
BL-MNE: Emerging Heterogeneous Social Network
Embedding through Broad Learning with Aligned Autoencoder

Jiawei Zhang?, Congying Xia§, Chenwei Zhang§, Limeng Cui†, Yanjie Fu‡ and Philip S. Yu§,¶
?IFM Lab, Department of Computer Science, Florida State University, FL, USA

§University of Illinois at Chicago, Chicago, IL, USA
†School of Computer and Control Engineering, University of Chinese Academy of Sciences, Beijing, China

‡Missouri University of Science and Technology, MO, USA
¶Shanghai Institute for Advanced Communication and Data Science, Fudan University, Shanghai, China

jzhang@cs.fsu.edu, {cxia8, czhang99, psyu}@uic.edu, lmcui932@163.com, fuyan@mst.edu

Abstract—Network embedding aims at projecting the network data
into a low-dimensional feature space, where the nodes are represented
as a unique feature vector and network structure can be effectively
preserved. In recent years, more and more online application service
sites can be represented as massive and complex networks, which are
extremely challenging for traditional machine learning algorithms to
deal with. Effective embedding of the complex network data into low-
dimension feature representation can both save data storage space and
enable traditional machine learning algorithms applicable to handle the
network data. Network embedding performance will degrade greatly
if the networks are of a sparse structure, like the emerging networks
with few connections. In this paper, we propose to learn the embedding
representation for a target emerging network based on the broad learning
setting, where the emerging network is aligned with other external mature
networks at the same time. To solve the problem, a new embedding
framework, namely “Deep alIgned autoencoder based eMbEdding”
(DIME), is introduced in this paper. DIME handles the diverse link and
attribute in a unified analytic based on broad learning, and introduces
the multiple aligned attributed heterogeneous social network concept to
model the network structure. A set of meta paths are introduced in the
paper, which define various kinds of connections among users via the
heterogeneous link and attribute information. The closeness among users
in the networks are defined as the meta proximity scores, which will be
fed into DIME to learn the embedding vectors of users in the emerging
network. Extensive experiments have been done on real-world aligned
social networks, which have demonstrated the effectiveness of DIME in
learning the emerging network embedding vectors.

I. INTRODUCTION

In the era of big data, a rapidly increasing number of online
application websites appear recently, which can be represented as
massive and complex networks. The representative examples include
online social networks, like Facebook and Twitter, e-commerce sites,
like Amazon and eBay, academic sites, like DBLP and Google
Scholar, as well as POIs recommendation sites, like Foursquare and
Yelp. These network data can be very difficult to deal with due to
their extremely large scale (involving millions even billions of nodes),
complex structures (containing heterogeneous links) as well as diverse
attributes (attached to the nodes or links). Great challenges exist in
handling these complex network representation data with traditional
machine learning algorithms, which usually take feature vectors as the
input and cannot handle graph data directly. A general representation
of heterogeneous networks as feature vectors is desired for knowledge
discovery from such complex-structured data. In this paper, we will
use online social networks as the example to illustrate the studied
problem as well as the learning framework.

In recent years, many research works propose to embed the
online social network data into a low-dimensional feature space [14],
[18], [6], in which each node is represented as a unique feature
vector. From these feature vectors, the original network structure can
be effectively reconstructed. With these embedded feature vectors,

classic machine learning algorithms can be applied to deal with the
social network data directly, and the storage space can also be saved
greatly. However, most existing social network embedding methods
are proposed for homogeneous networks, which learn the feature
vectors for user nodes merely based on the social connections among
them. When applied to handle real-world social network data, these
embedding models can hardly work well. The main reason is that the
internal social links are usually very sparse in online social networks
[18], which can hardly preserve the complete network structure. For
a pair of users who are not directed connected, these models will
not be able determine the closeness of these users’ feature vectors in
the embedding space. Such a problem will be more severe when it
comes to the emerging social networks [24], which denote the newly
created online social networks with very few social connections.

Meanwhile, as discovered in [30], to enjoy more social network
services, people nowadays are usually involved in multiple online
social networks at the same time. For instance, people tend to join
in Facebook for casual socialization with their classmates; they will
use Foursquare to search for nearby restaurants for dinner; and they
will turn to use Instagram to share photos with their friends online.
Users who are involved in these emerging social networks may have
been using other well-developed social networks (e.g., Facebook,
Twitter) for a long time. Information available for the users in other
aligned mature networks is usually very abundant and of a sufficient
amount. Effective information exchanges from these mature networks
to the emerging networks for the shared users can help overcome
the information sparsity problem promisingly, which is a important
topic covered in the broad learning task [22], [31] to be introduced as
follows. To denote the accounts owned by the same people in different
online social networks, an anchor link will be added to connect their
account pair between the networks [30]. Formally, the online social
networks connected by the anchor links (between the shared user
accounts) are called multiple aligned social networks [30].
Problem Studied: In this paper, we propose to study the emerging
network embedding problem across multiple aligned heterogeneous
social networks simultaneously based on the broad learning setting,
which is formally named as the “Broad Learning based eMerging
Network Embedding” (BL-MNE) problem. In the concurrent em-
bedding process based on the broad learning setting, BL-MNE aims
at distilling relevant information from both the emerging and other
aligned mature networks to derive compliment knowledge and learn
a good vector representation for user nodes in the emerging network.

Here, “Broad Learning” [22], [31] is a new type of learning task,
which focuses on fusing multiple large-scale information sources of
diverse varieties together and carrying out synergistic data mining
tasks across these fused sources in one unified analytic [25], [21],

TABLE I
SUMMARY OF RELATED PROBLEMS.

Aligned Heterogeneous Translation based Graph Homogeneous Network Heterogeneous Network
Property Network Embedding Embedding [3], [19], [11] Embedding [14], [18], [6] Embedding [4], [5]
target network emerging regular regular regular
network attributed heterogeneous multi-relational homogeneous heterogeneous
#network multiple single single single
proximity meta proximity first order first/second order/random walk first order [4], meta path [5]
multi-source fusion anchor link based fusion N/A N/A N/A

[30], [24], [26], [23], [29], [27], [28]. In the real world, on the same
information entities, e.g., social media users [25], [21], [30], [24],
movie knowledge library entries [31] and employees in companies
[26], [23], [29], [27], [28], a large amount of information can
actually be collected from various sources. These sources are usually
of different varieties, like Foursquare vs Twitter [25], [21], [30],
[24], IMDB vs Douban Movie sites [31], Yammer vs company
organizational chart [26], [23], [29], [27], [28]. Each information
source provides a specific signature of the same entity from a unique
underlying aspect. Effective fusion of these different information
sources provides an opportunity for researchers and practitioners to
understand the entities more comprehensively, which renders “Broad
Learning” an extremely important learning task. Fusing and mining
multiple information sources of large volumes and diverse varieties
are the fundamental problems in big data studies. “Broad Learning”
investigates the principles, methodologies and algorithms for syner-
gistic knowledge discovery across multiple information sources, and
evaluates the corresponding benefits [22], [31]. Great challenges exist
in “Broad Learning” for the effective fusion of relevant knowledge
across different aligned information sources depends upon not only
the relatedness of these information sources, but also the target
application problems. “Broad Learning” aims at developing general
methodologies, which will be shown to work for a diverse set of
applications, while the specific parameter settings can be learned for
each application from the training data [22], [31].

BL-MNE is significantly different from existing network embed-
ding problems [3], [19], [14], [11], [18], [4], [6], [5] in several
perspectives. First of all, the target network studied in BL-MNE
is an emerging network suffering from the information sparsity
problem, which is different from the embedding problems for regular
networks [3], [19], [11], [4], [5]. Secondly, the networks studied
in BL-MNE are all heterogeneous networks containing complex
links and diverse attributes, which renders BL-MNE different from
existing homogeneous network embedding problems [14], [18], [6].
Furthermore, BL-MNE is based on the multiple aligned networks
setting, where information from aligned networks will be exchanged
to refine the embedding results mutually, and it is different from the
existing single-network based embedding problems [3], [19], [14],
[11], [4], [18], [4], [6], [5]. We also provide a summary about the
difference between BL-MNE and existing works in Table I (which
summarizes and compares several related works in different aspects),
and more information about other related works will be introduced
Section V at the end of the paper.

The BL-MNE problem is not an easy problem, and it has several
great challenges to deal with, which are provided as follows:

• Problem Formulation: To overcome the information sparsity
problem, BL-MNE studies the concurrent embedding of multi-
ple aligned social networks, which is still an open problem to
this context so far. Formal definition and formulation of the BL-
MNE problem is required before we introduce the solutions.

