users are formally denoted as the bi-directional anchor links
[28]. According to the existing works [28], each user in an



online social network is assumed to be connected by one an-
chor link with one user from another social network. In other
words, the cardinality constraint on anchor links across dif-
ferent social sites is one-to-one.

Formally, given the screenshot of an information network with
partially observed links, inferring the other links that are hidden or
to be formed in the future in the network is defined as the link pre-
diction problem in existing works [13, 28]. Link prediction is an
important research problem and can be the basis of many concrete
real-world applications. For instance, the co-author recommenda-
tion [18], organizational chart inference [26] and network align-
ment or user resolution [11, 24, 25] problems can be modeled as the
prediction of co-author link [18], supervision link [26, 20, 27], an-
chor link [11, 28] respectively. Link prediction problems have been
studied for many years, and dozens of link prediction methods have
been proposed already. However, most of the existing link predic-
tion models treat the prediction of different link instances to be
totally independent, and very few of them has ever considered the
inherent cardinality constraints on the links. To gain a more com-
prehensive knowledge about existing link prediction works, please
refer to the survey paper [22, 16, 8] for more information
Problem Studied: In this paper, we will study the link prediction
problem in information networks with the cardinality constraints.
Formally, the problem is defined as the “Cardinality Constrained
Link Prediction” (CLP) problem. By incorporating the cardinality
constraints in the link prediction problem modeling, we claim that
“the link prediction results can be improved significantly”. The CLP
problem is a novel problem, and we are the first to propose the link
prediction problem with general cardinality constraints.

The CLP problem is very challenging to address due to following
reasons:

• Cardinality Constraint Modeling: Very few existing works
have ever considered the cardinality constraints on links be-
fore. How to effectively incorporate such a kind of constraint
in the link prediction problem modeling is still an open prob-
lem to this context so far.

• Computational Difficulty: The CLP problem itself is shown
to be very computationally time-consuming to obtain the op-
timal results, and the sub-problem involved in CLP is shown
to be NP-hard. New efficient approximation solutions which
can be achieved in polynomial time (close to linear or quadratic
time) are desired.

• Scalable Framework: For large-scale networks, storing the
complete information network data within one single ma-
chine can be technically infeasible. A distributed implemen-
tation of the link prediction framework applicable to large-
sized networks is another great challenge.

To overcome all the above challenges, a new unified link predic-
tion framework ITERCLIPS (Iterative Constrained Link Prediction
& Selection) is proposed in this paper. In the proposed framework,
the CLP problem is formulated as an optimization problem, where
the cardinality constraints on links are modeled as mathematical
constraints on node degrees. The non-convex optimization func-
tion involves multiple variables as well as hard cardinality con-
straints simultaneously, which render the problem very hard to ad-
dress. ITERCLIPS adopts an alternative updating schema to solve
the objective function, and an approximated greedy method is ap-
plied to select promising links from networks subject to the cardi-
nality constraints with very low time costs. Finally, a distributed

implementation of ITERCLIPS is further presented as a scalable so-
lution to the CLP problem.

The following part of this paper is organized as follows. In Sec-
tion 2, we will define some important terminologies used in this
paper and introduce the formulation of the CLP problem. The link
prediction framework ITERCLIPS will be introduced in Section 3,
and its performance will be evaluated in Section 4. Finally, in Sec-
tion 5, we will talk about the related works and conclude this paper
in Section 6.

2. TERMINOLOGY DEFINITION AND PROB-
LEM FORMULATION

In this section, we will first define the terminologies used in this
paper and then provide the formulation of the CLP problem.

2.1 Terminology Definition
The problem CLP studied in this paper is a general link pre-

diction problem, where the target network can be bibliographic
networks, enterprise organizational charts and multiple partially
aligned social networks. To be general, we can define the target
network structure as an information network.
Definition 1 (Information Network): Formally, the information net-
work involving information entities V and known links E ⊂ V ×V
can be represented as a graph G = (V, E). The links in information
network G are subject to certain cardinality constraint depending
on the problem setting.

Information network is a general representation about the struc-
tured data studied in different disciplines. Specifically, when study-
ing the anchor link prediction problem, the entity set V will be de-
composed into two disjoint subsets V1 ∪ V2, and the anchor links
merely exist between the entities in V1 and V2 (i.e., E ⊂ V1 ×V2).
To denote the cardinality constraints on links in information net-
works, we will provide its formal definition as follows.
Definition 2 (Cardinality Constraint): Formally, the cardinality
constraint on links specifies the the number of links that informa-
tion entities can be associated with. Formally, in this paper, given
the information network G = (V, E), the cardinality constraint on
link E can be represented as M : N , where M and N denote the
maximum (which can also be the mandatory or minimum) cardinal-
ity of links going out from/into entities in set V .

The above definition provides a general representation of the car-
dinality constraint on links, which can be applied to all the three
different kinds of cardinality constraints introduced in Section 1.

• One-to-One Constraint: 1 : 1 on anchor links is a maximum-
maximum constraint, where users can either be connected by
anchor links or stay unconnected if they have no accounts in
the other network.

• One-to-Many Constraint: N : 1 on supervision links is a
maximum-mandatory constraint, where managers can simul-
taneously supervise multiple subordinates while employees
will be supervised by exactly one manager.

