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Abstract—In many cases, the information spread in an online
network may not always be truthful or correct; such information
corresponds to rumors. In recent years, signed networks have
become increasingly popular because of their ability to represent
diverse relationships such as friends, enemies, trust, and distrust.
Signed networks are ideal for information flow in a network with
varying beliefs (trust or distrust) about facts. In this paper, we
will study the problem of influence analysis and diffusion models
in signed networks and investigate the problem of rumor initiator
detection, given the state of the network at a given moment in
time. Conventional information diffusion models for unsigned
networks cannot be applied to signed networks directly, and we
show that the rumor initiator detection problem is NP-hard.
We propose a new information diffusion model, referred to as
asyMmetric Flipping Cascade (MFC), to model the propagation of
information in signed networks. Based on MFC, a novel frame-
work, Rumor Initiator Detector (RID), is introduced to determine
the potential number and the identity of the rumor initiators from
the state of the network at a given time. Extensive experiments
conducted on real-world signed networks demonstrate that MFC
works very well in modeling information diffusion in signed
networks and RID can significantly outperform other comparison
methods in identifying rumor initiators.

Index Terms—Rumor Initiator Detection, Information Diffu-
sion, Signed Networks, Data Mining

I. INTRODUCTION

In recent years, signed networks [29], [23] have gained
increasing attention because of their ability to represent diverse
and contrasting social relationships. Some examples of such
contrasting relationships include friends vs enemies [25], trust
vs distrust [26], positive attitudes vs negative attitudes [27],
and so on. These contrasting relationships can be represented
as links of different polarities, which result in signed networks.
Signed social networks can provide a meaningful perspective
on a wide range of social network studies, like user senti-
ment analysis [24], social interaction pattern extraction [15],
trustworthy friend recommendation [14], and so on.

Rumor initiation and incorrect information dissemination
are both common in social networks [22]. Due to the extensive
social links among users, rumors on certain topics, e.g., poli-
tics, celebrities and product promotions, can propagate leading
to a large number of nodes reporting the same (incorrect)
observations rapidly in online social networks. In particular,
the links in signed networks are of different polarities and can

denote trust and distrust relationships among users [16], which
will inevitably have an impact on information propagation. In-
correct rumors sometimes can bring about devastating effects,
and an important goal in improving the credibility of the social
channel is to identify rumor initiators [22], [21], [13], [19] in
signed social networks.

In Figure 1, an example is provided to help illustrate the
rumor initiators identification problem more clearly. In the
example, users are connected to one another with signed links,
depending on their trust and distrust relations. It is noteworthy
that the conventions used for the direction of information
diffusion in this network are slightly different from traditional
influence analysis, because they represent signed links. For
instance, if Alice trusts (or follows) Bob, a directed edge exists
from Alice to Bob, but the information diffusion direction will
be from Bob to Alice. Via the signed links, inactive users in
the network can get infected by rumor information propagated
from their neighbors with either a positive or negative opinion
about the rumor (i.e., the green or red states in the figure).
Considering the fact that it is often difficult to directly identify
all the user infection states in real settings, we allow for the
possibility of some user states in the network to be unknown.
Activated users can propagate the rumor to other users. In
general, if a user is activated with a positive or negative
opinion about the rumor, she might activate one or more of her
incoming neighbors to trust or distrust the rumor, depending
on the sign of the incoming link. The main goal of the rumor
initiators identification problem is to determine the most likely
rumor initiators; those corresponding to the node in the blue
circle in Figure 1.
Problem Setting: This paper studies the detection of rumor
initiators in infected signed social networks, given the state
of the network at a specific moment in time. The edges in
the network are directed and signed, and they represent trust
or distrust relationships. For example, when node i trusts or
distrusts node j, we will have a corresponding positive or
negative link from node i to node j. In this setting, nodes are
associated with states corresponding to a prevailing opinion
about the truth of a fact. These states can be drawn from
{−1,+1, 0, ?}, where +1 indicates their agreement with a
specific fact, −1 indicates their disagreement, 0 indicates the
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Fig. 1. Example of the ISOMIT problem.

fact that they have no opinion of the fact at hand, and ?
indicates their opinion is unknown. The last of these states
is necessary to model the fact that the states of many nodes in
large-scale networks are often unknown. Note that the use of
multiple states of nodes in the network is different from tra-
ditional influence analysis. Users are influenced with varying
opinions of the fact in question, based on their observation
of their neighbors (i.e., states of neighborhood nodes), and
their trust or distrust of their neighbor’s opinions (i.e., signs
of links with them). This model is essentially a signed version
of influence propagation models, because the sign of the link
plays a critical role in how a specific bit of information is
transmitted. Given a snapshot of the states of all nodes in the
network at a given time, the main goal of this problem is to
determine the most likely rumor initiators in the network. We
refer to the problem as the “Infected Signed netwOrk ruMor
Initiator deTection” (ISOMIT) problem.

The ISOMIT problem is very different from traditional dif-
fusion modeling and influence analysis of unsigned networks
because of its use of node states and links signs. Examples of
such settings include the maximization of spread of influence
through unsigned social networks [10], finding effectors in
unsigned social networks [13], and influence maximization
in signed networks [17]. Table I summarizes the differences
of ISOMIT from existing works. The main challenges in
addressing this problem are as follows:
• Diffusion modeling challenges: Most existing information

diffusion models are designed for unsigned networks. In
signed networks, information diffusion is also related to
actor-centric trust and distrust, in which notions of node
states and the signs on links play an important role.

• Algorithmic challenges: To infer the rumor initiators, we
need to determine the number of initiators, their identities,
and initial activation states. We show that the exact
identification of rumor initiators in signed networks is
NP-hard.

