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ABSTRACT
Bicycle-sharing systems (BSSs) which provide short-term shared
bike usage services for the public are becoming very popular in
many large cities. The accelerating bike traveling demands from
the public have driven several significant expansions of many BSSs
to place additional bikes and stations in their extended service re-
gions. Meanwhile, to capture individuals’ traveling needs more
precisely, in the expansion, many BSSs have set up online websites
to receive station location suggestions from the public. In this pa-
per, we will study the bike station re-deployment problem in the
BSSs expansion. Besides the historical bike usage and construc-
tion cost information, the crowd suggestions are also incorporated
in the problem. The station re-deployment problem is very chal-
lenging to solve, and it covers two sub-tasks simultaneously: (1)
bike station locations identification, and (2) bike dock assignment
(to the deployed stations). To address the problem, a novel bike sta-
tion re-deployment framework, CROWDPLANNING, is introduced
in this paper. In both station deployment and capacity assignment
tasks, CROWDPLANNING fuses different categories of spatial in-
formation including the crowd suggestions, individuals’ historical
bike usage and the construction costs simultaneously. By formu-
lating these two tasks as two optimization problems, the optimal
expansion strategies can be identified by CROWDPLANNING for
the BSSs. Extensive experiments are conducted on the real-world
BSSs and crowd suggestion dataset to demonstrate the effective-
ness of framework CROWDPLANNING.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications - Spatial
Databases and GIS
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To facilitate the daily commutes for local residents and sight-
seeing trips for tourists in the urban areas, bicycle-sharing systems
(BSSs) [15, 16] providing shared short-term bike rental services
have been launched in many cities. Some representative examples
of the existing BSSs in the US include the Chicago Divvy Bike1,
New York Citi Bike2, and San Francisco Bay Area Bike3, etc. Due
to their relatively low rental prices and easily accessible bike sta-
tions, BSSs have been used as an important short-distance trip sup-
plement for both private vehicles and regular public transportation.

BSSs [15] are becoming more and more popular nowadays, and
people’s accelerating traveling demands have driven the expansions
of many BSSs in recent years. For instance, the Chicago Divvy
Bike launched at the middle of 2013 had 75 bike stations and 750
bikes initially, but now Divvy operates 4, 760 bikes at 474 stations
at the Chicago city, which has become the largest BSS in the US. A
detailed analysis about the Chicago Divvy BSS is available in [15],
based on which several interesting problems, like the trip route
planning [16], has been studied already. Besides Divvy, many other
BSSs have also planned their upcoming expansions. For instance,
the Citi Bike plans to double the system in size by 2017 [1], and
Bay Area Bike Share plans to expand to 7,000 bikes by 2017 [2].
In the expansion, additional bikes and stations will be added to the
BSSs, where the re-deployment of the stations and the assignment
of capacities (i.e., the bike docks) to the deployed stations are both
important issues requiring careful and thorough investigations.

Meanwhile, crowdsourcing as an online, distributed problem-
solving and production model has become very popular in recent
years [6, 4]. Formally, crowdsourcing refers to the practice of
obtaining needed services, ideas, or content by soliciting contri-
butions from a large group of people and especially from the on-
line communities. Crowdsourcing has been widely applied in ad-
dressing various practical problems. Depending on the specific ap-
plication scenarios, existing crowdsourcing systems can generally
be divided into several categories [8], which include crowdvoting,
crowdsearching and crowdfunding.

Besides these existing applications, crowdsourcing can be ap-
plied in the concrete planning tasks as well, e.g., traffic planning
and urban planning, in which companies/governments can ask for
ideas and proposals from the public before carrying out the projects.
Formally, the utilization of crowdsourcing in traffic planning and
urban planning problems is defined as crowd planning in this pa-
per. Crowd planning effectively combines the efforts of numerous
self-identified volunteers or part-time workers, where each contrib-
utor, acting on their own initiative, adds a small contribution that
combines with those of others to achieve better planning results.

1https://www.divvybikes.com
2https://www.citibikenyc.com
3http://www.bayareabikeshare.com



Crowd planning systems have also been adopted in the real-
world BSSs expansions already, and many BSSs have launched
their websites to receive bike station placement suggestions from
the public. For instance, Divvy creates a station suggestion web-
page4, where people can submit their bike station suggestions ac-
cording to their bike usage needs (e.g., for shopping, work, school,
and home, etc.) and can also post comments on other people’s sug-
gestions. By the middle of 2015, Divvy had received about 1, 873
new station suggestions and comments from the public, which were
effectively considered in its recent expansion when placing new sta-
tions and adjusting existing stations in 2015.
Problem Studied: In this paper, we will study the bike station re-
deployment problem in the BSSs expansion, besides the historical
bike usage information and construction cost issues (to be intro-
duced later), in which the crowd suggestion information is effec-
tively incorporated. Formally, the problem is named as the “Crowd
Suggestion based System Expansion” (CSSE) problem. Compared
with conventional offline manual bike station planning, deploying
stations by incorporating the online suggestions can accumulate a
large number of diverse bike station suggestions from the public in
a relatively short period of time, which has significant advantages
in various aspects, e.g., the costs, speed, quality, flexibility, scala-
bility, and diversity of the suggestions. Viewed in this perspective,
CSSE will be an interesting and important research problem.