• Many-to-Many Constraint: N : N on co-author links is also
a maximum-maximum constraint, where researchers usually
work with many other researchers at the same time and N
usually equals to |V| − 1 if no specific value is provided in
the constraint definition.

2.2 Problem Formulation
Problem Definition: Given the information network G = (V, E)
with the known link set E , we can represent all the potential links



among the information entities asL = V×V\{(u, u)}u∈V . Mean-
while, the set of the unknown links in graph G can be denoted as
set L \ E . For links in L, we propose to assign them with labels
from set Y = {0, 1} according to the existing works [7], where
the links will be formed are assigned with label +1 (i.e., positive
instances), while those will never be formed are assigned with la-
bel 0 (i.e., negative instances). Since we have no idea about the
formation likelihood of links in the unknown link set L \ E , which
actually involves both positive and negative instances (i.e., links
to be formed and those will never be formed), the unknown links
should be unlabeled as introduced in [28]. In this paper, we will
treat the CLP as a PU (positive and unlabeled) learning problem.
Based on the set of positive links E and unknown links L \ E as
well as the information about these links available in the network
G, we aim at building a mapping f : L \ E → {0, 1} to project the
links L \ E to their corresponding labels in this paper.

3. PROPOSED METHOD
In this section, we will first introduce the notations used in this

paper. After that, in Section 3.2, we will talk about the loss function
for the link prediction problem. The link cardinality constraint will
be talked about in Section 3.3, and we will introduce the optimiza-
tion objective function of CLP as well as the ITERCLIPS framework
in Section 3.4. Detailed analysis about the CLP problem and frame-
work ITERCLIPS will be available in Section 3.5. Finally, we will
introduce the distributed implementation of the ITERCLIPS frame-
work in Section 3.6.

3.1 Notations
In the sequel, we will use lower case letters (e.g., x) to denote

scalars, lower case bold letters (e.g., x) to denote column vectors,
bold-face upper case letters (e.g., X) to denote matrices, and upper
case calligraphic letters (e.g., X ) to denote sets. Given a matrix
X, we denote X(i, :) (and X(:, j)) as the ith row (and the jth col-
umn) of X, and the (ith, jth) entry of matrix X can be denoted as
X(i, j) or Xi,j (which are interchangeable). We use X> (and x>)
to denote the transpose of matrix X (and vector x). For vector x,
we denote its Lp-norm as ‖x‖p = (

∑
i |xi|p)

1
p , and the Lp-norm

of matrix X can be represented as ‖X‖p = (
∑

i,j |X(i, j)|p)
1
p .

3.2 Link Prediction via Loss Minimization
Based on the whole link set L, a set of features can be extracted

for these links with the information available in the information
network G, which can be represented as set X = {xl}l∈L (xl ∈
Rm, ∀l ∈ L). Given the link existence label set Y = {0, 1}, as
introduced in Section 2, the objective of the CLP problem stud-
ied in this paper is to achieve a general link inference function
f : X → Y to map the link feature vectors to their corresponding
labels. Depending on the specific application setting and informa-
tion available in the networks, the feature vectors extracted for links
inL can be very diverse. We will not focus on the specific extracted
features here, which will be briefly talked about in Section 4 when
introducing the detailed experimental settings.

Formally, the loss introduced in the mapping f(·) can be repre-
sented as function L : X×Y → R over the link feature vector/label
pairs. Meanwhile, for one certain input feature vector xl for link
l ∈ L, we can denote its inferred label introducing the minimum
loss as ŷl:

ŷl = arg min
yl∈Y,w

L(xl, yl;w),

where vector w denotes the parameters involved in the mapping
function f(·).

Therefore, given the pre-defined loss function L(·), the general
form of the objective mapping f : X → Y parameterized by vector
w can be represented as:

f(x;w) = arg min
yl∈Y

L(x, y;w).

In many cases (e.g., when the links are not linearly separable),
the feature vector xl of link l needs to be transformed as g(xl) ∈
Rk (k is the transformed feature number) and the transformation
function g(·) can be different kernel projections depending on the
separability of instances. Throughout this paper, we assume loss
function L(·) to be linear in some combined representation of the
transformed link feature vector g(xl)

> and label yl, i.e.,

L(xl, yl;w) = (〈w, g(xl)〉 − yl)
2 = (w>g(xl)− yl)

2.

Furthermore, based on all the links in the network L, we can
represent the extracted feature vectors for these links to be matrix
X = [g(xl1), g(xl2), · · · , g(xl|L|)]

> ∈ R|L|×k (for simplicity,
linear kernel projection is used in this paper, and g(xl) = xl).
Meanwhile, their existence labels can be represented as vector y =
[yl1 , yl2 , · · · , yl|L| ]

>, where yl ∈ {0, 1},∀l ∈ L. Specifically,
for the existing links in E , we know their labels to be positive in
advance, i.e., yl = 1, ∀l ∈ E . According to the above loss function
definition, based on X and y, we can represent the loss introduced
by all links in L to be

L(X,y;w) = ‖Xw − y‖22 .

To learn the parameter vector w and infer the potential label vec-
tor y, we propose to minimize the loss term introduced by all the
links in L. Meanwhile, to avoid overfitting the training set, be-
sides minimizing the loss function L(X,y;w), a regularization
term ‖w‖22 about the parameter vector w is added to the objective
function:

min
w,y

1

2
‖w‖22 +

c

2
‖Xw − y‖22 ,

s.t. y ∈ {0, 1}|L|×1, and yl = 1, ∀l ∈ E ,

where constant c denotes the weight of the loss term in the function.