To solve the aforementioned challenges, a new method,
Rumor Initiator Detector (RID), is introduced in this paper. We
propose the asyMmetric Flipping Cascade (MFC) diffusion
model for signed networks. Although the exact identification
of the rumor initiators is NP-hard for general graphs, but it
can be resolved in polynomial time for binary-tree structured
networks, and it provides the insights for high-quality solutions

in the general case. We leverage these insights to introduce
the RID framework to identify the optimal rumor initiators,
including their number, identities, and initial states.

II. PROBLEM FORMULATION

We will first introduce the notations and definitions. Then,
we will provide a mathematical formulation of the ISOMIT
problem.

A. Preliminaries

Traditional social networks are unsigned in the sense that
the links are assumed, by default, to be positive links. Signed
social networks are a generalization of this basic concept.

Definition 1: (Weighted Signed Social Network): A
weighted signed social network can be represented as a graph
G = (V, E , s, w), where V and E represents the nodes
(users) and directed edges (social links), respectively. In signed
networks, each social link has its own polarity (i.e., the
sign) and is associated with a weight indicating the intimacy
among users, which can be represented with the mappings
s : E → {−1,+1} and w : E → [0, 1] respectively.

As discussed in Section I, we interpret the signs from a trust-
centric point of view. Information propagated among users is
highly associated with the intimacy scores [28] among them:
information tends to propagate among close users. To represent
the information diffusion process in trust-centric networks, we
define the concept of weighted signed diffusion network as
follows:

Definition 2: (Weighted Signed Diffusion Network): Given
a signed social network G, its corresponding weighted
signed diffusion network can be represented as GD =
(VD, ED, sD, wD), where VD = V and ED = {(v, u)}(u,v)∈E .
Diffusion links in ED share the same sign and weight map-
pings as those in E , which can be obtained via mappings
sD : ED → {−1,+1}, sD(v, u) = s(u, v),∀(v, u) ∈ ED and
wD : ED → [0, 1], wD(v, u) = w(u, v),∀(v, u) ∈ ED. For any
directed diffusion link (u, v) ∈ ED, we can represent its sign
and weight to be sD(u, v) and wD(u, v) respectively.

Note that we have reversed the direction of the links because
of the trust-centric interpretation, in which information dif-
fuses from A to B, when B trusts A. However, in networks with
other semantic interpretations, this reversal does not need to
be performed. The overall algorithm is agnostic to the specific
preprocessing performed in order to fit a particular semantic
interpretation of the signed network.

The social psychology literature defines a rumor as a story
or a statement in general circulation without confirmation or
certainty of facts [1]. The originators of rumors are formally
defined as rumor initiators, which can be individuals, groups,
or institutes. In this paper, we refer to rumor initiators as the
users who initially spread the rumor to other users in online
social networks. Within the diffusion networks, rumors can
spread from the initiators to other users via diffusion links,
which will lead to infected signed diffusion networks. Since
all networks studied in this paper are all weighted and signed



TABLE I
SUMMARY OF RELATED PROBLEMS.

Rumor Initiator Detection Influence Maximization in Influence Maximization in Finding Effectors in
Property in Signed Networks Social Networks [10] Signed Networks [17] Social Networks [13]
network types signed unsigned signed unsigned
problem studied rumor initiator detection influence maximization influence maximization rumor initiator detection
diffusion model MFC model LT and IC models voter model model IC model

by default, we will refer to them as diffusion networks for
simplicity.

Definition 3: (Infected Diffusion Network): The infected
diffusion network GI = (VI , EI , sI , wI) is a subgraph of the
complete diffusion network GD, where VI ⊆ VD is the set of
infected users, EI ⊆ ED is the set of potential diffusion links
among these infected users. sI , wI are the sign and weight
mappings, whose domains are all those diffusion links in EI .

Definition 4: (Activation Link): Among all the links EI
in the infected diffusion networks, link (u, v) is called an
activation link iff u activates v in the screenshot of the infected
diffusion network.

Based on the MFC model to be introduced in Section III-A,
each node in the infected diffusion network screenshot can be
activated by exactly one node via the activation link and the
rumor initiators have no incoming activation links. As a result,
all the nodes in VI together with the activation links among
them can actually form a set of cascade trees, where nodes at
higher levels are activated by nodes in the lower levels and
rumor initiators are the roots (at level 1).

B. Problem Formulation
In this paper, we will propose diffusion models, which

characterize how rumors can spread from the initiators to other
users. The state of the infected diffusion network is referred to
as the infected diffusion network. However, our main goal is to
work backwards from the available state of the network given
at any moment in time, and we will use the developed diffusion
model to track down the rumor initiators. Let I ⊆ VI ⊆ V
be the potential set of rumor initiators, whose initial states
towards the rumor can be represented as S = {+1,−1}|I|,
where +1 indicates a belief in the fact at hand, and −1
denotes belief in the opposite fact. We use binary modes
of information propagation because of its relative simplicity
and intuitive appeal in modeling a variety of situations. The
ISOMIT problem aims at inferring the optimal rumor initiator
set I∗ as well as their initial states S∗, which can maximize the
likelihood that it will lead to the current state of the infected
signed network GI :

I∗,S∗ = arg max
I,S

P(GI |I,S),

Here, P(GI |I,S) represents the likelihood of obtaining the
infected network GI based on the influence propagated from
I with states S.

In summary, the input of the ISOMIT problem is the
infected signed network GI , while the objective output is the
inferred rumor initiators I together with their initial states S
which can maximize the likelihood P(GI |I,S).

