

PCT: Partial Co-Alignment of Social Networks

Jiawei Zhang¹ and Philip S. Yu^{1,2}

¹ University of Illinois at Chicago, Chicago, IL, USA ² Tsinghua University, Beijing, China

People are using multiple social networks simultaneously nowadays

[1] Zhang et al. PNA: Partial Network Alignment with Generic Stable Matching, 2015 IEEE IRI.[2] Duggan et al. Social media update 2013.

Other information entities appear in multiple sites concurrently

User Anchor Link Inference with Link Information

А

B

С

Adjacency Matrix **S**⁽¹⁾

Transition Matrix P

Adjacency Matrix S⁽²⁾

User Anchor Link Inference with Link Information

Assumption: shared users have similar social structures in different networks

Adjacency Matrix **S(1)**

Transition Matrix

Adjacency Matrix S(2)

Via transition matrix **P** (i.e., anchor links), we can map the social connections among shared users from network I to network II:

P^T **S**⁽¹⁾ **P**

The optimal transition matrix ${f P}$ (i.e., anchor links) should minimize the mapping cost

$$\min \left\| \mathbf{P}^{\mathsf{T}} \mathbf{S}^{(1)} \mathbf{P} - \mathbf{S}^{(2)} \right\|_{F}^{2}$$

• User Anchor Link Inference with **<u>Attribute</u>** Information

user profile user temporal activity user text usage

cross-network user similarity measures:

Name: $\frac{|n(u_i^{(1)}) \cap n(u_l^{(2)})|}{|n(u_i^{(1)}) \cup n(u_l^{(2)})|} \quad \text{Time:} \mathbf{t}(u_i^{(1)})^\top \mathbf{t}(u_l^{(2)}) \quad \text{Word:} \frac{\mathbf{w}(u_i^{(1)})^\top \cdot \mathbf{w}(u_l^{(2)})}{\left\|\mathbf{w}(u_i^{(1)})\right\| \cdot \left\|\mathbf{w}(u_l^{(2)})\right\|}$

User Anchor Link Inference with **Attribute** Information

Assumption: shared users have similar attribute information in different networks user similarity = (name_sim + time_sim + text_sim)/3

Transition Matrix **P**

Similarity Matrix **A**

The optimal transition matrix \mathbf{P} (i.e., anchor links) should maximize the mapped user similarities

$$\max \left\| \mathbf{P} \circ \mathbf{\Lambda} \right\|_1$$

 User Anchor Link Inference with Link and Attribute information

$$\arg\min_{\mathbf{P}} \left\| \mathbf{P}^{\top} \mathbf{S}^{(1)} \mathbf{P} - \mathbf{S}^{(2)} \right\|_{F}^{2} - \alpha \cdot \left\| \mathbf{P} \circ \mathbf{\Lambda} \right\|_{1}$$

 Similarly, Location Anchor Link Inference with Link and Attribute information:

$$\arg\min_{\mathbf{P},\mathbf{Q}} \left\| \mathbf{P}^{\top} \mathbf{L}^{(1)} \mathbf{Q} - \mathbf{L}^{(2)} \right\|_{F}^{2} - \alpha \cdot \left\| \mathbf{Q} \circ \boldsymbol{\Theta} \right\|_{1}$$

$$\begin{split} \mathbf{P}^{*}, \mathbf{Q}^{*} &= \arg\min_{\mathbf{P}, \mathbf{Q}} \left\| \mathbf{P}^{\top} \mathbf{S}^{(1)} \mathbf{P} - \mathbf{S}^{(2)} \right\|_{F}^{2} + \left\| \mathbf{P}^{\top} \mathbf{L}^{(1)} \mathbf{Q} - \mathbf{L}^{(2)} \right\|_{F}^{2} \\ &- \alpha \cdot \left\| \mathbf{P} \circ \mathbf{\Lambda} \right\|_{1} - \alpha \cdot \left\| \mathbf{Q} \circ \mathbf{\Theta} \right\|_{1}, \\ s.t. \quad \mathbf{P} \in \{0, 1\}^{|\mathcal{U}^{(1)}| \times |\mathcal{U}^{(2)}|}, \mathbf{Q} \in \{0, 1\}^{|\mathcal{L}^{(1)}| \times |\mathcal{L}^{(2)}|}, \\ & \mathbf{P} \mathbf{1}^{|\mathcal{U}^{(2)}| \times 1} \leq \mathbf{1}^{|\mathcal{U}^{(1)}| \times 1}, \mathbf{P}^{\top} \mathbf{1}^{|\mathcal{U}^{(1)}| \times 1} \leq \mathbf{1}^{|\mathcal{U}^{(2)}| \times 1}, \\ & \mathbf{Q} \mathbf{1}^{|\mathcal{L}^{(2)}| \times 1} \leq \mathbf{1}^{|\mathcal{L}^{(1)}| \times 1}, \mathbf{Q}^{\top} \mathbf{1}^{|\mathcal{L}^{(1)}| \times 1} \leq \mathbf{1}^{|\mathcal{L}^{(2)}| \times 1}. \end{split}$$