3.3 Link Cardinality Constraints
The cardinality constraints define both the limit on link car-

dinality and the limit on node degrees that those links are inci-
dent to. To be general, the links studied in this paper can be ei-
ther uni-directed or bi-directed, where undirected links are treated
as bi-directed. For each node u ∈ V in the network, we can
represent the potential links going-out from u as set Γout(u) =
{l|l ∈ L, ∃v ∈ V, l = (u, v)}, and those going-into u as set
Γin(u) = {l|l ∈ L,∃v ∈ V, l = (v, u)}. Furthermore, with
the link label variables {yl}l∈L, we can represent the out-degree
and in-degree of node u ∈ V as degreeout(u) =

∑
l∈Γout(u) yl

and degreein(u) =
∑

l∈Γin(u) yl respectively. Considering that
the node degrees cannot be negative, besides the upper bounds in-
troduced by the cardinality constraints, a lower bound “≥ 0” is
also added to guarantee validity of node degrees by default.
One-to-One Cardinality Constraint

For the bi-directed anchor links with 1 : 1 cardinality constraint,
the nodes in the information networks can be attached with at most
one such kind of link. In other words, for all the nodes (e.g., u ∈ V)
in the network, its in-degree and out-degree can not exceed 1, i.e.,

0 ≤
∑

l∈Γout(u)

yl ≤ 1,∀u ∈ V, and 0 ≤
∑

l∈Γin(u)

yl ≤ 1,∀u ∈ V.



Algorithm 1 Greedy Link Selection (GREEDYLS)
Input: link estimate result ŷ, parameter k
Output: link label vector y
1: initialize link label vector y = 0
2: for l ∈ E do
3: yl = 1
4: end for
5: for l ∈ L \ E and ŷl < 0.5 do
6: yl = 0
7: end for
8: Let L̃ = {l|l ∈ L \ E , ŷl ≥ 0.5}
9: while L̃ 6= ∅ do

10: select l ∈ L̃ with the highest estimation score
11: if add l as positive instance violates the cardinality con-

straint or more than k links have been selected then
12: yl = 0
13: else
14: yl = 1
15: end if
16: end while
17: return y

One-to-Many Cardinality Constraint
Meanwhile, for the uni-directed supervision links with the N : 1

cardinality constraint, the manager nodes can have multiple (N )
links going out from them while the subordinate nodes should have
exactly one link going into them (except the CEO). In other words,
for all the nodes (e.g., u ∈ V) in the network, its out-degree cannot
exceed N and the in-degree should be exactly 1, i.e.,

0 ≤
∑

l∈Γout(u)

yl ≤ N,∀u ∈ V, and 1 ≤
∑

l∈Γin(u)

yl ≤ 1,∀u ∈ V.

Many-to-Many Cardinality Constraint
In many cases, there usually exist no specific cardinality con-

straints on links, and nodes can be connected with each other freely.
Simply, we can assume the node in-degrees and out-degrees to be
limited by the maximum degree parameter N = |V| − 1, i.e.,

0 ≤
∑

l∈Γout(u)

yl ≤ N,∀u ∈ V, and 0 ≤
∑

l∈Γin(u)

yl ≤ N,∀u ∈ V.

General Cardinality Constraint Representation
The cardinality constraint on links can be generally represented

with the linear algebra equations. The relationship between nodes
V and links L can actually be represented as matrices Tout ∈
{0, 1}|V|×|L| and Tin ∈ {0, 1}|V|×|L|, where entry Tout(u, l) =
1 iff l ∈ Γout(u) and Tin(u, l) = 1 iff l ∈ Γin(u). Based on the
link label vector y, we can formally represent the node out-degrees
and in-degrees as vectors Tout·y and Tin·y respectively. The gen-
eral representation of the cardinality constraints introduced above
can be rewritten as follows:

bout ≤ Tout · y ≤ b
out

, and bin ≤ Tin · y ≤ b
in
,

where vectors bout, b
out

, bin and b
in

can take different values
depending on the cardinality constraint on the links (e.g., for the
1 : 1 constraint, we have bout = bin = 0 and b

out
= b

in
= 1).

3.4 Joint Constrained Link Prediction Opti-
mization Function

Based on the above remarks, the constrained optimization objec-

tive function of the CLP problem can be represented as

min
w,y

1

2
‖w‖22 +

c

2
‖Xw − y‖22 ,

s.t. y ∈ {0, 1}|L|×1, yl = 1, ∀l ∈ E ,

bout ≤ Tout · y ≤ b
out

,bin ≤ Tin · y ≤ b
in
.

The above objective function involves variables w and y at the
same time, which is actually not jointly convex and can be very
challenging to solve. In this paper, we propose to solve the func-
tion with an alternative updating framework ITERCLIPS by fixing
one variable and updating the other one iteratively. The framework
ITERCLIPS involves two steps:
Step 1: Fix y and Update w

By fixing y (i.e., treating y as a constant vector), the objective
function about w can be simplified as

min
w

1

2
‖w‖22 +

c

2
‖Xw − y‖22 .