III. PROPOSED METHOD

In this section, we will introduce the RID framework to
address the ISOMIT problem. To model the information

propagation process in signed networks, a new diffusion model
named MFC will be introduced in Section III-A. For unsigned
networks, the well-known set cover problem can be mapped to
the exact rumor initiator identification problem in polynomial
time, and the problem analysis and proof are available in
Sections III-B-III-C. Meanwhile, for binary-tree structured
signed networks, we will show in Section III-D, that the
ISOMIT problem can be solved in polynomial time for a
specified number of rumor initiators. Finally, in Section III-E,
we will use the insights gained from the special case to
introduce the RID framework to address the ISOMIT for
networks beyond the binary tree structure.

A. Asymmetric Flipping Cascade Model

Many information diffusion models have been proposed for
unsigned networks, including the Linear Threshold (LT) model
[10], Independent Cascade (IC) model [10] and Susceptible
Infectious Recovered (SIR) model [9]. An extensive survey
of existing diffusion models is available in [8]. Next, we will
first talk about the traditional IC model for unsigned networks,
and then introduce the MFC (asyMmetric Flipping Cascade)
model proposed for the signed network setting.

1) Traditional IC Diffusion Model: In the traditional IC
diffusion model, the information diffusion process usually
starts with a set of seed users (e.g., rumor initiators) I, whose
influence propagates within the network in discrete steps. At
step τ , any user u just activated at step τ − 1 is given only
one chance to activate each of its currently inactive neighbors,
e.g., v, with probability w(u, v) (i.e., the weight of diffusion
link (u, v)). If u succeeds, v will become active in step t+ 1;
otherwise, v stays inactive and u cannot make any further
attempts to activate v in subsequent rounds. All activated users
will stay active and cannot be activated again. Such a process
stops when no more activations are possible.

2) The MFC Diffusion model: The IC model, which as-
sumes that social links are all of the same polarity, works for
unsigned networks, but it cannot be applied to signed networks
with node states to reflects beliefs of different polarities. To
overcome such a shortcoming, a novel diffusion model, MFC,
will be introduced in this section.

The signs associated with diffusion links denote the “pos-
itive” and “negative” relationships, e.g., trust and distrust,
among users. In everyday life, people tend to believe infor-
mation from people they trust and not believe the information
from those they distrust. For example, if someone we trust says
that “Hillary Clinton will be the new president”, we believe
it to be true. However, if someone we distrust says the same
thing, we might not believe it. In addition, when receiving
contradictory messages, information obtained from the trusted
people is usually given higher weights. In other words, the
effects of trust and distrust diffusion links are asymmetric in



Algorithm 1 MFC Information Diffusion Model
Input: input rumor initiators I with states S

diffusion network GD = (VD, ED, sD, wD)
Output: infected diffusion network GI

1: initialize infected user set U = I, state set SU = S
2: let recently infected user set R = I
3: while R 6= ∅ do
4: new recently infected user set N = ∅
5: for u ∈ R do
6: let the set of users that u can activate to be Γ(u)
7: for v ∈ Γ(u) do
8: if s(v) = 0 or

(
sD(u, v) = +1 and s(u) 6= s(v)

)
then

9: if sD(u, v) = +1 then
10: p = min{1.0, α · wD(u, v)}
11: else
12: p = wD(u, v)
13: end if
14: if u activates v with probability p then
15: U = U∪{v}, SU = SU ∪{s(v) = s(u) ·sD(u, v)}
16: N = N ∪ {v}
17: end if
18: end if
19: end for
20: end for
21: R = N
22: end while
23: extract infected diffusion network GI consisting of infected users
U

activating users. For instance, when various actors assert that
“Hillary Clinton will be the new president”, we may tend to
follow those we trust, even though the distrusted ones also
say it. In addition, if someone we distrust says that “Hillary
Clinton will be the new president”, we may think it to be
false and will not believe it. However, after being activated to
distrust it, if we are exposed to contradictory information from
a trusted party, we might be willing to change our minds. To
model such cases, which are unique to signed and state-centric
networks, we propose to follow a number of basic principles in
the MFC model, (1) the effects of positive links in activating
users is boosted to give them higher weights in activating
users, and (2) users who are activated already will stay active
in the subsequential rounds but their activation states can be
flipped to follow the people they trust.

In MFC, users have 3 unique known states in the in-
formation diffusion process: {+1,−1, 0} (i.e., trust, distrust
and inactive respectively). Users with unknown states are
automatically taken into account during the model construction
process by assuming states as necessary. For simplicity, we
use s(·) to represent both the sign of links as well as the
states of users. If user u trusts the rumor, then user u is
said to have a positive state s(u) = +1 towards the rumor.
The initial states of all users in MFC are assigned a value
of 0 (i.e., inactive to the rumor). A set of rumor initiators
I ⊆ V activated by the rumor at the very beginning will
have their own attitudes towards the rumor based on their
judgements, which can be represented with S = {+1,−1}|I|.
Rumor initiators in I spread the rumor to other users in signed
networks step by step. At step τ , user u (activated at τ −1) is
given only one chance to activate (1) inactive neighbor v, as
well as (2) active neighbor v but v has different state from u

and v trusts u, with the boosted success probability wD(u, v),
where wD(v, u) ∈ [0, 1] can be represented as

wD(v, u) =

{
min{α · wD(v, u), 1} if sD(v, u) = +1,

wD(v, u), otherwise.

In the above equation, parameter α > 1 denotes the boosting
of information from u to v and is called the asymmetric
boosting coefficient.