• Heterogeneity of Networks: The networks studied in this paper
are of very complex structures. Besides the regular social
connections among users, there also exist many other types of
links as well as diverse attributes attached to the user nodes.

Effective incorporating these heterogeneous information into a
unified embedding analytic is a great challenge.

• Multiple Aligned Network Embedding Framework: Due to the
significant differences between BL-MNE with the existing
works, few existing network embedding models can be applied
to address the BL-MNE directly. A new embedding learning
framework is needed to learn the emerging network embedding
vectors across multiple aligned networks synergistically.

To address all these challenges aforementioned, in this paper, we
introduce a novel multiple aligned heterogeneous social network
embedding framework, named “Deep alIgned autoencoder based
eMbEdding” (DIME). To handle the heterogeneous link and attribute
information in a unified analytic, we introduce the aligned attribute
augmented heterogeneous network concept in this paper. From these
heterogeneous networks a set of meta paths are introduced to repre-
sent the diverse connections among users in online social networks
(via social links, other diverse connections, and various attributes). A
set of meta proximity measures are defined for each of the meta paths
denoting the closeness among users. The meta proximity information
will be fed into a deep learning framework, which takes the input
information from multiple aligned heterogeneous social networks
simultaneously, to achieve the embedding feature vectors for all the
users in these aligned networks. Based on the connection among
users, framework DIME aims at embedding close user nodes to
a close area in the low-dimensional feature space for each of the
social networks respectively. Meanwhile, framework DIME also
poses constraints on the feature vectors corresponding to the shared
users across networks to map them to a relatively close region. In
this way, information can be transferred from the mature networks to
the emerging network and solve the information sparsity problem.

The remaining parts of this paper are organized as follows. We will
provide the terminology definition and problem formulation in Sec-
tion II. Information about the framework is available in Section III,
which will be evaluated in Section IV. Finally, we will introduce the
related works in Section V and conclude this paper in Section VI.

II. TERMINOLOGY DEFINITION AND PROBLEM FORMULATION

In this section, we will first introduce the definitions of several
important terminologies, based on which we will then provide the
formulation of the BL-MNE problem.

A. Terminology Definition

The social networks studied in this paper contain different cate-
gories of nodes and links, as well as very diverse attributes attached
to the nodes. Formally, we can represent these network structured
data as the attributed heterogeneous social networks.
Definition 1 (Attributed Heterogeneous Social Networks): The at-
tributed heterogeneous social network can be represented as a graph
G = (V, E , T), where V =

⋃
i Vi denotes the set of nodes belonging

to various categories and E =
⋃

i Ei represents the set of diverse
links among the nodes. What’s more, T =

⋃
i Ti denotes the set of

attributes attached to the nodes in V . For user u in the network, we
can represent the ith type of attribute associated to u as Ti(u), and
all the attributes u has can be represented as T (u) =

⋃
i Ti(u).

The social network datasets used in this paper include Foursquare
and Twitter. Formally, the Foursquare and Twitter can both be
represented as the attributed heterogeneous social networks G =
(V, E , T), where V = U ∪ P involves the user and post nodes, and
E = Eu,u ∪ Eu,p contains the links among users and those between
users and posts. In addition, the nodes in V are also attached with a set
of attributes, i.e., T . For instance, for the posts written by users, we
can obtain the contained textual contents, timestamps and checkins,
which can all be represented as the attributes of the post nodes.

Between Foursquare and Twitter, there may exist a large number
of shared common users, who can align the networks together. In
this paper, we will follow the concept definitions proposed in [30],
and call the user account correspondence relationships as the anchor
links. Meanwhile, the networks connected by the anchor links are
called the multiple aligned attributed heterogeneous social networks
(or aligned social networks for short).
Definition 2 (Multiple Aligned Social Networks): Formally, given
n attributed heterogeneous social networks {G(1), · · · , G(n)} with
shared users, they can be defined as multiple aligned social networks
G = ((G(1), · · · , G(n)), (A(1,2), · · · ,A(n−1,n))). Set A(i,j) repre-
sents the anchor links between G(i) and G(j). User pair (u(i), v(j)) ∈
A(i,j) iff u(i) and v(j) are the accounts of the same user in networks
G(i) and G(j) respectively.

For the Foursquare and Twitter social networks used in this
paper, we can represent them as two aligned social networks
G = ((G(1), G(2)), (A(1,2))), which will be used as an example to
illustrate the models. A simple extension of the proposed framework
can be applied to k aligned networks very easily.

B. Problem Formulation

Problem Definition (BL-MNE Problem): Given two aligned net-
works G = ((G(1), G(2)), (A(1,2))), where G(1) is an emerging
network and G(2) is a mature network, BL-MNE aims at learning a
mapping function f (i) : U (i) → Rd(i) to project the user node in G(i)

to a feature space of dimension d(i) (d(i) � |U|(i)). The objective
of mapping functions f (i) is to ensure the embedding results can
preserve the network structural information, where similar user nodes
will be projected to close regions. Furthermore, in the embedding
process, BL-MNE also wants to transfer information between G(2)

and G(1) to overcome the information sparsity problem in G(1).

III. PROPOSED METHOD

In this section, we will introduce the framework DIME in detail.
At the beginning, we provide the notations used in the paper. After
that, in Section III-B, we will talk about how to calculate the meta
proximity scores among users based on information in the attributed
heterogeneous social networks. With the meta proximity measures,
the DIME framework will be introduced in Section III-C to obtain
the embedding vectors of user nodes across aligned networks, where
information from other aligned mature networks will be used to refine
the embedding vectors in the emerging sparse network.

A. Notations

In the sequel, we will use the lower case letters (e.g., x) to represent
scalars, lower case bold letters (e.g., x) to denote column vectors,
bold-face upper case letters (e.g., X) to denote matrices, and upper
case calligraphic letters (e.g., X) to denote sets. Given a matrix
X, we denote X(i, :) and X(:, j) as the ith row and jth column
of matrix X respectively. The (ith, jth) entry of matrix X can be
denoted as either X(i, j) or Xi,j , which will be used interchangeably
in this paper. We use X> and x> to represent the transpose of

matrix X and vector x. For vector x, we represent its Lp-norm as
‖x‖p = (

∑
i |xi|

p)
1
p . The Lp-norm of matrix X can be represented

as ‖X‖p = (
∑

i,j |Xi,j |p)
1
p . The element-wise product of vectors

x and y of the same dimension is represented as x � y, while the
element-wise product of matrices X and Y of the same dimensions
is represented as X�Y.

B. Heterogeneous Network Meta Proximity

For each attributed heterogeneous social network, the closeness
among users can be denoted by the friendship links among them,
where friends tend to be closer compared with user pairs without
connections. Meanwhile, for the users who are not directly connected
by the friendship links, few existing embedding methods can figure
out their closeness, as these methods are mostly built based on the
direct friendship link only. In this section, we propose to infer the
potential closeness scores among the users with the heterogeneous
information in the networks based on meta path concept [16], which
are formally called the meta proximity in the paper.

1) Friendship based Meta Proximity: In online social networks,
the friendship links are the most obvious indicator of the social
closeness among users. Online friends tend to be closer with each
other compared with the user pairs who are not friends. Users’
friendship links also carry important information about the local
network structure information, which should be preserved in the
embedding results. Based on such an intuition, we propose the
friendship based meta proximity concept as follows.
Definition 3 (Friendship based Meta Proximity): For any two user
nodes u(1)

i , u
(1)
j in an online social network (e.g., G(1)), if u(1)

i and
u

(1)
j are friends in G(1), the friendship based meta proximity between
u

(1)
i and u(1)

j in the network is 1, otherwise the friendship based meta
proximity score between them will be 0 instead. To be more specific,
we can represent the friendship based meta proximity score between
users u(1)

i , u
(1)
j as p(1)(u

(1)
i , u

(1)
j) ∈ {0, 1}, where p(1)(u

(1)
i , u

(1)
j) =

1 iff (u
(1)
i , u

(1)
j) ∈ E(1)

u,u.
Based on the above definition, the friendship based meta proximity

scores among all the users in network G(1) can be represented
as matrix P

(1)
Φ0
∈ R|U

(1)|×|U(1)|, where entry P
(1)
Φ0

(i, j) equals to
p(1)(u

(1)
i , u

(1)
j). Here Φ0 denotes the simplest meta path of length 1

in the form U follow−−−−→ U, and its formal definition will be introduced
in the following subsection.