Let h(w) = 1
2
‖w‖22 + c

2
‖Xw − y‖22. By taking the derivative

of the function h(w) regarding w we can have

dh(w)

dw
= w + cXwX> − cyX>.

By making the derivation to be zero, we can obtain the optimal
vector w to be

w = c(I + cX>X)−1X>y,

and the minimum value of the function will be c
2
y>y− c2

2
y>X(I+

cX>X)−1X>y.
Step 2: Fix w and Update y

When fixing w and treating it as a constant vector, the objective
function about y can be represented as

min
y

c

2
‖ŷ − y‖22 ,

s.t. y ∈ {0, 1}|L|×1, yl = 1, ∀l ∈ E ,

bout ≤ Tout · y ≤ b
out

,bin ≤ Tin · y ≤ b
in
,

where ŷ = Xw denotes the inference results of the links in L
with the updated parameter vector w from Step 1. The objective
function is an constrained non-linear integer programming problem
about variable y. Formally, the above optimization sub-problem is
named as the CLS (Cardinality Constrained Link Selection) prob-
lem. The CLS problem is shown to be NP-hard (we will analyze
it in the next subsection), and achieving the optimal solution to it
is very time consuming. To preserve the cardinality constraints on
the variables and minimize the loss term, one brute-force way to
achieve the optimal solution y is to enumerate all the feasible com-
bination of links candidates to be selected as the positive instances,
which will lead to very high time complexity. In this paper, we pro-
pose a greedy link selection algorithm to resolve the problem, and
the pseudo-code of the greedy link selection method GREEDYLS is
available in Algorithm 1. Meanwhile, the framework ITERCLIPS
is illustrated with the pseudo-code available in Algorithm 2. ITER-
CLIPS updates vectors w and y alternatively until both of them
converge.

Detailed analysis about the CLS problem and the greedy algo-
rithm GREEDYLS will be provided in the next subsection.

3.5 Problem and Algorithm Analysis
In this part, we will show the CLS problem with M : N cardi-

nality constraints can be reduced to the k-maximum weight match-
ing problem, which is NP-hard and not solvable in polynomial time.



Algorithm 2 Framework ITERCLIPS
Input: link feature vector X

weight parameter c
Output: parameter vector w, link label vector y
1: Initialize label vector y = 1

2
· 1

2: For links in E , assign their label as 1
3: Initialize parameter vector w = 0
4: Initialize convergence-tag = False
5: while convergence-tag == False do
6: Update vector w with equation w = c(I+ cX>X)−1X>y
7: Calculate link estimation result ŷ = Xw
8: Update vector y with Algorithm GREEDYLS(ŷ)
9: if w and y both congerge then

10: convergence-tag = True
11: end if
12: end while
In addition, we will also prove that the GREEDYLS method can ac-
tually achieve 1

2
-approximation of the optimal result of the CLS

problem.
In the CLS problem, for all the existing links in E , we know

their label should be 1 in advance. For all the links in L \ E with
estimation score (i.e., ŷ) lower than 0.5, assigning their label with
value 0 will introduce less loss and has no impact on the cardinality
constraints. Therefore, in Algorithm 1, these links are handled in
advance to simplify the problem. For the remaining links, we need
to select those with high scores to assign with label 1 (so as to min-
imize the loss term), and preserve the cardinality constraints at the
same time. For the links selection of which violates the cardinality
constraints, they will be assigned with label 0 instead.

Formally, we can represent the unlabeled links with confidence
scores greater than 0.5 as set L̃ = {l|l ∈ L \ E , ŷl > 0.5}. For all
the links in set L̃, we can represent the introduced loss term as∑

l∈L̃

(ŷl − yl)
2 =

∑
l∈L̃

ŷ2
l +

∑
l∈L̃

y2
l −

∑
l∈L̃

2ŷl · yl,

where term
∑

l∈L̃ ŷ
2
l is a constant, term

∑
l∈L̃ y

2
l denotes the num-

ber of selected links, and
∑

l∈L̃ 2ŷl · yl represents the confidence
scores of the selected links. Let’s assume k links are selected fi-
nally, i.e.,

∑
l∈L̃ y

2
l = k, the optimal k links which can minimize

the loss term can be achieved by maximizing the confidence scores
of the selected links:

max
∑
l∈L̃

ŷlyl

s.t. yl ∈ {0, 1}, ∀l ∈ L̃,
∑
l∈L̃

yl = k,

bout ≤ Tout · y ≤ b
out

,bin ≤ Tin · y ≤ b
in
.

By enumerating different k values in range [1, |L̃|], we can identify
the optimal link set for the CLS problem.
Theorem 1: The k-maximum weighted matching problem can be
reduced to the above optimization problem with general M : N
cardinality constraints.
Proof : The above optimization problem with 1 : 1 cardinality
constraint is actually identical to the k-maximum weighted match-
ing problem studied in the existing works [5], and the reduction
is trivial. Meanwhile, for the above optimization problem with
N : 1 cardinality constraints on the links, we can have vectors
b
in

= bin = [1, 1, · · · , 1]>, b
out

= [N,N, · · · , N ]>, and
bout = 0. Given the information network G with 1 : N cardinal-
ity constraints, we propose to construct N dummy nodes for each
the nodes with out-going links. The constructed dummy nodes are