If u succeeds, v will become active in step τ + 1, whose
states can be represented as s(v) = s(u)·s(u, v). For example,
if user u thinks the rumor to be real (i.e., s(u) = +1) and
v trusts u (i.e., s(u, v) = +1), once v get activated by u
successfully, the state of v will be s(v) = +1 (i.e., believe
the rumor to be true). Otherwise, v will keep its original state
(either inactive or activated) and u cannot make any further
attempts to activate v in subsequent rounds. All activated
users will stay active in the following rounds and the process
continues until no more activations are possible.

MFC can model the information diffusion process in signed
social networks much better than traditional diffusion models,
such as IC. To illustrate the advantages of MFC, we also
give an example in Figure 2, where two different cases:
“simultaneous activation” (i.e., the left two plots) and “se-
quential activation” (i.e., the right two plots) are shown. In the
“simultaneous activation” case, multiple users (B, C, D and
E) are all just activated at step τ , who all think a rumor to be
true and at step τ+1, B-E will activate their inactive neighbor
A. Among these users, A trusts E and distrusts the remaining
users. In traditional IC models, signs on links are ignored
and B-E are given equal chance to activate A in random
order with activation probabilities wD(·, A), · ∈ {B,C,D,E}.
However, in the MFC model, signs of links are utilized and
the activation probability of positive diffusion (E,A) will be
boosted and can be represented as min{α ·wD(E,A), 1}. As
a result, user A is more likely to be activated by E in MFC.
Meanwhile, in the sequential activation case, once a user (e.g.,
F ) succeeds in activating G, G will remain active and other
users (e.g., H) cannot reactivate A any longer in traditional
IC model. However, in the MFC model, we allow users to
flip their activation state by people they trust. For example,
if G has been activated by F with state s(G) = −1 already,
the trusted user H can still have the chance to flip G’s state
with probability min{α · wD(H,G), 1}. The pseudo-code of
the MFC diffusion model is provided in Algorithm 1.

B. The ISOMIT Problem

Given the rumor initiators I together with their initial states
S, influence can propagate from them to other users in the
network via different paths. For any user u in the infected
network, the influence propagation paths from initiators to u
can be represented as the set {P(ui, u)}ui∈I , where P(ui, u)
represents the set of paths from initiator ui to user u specifi-
cally. Each path (e.g., p ∈ P(ui, u)) is a sequence of directed
diffusion links from ui to u. We use the notation (x, y) ∈ p
to denote the fact that the diffusion link (x, y) lies on path
p. Depending on the sign of link (u, v) as well as the states
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Fig. 2. Example of the binary tree transformation.

of u and v, link (u, v) can be either sign consistent and sign
inconsistent.

Definition 5: (Sign Inconsistent Diffusion Link): Diffusion
link (u, v) is defined to be sign inconsistent if s(u) ·s(u, v) 6=
s(v).

The probability that u ∈ V is infected with state s(u)
because of influence from the initiators I with state S can
be computed as:

P (u, s(u)|I,S) =

1−
∏
i∈I

∏
p∈P(i,u)

1−
∏

(x,y)∈p

g (s(x), sI(x, y), s(y), wI(x, y))

 ,

where the function g (s(x), sI(x, y), s(y), wI(x, y)) =
min{1, α · wI(x, y)}, if s(x) · sI(x, y) = s(y), sI(x, y) = +1,

wI(x, y), if s(x) · sI(x, y) = s(y), sI(x, y) = −1,

0, if s(x) · sI(x, y) 6= s(y).

Consider a link (x, y) lying on the path from rumor initiators
in I to u, such that states of x and y are consistent (i.e.,
s(x) · sI(x, y) = s(y)). In such a case, the probability of link
(x, y) being an activation link would be min{1, α·wI(x, y)} if
(x, y) is a positive link (due to the boosting of positive links in
MFC model), and it would be wI(x, y), otherwise. However,
in case of inconsistency (i.e., s(x) · sI(x, y) 6= s(y)), link
(x, y) will be either not an activation link or was an activation
link originally but y’s state is flipped by some other nodes. In
other words, y would not be activated by x in the screenshot
of the infected diffusion network, and the g(·) is assigned with
value one in the sign inconsistent case.

One can model the probability of the current state of
the infected signed network GI , conditional on the rumor
initiators I with initial states S as follows:

P(GI |I,S) =
∏
u∈VI

P (u, s(u)|I,S) .

C. NP-hardness of Exact ISOMIT Problem

Based on the aforementioned remarks, we will show that
obtaining the whole infected networks exactly based on I

Algorithm 2 Maximum Weight Spanning Graph (MWSG)
Input: Graph G = (V, E , s, w)
Output: Maximum weight spanning graph G′ = (N ,L, w)

1: initialize node set N = ∅, link set L = ∅
2: for u ∈ V \ N do
3: N = N ∪ {u}
4: find edge e = arg maxe∈E w(e)
5: L = L ∪ {e}
6: end for

and S achieving 100% inference probability with minimum
number of rumor initiators is an NP-hard problem.

Lemma 3.1: Based on the MFC diffusion model, the
ISOMIT problem of achieving probability P(GI |I,S) = 1
with the minimum number of initiators is NP-hard.

Proof 1: We will prove the Lemma by showing that the set-
cover problem (which is known to be NP hard) can be reduced
to the ISOMIT problem in polynomial time. Formally, given a
set of elements E = {e1, e2, · · · , en} and a set of m subsets of
E , L = {L1,L2, · · · ,Lm}, where Li ⊆ E , i ∈ {1, 2, · · · ,m}.
The set-cover problem aims at finding as few subsets as
possible from L, so that the union of the selected subsets is
equal to E , i.e.,

⋃
Li = E [7].

