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More massive volume of data are generated in many areas than ever before. However, the missing of some values in collected data
always occurs in practice and challenges extracting maximal value from these large scale data sets. Nevertheless, in multivariable
time series, most of the existing methods either might be infeasible or could be inefficient to predict the missing data. In this paper,
we have taken up the challenge of missing data prediction in multivariable time series by employing improved matrix factorization
techniques. Our approaches are optimally designed to largely utilize both the internal patterns of each time series and the information
of time series across multiple sources. Based on the idea, we have imposed three different regularization terms to constrain the
objective functions of matrix factorization and built five corresponding models. Extensive experiments on real-world data sets and
synthetic data set demonstrate that the proposed approaches can effectively improve the performance of missing data prediction in
multivariable time series. Furthermore, we have also demonstrated how to take advantage of the high processing power of Apache
Spark to perform missing data prediction in large scale multivariable time series.
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I. INTRODUCTION

The sophistication of instruments to collect data from mul-
tiple sources and the resulting volume of data have grown
to an unprecedented level since the era of big data started
in recent years [1]. Multivariable time series, one common
data format, are ubiquitous in many real-world applications,
like electric equipment monitoring, weather or economic fore-
casting, environment state monitoring, security surveillance
and many more [2], [3], [4]. In most applications, multiple
sensors are employed to generate time series data, and they
usually share one common goal. For example, in the power
grid system, various diagnostic gases sensors are deployed to
monitor the status of the main power transformers and generate
multivariable time series by measuring the content of the
diagnostic gases over time [5]. In the “Internet of Things”, a
large number of sensors are used to produce multivariable time
series of the external environment, e.g., the air or water quality.
In the medical and healthcare systems, multiple sensors can
also be equipped within living spaces to monitor the health and
general well-being of senior citizens, while also ensuring that
proper treatment is being administered and assisting people
regaining lost mobility via therapy as well [6]. In this paper,
the sensors sharing one common goal are treated as a sensor
network.

Unfortunately, due to the harsh working conditions or
uncontrollable factors, such as the extreme weather, equipment
failure or the unstable communication signal, the raw time
series in a sensor network usually involve missing values.
For instance, while in-service, missing values in power grid
surveillance systems can occur for various reasons, such as
quick evaporation of acetylene, the existence of contamination
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on the surface of the platinum alloy of a gas meter, etc. Yet, in
practice, sensors and communication failures are more com-
mon factors that produce missing values in many applications.
And still worse, immediate fixation of these practical problems
is rarely plausible and might cost too much.

The inevitable data missing necessitates integrated analysis
of observed data sets. A large collection of data mining and
statistical methods have been proposed to predict the missing
values of time series [7]. One simplest solution might be
linear interpolation. But it is only feasible to be applied
to the case where only a low ratio of collected data are
missing and the time series vary very steadily. Modeling
methods, more commonly used solutions, try to discover the
underlying patterns and seasonality to predict the missing
values using some common sense [8]. Representative modeling
approaches include deterministic models, stochastic models,
and state space models [7]. For example, Frasconi et al.
employed a seasonal kernel to measure the similarity between
time-series instances and proposed the seasonal autoregressive
integrated moving average model coupled with a Kalman filter
achieved excellent performance of missing data prediction [9].
Baraldi et al. [10] proposed a fuzzy method for missing data
reconstruction, which involves fuzzy similarity measurement
and shows superiority to an auto associative kernel regression
method. Besides, Song et al. used matrix factorization to
predict traffic matrices and their method showed more effective
performance than traditional methods [11].

Nevertheless, these methods either focus on predicting the
missing data in the time series from one single source or could
not effectively handle the missing data prediction problem of
the time series from multiple sources. For instance, the fuzzy
method might lose their effectiveness when the missing ratio
is too high as the method mainly based on the quality of
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similar time series. As a consequence, this method largely
depends on the quality of the raw observed data. The SARMIA
method aims at predicting the missing values with underlying
seasonality, and thus the method might have trouble modelling
data that have no strict internal seasonality. Especially, when
the amount of instances becomes too large, the seasonal kernel
computation would cost too much time. The common matrix
factorization method usually needs to incorporate the internal
specific characteristic of the time series data, such as the
spatial information, which might restrict the method to one
specific application.

In this paper, aiming at solving the above problems, we
propose to fuse the temporal smoothness of time series and the
information across multiple sources into matrix factorization
in order to improve the accuracy of missing data prediction
in multivariable time series. First, as each time series rarely
fluctuate wildly over time, i.e., time series usually host internal
and tangible pattern of temporal smoothness. Thus, we try to
take advantage of the characteristic to reduce the prediction er-
ror of the missing data prediction in multivariable time series.
Concretely, a selective penalty term is employed in the matrix
factorization objective function to smooth the time series, i.e.,
we aim at minimizing the fluctuation of each time series with
time. Second, as there exists valuable correlation information
across multiple sources in a sensor network, we also attempt
to fuse that information into matrix factorization to obtain
higher performance. Specifically, the correlation information
is incorporated in designing two sensor network regularization
terms, i.e., the correlated sensors based regularization (CSR)
term and the uncorrelated sensors based regularization (USR)
term, to constrain the matrix factorization objective function.
We take aim at minimizing the difference between a sensor and
its correlated sensors or maximizing the difference between
a sensor and its uncorrelated sensors based on the sensor
network regularization. Moreover, to treat the correlated or
uncorrelated sensors differently, we further improve the sensor
network regularization terms of the objective function by
incorporating similarity functions. By taking advantage of the
internal characteristic of each time series and the knowledge
of time series across multiple sources, five models are built in
the paper:

1) MFS: Matrix Factorization with Smoothness constraints;
2) CSM: Correlated Sensors based Matrix factorization;
3) USM: Uncorrelated Sensors based Matrix factorization;
4) CSMS: Correlated Sensors based Matrix factorization

with Smoothness constraints;
5) USMS: Uncorrelated Sensors based Matrix factorization

with Smoothness constraints;

In the era of big data, more massive volume of time
series data are generated nowadays than ever before. Besides,
analyzing big data is a complex and time-consuming task,
which needs more efficient and specific analysis tool than
traditional ones. Thus parallel versions of matrix factorization
have become of great interest. Apache Spark is a large-scale
distributed data processing environment that builds on the prin-
ciples of scalability and fault tolerance that are instrumental
in the success of Hadoop and MapReduce [12], [13]. Apache

Spark has already implemented a fundamental version of
matrix factorization for recommendation. Here, we implement
our proposed approaches using the Apache Spark platform.