When network G(1) is an emerging online social network which
has just started to provide services for a very short time, the friendship
links among users in G(1) tend to be very limited (majority of the
users are isolated in the network with few social connections). In
other words, the friendship based meta proximity matrix P

(1)
Φ0

will be
extremely sparse, where few entries will have value 1 and most of the
entries are 0s. With such a sparse matrix, most existing embedding
models will fail to work. The reason is that the sparse friendship
information available in the network can hardly categorize the relative
closeness relationships among the users (especially for those who are
even not connected by friendship links), which renders these existing
embedding models may project all the nodes to random regions.

To overcome such a problem, besides the social links, we propose
to calculate the proximity scores for the users with the diverse link
and attribute information in the heterogeneous networks in this paper.
Based on a new concept named attribute augmented meta path, a set
of meta proximity measures will be defined with each of the meta
paths, which will be introduced in the following sections.

TABLE II
SUMMARY OF SOCIAL META PATHS (FOR BOTH FOURSQUARE AND TWITTER).

ID Notation Heterogeneous Network Meta Path Semantics

Φ0 U → U User
follow−−−−−→ User Follow

Φ1 U → U → U User
follow−−−−−→ User

follow−−−−−→ User Follower of Follower

Φ2 U → U ← U User
follow−−−−−→ User

follow−1

−−−−−−−→ User Common Out Neighbor

Φ3 U ← U → U User
follow−1

−−−−−−−→ User
follow−−−−−→ User Common In Neighbor

Φ4 U ← U ← U User
follow−1

−−−−−−−→ User
follow−1

−−−−−−−→ User Followee of Followee

Φ5 U → P → W ← P ← U User write−−−−→ Post have−−−→ Word have−1
−−−−−−→ Post write−1

−−−−−−→ User Posts Containing Common Words

Φ6 U → P → T ← P ← U User write−−−−→ Post have−−−→ Time have−1
−−−−−−→ Post write−1

−−−−−−→ User Posts Containing Common Timestamps

Φ7 U → P → L ← P ← U User write−−−−→ Post have−−−→ Location have−1
−−−−−−→ Post write−1

−−−−−−→ User Posts Attaching Common Location Check-ins

2) Attribute Augmented Meta Path: To handle the diverse links
and attributes simultaneously in a unified analytic, we propose to
treat the attributes as nodes as well and introduce the attribute
augmented network. If a node has certain attributes, a new type of
link “have” will be added to connected the node and the newly added
attribute node. The structure of the attribute augmented network can
be described with the attribute augmented network schema as follows.
Definition 4 (Attribute Augmented Network Schema): Formally, the
network schema of a given online social network G(1) = (V, E) can
be represented as SG(1) = (NV ∪NT ,RE ∪{have}), where NV and
NT denote the set of node and attribute categories in the network,
while RE represents the set of link types in the network, and {have}
represents the relationship between node and attribute node types.

For instance, about the attributed heterogeneous social network
introduced after Definition 1 in Section II, we can represent its
network schema as SG(1) = (NV∪NT ,RE∪{have}). The node type
set NV involves node types {User, Post} (or {U, P} for simplicity),
while the attribute type set NT includes {Word, Time, Location} (or
{W,T,L} for short). As to the link types involved in the network,
the link type set RE contains {follow,write}, which represents the
friendship link type and the write link type respectively.

Based on the attribute augmented network schema, we can repre-
sent the general correlation among users (especially those who are
directly connected by friendship links) with the attributed augmented
meta path starting and ending with the user node type.
Definition 5 (Attribute Augmented Meta Path): Given a network
schema SG(1) , the attribute augmented meta path denotes a sequence
of node/attribute types connected by the link types or the “have” re-
lation type (between node and attribute type). Formally, the attribute
augmented meta path (of length k− 1, k ≥ 2) can be represented as

Φ : N1
R1−−→ N2

R2−−→ · · ·
Rk−1−−−−→ Nk, where N1, · · · , Nk ∈ NV∪NT

and R1, · · · , Rk−1 ∈ RE ∪ R−1
E ∪ {have, have−1} (superscript

−1 denotes the reverse of relation type direction). In the case that
N1 = Nk = U , i.e., meta paths starts and ends with the user node
type, the meta paths will be called the social meta paths specifically.

Based on the above definition, a set of different social meta path
{Φ0,Φ1,Φ2, · · · ,Φ7} can be extracted from the network, whose
notations, concrete representations and the physical meanings are
illustrated in Table II. Here, meta paths Φ0 − Φ4 are all based on
the user node type and follow link type; meta paths Φ5−Φ7 involve
the user, post node type, attribute node type, as well as the write and
have link type. Based on each of the meta paths, there will exist a
set of concrete meta path instances connecting users in the networks.
For instance, given a user pair u and v, they may have been checked-
in at 5 different common locations, which will introduce 5 concrete
meta path instance of meta path Φ7 connecting u and v indicating
their strong closeness (in location check-ins). In the next subsection,
we will introduce how to calculate the proximity score for the users
based on these extracted meta paths.

3) Heterogeneous Network Meta Proximity: The set of attribute
augmented social meta paths {Φ0,Φ1,Φ2, · · · ,Φ7} extracted in the
previous subsection create different kinds of correlations among users
(especially for those who are not directed connected by friendship
links). With these social meta paths, different types of proximity
scores among the users can be captured. For instance, for the users
who are not friends but share lots of common friends, they may
also know each other and can be close to each other; for the users
who frequently checked-in at the same places, they tend to be
more close to each other compared with those isolated ones with
nothing in common. Therefore, these meta paths can help capture
much broader network structure information compared with the local
structure captured by the friendship based meta proximity covered in
Section III-B1. In this part, we will introduce the method to calculate
the proximity scores among users based on these social meta paths.

As shown in Table II, all the social meta paths extracted from
the networks can be represented as set {Φ0,Φ1, · · · ,Φ7}. Given
a pair of users, e.g., u(1)

i and u
(1)
j , based on meta path Φk ∈

{Φ0,Φ1, · · · ,Φ7}, we can represent the set of meta path instances
connecting u

(1)
i and u

(1)
j as P(1)

Φk
(u

(1)
i , u

(1)
j). Users u(1)

i and u
(1)
j

can have multiple meta path instances going into/out from them.
Formally, we can represent all the meta path instances going out
from user u(1)

i (or going into u(1)
j), based on meta path Φk, as set

P(1)
Φk

(u
(1)
i , ·) (or P(1)

Φk
(·, u(1)

j)). The proximity score between u
(1)
i

and u(1)
j based on meta path Φk can be represented as the following

meta proximity concept formally.

Definition 6 (Meta Proximity): Based on meta path Φk, the meta
proximity between users u(1)

i and u(1)
j in G(1) can be represented as

p
(1)
Φk

(u
(1)
i , u

(1)
j) =

2|P(1)
Φk

(u
(1)
i , u

(1)
j)|

|P(1)
Φk

(u
(1)
i , ·)|+ |P(1)

Φk
(·, u(1)

j)|
.

Meta proximity considers not only the meta path instances between
users but also penalizes the number of meta path instances going
out from/into u(1)

i and u(1)
j at the same time. It is also reasonable.

For instance, sharing some common location check-ins with some
extremely active users (who have thousands of checkins) may not
necessarily indicate closeness with them, since they may have com-
mon check-ins with almost all other users simply due to his very
large check-in record volume instead of their closeness.

With the above meta proximity definition, we can represent the
meta proximity scores among all users in the network G(1) based
on meta path Φk as matrix P

(1)
Φk
∈ R|U

(1)|×|U(1)|, where entry
P

(1)
Φk

(i, j) = p
(1)
Φk

(u
(1)
i , u

(1)
j). All the meta proximity matrices defined

for network G(1) can be represented as {P(1)
Φk
}Φk . Based on the meta

paths extracted for network G(2), similar matrices can be defined as
well, which can be denoted as {P(2)

Φk
}Φk .