For an arbitrary instance of the set-cover problem, we define
an instance of the infected signed graph to be a directed graph,
denoted by GI . The graph GI contains n+m+ 1 nodes: (1)
for each element ei ∈ E , we construct a corresponding node
ni; (2) for each set Lj ∈ L, we construct node nj+n; and
(3) a dummy node d (i.e., the (n + m + 1)th node) is added
to the infected network. The links in GI include: (1) for all
the elements in each set, e.g., ei ∈ Lj), we add a directed
link connecting their corresponding nodes in the graph from
ni to nj+n; (2) all the corresponding nodes of elements in E
are connected to d via a directed link; and (3) d connects to
the corresponding nodes of sets in L by directed links as well.
The signs of all these links are all assigned +1, whose weights
are: (1) w(ni, nj+n) = 1, for ∀ei ∈ E , ∀ei ∈ Lj ,Lj ∈ L; (2)
w(ni, d) = 1

n , for ∀ei ∈ E ; (3) w(nj+n, d) = 1, for ∀Lj ∈ L.
Now, we want to activate all the nodes in GI with state

+1 (i.e., all trust the rumor) with as few rumor initiators as
possible. Based on GI , the solution to the ISOMIT problem
will be equivalent to the set-cover problem based on elements
E and subsets L.

D. A Special Case: k-ISOMIT-BT Problem

In the previous section, the ISOMIT problem of achieving
probability 100% with the minimum number of initiators is
proven to be NP-hard. In this part, we will study a special
case of the ISOMIT problem, where the number of rumor
initiators is known to be k and the network is a binary tree, i.e.,
the k-ISOMIT-BT (k ISOMIT on Binary Tree) problem. We
will show that the k-ISOMIT-BT problem can be addressed
efficiently in polynomial time. This will also provide the
insight needed to solve the general case to be introduced in
the next section.

Let TI = (VI , EI , sI , wI) be an infected signed binary tree.
If the user node u ∈ VI is regarded as the root in the tree,
its left and right children can be represented as left(u) and



Algorithm 3 Contract Circles (CC)
Input: Graph contrainig circles G = (N ,L, w)
Output: Contracted graph without circles G′ = (N ′,L′, w′)

1: L′ = ∅ and new link weight mapping w′

2: for each circle O = (NO,LO) in (N ,L) do
3: contract all nodes in O into a pseudo-node uo

4: for each link (ux, uy) ∈ L do
5: if ux /∈ NO and uy ∈ NO then
6: L′ = L′ ∪ {(ux, uo)}
7: w′(ux, uo) = w(ux, uy) − w(π(uy), uy), where

(π(uy), uy) ∈ L is the link with the maximum weight
linked to uy

8: else
9: if ux ∈ NO and uy /∈ NO then

10: L′ = L′ ∪ {(uo, uy)}
11: w′(uo, uy) = w(ux, uy)
12: else
13: L′ = L′ ∪ {(ux, uy)}
14: w′(ux, uy) = w(ux, uy)
15: end if
16: end if
17: end for
18: end for

right(u), respectively. At the beginning, the rumor initiator
set and the state set is empty, i.e., I = ∅ and S = ∅. The cost
of the optimal solution (i.e., the inferred initiators I and states
S) can be recursively computed with the following dynamic
programming equation:

OPT(u, I,S, k) = max

{
k

min
m=0

{
OPT

(
left(u), I,S,m

)
+ OPT

(
right(u), I,S, k −m

)
+ P

(
u, s(u)|I,S

)}
;

P
(
u, s(u) = +1|I ∪ {u},S ∪ {s(u) = +1}

)
+

k−1
min
m=0

{
OPT

(
left(u), I ∪ {u},

S ∪ {s(u) = +1},m
)
+ OPT

(
right(u), I ∪ {u},S ∪ {s(u) = +1}, k − 1−m

)}
;

P
(
u, s(u) = −1|I ∪ {u},S ∪ {s(u) = −1}

)
+

k−1
min
m=0

{
OPT

(
left(u), I ∪ {u},

S ∪ {s(u) = −1},m
)
+ OPT

(
right(u), I ∪ {u},S ∪ {s(u) = −1}, k − 1−m

)}}
.

From root u, the optimal rumor initiator detection can
generally follow one of three cases:
• u is not the initiator: The root u is not added to the rumor

initiator set, and we make recursive calls with its left and
right children nodes to identify the k rumor initiators.

• u is the initiator with state s(u) = +1: The root u and its
state are added into the rumor initiator set and the state
set, respectively (i.e., I ∪ {u}, and S ∪ {s(u) = +1}).
Furthermore, we make recursive calls with its left and
right children nodes to identify the remaining k−1 rumor
initiators based on the updated rumor initiator and their
state.

• u is the initiator with state s(u) = −1: The root u and
its state are added into the rumor initiator set and state
set, respectively (i.e., I ∪ {u}, and S ∪ {s(u) = −1}).
Furthermore, we make recursive calls with its left and
right children nodes to identify the remaining k−1 rumor
initiators based on the updated rumor initiator and their
state.