The experimental results reveal that our proposed methods
show superior performance to the traditional and state-of-the-
art algorithms.

The contributions of this paper are summarized as follows:
1) We propose novel methods to constrain the matrix

factorization by fusing both the temporal smoothness
of each time series and the information across multiple
sources to improve the performance of missing data
prediction in multivariable time series. These constraints
are leveraged to largely utilize interior characteristic of
time series data.

2) We elaborate how the smoothness constraints are care-
fully designed and how the correlation information
across the different sources in a sensor network can
contribute to the missing data prediction in multivariable
time series. And we incorporate smoothness constraints
and two sensor network regularization terms to constrain
the matrix factorization respectively. Also, we systemat-
ically illustrate how to design matrix factorization objec-
tive functions with the carefully designed regularization
terms.

3) We implement and verify the proposed methods with
three data sets from real world and one synthetic data
set. And for big data analysis, we also implement and
verify the proposed methods on Apache Spark platform.

II. PROBLEM FORMULATION

(a) (b)

Fig. 1. (a) Illustration of a sensor network; (b)multivariable time series.

In this paper, we focus on the missing data prediction
problem of the time series in multiple sources. To illustrate
this problem more clearly, we show an example in Fig. 1. Fig.
1(a) presents a simplified example of a sensor network. Fig.
1(b) is a sensors-time matrix, i.e., a multivariable time series,
collected from the sensors in (a)’s network.

Table I lists the main symbols we use throughout this paper.
Let X = {x1, x2, x3, . . ., xN} be the multivariable time series
collected from N different data sources, and the jth entity in
time series data from the ith source can be denoted as Xij

for i = {1, 2, 3, . . . , N}, j = {1, 2, 3, . . . ,M} and Xij ≥ 0.
In our case, when Xij in multivariable time series is missing,
it will be denoted as ‘?’. In addition, we use a matrix W
∈ RN∗M to indicate whether the value in X is missing or
observed. The entries of W can be defined as:

wij =

{
0 if Xij is missing

1 otherwise.
(1)
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TABLE I
SYMBOLS AND DEFINITION.

Symbols Definition and Description
X multivariable time series
N number of data sources
M length of each time series
xi the time series from ith data source
W indicator matrix
S, V latent factors
L dimension of latent factors
H similarity functions
Bij the element at the ith row and jth column

of matrix B
Bi the ith row of matrix B
BT transpose of matrix B
◦ Hadamard product

for all i = {1, 2, 3, . . ., N}, j = {1, 2, 3, . . ., M}. The problem
of the missing data prediction in multivariable time series can
be defined as follows:

Problem 1: Missing data prediction in multivariable time
series.
Given: a multivariable time series X ∈ RN∗M ; an indicator
matrix W ;
Prediction: the predicted values of the missing entries indi-
cated by W .

III. PROPOSED METHODS

In this section, we describe the details of the proposed meth-
ods for missing data prediction in multivariable time series.
We begin with the discussion about the baseline solution for
the problem. Next, we elaborate the key idea of the proposed
methods. We present how to take advantage of the smoothness
characteristic to reduce the error of the missing data prediction
in multivariable time series. Besides, we also elaborate why
and how to utilize the valuable correlation information across
multiple sources in time series data collected from one sensor
network to improve the prediction performance. Given the
main idea, we carefully design three regularization terms to
constrain the matrix factorization and then build five different
models. In the process of regularization terms design, five
similarity functions are introduced, which are also key com-
ponents of the proposed method. Finally, we give the detailed
realization of the proposed methods based on Apache Spark.

A. Low Rank Matrix Factorization
The singular value decomposition (SVD) is a popular and

effective factorization of a real or complex matrix. SVD
approach focuses on discovering linear correlations among
time series and on applying these correlations for further
data analysis [14]. Given X ∈ RN∗M , the singular value
decomposition of X is given by

X = UΣQT , (2)

where U ∈ RN∗L is a matrix with orthogonal columns and
Q ∈ RM∗L, and Σ ∈ RL∗L is a diagonal matrix containing
the singular values of X along its main diagonal.

The most popular low-rank factorization is obtained when
the SVD is rearranged as

X = (UΣ
1
2 )(Σ

1
2QT ) = SV T , (3)

where S = (UΣ
1
2 ) ∈ RN∗L and V = (Σ

1
2QT ) ∈ RM∗L with

L < min(N,M).
A standard formulation of the problem is to determine S

and V with respect to the existing components:

min
S,V

1

2
∥X − SV T ∥2F . (4)

As the original matrix X might contain a great number of
missing values, we only need to factorize the observed entities
in X . Hence, we have a modified optimization problem:

min
S,V

1

2
∥W ◦ (X − SV T )∥2F +

λ1

2
∥S∥2F +

λ2

2
∥V ∥2F , (5)

where λ1,λ2 > 0 and ◦ denotes the Hadamard product.
Two regularization terms ∥S∥2F and ∥V ∥2F are added in order
to avoid overfitting [15]. Gradient based approaches can be
applied to find a local minimum in Equation (5) due to their
effectiveness and simplicity [16]. Equation (5) also contains
a nice probabilistic interpretation with Gaussian observation
noise, which is detailed in [17]. The product of S and V T is
the reconstructed X and is denoted as X̂ in the paper.

In general, from the aforementioned formulation, we can
provide a practical configuration of our methods:

min
S,V

1

2
∥W ◦ (X − SV T )∥2F +

λ1

2
∥S∥2F

+
λ2

2
∥V ∥2F + αSJS(S) + αV JV (V ),

(6)

where αS and αV are nonnegative regularization parameters
and the terms JS(S) and JV (V ) are chosen to enforce the
desired properties of the time series data. In the following
subsections, we will show how to design effective regulariza-
tion terms according to the properties of multivariable time
series in the process of matrix factorization.