…

…

…

……

…

…

…

Network 1 Network 2

Network
Fusion

Component

…
……

…
…

…

…

…

…

……
… …

…
…

…

……
… … …

…

…

…

…
… …

………
…

z
(1)
i

z
(2)
j

y
(2),o+1
j

ŷ
(2),o+1
j

x̂
(2)
j,�0

ŷ
(2),o
j,�0

y
(2),o
j,�0

x
(2)
j,�0

x
(2)
j,�1

x
(2)
j,�7

x̂
(2)
j,�7

x̂
(2)
j,�1x̂

(1)
i,�1

x̂
(1)
i,�0

x̂
(1)
i,�7

x
(1)
i,�7

x
(1)
i,�1

x
(1)
i,�0

y
(1),1
i,�7

y
(1),o
i,�7

ŷ
(1),o
i,�7

ŷ
(1),1
i,�7

ŷ
(2),1
j,�0

y
(2),1
j,�0

ŷ
(1),o+1
i

y
(1),o+1
i

… …

… …

… …

… …

Fig. 1. The DIME Framework.

C. Deep Network Synergistic Embedding

With these calculated meta proximity introduced in the previous
section, we will introduce the embedding framework DIME in this
part. DIME is based on the aligned auto-encoder model, which ex-
tends the traditional deep auto-encoder model to the multiple aligned
heterogeneous networks scenario. To make this paper self-contained,
we will first briefly introduce some background knowledge about the
auto-encoder model first in Section III-C1. After that, we will talk
about the embedding model component for one single heterogeneous
network in Section III-C2, which takes the various meta proximity
matrices as input. DIME effectively couples the embedding process
of the emerging network with other aligned mature networks, where
cross-network information exchange and refinement is achieved via
the loss term defined based on the anchor links.

1) Deep Auto-Encoder Model Review: Auto-encoder is an unsu-
pervised neural network model, which projects the instances (in origi-
nal feature representations) into a lower-dimensional feature space via
a series of non-linear mappings. Auto-encoder model involves two
steps: encoder and decoder. The encoder part projects the original
feature vectors to the objective feature space, while the decoder
step recovers the latent feature representation to a reconstruction
space. In auto-encoder model, we generally need to ensure that the
original feature representation of instances should be as similar to
the reconstructed feature representation as possible.

Formally, let xi represent the original feature representation of
instance i, and y1

i ,y
2
i , · · · ,yo

i be the latent feature representation
of the instance at hidden layers 1, 2, · · · , o in the encoder step, the
encoding result in the objective feature space can be represented as
zi ∈ Rd with dimension d. Formally, the relationship between these
variables can be represented with the following equations:

y1
i = σ(W1xi + b1),

yk
i = σ(Wkyk−1

i + bk),∀k ∈ {2, 3, · · · , o},
zi = σ(Wo+1yo

i + bo+1).

Meanwhile, in the decoder step, the input will be the latent feature
vector zi (i.e., the output of the encoder step), and the final output
will be the reconstructed vector x̂i. The latent feature vectors at

each hidden layers can be represented as ŷo
i , ŷ

o−1
i , · · · , ŷ1

i . The
relationship between these vector variables can be denoted as

ŷo
i = σ(Ŵo+1zi + b̂o+1),

ŷk−1
i = σ(Ŵkŷk

i + b̂k), ∀k ∈ {2, 3, · · · , o},
x̂i = σ(Ŵ1ŷ1

i + b̂1).

The objective of the auto-encoder model is to minimize the loss
between the original feature vector xi and the reconstructed feature
vector x̂i of all the instances in the network. Formally, the loss term
can be represented as

L =
∑
i

‖xi − x̂i‖22 .

2) Deep DIME-SH Model: When applying the auto-encoder
model for one single homogeneous network, e.g., for G(1), we can
fit the model with the node meta proximity feature vectors, i.e., rows
corresponding to users in matrix P

(1)
Φ0

(introduced in Section III-B1).
In the case that G(1) is heterogeneous, multiple node meta proximity
matrices have been defined before (i.e., {P(1)

Φ0
,P

(1)
Φ1
, · · · ,P(1)

Φ7
}),

how to fit these matrices simultaneously to the auto-encoder models
is an open problem. In this part, we will introduce the single-
heterogeneous-network version of framework DIME, namely DIME-
SH, which will be used as an important component of framework
DIME as well. For each user node in the network, DIME-SH
computes the embedding vector based on each of the proximity
matrix independently first, which will be further fused to compute
the final latent feature vector in the output hidden layer.

As shown in the architecture in Figure 1 (either the left component
for network 1 or the right component for network 2), about the
same instance, DIME-SH takes different feature vectors extracted
from the meta paths {Φ0,Φ1, · · · ,Φ7} as the input. For each meta
path, a series of separated encoder and decoder steps are carried out
simultaneously, whose latent vectors are fused together to calculate
the final embedding vector z

(1)
i ∈ Rd(1) for user u(1)

i ∈ V(1). In
the DIME-SH model, the input feature vectors (based on meta path
Φk ∈ {Φ0,Φ1, · · · ,Φ7}) of user ui can be represented as x

(1)
i,Φk

,
which denotes the row corresponding to users u(1)

i in matrix P
(1)
Φk

defined before. Meanwhile, the latent representation of the instance
based on the feature vector extracted via meta path Φk at different
hidden layers can be represented as {y(1),1

i,Φk
,y

(1),2
i,Φk

, · · · ,y(1),o
i,Φk
}.

One of the significant difference of model DIME-SH from tra-
ditional auto-encoder model lies in the (1) combination of multiple
hidden vectors {y(1),o

i,Φ0
,y

(1),o
i,Φ1

, · · · ,y(1),o
i,Φ7
} to obtain the embedding

vector z
(1)
i in the encoder step, and (2) the dispatch of embedding

vector z(1)
i back to the hidden vectors in the decoder step. As shown

in the architecture, formally, these extra steps can be represented as

extra encoder steps
y

(1),o+1
i = σ(

∑
Φk∈{Φ0,··· ,Φ7}W

(1),o+1
Φk

y
(1),o
i,Φk

+ b
(1),o+1
Φk

),

z
(1)
i = σ(W(1),o+2y

(1),o+1
i + b(1),o+2).

extra decoder steps
ŷ

(1),o+1
i = σ(Ŵ(1),o+2z

(1)
i + b̂(1),o+2),

ŷ
(1),o
i,Φk

= σ(Ŵ
(1),o+1
Φk

ŷ
(1),o+1
i + b̂

(1),o+1
Φk

).

In the fusion and dispatch steps, full connection layers are used in
order to incorporate all the information captured by all the meta paths.

What’s more, since the input feature vectors are extremely sparse
(lots of the entries are 0s), simply feeding them to the model may lead
to some trivial solutions, like 0 vectors for both z

(1)
i and the decoded

vectors x̂
(1)
i,Φk

. To overcome such a problem, another significant
difference of model DIME-SH from traditional auto-encoder model
lies in the loss function definition, where the loss introduced by the
non-zero features will be assigned with a larger weight. In addition,
by adding the loss function for each of the meta paths, the final loss
function in DIME-SH can be formally represented as

L(1) =
∑

Φk∈{Φ0,··· ,Φ7}

∑
ui∈V

∥∥∥(x(1)
i,Φk
− x̂

(1)
i,Φk

)
� b

(1)
i,Φk

∥∥∥2

2
,

where vector b
(1)
i,Φk

is the weight vector corresponding to feature
vector x(1)

i,Φk
. Entries in vector b(1)

i,Φk
are filled with value 1s except

the entries corresponding to non-zero element in x
(1)
i,Φk

, which will
be assigned with value γ (γ > 1 denoting a larger weight to fit these
features). Here, we need to add a remark that “simply discarding the
entries corresponding zero values in the input vectors from the loss
function” will not work here, since it will allow the model to decode
there entries to any random values, which will not be what we want.
In a similar way, we can define the loss function for the embedding
result in network G(2), which can be formally represented as L(2).

3) Deep DIME Framework: DIME-SH has incorporate all these
heterogeneous information in the model building, the meta proximity
calculated based on which can help differentiate the closeness among
different users. However, for the emerging networks which just start
to provide services, the information sparsity problem may affect the
performance of DIME-SH significantly. In this part, we will intro-
duce DIME, which couples the embedding process of the emerging
network with another mature aligned network. By accommodating
the embedding between the aligned networks, information can be
transferred from the aligned mature network to refine the embedding
results in the emerging network effectively. The complete architecture
of DIME is shown in Figure 1, which involve the DIME-SH compo-
nents for each of the aligned networks, where the information transfer
component aligns these separated DIME-SH models together.