The formal definition of P(u, s(u)|I,S)} is
available in Section III-B. Meanwhile, the special case

Algorithm 4 Infected Cascade Trees Extraction
Input: infected connected component set C
Output: infected cascade tree set T

1: initialize tree set T = ∅
2: for component Ci = (VCi , ECi , sCi , wCi) ∈ C do
3: (N ,L, w) = MWSG(Ci)
4: if (N ,L, w) contains circles O then
5: (N ′,L′, w′) = CC(N ,L, wCi)
6: (N ′,L′, w′) = MWSG((N ′,L′, w′))
7: end if
8: for circle O ∈ O do
9: for link (ux, uo) ∈ L′ do

10: get the corresponding link (ux, uy), where uy is in the
circle

11: remove link (π(uy), uy) from L to break the circle O
12: end for
13: end for
14: T = T ∪ {(N ,L)}
15: end for

P(u, s(u)|{u}, {s(u)}), for a single node u, is computed as
follows:

P(u, s(u)|{u}, {s(u)}) =

{
1, if sI(u) = s(u);

0, if sI(u) 6= s(u),

where sI(u) is the real state of u in the infected network.
The aforementioned dynamic programming objective func-

tion can be addressed in polynomial time, and we will not
introduce the details involved in solving it here due to the
limited space.

E. RID Method for General Networks

For the ISOMIT problems in social networks of general
structure and an unknown number of rumor initiators, the
method introduced in the previous section cannot be directly
applied. In this section, we will introduce the RID framework
to address the ISOMIT problem. We propose to first detect
the infected connected components from the whole network.
For each detected connected component, we propose to further
prune the non-existing activation links among users to extract
the “infected cascade trees” in the signed networks. From each
infected cascade tree, we introduce the objective function to
detect the optimal rumor initiators (the number, identities as
well as their states).

1) Infected Connected Components Detection: The infected
diffusion network can contain multiple infected connected
components, where users in each component can be connected
to each other via potential diffusion links among them. In
this part, we will introduce the method to detect the infected
connected components from the network.

Definition 6: (Infected Connected Components): An infected
connected component is a subgraph of the infected network
and, by ignoring the directions of diffusion links, any two
vertices in the component are connected to each other.

The signed connected components in the pruned networks
can be detected with algorithms, like breadth-first search
(BFS) [3] and depth-first search (DFS) [3], in linear time. For
instance, based on the BFS algorithm, we will loop through all
the infected vertices in the pruned infected signed network and



Fig. 3. Example of the binary tree transformation.

once we reach an unvisited vertex, e.g., u, we will call BFS
function to find the entire connected component containing u.
The time cost of BFS based connected component detection
algorithm will be O(n+m), where n and m are the numbers
of user nodes and diffusion links in the infected diffusion
network.

2) Signed Infected Cascade Forest Extraction: Let C =
{C1, C2, · · · , Cl} be the set of l connected components de-
tected in the pruned infected signed network. As introduced
earlier, the real information diffusion process in the infected
connected component based on MFC can form a set of
infected cascade trees. We show how to extract such trees
later in this section.

Definition 7: (Infected Cascade Tree): The signed infected
cascade tree summarizes the state of the information propa-
gation and user activation process in the network. Let T =
(VT , ET , s, w) be an signed infected cascade tree. The node
set VT ⊆ VD consists of all the infected users in the tree and
the directed activation link (u, v) ∈ ET ⊆ ED if and only if u
succeeds in activating v.

The signed infected cascade trees can be inferred from the
infected network, and we propose to extract the trees capturing
the most information (i.e., the most likely trees) for each
connected component. Let Ci = (VCi , ECi , s, w) be a detected
connected component consisting of multiple infected cascade
trees, and let T = (VT , ET , s, w) be one of the tree extracted
from Ci, where VT ⊆ VCi

and VT ⊆ VCi
. The likelihood of

tree T is L(T ) =
∏

(u,v)∈ET w(u, v). Furthermore, the optimal
infected cascade tree T ∗ in Ci can be defined as:

T ∗ = arg max
T∈T
L(T ),

where T denotes the set of all potential trees that can be de-
tected from component Ci. The maximum likelihood infected
cascade trees can be extracted using the Chu-Liu/Edmonds’ al-
gorithm [2], [6] from the directed connected components. The
pseudo-code of the infected cascade trees extraction method
is available in Algorithm 4, which will call the functions in
Algorithms 2 and 3 to get the maximum weight spanning
graphs and resolve the circles in the graph.

3) Rumor Initiator Inference: Based on the methods in-
troduced in previous sections, we are able to detect a set of
diffusion trees from the network, the roots of which without
incoming edges represent the rumor initiators. Meanwhile,
besides the roots, multiple rumor initiators can co-exist in one
infected cascade tree. In other words, the number of extracted
diffusion trees is a lower bound on the number of rumor
initiators. The detected cascade tree can actually be partitioned
into several isolated sub-trees instead. The roots of these sub-

TABLE II
PROPERTIES OF DIFFERENT NETWORKS

network # nodes # links link type

Epinions 131,828 841,372 directed

Slashdot 77,350 516,575 directed

trees provide additional candidates for being rumor initiators.
Such a partitioning process can be achieved with the algorithm
introduced in Section III-D effectively. However, the extracted
infected cascade trees from the infected signed network may
not necessarily be binary trees, and this can be very complex
to deal with [13]. Next, we propose to transform each cascade
tree into a binary tree first and then identify the optimal rumor
initiators.

To transform a general tree into an binary tree without dis-
torting information about the relative influence relationships,
we propose to add extra dummy nodes to the trees, which
have no effect on information diffusion, and they cannot be
selected as rumor initiators. For example, in Figure 3, the tree
in the left figure is not a binary tree, where the root node has
3 children nodes. To transform it into a binary tree, between
the root and its children, dlog2 3e extra nodes are added to the
tree as the root’s new children and the root’s children nodes
are assigned as the new nodes’ children. These newly added
nodes will not participate in the information diffusion and they
cannot be selected as rumor initiators.