Algorithm 3 Distributed GREEDYLS (DISTGREEDYLS) with 1 : 1
Cardinality Constraint
Input: node u, neighbor set Γ(u)
1: Initialize neighborhood set N = Γ(u)
2: Initialize matching candidate set C = ∅
3: Select candidate c = candidate(u,N)
4: if c 6= null then
5: Send 〈invite〉 message to c
6: end if
7: while N 6= ∅ do
8: Receive a message m from neighbor v
9: if m == 〈invite〉 then

10: C = C ∪ {v}
11: end if
12: if m == 〈remove〉 then
13: N = N \ {v}
14: C = C \ {v}
15: if v == c then
16: Select new candidate c = candidate(u,N)
17: if c 6= null then
18: Send 〈invite〉 message to c
19: end if
20: end if
21: end if
22: if c 6= null ∧ c ∈ C then
23: for w ∈ C \ {c} do
24: Send 〈remove〉 message to w
25: end for
26: C = ∅
27: end if
28: end while
connected to the original nodes to indicate the belonging relation-
ships. For each original link, e.g., (u, v), we will add a dummy
directed link connecting the dummy node created for u with node
v, whose weight is identical to the weight of the original link (u, v).
Given the k-maximum weighted matching result on the constructed
dummy network, we can obtain the optimal solution to the above
optimization problem on network G by replacing all the created
dummy nodes with the original nodes corresponding to them. Mean-
while, for any solution to the above optimization problem on net-
work G, we can also obtain the solution to the k-maximum weighted
matching problem on the constructed dummy network. In other
words, the k-maximum weighted matching problem can be reduced
to the above optimization problem with N : 1 cardinality con-
straints via the constructed dummy network. Meanwhile, for the
networks with general M : N constraint, dummy nodes can be
created for both nodes with out-going links and in-coming links at
the same time, whose reduction to the k-maximum weighted match-
ing problem is not provided due to the limited space. In addition,
in the M : N case, to avoid the case that solutions pick links con-
necting the more than one link connecting the dummy nodes corre-
sponding the common node pairs (e.g., both (u′, v′) and (u′′, v′′)
are selected, where u′, u′′ and v′, v′′ are the dummy nodes of u
and v respectively), more constraints will be added to the objective
function of the k-maximum weighted matching problem.

According to the existing works [6], the k-maximum weighted
matching problem is actually NP-hard. To address the problem ef-
ficiently, a greedy link selection method called GREEDYLS is ap-
plied as introduced in the previous subsection. As shown in Algo-
rithm 1, among all the remaining links in L̃, GREEDYLS picks the
links with the highest confidence scores ŷl. If the selection of a link
doesn’t violate the cardinality constraint, GREEDYLS will add it to



the final result. We will show that GREEDYLS can actually achieve
1
2

-approximation of the optimal result.
Theorem 2: The GREEDYLS method can achieve 1

2
-approximation

of the optimal solution to the CLS problem.
Proof : Formally, let C be the set of links selected by GREEDYLS to
assign with label +1, while the optimal solution to the CLS prob-
lem can be represented as OPT . Every time, when GREEDYLS
selects the links with the highest confidence score (e.g., l = (u, v))
to add to C, the degrees of nodes u and v will get increased by 1 and
some other links incident to u, v will no longer get added to C due
to the degree limit (introduced by the cardinality constraint). At
most two links incident to u and v can get removed due to the se-
lection of (u, v), since (u, v) occupies the degree space of u and v
by one respectively. Formally, we can represent the set of links in-
cident to l as set Γ(l) = Γout(u)∪Γin(v). Depending on whether
link l ∈ C is in OPT or not and the number of links in the optimal
solution but are removed in C due to the selection of l (i.e., links in
Γ(l) ∩ (OPT \ C)), there exist 3 cases:

1. l ∈ OPT : Link l also belongs to the optimal result, and
adding l into C will not affect the selection of other links.

2. l /∈ OPT and Γ(l)∩ (OPT \C) = {l1}: Link l is not in the
optimal solution, and adding l to the result C will occupy the
degree space and make the optimal link l1 ∈ OPT (incident
to either u or v) fail to be selected. Meanwhile, since l is the
link with the highest score at selection, if l1 is not selected
ahead of l, it is easy to show that ŷl > ŷl1 > 1

2
ŷl1 .

3. l /∈ OPT and Γ(l) ∩ (OPT \ C) = {l1, l2}: Link l is
not in the optimal solution, and adding of l = (u, v) will
occupy the degrees of nodes u and v by 1 and make links
l1, l2 ∈ OPT incident to u and v respectively to be removed.
Since l has the highest score, if links l1 and l2 are not selected
ahead of l, it is easy to show that ŷl > ŷl1 and ŷl > ŷl2 .
Therefore, we have ŷl >

1
2
(ŷl1 + ŷl2).

Based on the above remarks, for all the selected links in C, we
have

ŷ(C) = ŷ ((C ∩OPT ) ∪ (C \OPT ))

= ŷ(C ∩OPT ) + ŷ(C \OPT )

= ŷ(C ∩OPT ) +
∑

l∈C\OPT

ŷl

>
1

2
ŷ(OPT ∩ C) +

1

2

∑
l∈OPT\C

ŷl

=
1

2
ŷ(OPT ).

where ŷ(C) =
∑

l∈C ŷl denotes the score sum of the links in C.
Therefore, the GREEDYLS algorithm can achieve 1

2
-approximation

of the optimal solution for the CLS problem with M : N link
cardinality constraint, and the time complexity of the GREEDYLS
method is O(|L̃|).