Besides its importance, the CSSE problem is also a new prob-
lem, and, to this context so far, no works have been done on station
deployment through crowd planning for BSSs. We are the first to
propose the CSSE problem, and we are also the first to introduce
the “crowd planning” concept. The CSSE problem is very differ-
ent from traditional station placement works about the gas station
[3] and hydrogen filling station [12] and the recent charging sta-
tion [9]. These existing works mainly focus on adding new public
facility stations only based on one single information source, e.g.,
nearby geographic information or historical vehicle trajectory data.
Distinct from these existing works, (1) instead of merely adding
new stations [3, 12, 9], the objective of the CSSE problem is to re-
deploy the bike stations for BSSs, where both new bike docks and
stations can be added, while the existing bike docks and stations
also need to be removed or adjusted; (2) instead of merely utilizing
one single information source (like [3, 12, 9]), various categories of
other information will also be incorporated in the CSSE problem,
including the crowd suggestions, the historical bike usages and the
bike/station construction/adjustment costs.

Despite its importance and novelty, the CSSE problem is quite
challenging to address due to various reasons:

• Crowd Suggestions Information: The suggestions received
from the public provide important information about the ar-
eas with heavy bike traveling demands, which can be the po-
tential locations to place the new bike stations. How to uti-
lize the crowd suggestion information in the station planning
is still an open problem so far.

• Historical Bike Usage Information: Crowd suggestions are
mainly about new stations, while the expediency of these ex-
isting stations can be revealed by the historical bike usages in
the past. Incorporating the historical bike usage information
is a must when adjusting the existing stations.

• Station deployment cost: Station re-deployment involves var-
ious types of actions, which include (1) adding a new station,
(2) moving an existing station to a new place, (3) adding

4http://suggest.divvybikes.com/page/about

more docks to an existing station, as well as (4) removing
redundant docks from an existing station. All of these ac-
tions will lead to certain construction costs inevitably, which
should be minimized in the CSSE problem.

• Planning Information Fusion: Various categories of infor-
mation are available, while fusing of these different types of
information together to address the CSSE problem will be a
great challenging problem.

To address these above challenges, a novel station planning frame-
work CROWDPLANNING is introduced in this paper. CROWD-
PLANNING can effectively fuse different categories of spatial in-
formation together to address the CSSE problem. By iteratively
partitioning the service region based on quadtree [14] into small-
sized cells, CROWDPLANNING identifies the optimal regions (of
pre-specified granularity) to deploy the bike stations. CROWD-
PLANNING optimizes the distance between the places to deploy the
new bike stations and the suggested spots from the public. What’s
more, CROWDPLANNING also utilizes the historical usages infor-
mation of each existing station, where frequently used stations tend
to be preserved and get increased in capacities (i.e., adding more
bike docks), while the remaining ones will either be removed or get
decreased in capacities (i.e., removing the redundant bike docks).
In addition, the costs introduced by adding/removing stations and
bike docks are considered, which will be minimized in CROWD-
PLANNING. CROWDPLANNING transforms the tasks covered in
the CSSE problem into two optimization problems, and can iden-
tify both the locations to place bike stations, as well as the capac-
ities of these stations concurrently. (There are many other factors
can cause the demand changes, e.g., the weather, temperature and
seasonality reasons. However, since these factors will affect the
whole service region equally, they are not helpful for distinguish
the advantages of different potential station locations and will not
be considered in this paper.)

The remaining part of this paper is organized as follows. In Sec-
tion 2, we introduce the definitions of several important concepts
and the formulation of the CSSE problem. After that, we talk about
the CROWDPLANNING framework in detail in Section 3, which is
evaluated in Section 4. Finally, the related works are available in
Section 5 and we conclude the paper in Section 6.

2. PROBLEM FORMULATION
In this section, we will first define several important concepts,

and then introduce the formulation of the CSSE problem.