To be more specific, given a pair of aligned heterogeneous net-
works G = ((G(1), G(2)),A(1,2)) (G(1) is an emerging network and
G(2) is a mature network), we can represent the embedding results
as matrices Z(1) ∈ R|U

(1)|×d(1) and Z(2) ∈ R|U
(2)|×d(2) for all the

user nodes in G(1) and G(2) respectively. The ith row of matrix Z(1)

TABLE III
PROPERTIES OF THE HETEROGENEOUS NETWORKS

network

property Twitter Foursquare

node
user 5,223 5,392
tweet/tip 9,490,707 48,756
location 297,182 38,921

link
friend/follow 164,920 76,972
write 9,490,707 48,756
locate 615,515 48,756

(or the jth row of matrix Z(2)) denotes the encoded feature vector of
user u(1)

i in G(1) (or u(2)
j in G(2)). If u(1)

i and u(2)
j are the same user,

i.e., (u
(1)
i , u

(2)
j) ∈ A(1,2), by placing vectors Z(1)(i, :) and Z(2)(j, :)

in a close region in the embedding space, we can use the information
from G(2) to refine the embedding result in G(1).

Information transfer is achieved based on the anchor links, and
we only care about the anchor users. To adjust the rows of matrices
Z(1) and Z(2) to remove non-anchor users and make the same rows
correspond to the same user, we introduce the binary inter-network
transitional matrix T(1,2) ∈ R|U

(1)|×|U(2)|. Entry T (1,2)(i, j) = 1
iff the corresponding users are connected by anchor links, i.e.,
(u

(1)
i , u

(2)
j) ∈ A(1,2). Furthermore, the encoded feature vectors

for users in these two networks can be of different dimensions,
i.e., d(1) 6= d(2), which can be accommodated via the projection
W(1,2) ∈ Rd(1)×d(2) .

Formally, the introduced information fusion loss between networks
G(1) and G(2) can be represented as

L(1,2) =
∥∥∥(T(1,2))>Z(1)W(1,2) − Z(2)

∥∥∥2

F
.

By minimizing the information fusion loss function L(1,2), we can
use the anchor users’ embedding vectors from the mature network
G(2) to adjust his embedding vectors in the emerging network G(1).
Even through in such a process the embedding vector in G(2) can
be undermined by G(1), it will not be a problem since G(1) is our
target network and we only care about the embedding result of the
emerging network G(1) in the paper.

The complete objective function of framework include the loss
terms introduced by the component DIME-SH for networks G(1),
G(2), and the information fusion loss, which can be denoted as

L(G(1), G(2)) = L(1) + L(2) + α · L(1,2) + β · Lreg.

Parameters α and β denote the weights of the information fusion loss
term and the regularization term. In the objective function, term Lreg

is added to the above objective function to avoid overfitting, which
can be formally represented as

Lreg = L(1)
reg + L(2)

reg + L(1,2)
reg ,

L(1)
reg =

∑o(1)+2
i

∑
Φk∈{Φ0,··· ,Φ7}

(∥∥∥W(1),i
Φk

∥∥∥2

F
+
∥∥∥Ŵ(1),i

Φk

∥∥∥2

F

)
,

L(2)
reg =

∑o(2)+2
i

∑
Φk∈{Φ0,··· ,Φ7}

(∥∥∥W(2),i
Φk

∥∥∥2

F
+
∥∥∥Ŵ(2),i

Φk

∥∥∥2

F

)
,

L(1,2)
reg =

∥∥∥W(1,2)
∥∥∥2

F
.

To optimize the above objective function, we utilize Stochastic
Gradient Descent (SGD). To be more specific, the training process
involves multiple epochs. In each epoch, the training data is shuffled
and a minibatch of the instances are sampled to update the parameters
with SGD. Such a process continues until either convergence or the
training epochs have been finished.

TABLE IV
LINK PREDICTION RESULT OF THE COMPARISON METHODS (PARAMETER λ CHANGES IN {10%, 20%, · · · , 100%}, θ = 1).

Sampling Ratio λ

metric method 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

A
U

C
DIME 0.792±0.007 0.822±0.006 0.838±0.005 0.843±0.003 0.847±0.003 0.850±0.003 0.852±0.002 0.850±0.004 0.852±0.003 0.852±0.004

DIME-SH 0.774±0.006 0.795±0.005 0.802±0.006 0.809±0.004 0.815±0.005 0.822±0.005 0.827±0.006 0.826±0.005 0.830±0.004 0.833±0.003

Auto-encoder 0.697±0.006 0.731±0.006 0.752±0.005 0.761±0.005 0.761±0.005 0.763±0.004 0.763±0.004 0.770±0.003 0.773±0.005 0.777±0.005
LINE 0.694±0.008 0.716±0.003 0.731±0.007 0.738±0.005 0.741±0.006 0.744±0.005 0.748±0.005 0.748±0.008 0.750±.003 0.750±0.006

DeepWalk 0.671±0.010 0.661±0.011 0.670±0.009 0.675±0.009 0.682±0.005 0.687±0.004 0.701±0.007 0.718±0.007 0.733±0.008 0.747±0.006

A
cc

ur
ac

y DIME 0.719±0.006 0.748±0.005 0.763±0.004 0.767±0.003 0.773±0.003 0.775±0.004 0.777±0.003 0.775±0.003 0.777±0.004 0.777±0.004
DIME-SH 0.704±0.007 0.723±0.004 0.728±0.006 0.737±0.003 0.739±0.006 0.747±0.005 0.753±0.006 0.754±0.006 0.757±0.005 0.761±0.003

Auto-encoder 0.642±0.005 0.668±0.005 0.684±0.005 0.692±0.005 0.691±0.005 0.691±0.004 0.691±0.004 0.699±0.004 0.700±0.005 0.703±0.005
LINE 0.637±0.005 0.666±0.004 0.676±0.008 0.676±0.005 0.677±0.004 0.679±0.006 0.679±0.005 0.679±0.008 0.681±0.003 0.682±0.007

DeepWalk 0.632±0.008 0.626±0.009 0.633±0.008 0.634±0.008 0.637±0.006 0.641±0.004 0.655±0.007 0.669±0.006 0.680±0.006 0.687±0.004

R
ec

al
l

DIME 0.641±0.008 0.702±0.011 0.732±0.007 0.746±0.008 0.755±0.008 0.761±0.006 0.767±0.006 0.768±0.003 0.771±0.005 0.772±0.008
DIME-SH 0.641±0.011 0.689±0.006 0.692±0.010 0.703±0.009 0.707±0.009 0.713±0.013 0.720±0.010 0.719±0.012 0.725±0.009 0.731±0.008

Auto-encoder 0.564±0.016 0.649±0.016 0.714±0.007 0.743±0.013 0.726±0.012 0.680±0.009 0.671±0.007 0.681±0.008 0.680±0.008 0.687±0.007
LINE 0.819±0.008 0.770±0.007 0.800±0.008 0.749±0.011 0.740±0.008 0.731±0.010 0.724±0.007 0.721±0.007 0.715±0.005 0.716±0.009

DeepWalk 0.645±0.020 0.658±0.020 0.678±0.016 0.681±0.016 0.680±0.016 0.682±0.010 0.692±0.009 0.702±0.008 0.706±0.005 0.707±0.007

F1

DIME 0.700±0.007 0.735±0.008 0.756±0.006 0.762±0.006 0.769±0.005 0.772±0.005 0.775±0.004 0.774±0.004 0.776±0.005 0.776±0.006
DIME-SH 0.684±0.009 0.711±0.005 0.718±0.008 0.728±0.006 0.731±0.007 0.738±0.008 0.744±0.007 0.745±0.009 0.749±0.006 0.753±0.005

Auto-encoder 0.612±0.009 0.662±0.009 0.693±0.007 0.707±0.007 0.701±0.007 0.688±0.006 0.685±0.006 0.694±0.006 0.694±0.007 0.698±0.008
LINE 0.693±0.006 0.698±0.005 0.712±0.008 0.698±0.007 0.696±0.006 0.695±0.009 0.693±0.006 0.692±0.009 0.692±0.005 0.693±0.009

DeepWalk 0.636±0.011 0.637±0.014 0.648±0.010 0.650±0.010 0.652±0.010 0.655±0.006 0.667±0.008 0.679±0.006 0.688±0.006 0.693±0.005

IV. EXPERIMENTS

To demonstrate the effectiveness of the learnt embedding feature
vectors, extensive experiments have been done on real-world aligned
heterogeneous social networks, Foursquare and Twitter. Two different
tasks are done in this section for embedding result evaluation pur-
poses, which include link prediction and community detection. In this
section, we will provide some basic descriptions about the aligned
heterogeneous social network dataset first. After that, we will intro-
duce the experimental settings, covering the comparison embedding
methods, as well as the experimental settings, and evaluation metrics
for link prediction and community detection tasks. Finally, we will
show the experimental results about link prediction and community
detection, followed by the parameter analysis.