B. Fusion of Temporal Smoothness of Time Series

In the real world, a large amount of time series usually
do not fluctuate wildly. For example, the room temperature,
the gas concentrations in electric equipments, the energy
consumption in cities, and product prices in the market rarely
change drastically. In order to fuse the temporal smoothness
of each time series, as V denotes the latent matrix with time
dimension, optimization problem is improved as:

min
S,V

LV (X,S, V ) =
1

2
∥W ◦ (X − SV T )∥2F +

λ1

2
∥S∥2F

+
λ2

2
∥V ∥2F +

β

2
∥GV T ∥2F ,

(7)
where typical examples of the matrix G are the 1st deriva-
tive approximation G1 ∈ R(L−1)×L and the 2nd derivative
approximation G2 ∈ R(L−2)×L [18], given by
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G1 =

⎛

⎜⎜⎜⎝

1 −1 0
1 −1 0

...
. . . . . . 0

0 1 −1

⎞

⎟⎟⎟⎠
, (8)

G2 =

⎛

⎜⎜⎜⎝

−1 2 −1 0
−1 2 −1 0

...
. . . . . . 0

0 −1 2 −1

⎞

⎟⎟⎟⎠
. (9)

We denote this first model as Matrix factorization with
Smoothness constraints (MFS). As Alternating Least Squares
(ALS) can be done effectively, the key idea of which is to find
the local optimum solution of S and V alternatively, where the
gradients of LV (X,S, V ) with respect to Si and Vi could be
calculated as:

∂LV

∂Si
=

M∑

j=1

Wij(SiV
T
j −Xij)Vj + λ1Si

(10)

for all i ∈ {1, 2, . . . , N},

∂LV

∂Vj
=

N∑

i=1

Wij(SiV
T
j −Xij)Si + λ2Vj + βVjG

TG

(11)
for all j ∈ {1, 2, . . . , M}.

C. Fusion of Information across Multiple Sources

Multiple sources provide access to the insight of the nearby
raw data. First, we endeavor to fuse the valuable information
across multiple sources by integrating correlated sources.
Then, from the opposite view, uncorrelated sources also bring
us significant insight into the distant raw data.

1) Correlated Sensors based Regularization
In a sensor network, in spite of the fact that the different

sensors are assigned different tasks, they usually share one
common goal and there might exist a strong correlation
among some of the sensors. For example, in a smart building
equipped with various sensors in humid areas, the humidity
might go up with the temperature. So the humidity sensor
may have a strong correlation with the temperature sensor.
In environmental monitoring systems, there also might be a
high correlation between the chemical and biological sensors
as their detection values may possibly change simultaneously.
As for the personal medical care, the blood pressure usually
increases with the heartbeat, thus the corresponding sensors
may have a strong correlation. If one sensor has a strong
correlation with another one, we call the two sensors are
correlated.

As S denotes the latent sensor matrix and there might
be strong correlation among correlated sensors, we propose
the second missing data prediction model based on matrix

factorization technique, i.e., Correlated Sensors based Matrix
factorization (CSM), with the following optimization problem:

min
S,V

LS(X,S, V ) =
1

2
∥W ◦ (X − SV T )∥2F

+
λ1

2
∥S∥2F +

λ2

2
∥V ∥2F

+
α

2

N∑

i=1

∥Si −
1

|C(i)|
∑

c∈C(i)

ρi,cSc∥2F ,

(12)
where α is the penalty factor and α > 0, C(i) denotes the set
of the correlated sensors of the ith sensor and |C(i)| is the
total number of these correlated sensors. The included scaling
factor ρi,c aims at matching the scale difference between the
ith sensor and the cth sensor. In this model, we incorporate
one sensor network regularization term, i.e., the Correlated
Sensors based Regularization (CSR) term

α

2

N∑

i=1

∥Si −
1

|C(i)|
∑

c∈C(i)

ρi,cSc∥2F , (13)

in order to minimize the distance between the ith sensor and
its correlated sensors. Concretely, if the correlated sensors
are C(i), then we deduce that the state of the ith sensor is
correlated to the average state of C(i).

The above sensor network regularization imposes a hypoth-
esis that the state between the ith sensor and the average state
of C(i) is very close, after scale adjustment. However, this
hypothesis is usually invalid in the real world. For instance,
there is one temperature sensor, one humidity sensor and
one light sensor in a smart room. The temperature sensor
might have a stronger correlation with the light sensor than
the humidity sensor. Thus, a more practical model should
treat the correlated sensors in C(i) differently based on how
correlated they are with the ith sensor. As a consequence, the
optimization problem in Equation (12) is improved as:

min
S,V

LS(X,S, V ) =
1

2
∥W ◦ (X − SV T )∥2F +

λ1

2
∥S∥2F

+
λ2

2
∥V ∥2F +

α

2

N∑

i=1

∥Si −

∑
c∈C(i)

H(i, c) ∗ ρi,cSc

∑
c∈C(i)

H(i, c)
∥2F .

(14)
The sensor network regularization item CSR in Equation (14)
is designed to treat each sensor in C(i) differently. The
function H(i, c) measures the similarity between the ith sensor
and the cth sensor. From this improved regularization item, we
know that if the cth sensor is very correlated to the ith sensor,
the value of H(i, c) will be large, i.e, it contributes more to the
state of the ith sensor. Similarly, the gradients of LS(X,S, V )
with respect to Si and Vi could be calculated as:

∂LS

∂Si
=

M∑

j=1

Wij(SiV
T
j −Xij)Vj + λ1Si

+ α(Si −
∑

c∈C(i) H(i, c) ∗ ρi,cSc∑
c∈C(i) H(i, c)

),

(15)
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∂LS

∂Vj
=

N∑

i=1

Wij(SiV
T
j −Xij)Si + λ2Vj , (16)

for all i ∈ {1, 2, . . . , N} and j ∈ {1, 2, . . . , M}.
2) Uncorrelated Sensors based Regularization
The CSM model we propose imposes a regularization

term based on correlated sensors to constrain the matrix
factorization. From the opposite view, if one sensor has a
weak correlation with another one, we call the two sensors
are uncorrelated. And we also employ another sensor net-
work regularization term, i.e., the uncorrelated sensors based
regularization term, to build the Uncorrelated Sensors based
Matrix factorization (USM) model. Since uncorrelated sensors
share weak correlation, we attempt to add one regularization
term to maximize the distance between the ith sensor and its
uncorrelated sensors. Consequently, the optimization problem
in Equation (14) is updated as:

min
S,V

L′
S(X,S, V ) =

1

2
∥W ◦ (X − SV T )∥2F

+
λ1

2
∥S∥2F +

λ2

2
∥V ∥2F

− α′

2

N∑

i=1

∥Si −

∑
c′∈C′(i)

H(i, c′) ∗ ρi,c′Sc′

∑
c′∈C′(i)

H(i, c′)
∥2F .