2.1 Terminology Definitions
In the CSSE problem, we aim at deploying the bike stations

within the service region, and the bike stations to be deployed can
be formally represented as follows:

DEFINITION 1. (Station): Let S = {s1, s2, · · · , sN} be the
N = |S| stations available in the BSSs. The specific location
of each station (e.g., si ∈ S) can be represented as a geograph-
ical coordinate pair (longitude(si), latitude(si)). Meanwhile, at
each station e.g., si ∈ S, the number of available bikes is limited
and can be represented as station capacity: capacity(si) ∈ N+.
Therefore, station si in the BSSs can be represented as a tuple
si = (ID(si), (latitude(si), longitude(si)), capacity(si)), where
ID(si) denotes the unique ID of the station.

In the station re-deployment process, both the geographical loca-
tions and the capacities of these stations can be adjusted, but their
IDs will be not be changed. In this paper, we will misuse si and



ID(si) interchangeably when referring to station si for simplic-
ity. Formally, to differentiate the bike stations before and after the
station re-deployment (i.e., system expansion), we name the bike
stations before the expansion as the current stations (denoted as set
SH ), while those after the expansion are called the future stations
(denoted as set SF ). Some of the current stations which are not
changed in the re-deployment will be preserved in the future sta-
tion set (which can be denoted as SH ∩ SF ), while a set of new
stations will also be added to the system, which can be represented
as the new station set SN = {ID(s)|s ∈ SF } \ {ID(s)|s ∈ SH}.

In the online crowd suggestion sites, people can suggest new bike
stations according to their own bike traveling needs, and the crowd
station suggestion can be denoted as:

DEFINITION 2. (Station Suggestions): A station suggestion can
be denoted as a tuple h = ((latitude(h), longitude(h)), text(h)),
where (latitude(h), longitude(h)) pair represents the suggested lo-
cation for the new station, and text(h) denotes the text information
posted with station suggestion. The complete station suggestion
can be represented as setH = {h1, h2, · · · , h|H|}.

From the crowd suggestions, we can obtain both the locations
and text information about the travel needs from the public. The
crowd suggestion text information involves the suggestion moti-
vations (e.g., for shopping, or for train-based commute) and can
also effectively help reveal nearby geographical sites (e.g., shop-
ping malls and metro stations) as well. Therefore, we do not need
to take additional considerations about other nearby spot informa-
tion again in the CSSE problem.

Meanwhile, in bicycle-sharing systems, when a bike is borrowed
from (and returned to) a station, the system will keep a record about
the bike ID, station ID and the specific time when the bikes are
checked out/in, which will form a bike trip record.

DEFINITION 3. (Historical Bike Trip): Formally, let set T =
{t1, t2, · · · , tM} be the trips that people ride among the stations
in S. Each trip (e.g., tj ∈ T ) can be represented as a tuple tj =
(start station(tj), start time(tj), end station(tj), end time(tj)). The
duration of trip tj can be represented as duration(tj) = end time(tj)−
start time(tj).

For stations which are no longer needed, the service provider
will revoke the station together with bikes and docks back to the
warehouse, some of which will be used and placed at another lo-
cation (it will be equivalent to moving an existing station to a new
location). Meanwhile, from the BSSs service provider’s perspec-
tive, adding new stations, changing the location and adjusting the
capacities of current stations will all introduce certain construction
costs. The costs introduced by adding/removing stations and bikes
at different places can be different due to various reasons, e.g., traf-
fic condition, the flow of people and the surroundings buildings. In
this paper, we will neglect these factors for simplicity reasons and
treat the costs at different stations to be the same.

DEFINITION 4. (Station Re-deployment Costs): Formally, let
cost+s (si) and cost-s(si) be the cost of adding/removing a station
si in the system. Therefore, by adding a new station si /∈ SN to
the system, the introduced cost will be cost+s (si); by removing an
existing station si ∈ SH from the system, the cost will be cost-s(si);
while by moving a current station si ∈ SH to a new place, the cost
will be cost+s (si) + cost-s(si). For simplicity, in this paper, we
treat the cost of adding/removing different stations to be identical,
which can all be simplified as cost+s and cost−s . Similarly, the costs
of adding/removing the bike docks at a current station to adjust its
capacity can be simply represented as cost+d and cost−d respectively.
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Figure 1: An example of the iterative map gridding.
In placing the bike stations and assigning the station capacities,

the construction costs should be as low as possible.