Meanwhile, to avoid the case of having too many rumor
initiators (e.g., every user in the component is a rumor
initiators), we will add a penalty term to constrain the number
of detected rumor initiators. For each tree T ∈ T rooted at u,
we can represent the optimal rumor initiators I∗ of size k∗

with initial state S∗ as follows:

k∗, I∗,S∗ = arg min
k,I,S

−OPT(u, I,S, k) + (k − 1) · β,

Here, parameter β denotes the penalty of each introduced
rumor initiator (whose sensitivity analysis is available in
Section IV-D) and term (k − 1) represents the extra initia-
tors detected besides the original root of tree T . Function
OPT(u, I,S, k) can be computed with the dynamic pro-
gramming based method introduced in the previous section.
By enumerating k from 1 to the number of nodes in T (i.e.,
|VT |), we are able to obtain the optimal solution of the above
objective function. However, such a process can be very time
consuming. To balance between the time cost and quality of
the result, we propose to increase k from 1 to |VT | and stop
once the increase in k cannot lead to increase in the objective
function.

IV. EXPERIMENTS

To test the effectiveness of RID in addressing the ISOMIT
problem, extensive experiments were performed on real-world
signed social network datasets. In this section, we will first
describe the signed datasets used in this paper. We will provide
the experimental settings, and give detailed analysis.

A. Dataset Description
The signed network datasets used in this paper, which in-

clude both Epinions and Slashdot. These two datasets are both
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Fig. 4. Comparison of detected rumor initiators in each network with different
methods.
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Fig. 5. Detected rumor initiators in each network with different β. (a-c:
Epinions, d-f: Slashdot)

public datasets and can be downloaded at site1. Some basic
statistical information about these two datasets is available in
Table II.

B. Experiment Settings

In this section, we introduce the baselines, evaluation met-
rics and experiment setups to examine the effectiveness of
RID.

1) Comparison Methods: The comparison methods used in
the experiments include:
• RID: This is the RID method proposed in our paper. By

assigning parameter β with values 0.09 and 0.1, both

1http://snap.stanford.edu/data/#signnets
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Fig. 6. States of detected rumor initiators in each network with different β.
(a-c: Epinions, d-f: Slashdot)

RID(β = 0.09) and RID(β = 0.1) are used as the
comparison methods in the experiments.

• RID-Tree: This method is obtained by simplifying the
proposed RID method of our paper, and it can also be
viewed as a generalization of an unsigned approach [13].
The RIDmethod contains three steps: (1) connected com-
ponent extraction; (2) maximum likelihood diffusion trees
extraction; and (3) rumor initiator detection from the
extracted diffusion trees. The RID-Tree consists of the
first two steps of RID and regards the roots of diffusion
trees as the detected rumor initiators. RID-Tree extends
and modifies the tree extraction method proposed in [13]
to the signed directed networks and applies the Chu-
Liu/Edmonds’ algorithm [2], [6] instead.

• RID-Positive: The RID-Positive method uses the diffu-
sion tree extraction method for regular unsigned networks
in [13] and treats the roots as the rumor initiators. The
negative links in the network are discarded and RID-
Positive utilizes the positive links only.

2) Evaluation Metrics: One of our goals is to compare the
identity of the detected rumor initiators against the ground-
truth rumor initiators, which is similar to that of evaluation
of other retrieval techniques. For example, one can use the
precision, recall, and F1-measure. In addition, the approach
also infers the state of the rumor initiators. This can be
evaluated using metrics such as the Accuracy, MAE and R2

(Coefficient of Determination). Considering that the methods
RID-Tree and RID-Positive can only identify the identities of
rumor initiators are but cannot determine the their initial states,
the last set of metrics is designed only to measure the stability
of RID, rather than against baselines.

3) Experimental Setup: Based on these social networks,
we construct their corresponding weighted signed diffusion
networks by reversing the social links among users. Mean-
while, the weight of each diffusion link, e.g., (u, v), can be



denoted as the Jaccard’s Coefficient [18] of the corresponding
social link (v, u), i.e., JC(v, u) = |Γout(v)∩Γin(u)|

|Γout(v)∪Γin(u)| , where
Γout(v) represents the set of users v follows and Γin(u)
denotes the followers of u. meanwhile, due to the sparsity
of links in the networks, for links whose JC scores are
0, we randomly assign their weight with values randomly
sampled from uniform distribution in range [0, 0.1] just as what
existing works do for the IC diffusion model [10]. The signs
of diffusion links are identical to those of the corresponding
social links.

To show how MFC works on real-world signed diffusion
networks, extensive diffusion analyses have been done on these
two datasets. From the signed social networks, the N rumor
initiators are randomly selected from the networks. These N
rumor initiators are randomly assigned to their initial state
according to the positive ratio θ = #positive

N . For example, if
N = 10 and θ = 0.5, then 10 users will be randomly selected
from the diffusion network, five of which will be assigned to
the positive state and the remaining are assigned to the negative
state. In the infected network simulation, the parameters N ,
α and θ were set to 1000, 3 and 0.5 respectively in MFC.
From the rumor initiators, information can propagate to other
users via the diffusion links among them in discrete steps. In
MFC, the positive and negative links are asymmetric, and the
weights of positive links are boosted by multiplying with the
asymmetric boosting coefficient α. In addition, users can flip
their states to follow their trusted neighbors. Such a process
will continue until no more activations are available, and the
resulting in network will be used as the input infected network
for detecting the original rumor initiators.

In other words, in the experiments, the original rumor initia-
tors who lead to the infected signed network in the simulation
were used as the ground truth. The infected diffusion network
introduced by the original rumor initiators is used as the
input of the ISOMIT problem, based on which, RID uses the
objective function in Section III-E3 to discover the identity of
the rumor initiators and their states.

C. Experimental Results

The experimental results of different comparison methods
achieved in networks Epinions and Slashdot are available in
Figures 4.