(17)

where α′ is the penalty factor and α′ > 0, C ′(i) denotes
the set of the uncorrelated sensors of the ith sensor. In
contrast to the CSM model, we incorporate the other sensor
network regularization term, i.e., the Uncorrelated Sensors
based Regularization (USR) term. Similarly, the gradients of
L′
S(X,S, V ) with respect to Si and Vi could be calculated as:

∂L′
S

∂Si
=

M∑

j=1

Wij(SiV
T
j −Xij)Vj + λ1Si

− α′(Si −

∑
c′∈C′(i)

H(i, c′) ∗ ρi,c′Sc′

∑
c′∈C′(i)

H(i, c′)
)

(18)

∂L′
S

∂Vj
=

N∑

i=1

Wij(SiV
T
j −Xij)Si + λ2Vj , (19)

for all i ∈ {1, 2, . . . , N} and j ∈ {1, 2, . . . , M}.
3) Similarity Function
The proposed regularization terms in Equation (14) and

Equation (17) require a function H to measure the similarity
between two sensors, which is a key component of the
proposed method. In this paper, we incorporate five similar-
ity functions, which include Vector Space Similarity (VSS),
Gaussian Kernel (GK), Pearson Correlation Coefficient (PCC),
Dynamic Time Warping (DTW) and Constant Function (CF).

VSS is applied to measure the similarity between two
sensors i and c:

HV SS(i, c) =

∑
j∈oi∩oc

Xij ·Xcj

√ ∑
j∈oi∩oc

X2
ij

√ ∑
j∈Oi∩Oc

X2
cj

, (20)

where oi and oc is the subset of xi and xc. The entities in
oi and oc are observed. From Equation (20), we know that
a larger value of HV SS means that sensors i and c are more
similar.

Another way to measure the similarity between two sensors
i and c is based on Gaussian Kernel:

HGK(i, c) = exp(−

∑
j∈oi∩oc

(Xij −Xcj)2

2σ2
). (21)

Similarly, the more similar two sensors are, the larger the value
of HGK will be.

However, the above two functions do not take the different
scales between two sensors into consideration. For example,
the value detected by the light sensor might be much larger
than that of the humidity sensor. Thus, another commonly
used function PCC is employed to solve the problem, which
is calculated as follows:

HPCC(i, c) =

∑
j∈oi∩oc

(Xij − X̄i) · (Xcj − X̄c)

√ ∑
j∈oi∩oc

(Xij − X̄i)2
√ ∑

j∈oi∩oc

(Xcj − X̄c)2
,

(22)
where X̄i and X̄c are the average values of oi and oc

respectively.
Actually, the proposed three similarity functions usually

require that the length of oi is equal to that of oc. Thus the
functions only take the samples observed in both xi and xc

into computing. As a consequence, they did not make full
use of the observed entities in the time series and might lose
important information of the raw data set. DTW is a well-
known technique to compare two time series with different
length. It aims at aligning two time series by warping the
time axis iteratively until an optimal match between the two
sequences is found. The strategy is to find a warping path W
that minimize the warping cost:

DTW (oi,oc) = min

√√√√
p=P∑

p=1

wp, (23)

where w1, w2, . . . , wP = W . This path can be found using
dynamic programming to evaluate the following recurrence
which defines the cumulative distance γ(i, c) as the distance
d(oi,ji , oi,jc) and the minimum of the cumulative distances of
the adjacent elements:

γ(i, c) = d(oi,ji , oi,jc)

+min{γ(i− 1, c), γ(i, c− 1), γ(i− 1, c− 1)},
(24)

where oi,ji and oc,jc denotes the jith and jcth elements in oi

and oc respectively. This review of DTW is necessarily brief,
and the details could be found in [19]. To make it consistent
that a larger value of H means that sensors i and c are more
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correlated, the reciprocal of DTW is employed as the similarity
function:

HDTW (i, c) =
1

DTW (oi,oc)
. (25)

Furthermore, to better reveal the necessity of incorporating
similarity functions, a constant function

HCF (i, c) = C (26)

is also employed as the baseline function in the paper.

D. Integration of Temporal Smoothness of Time Series and
Information across Multiple Sources

The above proposed CSM, USM and MFS models aim
at taking advantage of either the information across multiple
sources or the temporal smoothness of time series. Naturally,
it is convincing that the combined fusion of the two charac-
teristics of the multivariable time series can also contribute
to improving the performance of missing data prediction. So,
we also propose the following two models: Correlated Sen-
sors based Matrix factorization with Smoothness constraints
(CSMS) and Uncorrelated Sensors based Matrix factorization
with Smoothness constraints (USMS).

The objective function of CSMS is:

min
S,V

LSV (X,S, V ) =
1

2
∥W ◦ (X − SV T )∥2F

+
λ1

2
∥S∥2F +

λ2

2
∥V ∥2F

+
α

2

N∑

i=1

∥Si −
1

|C(i)|
∑

c∈C(i)

ρi,cSc∥2F +
β

2
∥GV T ∥2F ,

(27)
The objective function of USMS is:

min
S,V

L′
SV (X,S, V ) =

1

2
∥W ◦ (X − SV T )∥2F

+
λ1

2
∥S∥2F +

λ2

2
∥V ∥2F

− α′

2

N∑

i=1

∥Si −

∑
c′∈C′(i)

H(i, c′) ∗ ρi,c′Sc′

∑
c′∈C′(i)

H(i, c′)
∥2F +

β

2
∥GV T ∥2F .

(28)
The solution of the above two objective functions is similar

to that of MFS and is not included here due to the limited
space.