A. Dataset Description

The data used in the experiments include two aligned heteroge-
neous social networks Foursquare and Twitter simultaneously. The
basic statistical information about the Foursquare and Twitter datasets
is available in Table III. The data crawling strategy and method is
introduced in great deital in [8], [30].
• Twitter: Twitter is a famous micro-blogging site that allows users

to write, read and share posts with their friends online. We have
crawled 5, 223 Twitter users, and 164, 920 follow links among
them. These crawled Twitter users have posted 9, 490, 707
tweets, among which 615, 515 have location checkins.

• Foursquare: Foursquare is a famous location based social
network (LBSN), which provides users with various kinds of
location-related services. From Foursquare, we have crawled
5, 392 users together with 76, 972 friendship links among them.
These Foursquare users have written 48, 756 posts which all at-
tach location checkins. Among these 5, 392 crawled Foursquare
users, 3, 388 of them are aligned by anchor links with Twitter.

In the experiments, we will use Foursquare as the emerging
network and Twitter as the aligned mature network, since Twitter
has more dense information than Foursquare. The results for the
reverse case (Foursquare: mature; Twitter: emerging) are not shown
here due to the limited space.

Source Code: The source code of DIME is available at site:
http://www.ifmlab.org/files/code/Aligned-Autoencoder.zip.

B. Experimental Settings

In this paper, we are mainly focused on studying the embedding
models, and different network embedding comparison methods will

be introduced first. After that, we will introduce the experimental
settings for both link prediction and community detection tasks,
which will be used as the evaluation tasks to determine whether
the embedding results are good or not. A set of frequently used
evaluation metrics for link prediciton and community detection will
be introduced afterwards.

1) Embedding Comparison Methods: The network embedding
models compared in the experiments are listed as follows
• DIME: DIME is the synergistic embedding model for multiple

aligned heterogeneous networks introduced in this paper. DIME
preserves both the local and global network structure with a set
of meta proximity calculated from each of the heterogeneous
network. DIME transfers the information from the aligned
mature networks to the emerging network with the anchor links,
which accommodate the learnt embedding feature vectors for the
anchor users in the aligned networks.

• DIME-SH: DIME-SH is a variant model of DIME proposed
in this paper, which preserves both the local and global network
structure with a set of meta proximity based on the heteroge-
neous networks. DIME-SH effectively fuses the heterogeneous
information inside the network, where the fusion weight of
information in different categories can be learnt automatically.

• Auto-encoder Model: The AUTO-ENCODER model proposed in
[2] can project the instances into a low-dimensional feature
space. In the experiments, we build the AUTO-ENCODER model
merely based on the friendship link among users, where the
feature vector for each user is his/her social adjacency vector.
Here, we also adjust the loss term for AUTO-ENCODER by
weighting the non-zero features more with parameter γ as
introduced in Section III-C2.

• LINE Model: The LINE model is a scalable network embedding
model proposed in [18], which optimizes an objective function
that preserves both the local and global network structures.
LINE also uses a edge-sampling algorithm to addresses the
limitation of the classical stochastic gradient descent, which
improves the inference effectiveness and the efficiency greatly.

• DeepWalk Model: The DEEPWALK model [14] extends the
word2vec model [12] to the network embedding scenario. DEEP-
WALK uses local information obtained from truncated random
walks to learn latent representations.

2) Link Prediction Experimental Setting: Given the emerging
network, from which we can obtain all the existing links inside the
network as the positive set. Meanwhile, from the network, a subset
of the non-existing links are randomly sampled as the negative set

TABLE V
COMMUNITY DETECTION RESULT OF THE COMPARISON METHODS (PARAMETER λ CHANGES IN {10%, 20%, · · · , 100%}, k = 10).

Sampling Ratio λ

metric method 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

D
en

si
ty

DIME 0.002±0.000 0.003±0.000 0.003±0.000 0.003±0.000 0.004±0.000 0.003±0.000 0.004±0.000 0.003±0.000 0.003±0.000 0.004±0.000
DIME-SH 0.002±0.000 0.002±0.000 0.003±0.000 0.003±0.000 0.003±0.000 0.003±0.000 0.003±0.000 0.003±0.000 0.003±0.000 0.003±0.000

Auto-encoder 0.002±0.000 0.002±0.000 0.002±0.000 0.002±0.000 0.003±0.000 0.003±0.000 0.003±0.000 0.003±0.000 0.003±0.000 0.003±0.000
LINE 0.001±0.000 0.002±0.000 0.002±0.000 0.002±0.000 0.002±0.000 0.002±0.000 0.002±0.000 0.002±0.000 0.002±0.000 0.002±0.000

DeepWalk 0.001±0.000 0.001±0.000 0.001±0.000 0.001±0.000 0.001±0.000 0.001±0.000 0.001±0.000 0.001±0.000 0.001±0.000 0.001±0.000

Se
pa

ra
bi

lit
y DIME 0.230±0.007 0.296±0.027 0.360±0.021 0.369±0.028 0.440±0.023 0.381±0.028 0.466±0.022 0.347±0.004 0.398±0.025 0.414±0.018

DIME-SH 0.251±0.033 0.235±0.007 0.288±0.013 0.294±0.010 0.311±0.020 0.282±0.018 0.298±0.007 0.370±0.011 0.362±0.010 0.372±0.017

Auto-encoder 0.247±0.031 0.181±0.012 0.201±0.016 0.251±0.020 0.259±0.013 0.272±0.014 0.272±0.019 0.296±0.012 0.281±0.019 0.271±0.011
LINE 0.132±0.003 0.153±0.010 0.167±0.004 0.157±0.007 0.179±0.008 0.186±0.007 0.203±0.007 0.200±0.011 0.190±0.010 0.221±0.013

DeepWalk 0.113±0.001 0.117±0.002 0.120±0.002 0.121±0.003 0.123±0.002 0.121±0.001 0.123±0.002 0.124±0.003 0.124±0.002 0.123±0.002

C
ov

er
ag

e DIME 0.187±0.005 0.228±0.016 0.264±0.011 0.269±0.015 0.306±0.011 0.276±0.014 0.318±0.011 0.258±0.002 0.285±0.013 0.292±0.009
DIME-SH 0.200±0.021 0.190±0.005 0.224±0.008 0.227±0.006 0.237±0.011 0.220±0.011 0.229±0.004 0.270±0.006 0.266±0.005 0.271±0.009

Auto-encoder 0.198±0.020 0.153±0.009 0.167±0.011 0.201±0.013 0.206±0.008 0.214±0.009 0.213±0.012 0.228±0.007 0.219±0.012 0.213±0.007
LINE 0.117±0.003 0.133±0.008 0.143±0.003 0.136±0.005 0.152±0.006 0.157±0.005 0.168±0.005 0.167±0.008 0.160±0.007 0.181±0.009

DeepWalk 0.102±0.001 0.105±0.001 0.107±0.002 0.108±0.002 0.110±0.001 0.108±0.001 0.110±0.001 0.110±0.002 0.111±0.002 0.110±0.001

E
xp

an
si

on

DIME 0.813±0.005 0.772±0.016 0.736±0.011 0.731±0.015 0.694±0.011 0.724±0.014 0.682±0.011 0.742±0.002 0.715±0.013 0.708±0.009
DIME-SH 0.800±0.021 0.810±0.005 0.776±0.008 0.773±0.006 0.763±0.011 0.780±0.011 0.771±0.004 0.730±0.006 0.734±0.005 0.729±0.009

Auto-encoder 0.802±0.020 0.847±0.009 0.833±0.011 0.799±0.013 0.794±0.008 0.786±0.009 0.787±0.012 0.772±0.007 0.781±0.012 0.787±0.007
LINE 0.883±0.003 0.867±0.008 0.857±0.003 0.864±0.005 0.848±0.006 0.843±0.005 0.832±0.005 0.833±0.008 0.840±0.007 0.819±0.009

DeepWalk 0.898±0.001 0.895±0.001 0.893±0.002 0.892±0.002 0.890±0.001 0.892±0.001 0.890±0.001 0.890±0.002 0.889±0.002 0.890±0.001

according to the negative positive sampling ratio θ ∈ {1, 2, · · · , 10}.
Here θ = 1 denotes that the negative set is of the same size as the
positive set. Meanwhile, θ = 10 represents the negative set is 9 times
larger than the positive set. The positive and negative sets are divided
into two subsets with 10-fold cross validation, where 9 folds are used
as the training set and 1 fold is used as the testing set.