3.6 Distributed Framework
Meanwhile, for large-scale networks involving billions of nodes

and links, the complete network data can hardly be stored in one
single machine and framework ITERCLIPS may suffer from the
high computational cost problem a lot. In this section, we will
introduce a scalable version of framework ITERCLIPS based on
distributed computational platforms. The framework ITERCLIPS
involves two iterative steps actually. In the first step, we need to
update vector w to calculate the confidence vector ŷ = Xw =

cX(I+cX>X)−1X>y, where matrix cX(I+cX>X)−1X> can
actually be pre-computed and divided into blocks to be stored in
different slaves (i.e., worker nodes in a cluster). For instance, in
Spark, the matrix can be divided into rows, where each row can
be saved as a RDD (resilient distributed dataset) in one slave, and
each entry in vector ŷ can be updated independently in different
slaves simultaneously. The updated values in ŷ can be exchange
among the slaves with very low communication costs. Meanwhile,
for the second step in framework ITERCLIPS, how to generalize
GREEDYLS to the distributed version is not very straightforward,
which will be the focus in the following part of this subsection.

According to Theorem 1, the the k-maximum weighted matching
problem can be reduced to the objective function of k-CLS with
general M : N cardinality constraint in polynomial time. There-
fore, next we will propose the distributed version of GREEDYLS
for the CLS with 1 : 1 constraint specifically (which can be applied
for the general M : N cardinality constraint as well). Before div-
ing into details of the DISTGREEDYLS (Distributed GREEDYLS)
algorithm, we first provide some intuitive ideas about how DIST-
GREEDYLS works. In the distributed weighted link selection, each
process representing one node in the graph knows its neighbor nodes
as well as their inferred confidence scores ŷ. These processes can
also communicate with each other by sending and receiving mes-
sages. Via the communication among processes, links with lo-
cally highest confidence scores can be identified concurrently. In-
tuitively, by running the algorithm on all the nodes simultaneously,
the same matching result can be obtained as Algorithm GREEDYLS
based on the stand-alone mode.

Formally, the pseudo-code of the distributed algorithm DIST-
GREEDYLS is available in Algorithm 3. According to the algo-
rithm, for each node u, we can initialize its neighbor set N as
Γ(u) (N will change dynamically in the algorithm). Function c =
candidate(u,N) returns the candidate of u, whose link with u is
of the highest confidence score, i.e.,

c = candidate(u,N) = argv∈N max ŷ(u,v).

Initially, node u will send the invite message to the candidate c,
and receive messages from all the neighbors in set N . If the mes-
sage received from neighbor v is also an invitation (i.e., u is the
most promising candidate of v), u will add v to its matching can-
didate set C. Meanwhile, if the message is remove, it denotes v
has already found its partner and link between them has already
been selected. Node v will be removed from u’s neighbor set and
matching candidate set. What’s more, if v happens to be candidate
c, node u will retrieve the next most promising candidate c and
send the new invite message again. Finally, if candidate c invites u
and u also invites c, the link between whom will be of the highest
score and selected finally.
Lemma 1: In the DISTGREEDYLS algorithm, each process (node)
sends out at most one message over each incident edge.
Proof : In the algorithm, for each node u, u sends invite message
to the first candidate as well as other candidate if the previous can-
didates send a remove message to u. Therefore, for each poten-
tial candidate c obtained via function candidate(u,N), u sends at
most one invite message to c. Meanwhile, the remove messages are
merely sent to the other neighbors in N (excluding candidates c)
only once. In other words, all the neighbors in Γ(u) only receive
exactly one message (either invite or remove) from u in the whole
process.

According to the analysis in Lemma 1, we can prove the time
complexity of the DISTGREEDYLS Algorithm to be O(|L̃|).

4. EXPERIMENTS
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Figure 1: Performance of Comparison Methods Evaluated by AUC.

To demonstrate the effectiveness of framework ITERCLIPS, ex-
tensive experiments will be done on real-world information net-
work datasets in this section. In the following parts, we will first
introduce the datasets used in the experiments. After that, we will
talk about the experimental setting in detail, and show the experi-
mental results with detailed performance analysis.

4.1 Dataset Description
Three different information network datasets are used in the ex-

periments, links in which are subject to different cardinality con-
straints. The first dataset used in this paper is the collaboration
network crawled from Arxiv1, which involves about 18, 772 re-
searchers and 198, 110 co-author links among the researchers. Links
in the collaboration network are subject to the many-to-many car-
dinality constraint. The second dataset used in this paper is about
the organizational chart [26, 20, 27] of a famous IT company2,
which contains more than 100k employees and the supervision
links among the employees as well as employee internal profile
information in the company. The supervision links in the organiza-
tional chart are subject to the one-to-many cardinality constraint.
The third dataset used is about multiple aligned social networks,
Foursquare and Twitter [28, 11, 23], from which about 5k users
together with their complete social information are crawled. The
anchor links across the networks are subject to the one-to-one car-
dinality constraint.