E. Implementation of the Proposed Methods on Apache
Spark

The scale of modern time series data sets is rapidly growing.
And there is an imperative need to develop solutions to
harness this wealth of data using statistical methods. Spark is
a distributed computing framework developed at UC Berkeley
AMPLab. Spark’s in-memory parallel execution model in
which all data will be loaded into memory to avoid the I/O
bottleneck benefits the iterative computation [20]. Spark also
provides very flexible DAG-based (directed acyclic graph)
data flows, which can significantly speedup the computation
of the iterative algorithms. The two features of Spark bring

performance up to 100 times faster compared to Hadoop’s
two-stage MapReduce paradigm.

Here, we implement our proposed methods on Apache
Spark platform. To make the solutions more adaptable to the
platform, the gradients of the objective functions are rewritten
in matrix form. Taking the MFS model for an example, the
gradients of LV (X,S, V ) with respect to S and V could be
calculated as:

∂LV

∂S
= W ◦ (SV T −X)V + λ1S, (29)

∂LV

∂V
= W ◦ (SV T −X)TS + λ1V + βV GTG (30)

As the CSR and USR regularization terms are hardly
implemented in matrix form, the solution of CSMS’s and
USMS’s objective functions is slightly different from that of
MFS. Taking the USMS model for an example, given that
the correlated sensors based regularization term only exerts
effect on the gradient of L′

SV (X,S, V ) with respect to Si,
we divide the gradient computation into two steps. First, the
matrix product is computed according to Equation (29). Then,
the gradient could be simply summed by:

∂L′
SV

∂Si
= [

∂LV

∂S
]i − α′(Si −

∑
c′∈C′(i)

H(i, c′) ∗ ρi,c′Sc′

∑
c′∈C′(i)

H(i, c′)
),

(31)
for all i ∈ {1, 2, . . . , N}, where [·]i represents the ith row of
the matrix.

F. Overall Algorithm

Algorithm 1 : MFS for missing data prediction in multi-
variable time series
Input: multivariable time series X , indicator matrix W ;

dimension of latent factors L;
parameters α, λ, |C(i)|;

Output: X̂: the predicted values of X
1: repeat
2: γ = computing the best step size;
3: for i = 1 to N do
4: Si = Si - γ ∂LV

∂Si
◃ based on Equation (10)

5: end for
6: for j = 1 to M do
7: Vj = Vj - γ ∂LV

∂Vj
◃ based on Equation (11)

8: end for
9: until Convergence

10: Predicted X̂ = SV T

Putting everything together, we have the overall algorithm
based on MFS for solving the problem illustrated in Equation
(14). As Algorithm 1 shows, given multivariable time series
X , the dimension of latent factor L, the parameters α, λ, and
|C(i)|, the algorithm is designed to obtain a more accurate
solution of the factors S and V . The algorithm updates S and
V until convergence, and the step size γ is updated in each
iteration based on the line search strategy. The missing values
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Algorithm 2 : USMS implemented on Apache Spark
Input: data path dataPath;
Output: X̂: the predicted values of X

1: repeat
2: rddX, rddW ← SparkContext.textFile(dataPath)
3: ◃ X and W
4: initialize the parameters; ◃ S, V, L, λ, β, and γ
5: rowMatrixX ← new RowMatrix(rddX)
6: calculate ∂LV

∂S and ∂LV
∂V ◃ based on Equation (29)

and Equation (30) ◃ using RowMatrix.multiply
7: S = S.map{ Si - γ ∂L′

SV
∂Si

} ◃ updating S
8: V = V - γ ∂L′

SV
∂V = V - γ ∂LV

∂V ◃ updating V
9: until Convergence

10: Predicted
11: rowMatrixS ← new RowMatrix(rddS)
12: X̂ = rowMatrixS.multiply(V T ).collected()

could be obtained from the predicted X̂ . The algorithms of
CSM, USM, CSMS, and USMS are similar with Algorithm 1,
so they are not included here due to the limited space.

Next, we also show one representative algorithm, i.e.
USMS, on Apache Spark. As Algorithm 2 shows, the input
data X and W are first transformed to resilient distributed data
set(RDD), i.e. rddX and rddW , respectively, which is a new
distributed memory abstraction in Spark. Then, to implement
the matrix multiplication in Spark, the rddX is transformed
as RowMatrix so that it could be multiplied by a local
matrix, such as V T . Likewise, the matrix product in Equation
(29) and Equation (30) could be obtained. Next, Si and V
are updated by the calculated gradients until convergence.
Finally, the predicted X̂ is obtained by performing RowMatrix
multiplication one more time.

IV. EXPERIMENTS

In this section, to demonstrate the effectiveness of the
proposed methods, we conduct extensive experiments on three
real-world data sets and one synthetic data set.

A. Data Set Description
The details about the four data sets are summarized in Table

II. The data sets consists of two small scale data sets and two
large scale data sets.

Motes Data Set: The motes data set contains temperature
time series collected from 54 sensors deployed in the Intel
Berkeley Research lab in about one month [21]. Each time
series are collected once every 31 seconds. In the experiment,
the length of each time series is 14000.

Sea-Surface Temperature Data Set: The Sea-Surface
Temperature (SST) data set consists of hourly temperature
measurements from Tropical Atmosphere Ocean Project [22].
In the experiment, the length of each time series is 18000.

Gas Sensor Array Data Set: Gas Sensor Array under
dynamic gas mixtures (GSA) data set, the other large scale
data set, was collected in a gas delivery platform facility
at the ChemoSignals Laboratory in the BioCircuits Institute,
University of California San Diego [23]. GSA contains the

acquired time series from 16 chemical sensors exposed to
Ethylene in air at varying concentration levels. Each measure-
ment was constructed by the continuous acquisition of the 16-
sensor array signals for a duration of about 12 hours without
interruption. In the experiment, the length of each time series
is 1.5E6.

Synthetic Data Set: Synthetic (SYN) data set, a large
scale data set, is generated by Asin(ωy) + cons + noise,
where A > 0 denotes the amplitude of sinusoidal function,
ω is the angular frequency, cons represents a non-zero center
amplitude and noise ∼ N(0, 1) is an additive Gaussian noise.
In the experiment, the parameters are set as A ∈ {2, 2.5, 3},
con ∈ {2, 3, 5}, ω ∈ {1,π, 2π} and the length of SYN is 1E6.