To denote different degrees of information sparsity, the emerg-
ing network is further sampled to remove information randomly
from the network, which is controlled by the sampling ratio λ ∈
{10%, 20%, · · · , 100%}. Here, the sampling denotes removing the
positive links in the training set, as well as the posts from the
emerging network to make the network sparse. λ = 10% denotes
10% of the information is preserved (90% of the information is
randomly removed); while λ = 100% denotes that all the information
is preserved in the emerging network. The network embedding is
learnt based on the training set and network after sampling.

With the learnt embedding feature vectors, the remaining links in
the training set is used to build a supervised link prediction model.
For each link (u, v) in the training set, the embedding feature vector
of the nodes u and v are concatenated as the link feature vector.
Depending on whether link (u, v) appears in the positive set or
negative set, (u, v) will be assigned with the +1 or −1 label. SVM
is used as the base classifier for all the embedding models. We train
SVM with the training set, and then apply the trained SVM to the
testing set to infer the labels and the formation probabilities of these
links. By comparing the prediction labels (and inference probabilities)
with the ground truth labels, we can evaluate the performance of the
embedding models with different kinds of evaluation metrics to be
introduced in the next subsection.

In the experiments, 7 hidden layers are involved in framework
DIME (3 hidden layers in encoder step, 3 in decoder step, and 1
fusion hidden layer). The number neuron in these hidden layers are
500, 50, 50× 7, 50, 50× 7, 50 and 500 respectively. Epoch is 600
and the batch size is 64. The parameters α = 1.0, β = 0.02 and
γ = 100.0 are used in the experiments.

3) Link Prediction Evaluation Metrics: By comparing the link
prediction results in the testing set, i.e., the inference probabilities,
with the ground truth labels, the performance of different embedding
models can be evaluated by AUC as the metric. Meanwhile, based
on the prediction labels, we can evaluate the performance of these
embedding models with Recall, F1 and Accuracy as the metrics.

4) Community Detection Experimental Setting: Different from link
prediction, community detection is an unsupervised learning task,
where no training set is needed. Based on the whole network, we

randomly sample a subset of information, i.e., follow links and
posts, from the network controlled by the sampling ratio λ ∈
{10%, 20%, · · · , 100%}. Based on the sampled network, we learn
the embedding of the emerging network and get the embedded feature
vector for each user in the emerging network. KMeans is applied as
the base clustering model to partition the users into different clusters
based on their learnt embedding feature vectors. We evaluate the
performance of the embedding methods by comparing the clustering
results with the original network structure (involving users and follow
links) before sampling. The evaluation metrics will be introduced in
the following subsection.

5) Community Detection Evaluation Metrics: The community de-
tection evaluation metrics used in the experiments include, Density,
Separability, Coverage, and Expansion, which have been frequently
used as the metrics for topological clustering problems. An introduc-
tion to these metrics is available in [1] and [20].

C. Link Prediction Experimental Results

In this link prediction task, we compare the performance of
five different embedding methods under different sampling ratio
λ ∈ {10%, 20%, · · · , 100%}. We try to predict the follow link
relationship in the testing set with the sampled training data. The
negative positive rate θ is set with value 1 here (i.e., negative and
positive sets are of the same size).

The method we proposed in this paper, DIME, performs much
better than the other methods in the link prediction task, since the
heterogeneous information from both the emerging and other aligned
mature networks used in DIME can provide extra information to
help the model learn the embedding feature vectors of the users. Ta-
ble IV shows the performance of DIME, DIME-SH, and other three
baseline methods, Auto-eocoder, LINE and DeepWalk, evaluated by
AUC, Accuracy, Recall and F1 with different sampling ratio λs.

When the sampling ratio λ is low, like 10%, the baseline models
will suffer from the information sparsity a lot, but by transferring
information other aligned source networks DIME can still obtain
very good performance. As the sampling ratio λ increases, the
performance of all these methods improves steadily, and DIME can
outperform the other methods with great advantages consistently.

Among all the baseline methods, DIME can achieve the best
performance in most of the cases (except the Recall measure with
λ ∈ {10%, 20%, 30%, 40%}). For instance, when λ = 30%, the
AUC achieved by DIME is 0.838, which is 4.5% higher than the
AUC obtained by DIME-SH. It demonstrates our assumption that
“information from other aligned networks can help improve the per-
formance greatly”. The advantages of DIME will be more significant

(a) AUC (b) Recall (c) F1 (d) Accuracy

Fig. 2. Parameter Analysis of negative positive rate θ in link prediction.

compared with the remaining baseline methods. Meanwhile, with
heterogeneous information in the emerging network, DIME-SH can
also outperform the other baseline models built with homogeneous
information only. For instance, the AUC, Accuracy, and F1 obtained
by DIME-SH are all over 8% greater than the measures obtained
by Auto-encoder, LINE and DeepWalk. It shows the meta proximity
proposed in this paper can effectively capture the network structure
information for the users.

D. Link Prediction Parameter Sensitivity Analysis

In the link prediction task, we set the negative positive rate θ equals
1. In this part, we will provide the sensitivity analysis of parameter θ.
Figure 2 shows the AUC, Recall, F1 and Accuracy of the comparison
methods with negative positive sample rate θ ∈ {1, 2, · · · , 10}.

As the negative positive rate θ increases, more negative links will
be added to the training and testing set, which renders the link
prediction task more challenging. According to Figure 2, we observe
that, the metrics like Recall and F1 are all decreasing as θ gets larger.
The AUC curve is relative stable, as it is not very sensitive to the class
imbalance problem. As for Accuracy, when the negative positive rate
θ increases, the data gets more imbalanced. In such a class imbalance
circumstance, the high Accuracy scores will not be that meaningful.

Through Figure 2, we can observe that even the metrics like Recall
and F1 will all degrade as the the negative positive rate θ increase, the
decreasing speed of different methods is different. DIME decreases
slower than DIME-SH, while the decreasing speed of DIME-SH is
much slower than the remaining baseline methods. This means that
although the performance of all the methods are influenced by the
increasing parameter θ, DIME and DIME-SH are more stable than
the other baseline models.

E. Community Detection Experimental Results

In Table V, we show the community detection results ob-
tained by the comparison methods evaluated by Density, Separa-
bility, Coverage and Expansion with different sampling ratios λ ∈
{10%, 20%, · · · , 100%}. Here the number of cluster, i.e., parameter
k, is assigned with value 10, whose sensitivity analysis will be
provided in the following subsection.

According to the results shown in the table, we observe that DIME
performs the best out of all the methods. As we can see, when
the sample ratio increases, the emerging network will have more
information, and the community detection results obtained by all the
comparison methods will increase steadily.

Under the same sample ratio, the comparison methods sorted
in the descending order according to their performance are as
follows: DIME, DIME-SH, Auto-encoder, LINE and DeepWalk.
By comparing DIME with the other baseline methods, DIME can
outperform them with great advantages. For instance, when sample
rate λ equals 0.5, the Separability of DIME is 0.440, which is 41.5%
larger than that obtained by DIME-SH. Based on the meta proximity
and heterogeneous information in the emerging network, DIME-
SH can perform much better than the other homogeneous network
based embedding methods. For instance, the Separability achieved by
DIME-SH is 20% larger than that of Auto-encoder, and over 70%

greater than LINE and DeepWalk. The results are also very similar
for other evaluation metrics.

F. Community Detection Parameter Sensitivity Analysis

In the community detection task, we set the community number k
with 10. In this part, we try to analyze how will the performance be
influenced while the number of communities k differs. Figure 3 shows
the change of Density, Separability, Coverage, Expansion obtained by
the comparison methods while k increases from 10 to 100.

Generally, when the community number k increases from 10 to 20,
the performance of all the methods degrades a little bit, and when
k increases from 20 to 30, the performance increases again, which
will keep dropping steadily as k further increases. In the community
detection task, we do not know how many communities in there. So
we need to try different ks to get best performance. In our case, k =
10 achieves best performance among the values in {10, 20, · · · , 100}.