4.2 Experimental Setting

4.2.1 Experimental Setup
In the experiments, from each dataset, we can obtain the set of

existing known links as well as the non-existing links, which are
treated as the positive and negative links respectively. Based on the
known positive links, we propose to apply the 5-fold cross valida-
tion to partition the links into two subsets according to ratio 4 : 1,
where 4 folds are used as the training set and 1 fold is used as the
testing set. The testing set will be combined with the negative link
set to form the final unlabeled link set. Based on the training and
unlabeled link sets, we aim at building models to uncover these hid-
den positive links from the unlabeled link set. When building the
framework ITERCLIPS, a set of features are extracted for the links
based on the information available in the information networks. In
the experiment, to be general, the features are extracted based on
a set of the meta paths. For more information about the meta path
1https://snap.stanford.edu/data/ca-AstroPh.html
2we are not able to reveal the company name and actual statistical
numbers here and throughout the paper

based features defined for the co-author links, supervision links,
and anchor links please refer to [18, 26, 21] respectively. Based on
the ITERCLIPS framework introduced in this paper, a set of promis-
ing links will be selected from the unlabeled link set, which will be
labeled as the positive instances. Meanwhile, the estimation scores
of these links achieved at the convergence will also be outputted
by ITERCLIPS as the confidence scores of these links. The pre-
dicted results together with the ground truth will be measures by
some traditional metrics to evaluate the performance of different
link prediction methods. All the codes are implemented in Python
based on Spark 1.5.2. The experiments are done based on a cluster
of 10 servers (each with 24 CPUs (based on the x86_64 architec-
ture) and 94 GB memory), and the operating system is Red Hat
Enterprise Linux Server release 6.5.

4.2.2 Comparison Methods
The set of methods to be compared in the experiments can be di-

vided into 2 categories depending on whether the cardinality con-
straint is considered or not in building the model.
Comparison Methods with Cardinality Constraints

• ITERCLIPS: Framework ITERCLIPS is the cardinality con-
strained link prediction framework proposed in this paper,
which applies the greedy method GREEDYLS to select promis-
ing links in step 2.

• ITERCLIPS-OPT: Framework ITERCLIPS-OPT is identical
to ITERCLIPS except that the Hungarian algorithm is applied
in step 2 of ITERCLIPS-OPT to select the optimal links from
the network.

• PU-M: Method PU-M is an extension to the PU (positive
and unlabeled) link prediction method proposed in [28]. In
the experiment, we extend the PU link prediction with an ad-
ditional network flow based matching step [26] to prune the
redundant links and preserve the link cardinality constraint.

• SUP-M: Method SUP-M is a two-phase supervised classifi-
cation based link prediction method involving a supervised
link prediction step [7] (treating all unlabeled links as nega-
tive instances) and a network flow based link post-processing
step to maintain the link cardinality constraint.

Comparison Methods without Cardinality Constraints

• PU: Method PU is the PU link prediction proposed in [28].
PU is also the first step of method PU-M and it doesn’t con-
sider the cardinality constraints
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Figure 2: Performance of Comparison Methods on Collaboration Network Evaluated by F1, Precision, Recall and Accuracy.
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Figure 3: Performance of Comparison Methods on Organizational Chart Evaluated by F1, Precision, Recall and Accuracy.

• SUP: Method SUP is the supervised classification based link
prediction method proposed in [7]. It is also the first step of
method SUP-M and it doesn’t consider the cardinality con-
straints on links.

• Unsupervised Link Prediction: To be complete, we also com-
pare the proposed framework ITERCLIPS with a set of tra-
ditional unsupervised link prediction methods, including CN
(Common Neighbor) [13] and JC (Jaccard’s Coefficient) [13].

4.2.3 Evaluation Metrics
Depending on the output of these link prediction methods, var-

ious conventional evaluation metrics are applied to measure their
performance. For the methods which can output link confidence
scores, including ITERCLIPS, ITERCLIPS-OPT, PU, SUP, CN and
JC, we will apply the AUC as their evaluation metric. For meth-
ods which can output link prediction labels, including ITERCLIPS,
ITERCLIPS-OPT, PU-M, SUP-M, PU and SUP, we will use F1,
Recall, Precision and Accuracy as the evaluation metrics.

4.3 Experimental Results with Analysis
The experimental results achieved by different comparison meth-

ods on these three datasets evaluated by AUC, F1, Precision, Re-
call and F1 are shown in Figures 1-4. From Figure 1, we can
observe that ITERCLIPS-OPT and ITERCLIPS can achieve larger
AUC scores on these three different network datasets than the other
methods. For instance, on the organizational chart dataset, the AUC
scores achieved by ITERCLIPS-OPT and ITERCLIPS are both 0.97,
which is almost the double of the score obtained by SUP, CN and
JC. It demonstrates the claim we make when proposing the CLP
problem at the very beginning: incorporating the cardinality con-
straints in the link prediction problem modeling can greatly im-
prove the prediction result. Meanwhile, by comparing the advan-
tages of ITERCLIPS-OPT and ITERCLIPS over the other methods,
we observe that the advantage is more significant when inferring
the supervision links and anchor links while the advantage is rela-
tively slight when inferring the co-author links. The results shows
that the ITERCLIPS framework works very well in inferring differ-

ent types of links, and its is most suitable for predicting links with
challenging one-to-many and one-to-one cardinality constraints.