B. Experimental Setup
As Table II shows, the samples are partitioned over 10 folds:

9 folds as the training set and the remaining 1 fold as the test
set. As the time series show special temporal characteristic,
we randomly split the data sets. For fair comparison with
the baseline methods, the experiments are conducted with the
same parameters when we evaluate the performance of the
proposed method with different missing ratios. In addition,
when we conduct the experiments on one specific parameter,
the other parameters remain unchanged and the missing ratio
is equal to 0.1.

To evaluate all the methods fairly, we incrementally simulate
the data missing of the four data sets with an increasing
missing ratio. For example, to increase the missing ratio from
0.80 to 0.90, we randomly move 10% of the total data from
the observed data set to the missing data set. In this way, the
subsequent missing data set always contains the missing data
of the previous one. The missing data prediction of testing
data sets is based on the known 10% of available values in
the training set.

From Equation (14) and (17), we know that the constant
value C will not change the value of the equations. Thus, C
could be simply set as 1. Besides, the parameters λ1 and λ2 are
both set equal to λ in this paper. For the MFS, CSMS, and
USMS models, which incorporate the temporal smoothness
constraints, the 2nd derivative approximation matrix G2 is
employed in the regularization terms.

The algorithm stops when the change of the cost of two
latest iterations is lower than a threshold value (1E-7). The line
search strategy involved in our methods selects the step size
and the step direction simultaneously, which provides values
that help to converge to the absolute minimum of the loss
function.

Parallel computing experiments are carried out in a cluster
of four working machines based on the same experimental
setup given above. As there is no reasonably significance
in implementing parallel experiments with small or medium
data sets, these experiments are only conducted based on the
two large scale data sets, i.e., GSA and SYN data sets. The
working nodes are virtual machines (VM) and each of them
has two cores with an Intel 2400 CPU and 4G memory. The
operating system for the cluster is CentOS 7, while the version
of Apache Spark platform is 1.4.0 and the Hadoop platform
is version 2.6.0.
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TABLE II
STATISTICS FOR THE FOUR DATA SETS IN THE EXPERIMENT, SHOWING THE TOTAL NUMBER OF SENSORS, THE TOTAL

LENGTH OF SAMPLES IN THE TIME SERIES, AND THE NUMBER OF TRAINING AND TEST DATA SET.

Property Experiment
Data set #sensors #time mean standard variance #Train #Test

MO 54 14000 21.24 10.78 12600 1400
SST 11 18000 19.1 8.97 16200 1800
GSA 16 1.5E6 4.46 2.37 1.35E6 1.5E5
SYN 27 1E6 3.4 3.2 9E5 1E5

MO: Motes data set. SST: Sea-Surface Temperature Data Set. GSA: Gas Sensor Array Data Set. SYN: Synthetic data set.

1) Comparison Methods
The baseline methods are selectively chosen based on their

popularity and effectiveness in building prediction models. We
compare the proposed methods with these baseline methods in
predicting the values of the missing samples in multivariable
time series. The comparison methods used in the experiment
include:

• Linear Interpolation: LI uses the mean value of two
nearest neighbors of the missing entries to predict the
missing values.

• AutoregRessive Integrated Moving Average: An
ARIMA model is fitted to time series data either to better
understand the data in the time series, which could be
applied to estimate the missing values [24].

• Non-negative Matrix Factorization: NMF is originally
proposed for image processing. However, it is commonly
used in collaborative filtering recently, which is an al-
ternative method to address the problem of missing data
prediction [25].

• Probabilistic Matrix Factorization: PMF is another
method to address the missing data prediction problem
of multivariable time series [26].

• Bayesian PMF: BPMF is a fully Bayesian treatment
of PMF, which is more appropriate for predicting the
missing data with large missing ratios [27].

• Support Vector Machine: SVM approach builds regres-
sion models based on each source in the sensor network
respectively [28].

2) Evaluation Method
To evaluate the performance of the proposed method, root

mean squared error (RMSE) is used to measure the prediction
quality. RMSE is defined as follows:

RMSE =

√√√√√√

∑
i,j
(1−Wij)(Xij − X̂ij)2

∑
i,j
(1−Wij)

, (32)

where Xij is the raw time series matrix and X̂ij is the
corresponding predicted value. W is the indicator value which
is defined in Equation (1).

C. Experimental Results

Fig. 2 shows the experimental results of the proposed
methods and baseline methods on the MO, SST, GSA and

SYN data sets. The logarithm of RMSE is shown in vertical
axis to present the experimental results more clearly.

First, in general, the proposed five models show much better
performance than the baseline methods, which demonstrates
that the proposed matrix factorization methods based on fusing
the temporal smoothness of time series and the information
across multiple sources are suitable and effective to predict
the missing values in multivariable time series. Concretely,
let’s consider the first model MFS. We can see that MFS
consistently outperforms the other baseline methods. Quan-
titatively, as for the Motes data set, when the missing ratio ϵ
is equal to 0.4, MFS achieves the lowest RMSE 2.76, which
is about 84% lower than PMF. Even when the missing ratio
exceeds 0.6, the RMSE of MFS is still within a reasonable
range. As for the other three data sets, the proposed method
MFS also outperforms other baseline methods, which show
barely satisfactory results even when the missing ratio is as
low as 0.1.

Moreover, given the models CSM and USM, we can observe
that the RMSE of USM is generally a little bit lower than CSM
for the Motes and SYN data sets. However, as for the SST data
set, the performance of USM is not as good as that of CSM.
As Table II shows, the Motes and SYN data set generates from
54 and 27 sensors respectively. As a result, these two data sets
have a much higher chance of containing uncorrelated sensors.
Thus USM shows better performance as it employs an USR
constraint, i.e., uncorrelated sensors based regularization term.
The experimental results of GSA data set in Fig 2(c) further
demonstrate the rationality of choosing USM when the number
of sensors is relatively high. Contrarily, the SST data set is
collected from only 11 sensors. So it is much more important
for the SST data set to find the correlated sensors, thus CSM
shows superior performance. Nevertheless, as CSM and USM
show better performance than the baseline methods, they are
both alternative models in the proposed methods.

The prominent superiority of MFS, CSM and USM to
NMF, PMF and BPMF reveals that the smoothness, CSR
and USR constraints can largely contribute to the latent
factors extraction in the process of matrix factorization, which
further demonstrates the effectiveness of the integration of both
information across multiple sources and temporal smoothness
of time series.