If we sort the comparison methods according to their performance
in the decreasing order, the sorted list will be DIME, DIME-SH,
Auto-encoder, LINE and DeepWalk. The heterogeneous information
across the emerging and aligned source networks used in DIME help
the clustering model to group similar people together.

V. RELATED WORK

Network embedding has become a very hot research problem in
recent years, which can project a graph-structured data to the feature
vector representations automatically. In the graphs, the relation can
be treated as a translation of the entities, and many translation
based embedding models have been proposed. Model TransE [3]
is the initial translation based embedding work, which projects
the entity and relation into a common feature space. TransH [19]
improves TransE by considering the link cardinality constraint in the
embedding process, and can achieve comparable time complexity.
In the real-world multi-relational networks, the entities can have
multiple aspects, and the different relations can express different
aspects of the entity. Model TransR [11] proposes to build the entity
and relation embeddings in separate entity and relation spaces instead.

In recent years, many recent network embedding works based on
random walk model and deep learning models have proposed, like
Deepwalk [14], LINE [18], node2vec [6], HNE [4]. Perozzi et al.
extends the word2vec [12] to the network scenario and introduce the
Deepwalk algorithm [14], which uses local information obtained from
truncated random walks to learn latent representations by treating
walks as the equivalent of sentences. Tang et al. [18] propose to
embed the networks with LINE algorithm, which can preserve both
the local and global network structures. An edge-sampling algorithm
is applied in LINE that addresses the limitation of the classical
stochastic gradient descent and improves both the effectiveness and
the efficiency of the inference. Grover et al. [6] introduces a flexible
notion of a node’s network neighborhood and design a biased random
walk procedure to sample the neighbors in the training process, which
efficiently explores diverse neighborhoods. Chang et al. [4] learns the
embedding of heterogeneous networks involving both text and image
information. Chen et al. [5] introduce a task guided embedding model
to learning the representations for the author identification problem.

(a) Density (b) Separability (c) Coverage (d) Expansion

Fig. 3. Parameter Analysis of community number k.

Link prediction and recommendation first proposed in [9] has
become a very important problem in online social networks, which
provides social network researchers with the opportunity to study
both the network properties from the individuals social connection
perspective. Traditional unsupervised link predictor proposed in [9]
mainly calculate the closeness scores among users, and assume that
close users tend to be friends in the network. Hasan et al. [7] is the
first to study the link prediction problem as a supervised learning
problem, where the existing and non-existing social links are treated
as the positive and negative instances respectively. Today, many social
networks are heterogeneous and to conduct the link prediction in
these networks, Sun et al. [17] propose a meta path-based prediction
model to predict co-author relationship in the heterogeneous biblio-
graphic network.

Clustering method has also been widely used to detect communities
in networks. Newman et al. introduce a modularity function measur-
ing the quality of a division of networks [13]. Shi et al. introduce
the concept of normalized cut and discover that the eigenvectors
of the Laplace matrix provide a solution to the normalized cut
objective function [15]. In addition, many community detection works
have been done on heterogeneous online social networks. Sun et
al. [16] propose to study the clustering problem with complete link
information but incomplete attribute information. Lin et al. [10] try
to detect the communities in networks with incomplete relational
information but complete attribute information.

VI. CONCLUSION

In this paper, we propose to study the embedding problem for
emerging online social networks with broad learning, namely the BL-
MNE problem. Emerging networks denote the social networks that
newly created containing very little social information. Traditional
embedding models will suffer from the information sparsity problem
a lot in handling such emerging networks. To solve problem, we
introduce a novel embedding framework DIME. Based on a set
of meta proximity, DIME can make full use of the heterogeneous
information inside the network. Via the cross-network information
transfer, DIME refines the embedding results with information from
other external aligned mature networks. To demonstrate the effective-
ness of DIME, extensive experiments have been done on real-world
social networks, which include two main tasks: link prediction and
community detection. The experimental results show that DIME can
perform very well in learning the embedding vectors for nodes in the
emerging networks.

VII. ACKNOWLEDGEMENT

This work is supported in part by NSF through grants IIS-1526499,
and CNS-1626432, and NSFC 61672313.

This work was also partially supported by University of Missouri
Research Board (UMRB) via the proposal number: 4991.

REFERENCES

[1] H. Almeida, D. Guedes, W. Meira, and M. Zaki. Is there a best quality
metric for graph clusters? In ECML PKDD, 2011.

[2] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle. Greedy layer-
wise training of deep networks. In NIPS, 2006.

[3] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko.
Translating embeddings for modeling multi-relational data. In NIPS.
2013.

[4] S. Chang, W. Han, J. Tang, G. Qi, C. Aggarwal, and T. Huang.
Heterogeneous network embedding via deep architectures. In KDD,
2015.

[5] T. Chen and Y. Sun. Task-guided and path-augmented heterogeneous
network embedding for author identification. CoRR, abs/1612.02814,
2016.

[6] A. Grover and J. Leskovec. Node2vec: Scalable feature learning for
networks. In KDD, 2016.

[7] M. Hasan, V. Chaoji, S. Salem, and M. Zaki. Link prediction using
supervised learning. In SDM, 2006.

[8] X. Kong, J. Zhang, and P. Yu. Inferring anchor links across multiple
heterogeneous social networks. In CIKM, 2013.

[9] D. Liben-Nowell and J. Kleinberg. The link prediction problem for
social networks. In CIKM, 2003.

[10] W. Lin, X. Kong, P. Yu, Q. Wu, Y. Jia, and C. Li. Community detection
in incomplete information networks. In WWW, 2012.

[11] Y. Lin, Z. Liu, M. Sun, Y. Liu, and X. Zhu. Learning entity and relation
embeddings for knowledge graph completion. In AAAI, 2015.

[12] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. Distributed
representations of words and phrases and their compositionality. In NIPS,
2013.

[13] M. Newman and M. Girvan. Finding and evaluating community structure
in networks. Physical Review, 2004.

[14] B. Perozzi, R. Al-Rfou, and S. Skiena. Deepwalk: Online learning of
social representations. In KDD, 2014.

[15] J. Shi and J. Malik. Normalized cuts and image segmentation. TPAMI,
2000.

[16] Y. Sun, C. Aggarwal, and J. Han. Relation strength-aware clustering of
heterogeneous information networks with incomplete attributes. VLDB,
2012.

[17] Y. Sun, R. Barber, M. Gupta, C. Aggarwal, and J. Han. Co-author
relationship prediction in heterogeneous bibliographic networks. In
ASONAM, pages 121–128, 2011.

[18] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei. Line: Large-
scale information network embedding. In WWW, 2015.

[19] Z. Wang, J. Zhang, J. Feng, and Z. Chen. Knowledge graph embedding
by translating on hyperplanes. In AAAI, 2014.

[20] Jaewon Yang and J Leskovec. Defining and evaluating network com-
munities based on ground-truth. In ICDM, 2012.

[21] J. Zhang, J. Chen, S. Zhi, Y. Chang, P. Yu, and J. Han. Link prediction
across aligned networks with sparse low rank matrix estimation. In
ICDE, 2017.

[22] J. Zhang, L. Cui, P. Yu, Y. Lv, and Y. Fu. Bl-ecd: Broad learning
based enterprise community detection via hierarchical structure fusion.
In CIKM, 2017.

[23] J. Zhang, Y. Lv, and P. Yu. Enterprise social link prediction. In CIKM,
2015.

[24] J. Zhang and P. Yu. Community detection for emerging networks. In
SDM, 2015.

[25] J. Zhang and P. Yu. Multiple anonymized social networks alignment. In
ICDM, 2015.

[26] J. Zhang, P. Yu, and Y. Lv. Organizational chart inference. In KDD,
2015.

[27] J Zhang, P. Yu, and Y. Lv. Enterprise community detection. In ICDE,
2017.

[28] J. Zhang, P. Yu, and Y. Lv. Enterprise employee training via project
team formation. In WSDM, 2017.

[29] J. Zhang, P. Yu, Y. Lv, and Q. Zhan. Information diffusion at workplace.
In CIKM, 2016.

[30] J. Zhang, P. Yu, and Z. Zhou. Meta-path based multi-network collective
link prediction. In KDD, 2014.

[31] J. Zhu, J. Zhang, L. He, Q. Wu, B. Zhou, C. Zhang, and P. Yu. Broad
learning based multi-source collaborative recommendation. In CIKM,
2017.