2.2 Problem Definition
Before the bike station re-deployment, the BSSs service provider

needs to perform very thorough investigation and determine the
numbers of stations and bikes to operate after the expansion. For-
mally, let K ∈ N+ and C ∈ N+ be the numbers of stations
and bikes to operate after the expansion respectively (in the CSSE
problem, theK and C are already obtained from the investigation).
According to the above concepts, we can define the CSSE problem
formally as follows:

DEFINITION 5. (The CSSE Problem): Given the current sta-
tions SH , historical trip records T , crowd suggestions from the
publicH, the CSSE problem aims at expending the bicycle-sharing
system to obtain the future bike stations SF after the re-deployment,
which can maximize the convenience for the public to use the bikes
and minimize the construction costs at the same time. The optimal
future bike stations S∗F (covering both the optimal locations/regions
and capacities of the future stations in SF ) can be obtained by ad-
dressing the following objective function:

S∗F = arg max
SF

convenience(SF )− β · cost(SF )

s.t. |SF | = K,
∑
s∈SF

capacity(s) = C,

where β denotes the weight of the cost measure, while the concrete
representation of convenience(·) and cost(·) will be introduced in
Section 3 in detail.

3. PROPOSED METHOD
In this section, we will introduce the CROWDPLANNING frame-

work in detail, which consists of 2 steps: (1) iterative map gridding
based station deployment, and (2) bike capacity assignment to the
deployed stations. We will introduce these two steps in Section 3.1
and Section 3.2 respectively.

3.1 Iterative Map Girdding based Station De-
ployment

Identifying the specific location coordinates of bike stations di-
rectly on the map can be quite difficult, and instead the objective of
CSSE will be to identify the regions (of a reasonable granularity)
to place the bike stations. In this section, we propose to partition
the service region on the map into cells based on quadtree [14] and
deploy the stations in these cells iteratively until the cells can meet
the pre-specified granularity requirement.

3.1.1 Iterative Map Gridding
Deployment of the bike stations in the city can be affected by

various factors. Instead of identifying the exact location coordi-
nates for the bike stations directly, we propose to place the bike



stations in the region of a larger granularity, which are called the
cells in the paper.

DEFINITION 6. (Map Cell): Formally, a map cell refers to a
specific square region on the map, and the map can be partitioned
into a set of map cells by specifying their Cartesian coordinates
respectively. The process of partitioning a map region into cells of
identical size is formally called “map gridding”.

Given the square map cell size w, at the initial stage, CROWD-
PLANNING will partition the target service region into equal-sized
cells. This step is quite flexible. By adjusting the parameter w,
CROWDPLANNING can study the station deployment on cells of
different granularities (which can also be an exact point at the ex-
treme case when w → 0). Let the target service area on the map
be a rectangle region of dimensions L×W . Framework CROWD-
PLANNING will partition the region into

⌈
L
w

⌉
×
⌈
W
w

⌉
cells, and the

cell number will grow quadratically as w decreases.
CROWDPLANNING transforms the station deployment task as an

optimization problem, where one unique variable will be defined to
each partitioned cell. Therefore, a small w will introduce too many
cells and inference variables in the CROWDPLANNING framework,
which will pose great challenges in solving the optimization ob-
jective function. In this paper, we propose to partition the service
region iteratively from large-sized cells, and keep partitioning the
cells into smaller ones until meeting the required granularity. In the
iterative partitioning process, cells without any deployed stations
will be pruned and not involved in the next round of partitioning,
which will help shrink the search space greatly in each round.

For instance, as shown in the left plot of Figure 1, the BSSs
service provider has pre-specified a service region, which is the
area of the green color. By specifying the initial parameter w0,
CROWDPLANNING can obtain the initial cells of the service re-
gion, which can be represented as set G = {g1, g2, · · · , gl} (where

l =
⌈

L
w0

⌉
×
⌈

W
w0

⌉
). In the Figure 1, the initial cells are the square

areas with coordinates (A, I), (A, II), (B, I), (B, II), (C, I) and (C,
II) of the blue color, which also correspond to the blue nodes at
the second level of the right tree-structured plot. The K bike sta-
tions will first be deployed in these 6 partitioned cells in G, and
the detailed station deployment methods will be introduced in the
following subsections. Let’s assume, the cells (A, I), (A, II), (C, I)
and (C, II) are all assigned with 1 bike stations and cell (B, II) is
assigned with 2 bike stations, while cell (B, I) has no stations. As
introduced before, we will prune the cell (B, I) from the candidate
cells, which will not be involved in the next round any more.