In Figures 2-4, we show the performance of the comparison meth-
ods on these three different types of network datasets respectively.
According to the results, we can observe that (1) for metrics F1
and Precision, frameworks ITERCLIPS and ITERCLIPS-OPT can
achieve much better performance, and the scores are almost three
times greater than other methods according to the plots 2(a), 3(a),
3(b), 4(a) and 4(b); (2) for some metrics (like recall) method PU
and SUP can perform slightly better; and (3) all these methods can
achieve very high accuracy scores. The potential explanation for
these observations can be (1) framework ITERCLIPS and ITERCLIPS-
OPT can identify a reasonable sized link set from the networks, and
many of the identified links are correct (i.e., high precision and f1);
(2) PU and SUP predicts a large number of links to be positive,
which can cover the majority of positive links (i.e., achieve high
recall); (3) in the class imbalance case (i.e., non-existing links are
far more than the existing links), predicting all the links to be nega-
tive can still achieve very high accuracy score, which is not a good
metric in such a case actually.

By comparing ITERCLIPS with ITERCLIPS-OPT, their perfor-
mance is comparable and in some cases the greedy link selection
algorithm proposed in this paper can perform slightly better (e.g.,
in plot 3(b)). However, as shown in Table 1, the time cost of
ITERCLIPS-OPT is much larger than the cost of ITERCLIPS, and
the difference will be more obvious when the distributed version
DISTGREEDYLS is applied. It supports the motivation of apply-
ing the greedy link selection to solve the CLS problem. In ad-
dition, by comparing the scores achieved by all the comparison
methods on these three different types of networks, the advantages
of ITERCLIPS over the other methods is more prominent when in-
ferring anchor links with one-to-one cardinality constraint between
Foursquare and Twitter, which indicate the ITERCLIPS can show
its potential in more challenging cardinality constraints.

5. RELATED WORK
Link prediction problems is a traditional research problem stud-
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Figure 4: Performance of Comparison Methods on Foursquare-Twitter Networks Evaluated by F1, Precision, Recall and Accuracy.

Table 1: Running Time of Comparison Methods on Three Dif-
ferent Datasets (time is in minutes).

Methods Collaboration Chart Fsq-Twt
update select update select update select

ITERCLIPS-OPT 5.76 49.82 46.84 868.81 8.92 62.6
ITERCLIPS 5.75 23.31 45.75 93.76 8.73 24.66

ITERCLIPS-DIST 0.53 2.51 2.13 4.47 0.71 3.14

ied in various areas, which aims at inferring the connections among
nodes in the graph. To this context so far, dozens of link prediction
works have been published already [14, 4, 15, 19, 2]. Depending
on the learning setting utilized, the existing link prediction models
for information networks can be divided int several categories. Ini-
tially, researchers study the link prediction problem based on an un-
supervised learning setting [13], which predicts links by calculating
the similarity scores among nodes with the assumption that close
nodes are more likely to be connected. Afterwards, to utilize the su-
pervision information and incorporate multiple closeness measures
altogether, researchers introduce the supervised classification based
link prediction models [7], where the existing and non-existing
links are labeled as the positive an negative instances respectively.
Recently, researchers point that labeling the non-existing as neg-
ative instances is not reasonable, since some of the links will be
formed, which should be unlabeled actually [28, 23]. Based on
such an intuition, link prediction framework based on PU (Posi-
tive and Unlabeled) learning setting is introduced in [28, 23]. To
gain a more comprehensive knowledge about existing link predic-
tion works, please refer to the survey paper [22, 16, 8] for more
information.

Cardinality constraints are a common concept used in link (rela-
tion or projection) modeling, which effectively specifies the popu-
lation and physical meaning of links (relations and projections). In
traditional algebra and set theory studies, researchers use cardinal-
ity constraints to represent the property of link (relation or projec-
tion), which can be injective (i.e., one-to-one), surjective and bijec-
tive. In conventional database studies, the practitioners adopt cardi-
nality constraints to denote the property of relations among entities
in the ER (Entity Relation) model [3], which include one-to-one,
one-to-many and many-to-many. Meanwhile, in theoretic com-
puter science area, a bunch of traditional research problems can be
modeled as optimization problem subject to certain cardinality con-
straints, like the stable marriage problem [10], assignment problem
[12], maximum graph matching problem [5], etc. As shown in this
paper, the link selection problem with cardinality constraint can
be reduced to the maximum graph matching problem [5] actually,
which is a traditional research problem studied in graph theory and
combinatorial mathematics. After the problem was proposed, sev-
eral variants of the problem have been introduced, including the
maximum bipartite graph matching [9], maximum weighted graph
matching [1], minimum maximal matching [17], etc.

6. CONCLUSION
In this paper, we have studied the CLP problem, whose objective

is to predict the links in information networks subject to the car-
dinality constraints. A new link prediction framework ITERCLIPS
is proposed to resolve the problem, which involves two alternative
steps: (1) weight vector updating, and (2) cardinality constrained
link selection. To overcome the high-time complexity problem en-
counter when tackling the link selection step, a new greedy link
selection algorithm has been proposed in this paper. In addition,
to ensure the effectiveness of ITERCLIPS on large-scale networks,
a distributed implementation of ITERCLIPS has been further pre-
sented as a scalable solution to the CLP problem. Extensive ex-
periments have been done on three different information network
datasets in this paper, links in which are subject to different car-
dinality constraints. The experimental results have demonstrated
our claim that: by incorporating the cardinality constraints in the
link prediction problem modeling, the link prediction results can
be improved significantly.
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