- Hard 0-1 programming problem, very challenging to address
- Relax the hard 0-1 constraint, P and Q can take real values in range [0, 1]
- These introduced redundant user/location anchor links will be pruned with a network matching post-processing step

Challenge 2: Redundant Link Pruning with Network Flow based Co-Matching

User Preference Bipartite Graphs

Location Preference Bipartite Graphs

Dataset for Experiments

Dataset Statistical Information

Table 2.	r roper des or di	network		
	property	Twitter	Foursquare	
# node	user	5,223	5,392	
	tweet/tip	9,490,707	48,756	
	location	297,182	38,921	
# link	friend/follow	164,920	76,972	
	write	9,490,707	48,756	
	locate	615,515	48,756	

Table 2. Droparties of the Heterogeneous Networks

Detailed Experiment Settings

Comparison Methods

- UNICOAT: Model proposed in this paper, involves link inference and postpruning steps.
- BigAlign: Bipartite Network Alignment with Link Information [12]
- BigAlignExt: Bipartite Network Alignment + Matching
- ISO: User Anchor Link Inference with Link Information [12]
- ISOExt: User Anchor Link Inference + Matching
- RDD: a unsupervised anchor link inference method

	UNICOAT	Big-A	Big-A-E	ISO	ISO-E
prediction		√ (Bipartite)	√ (Bipartite)	(user anchor link)	(user anchor link)
matching					
Link Info.					
Attribute Info.					

- Evaluation Metrics
 - AUC, Precision@100
 - Precision, Recall, F1, Accuracy (Methods with Matching Step Only)

[12] D. Koutra, H. Tong, and D. Lubensky. Big-align: Fast bipartite graph alignment. In ICDM, 2013

Experiment Results

User Anchor Link Inference

Table 3: Performance comparison of different methods for inferring user anchor links (UNICOAT here denotes the first step of UNICOAT only).

me	asure			θ		
	methods	1	2	3	4	5
AUC	UNICOAT	0.868	0.831	0.814	۹.804	0.799
	BIGALIGNEXT	0.813	0.779	0.759	0. 52	0.749
	BIGALIGN	0.568	0.557	0.555	0.5	0.550
	ISOEXT	0.818	0.782	0.762	0.754	0.61
	ISO	0.547	0.529	0.52	0.518	516
	RDD	0.531	0.530	0.523	0.514	0. 🤊
Prec@100	UNICOAT	0.705	0.688	0.657	0.640	0.55
	BIGALIGNEXT	0.587	0.507	0.472	0.434	0.327
	BIGALIGN	0.347	0.284	0.265	0.228	0.220
	ISOEXT	0.427	0.391	0.373	0.352	0.301
	ISO	0.301	0.253	0.225	0.216	0.208
	RDD	0.234	0.228	0.207	0.172	0.127

Location Anchor Link Inference

Table 4: Performance comparison of different methods for inferring location anchor links (UNICOAT here denotes the first step of UNICOAT only).

me	asure			θ		
	methods	1	2	3	4	5
AUC	UNICOAT	0.822	0.815	0.796	0.794	0.753
	BIGALIGNEXT	0.698	0.695	0.672	0.667	0.662
	BIGALIGN	0.592	0.586	0.576	0.572	0.56
	RDD	0.54	0.526	0.52	0.506	0.504
Prec@100	UNICOAT	0.695	0.658	0.636	0.610	0.535
	BIGALIGNEXT	0.507	0.434	0.372	0.328	0.327
	BIGALIGN	0.407	0.325	0.293	0.284	0.275
	RDD	0.216	0.204	0.183	0.182	0.157

Alignment Ratio: $\theta = \frac{\#\text{total item}}{\#\text{anchor item}}$ $\theta = 1$: full alignment setting $\theta = 5$: 20% alignment setting

Parameter Sensitivity Analysis and Alternative Updating Convergence Analysis

Figure 6: Performance of methods with matching in inferring user anchor links (UNICOAT here includes both two steps of UNI-COAT).

Figure 7: Performance of methods with matching in inferring location anchor links (UNICOAT here includes both two steps of UNICOAT).

Summary

- Problem Studied:
 - Partial Co-Alignment of Social Networks, i.e., Simultaneous Inference of User Anchor Links and Location
- Proposed Model:
 - A joint optimization function to minimize the mapping cost and maximize the mapped item similarity concurrently for user and location anchor links with one-to-one constraint
 - A post-processing step to simultaneously prune the redundant user/location anchor links introduced due to the constraint relaxation.

PCT: Partial Co-Alignment of Social Networks

Q&A

Jiawei Zhang, Philip S. Yu jzhan9@uic.edu, psyu@cs.uic.edu