Finally, as expected, the CSMS and USMS models generally
show even better performance than MFS, CSM and USM, as
both of them are built by integrating the information across
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Fig. 2. Missing data prediction performance comparison between proposed methods and baseline methods.

multiple sources and temporal smoothness of time series
together. Note that USMS is consistently superior to CSMS.
For example, when the missing ratio reaches as high as 0.9, the
RMSE of USMS is only 1.24, which is roughly 58% lower
than the proposed MFS model, 60% lower than CSM, and
about 8.8% than CSMS for the SYN data set. We deduce
that, when the smoothness constraint is combined with CSR
and USR in the USMS model, the USR constraint can be
more effective than CSR in the process of matrix factorization
by removing uncorrelated information, while CSMS aims at
retaining the most valuable information of the raw data set.

D. Similarity Functions Impact Discussion
The similarity function H aims at finding the set of

correlated sensors C(i) or the set of uncorrelated sensors
C ′(i). H directly determines which sensors are correlated or

uncorrelated with the ith sensor and the weights of the sensor
network regularization terms. Thus, we mainly focus on the
analysis of the similarity functions in this subsection. Due
to the lack of space, we only give the impact discussion of
the similarity functions in the fifth model USMS as it shows
the best performance in the five models. Similar results are
observed for the other models.

As Table III shows, when the missing ratio is below 0.6,
PCC obtains lower RMSE for all of the four data sets. As
Equation (22) reveals, PCC takes the different scales among
various sensors into consideration, which might contribute to
its better performance. Moreover, DTW achieves far superior
performance to the other functions when the missing ratio
exceeds 0.6. We deduce that DTW can better measure the
similarity between two time series when the missing ratio
is high, as it utilizes all the observed entities in the raw
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TABLE III
PERFORMANCE OF USMS WITH DIFFERENT SIMILARITY

FUNCTIONS AND MISSING RATIO ϵ.

ϵ VSS GK PCC DTW CF

MO

0.1 2.98 2.99 2.40 2.42 2.48
0.4 2.56 2.62 2.54 2.57 2.61
0.6 2.98 2.89 2.84 2.94 2.92
0.7 2.94 2.99 2.92 2.81 3.05
0.8 3.09 3.07 2.88 2.86 2.99
0.9 3.03 3.10 2.98 2.94 3.02

SST

0.1 1.81 1.91 1.74 1.79 1.90
0.4 1.93 1.88 1.79 1.85 1.84
0.6 1.94 1.93 1.91 1.95 1.97
0.7 2.19 2.12 2.15 2.05 2.13
0.8 2.42 2.35 2.35 2.28 2.40
0.9 2.85 2.71 2.73 2.62 2.75

GSA

0.1 0.79 0.83 0.63 - 0.78
0.4 1.17 1.18 1.14 - 1.17
0.6 1.37 1.39 1.30 - 1.39
0.7 1.68 1.66 1.51 - 1.68
0.8 1.59 1.53 1.42 - 1.54
0.9 1.57 1.58 1.63 - 1.59

SYN

0.1 3.78 3.02 0.37 - 2.16
0.4 1.26 2.45 1.15 - 1.38
0.6 1.65 1.67 1.52 - 1.59
0.7 1.92 2.65 1.66 - 1.82
0.8 1.95 2.07 1.35 - 2.18
0.9 2.27 4.11 1.23 - 2.40

MO: Motes data set. SST: Sea-Surface Temperature Data
Set. GSA: Gas Sensor Array under dynamic gas mixtures
data set. SYN: Synthetic data set.

time series. However, for the large scale data sets GSA and
SYN, DTW runs out of memory in the system. Nevertheless,
both PCC and DTW are alternative similarity functions in the
proposed method. In addition, we observe that the constant
function CF shows barely satisfactory results, which further
demonstrates the necessity and importance of employing an
appropriate similarity function.

E. Parameters Impact Discussion
In this subsection, we also only give the analyses of the

parameters of the fifth model USMS. Fig. 3 shows the impact
of the parameters on the performance of USMS.

In general, the RMSE of USMS with different parameters
is universally below a reasonable value and shows acceptable
stability, despite the fact that there is a little bit variation with
various parameter as shown in the figure.

Concretely, first, the parameter |C(i)| denotes the total
number of the correlated sensors with the ith sensor, which
plays a very important role in the proposed method. Taking
the Motes data set for an example, when |C(i)| is set as 4, the
RMSE is equal to 2.68. However, when |C(i)| is equal to 7,
the method achieves the lowest RMSE 2.40, which is reduced
by about 11%. We deduce that an oversized |C(i)| will bring
in more noise while too small a |C(i)| will be not enough to

constrain the matrix factorization. Thus, an appropriate value
of |C(i)| is of great importance in the proposed method.

Then, the impact of the dimension of the latent factors L on
the performance is also shown in the figure. On the whole, the
optimal RMSE is consistently very small. Specifically, take the
SST data set for instance, the RMSE is equal to 2.03 when L
is set as 10, while the lowest RMSE 1.74 is obtained when L
is equal to 6. Nevertheless, based on the experimental results,
we may safely set L = 11, L = 6, L = 4 and L = 4 for the
four data sets respectively. Hence, the dimension of the latent
factors L also plays an important part in the proposed method.

Next, the impact of α′ on the performance is presented. α′

controls how much information of the sensor network should
be incorporated into the optimization problem. In general, as
the Fig. 3 shows, the RMSE not only is consistently very
low but also shows little variation for most of the different α′

values. We can observe that the best performance is achieved
when α′ is equal to 0.8, 0.7, 0.6 and 0.2 for the four data sets
respectively. We deduce that too small an α′ would greatly
decrease the influence of the sensor regularization term on
the matrix factorization. On the other hand, if we employ too
large an α′, the sensor regularization term would dominate
the learning processes. So, an appropriate coefficient α′ could
further improve the performance of the proposed method.

Finally, the coefficient β is optimized. As the figure shows,
it suffices to say that the model USMS generally achieves good
stability with β, although Fig. 3(a) shows a slight fluctuation
with the parameter β. Based on the experimental results, we
can reasonably set β = 0.06, β = 0.05 β = 0.01and β = 0.07
for the four data sets respectively.