The infected users without incoming diffusion links (i.e.,
the roots of extracted diffusion trees) in the network will
definitely be rumor initiators. In other words, the detected
rumor initiators by RID-Tree are all real rumor initiators.
As a result, the precision and recall achieved by RID-Tree
are 100% and 13% respectively in Figures 4(a)-4(c). The
RID-Positive method can identify large number of rumor
initiators in Epinions. However, only a small proportion of
the identified rumor initiators are correct, which accounts for
about in Epinions. Due to this reason, the precision and recall
scores achieved by RID-Positive in Epinions are 8% and 42%
respectively. The RID method of this paper further breaks the
diffusion tree extracted by RID-Tree to locate more rumor
initiators, and it will incorporate more users into the rumor

initiators set, some of which are correct, and others are false.
The precision achieved by RID(0.1) and RID(0.09) will be
slightly lower than RID-Tree in Figure 4(a) but the recall of
RID will be much larger. Taking both precision and recall
into consideration, the F1 score achieved by RID(0.1) and
RID(0.09) is much higher than RID-Tree and RID-Positive.
Similar results can be observed in Figure 4 in network Slash-
dot. The sensitivity analysis of parameter β is available in the
next section.

D. Parameter Sensitivity Analysis

The parameter β controls the weight of the costs introduced
by the number of diffusion trees extracted from the network.
Generally, when β is small, e.g., 0, the number of extracted
trees will not pose any constraint on the rumor initiator
detection process and RID can break each diffusion tree into
a large number of smaller parts so that the cost introduced in
Section III-B is minimized. On the other hand, when β is large,
the constraint on the number of decomposed diffusion trees in
the objective function will play a more important role. As a
result, RID tends to maintain larger trees instead, even though
this leads to larger structure based cost. To demonstrate these
results, extensive results about the parameter β were done, and
the results are available in Figures 5-6.

The choice of β has an effect on the trade-off between
precision and recall. For example, as β increases, the precision
increases at the expense of recall because of fewer discovered
initiators. This is evident from Figure 5 for both the Epinions
and Slashdot networks. Larger values of β help constrain RID
in dividing the identified diffusion trees into smaller parts,
and therefore the precision increases. On the other hand, with
fewer diffusion trees, the number of correctly identified rumor
initiators will be lower. The F1 score achieved by RID in both
Epinions and Slashdot can both increase as β increases.

1) Correctness of State Identification: In addition, the RID
method can not only determine the identity of the correct
rumor initiators, but also also their assigned states at the
very beginning. The results achieved by RID with different
values of β is available in Figure 6. Among all the correctly
identified rumor initiators, we calculate the accuracy, MAE
and R2 scores achieved by RID in inferring their initial states
(i.e., +1 or -1). As shown in Figures 6(a) and 6(a), the
accuracy achieved by RID in states inference will increase
as β increases and can be very close to 100% at β = 1.0.
Meanwhile, the MAE of RID drops as β increases, which will
be less than 0.2 when β is greater than 0.7 in Epinions and
0.4 in Slashdot as shown in Figures 6(c) and 6(d), respectively.
The inferred states of these correctly identified rumor initiators
have very positive correlations with their real states. It can be
demonstrated by examining the R2 score achieved by RID in
these two networks, which is available in Figures 6(e) and
6(f).

V. RELATED WORK

Information diffusion has a rich history in research on social
network analysis. Domingos and Richardson [5], [20] were



the first to propose to study the influence propagation based
on knowledge-sharing sites. Kempe et al. [10] were the first
to study it in the specific context of social networks and
propose two seminal diffusion models. These correspond to
the Independent Cascade (IC) model and Linear Threshold
(LT) model. These models have served as the basis of many
other models.

Among these works on information diffusion, rumor prop-
agation in online social networks is of practical importance.
Kwon et al. identify characteristics of rumors by examining
temporal, structural and linguistic aspects of rumors[12]. Ru-
mors can spread very fast in online social networks, and Doerr
et al. propose to study the structural and algorithmic properties
of networks which accelerate such a propagation in [4]. To
maximize the influence or rumors, the diffusion of competing
rumors in social networks is studied in [11]

In recent years, signed networks have gained increasing at-
tention. Li et al. [17] studied the influence diffusion dynamics
and influence maximization in social networks with friend
and foe relationships. Polarity related influence maximization
problem in signed social networks is studied in [16], where a
new diffusion model, corresponding to the Polarity Indepen-
dent Cascade (P-IC) model, is proposed.

Influence source identification in regular unsigned networks
has been studied in existing works. Lappas et al. [13] pro-
pose the problem of finding effectors in social networks. In
LTGM10, the k-Effectors problem is formally defined and the
time complexity of the problem for different types of graphs
is analyzed in details. Shah et al. study similar problems in
[22] to infer the sources of a rumor in a network, where a
SIR-based rumor diffusion model is introduced. They propose
to detect the rumor sources by identifying users with high
“rumor centrality”, which is also used in their computer virus
sources discovery work [21]. Prakash et al. propose to study
the culprits in epidemics in [19]. The underlying structure of
cascades in online social networks is studied in [30].

VI. CONCLUSION

Signed networks arise in many domains, such as adversarial
networks, trust/trust networks, and friend/foe networks. In
many of these networks, information propagation can be
affected by the signs on the links. In this paper, we present
an algorithm for rumor initiator detector in infected signed
networks. We propose a diffusion model for information prop-
agation in such networks. Then we use this model to determine
the initiators from a specific state of the network, with the
use of the RID algorithm. We present extensive experimental
results, which show the advantages of our approach over other
baseline methods.
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