F. Evaluation under Parallel Environment
Since the superior performance of the proposed methods

is obtained, which means that the proposed models can
effectively predict the missing values in multivariable time
series, we now turn to evaluate performance of the methods
when it comes to dealing with the case of big data. As the
USMS model shows best performance among the proposed
five models, we focus on the evaluation of USMS under
parallel environment. Similar results are observed for the other
proposed models. In order to show the scalability of USMS,
we also perform experiments by a stand-alone computer on
Spark platform, which has four cores from an Intel i7 and 8G
memory. All the baseline methods are conducted under Matlab
version 2012b by the same stand-alone computer.

First, Fig. 4(a) and Fig. 4(c) shows the execution time
comparison between different methods, which includes both
the training time and the testing time. Here, we conduct
experiments on the two large scale data sets GSA and SYN.
And the size of the two data sets is 1.5E6 and 1E6 respectively.
As the SVM baseline method takes more than 12 hours, which
is much longer than the other methods, it is not included in the
figure. We can observe that LI obtains the least execution time
due to its simple computation method. However, the prediction
accuracy of LI is actually unsatisfactory. Nevertheless, among
the other methods, the proposed model USMS takes relatively
very little time for both of data sets while ensuring high
prediction performance.
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Fig. 3. Impact of Parameters.

Moreover, we also conduct the experiments on the execution
time of USMS with different size of GSA and SYN. Fig 4(d)
and Fig 4(b) shows the execution time of USMS under dif-
ferent operating environment, which includes Matlab, Apache
Spark with a stand-alone computer, Apache Spark cluster. We
can observe that the USMS under parallel environment shows
satisfactory scalability as it can deeply reduce the execution
time. For example, when the size of GSA data set is equal to
one million, USMS only takes 53 seconds, which is roughly 16
times faster than Matlab and 2.3 times faster than stand-alone
computer. Thus we may conclude that the propose methods
can be effective models for predicting the missing values in
large scale multivariable time series.

V. RELATED WORKS

Missing data prediction: The prediction of missing data
are pervasive problems in machine learning and statistical data

analysis. Salakhutdinov et al propose a PMF (Probabilistic
Matrix Factorization) method [26]. The method is aimed at
improving the prediction accuracy of the recommender system.
As the multivariable systems hold many internal characteristics
with the recommender system, PMF could not be effectively
applied in our scenario. Ma et al. propose a missing data
prediction algorithm for collaborative filtering. Their approach
determines whether to predict the missing data and how
to predict the missing data by using information of users
and items by judging whether a user (an item) has other
correlated users (items) [29]. The problem is similar to ours,
but the proposed method is mainly focused on incorporating
the information of social network, which is very different
from our sensor networks. Asif et al. [30] propose methods
which can construct low-dimensional representation of large
and diverse networks, in presence of missing historical and
neighboring data to overcome data missing problems in an
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Fig. 4. Execution Time Evaluation.

urban road network. The key idea of this method is to extract
important information from large amount of data. However,
the proposed method also cannot be directly applied to our
scenario. Faloutsos et al propose Dynamic Bayesian Network.
Their main idea is to simultaneously exploit smoothness
and correlation. Their method yields results with satisfactory
reconstruction error. But they solve it using probabilitic graph
model, which might be inefficient when the data size is
large [31]. In our preliminary work [28], we simply propose
an optimized linear regression (OLR) method to predict the
missing values. However, when the missing ratio is too high,
OLR might lose its effectiveness. Besides, since OLR is an
improve method of linear regression, it aims at dealing with
the time series data sets with great smoothness.

Time Series Mining: There has been a great deal of
research work in time series mining in various areas [32],
[4], [33]. In the economic domain, the economic time series
could be utilized to discover the nature of economic [34].
Energy time series and climate time series analysis shows
profound significance in constructing sustainable development
of the natural environment [35]. In the study of genetics, time
series mining is also a powerful tool to discover the principles
of gene [36]. In industrial production, chemical plant time
series are used to monitor an entire manufacture process of a
chemical plant [37].

VI. CONCLUSION

In this paper, we have proposed novel methods to constrain
the matrix factorization for predicting the missing data in the
time series from multiple sources, which achieve satisfactory
performance of missing data prediction and high comput-
ing efficiency. The methods aim at fusing the smoothness
characteristic of each time series and valuable correlation
information across multiple sources in a sensor network into
matrix factorization. Correspondingly, the methods incorporate
smoothness, CSR and USR constraints to optimize the solution
of matrix factorization. Based on the idea, we proposed five
effective models. The prominent superiority of MFS, CSM
and USM reveals the effectiveness of latent factors extraction
in the process of matrix factorization after incorporating the
constraints. Furthermore, the combination of information ex-
traction across multiple sources and temporal smoothness of
each time series demonstrate the effectiveness of the proposed
methods. Even when the missing ratio is as high as 90%,
the RMSE of the proposed methods is still within reasonable
range. Finally, the experiments under parallel environment
reveal that the USMS model can be executed effectively. We
conclude that the proposed methods are alternative models for
predicting the missing values in large scale multivariable time
series.



13

ACKNOWLEDGMENT

This paper is sponsored in part by the National High
Technology and Research Development Program of China
(863 Program, 2015AA050204), State Grid Science and
Technology Project (520626140020, 14H100000552, SGC-
QDK00PJJS1400020), State Grid Corporation of China, Na-
tional Natural Science Foundation of China (No.61373032),
NSF through grants IIS-1526499, CNS-1626432, and NSFC
61672313.

REFERENCES

[1] H. Nguyen, W. Liu, F. Chen, Discovering congestion propagation
patterns in spatio-temporal traffic data, IEEE Transactions on Big Data
PP (99) (2016) 1–1.

[2] Y. Cai, H. Tong, W. Fan, P. Ji, Fast mining of a network of
coevolving time series, in: Proceedings of the 2015 SIAM
International Conference on Data Mining, pp. 298–306.
arXiv:http://epubs.siam.org/doi/pdf/10.1137/1.9781611974010.34,
doi:10.1137/1.9781611974010.34.

[3] H.-V. Nguyen, J. Vreeken, Linear-time detection of non-linear changes
in massively high dimensional time series, in: Proceedings of the SIAM
International Conference on Data Mining (SDM’16), 2016.
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