Meanwhile, for the cells gj ∈ G being assigned with M ≥ 1
bike stations but the size of cell gj is greater than the pre-required
granularity w̄, we propose to further partition them into smaller
cells with the quadtree technique [14] and further assign theM bike
stations in the smaller cells with the same method. For instance, in
Figure 1, (A, I), (A, II), (B, II), (C, I) and (C, II) are further quar-
tered into 4 equal-sized smaller cells, and the assigned stations in
the previous round are further placed in the smaller cells. Accord-
ing to the results shown below the red quad-cells, the small-sized
cells (a2, i2), (a2, ii1), (b1, ii2), (b2, ii1), (c1, i2) and (c1, ii1) are
assigned with 1 bike station, while the rest having no bike stations
will be pruned from the candidate list. Such a process continues
until the cell size is no greater than w̄.

In the next subsections, we will introduce the method about how
to deploy stations into cells with various spatial information.

3.1.2 Crowd Suggestion based Station Deployment
The station locations suggested by the crowd are generally the

places that people want to go from/to. In the station suggestion

website, the station suggestion text information can provide infor-
mation about various nearby sites (e.g., shopping malls and metro
stations). Therefore, we don’t need to obtain and consider the of-
fline GIS data from other sources over again as the traditional trans-
portation planning models do.

As described in Section 2, the set of suggestions received from
the crowd can be represented as H = {h1, h2, · · · , h|H|}. After
the map gridding process, each suggested station will belong to
exactly one map cell, which can be represented with a mapping
f : H → G, and the cell that suggestion hi belongs to can be
denoted as f(hi) ∈ G. Via mapping f(·), we can also represent the
set of suggestions that are mapped to cell gi via f(·) as ΓH(gi) =
{hj |hj ∈ H, f(hj) = gi}. In addition, for each cell, e.g., gi ∈ G,
we introduce an unique binary station indicator variable y(gi) ∈
{0, 1} to represent the re-deployment result, where y(gi) = 1 if
a bike station is placed in the cell, and y(gi) = 0 otherwise. For
all the cells, the whole set of binary variables can be represented as
Y = {y(g1), y(g2), · · · , y(gl)}, where l = |G|.

Based on the suggestions from the crowd, the re-deployed sta-
tions should be as close to the crowd’s suggested station locations
as possible, so as to maximize their bike usage convenience. In
other words, based on the suggestions from the crowd, the binary
indicator variables of cells containing more crowd station sugges-
tions are more likely to be 1, while the variables of the remaining
cells tend to be 0 on the other hand. Based on such an intuition,
for any two given cells gi, gj ∈ G, if gi contains more station sug-
gestions than gj (i.e., |ΓH(gi)| ≥ |ΓH(gj)|), then a bike station
is more likely to be placed in gi than in gj , i.e., y(gi) ≥ y(gj).
Therefore, we can define the convenience(·) measure based on the
crowd suggestion information in the problem formulation as the
sum of the binary variables of all the cells, together with a set of
constraints:

conveniencec(SF ) =
∑
gi∈G

y(gi)

s.t. y(gi) ≥ y(gj), if |ΓH(gi)| ≥ |ΓH(gj)|, ∀gi, gj ∈ G.

3.1.3 Historical Usage based Station Deployment
Crowd suggestions effectively indicate the crowd’s expectations

for the new stations. However, when it comes to the current sta-
tions, expediency of those stations in the past will be more impor-
tant, which can be revealed by the historical bike usages.

After a long-time of usages, customers will be familiar with the
locations of stations that they frequently go to. To avoid moving
too many existing bike stations to new places and creating troubles
for customers to change their usage behaviors, framework CROWD-
PLANNING will not adjust the locations of existing stations that are
heavily used by the customers. Based on the historical trip records,
for each cell gi ∈ G, we can count the trips either starting from or
ending at the station in gi and represent it as set ΓT (gi) = {tj |tj ∈
T , start station(tj) ∈ gi∨ end station(tj) ∈ gi}. If cell gi contains
a current bike station, the number of usages of the station can be
represented as |ΓT (gi)| > 0; if cell gi doesn’t contain any current
stations, we will have |ΓT (gi)| = 0.

Current stations which are heavily used would be more likely to
be unchanged and preserved in the re-deployment. To achieve such
an objective, without loss of generality, we can further represent the
station preserving probability with the following logistic function

P (gi) =
ek|ΓT (gi)|

1 + ek|ΓT (gi)|
,

where parameter k is a constant number and it is assigned with
value 1 in this paper.



The function P (gi) is a continuous function between 0 and 1,
which grows monotonically as more trips starting or ending at cell
gi. In other words, for stations with a larger number of usages, their
preserving probability will be higher. Therefore, we can represent
the convenience(·) measure based on the historical usage informa-
tion as follows:

convenienceu(SF ) =
∑
gi∈G

y(gi) · P (gi),

where the more usages of stations in a cell gi, the larger its station
preserving probability P (gi) will be, and the more likely its corre-
sponding binary variable y(gi) will be assigned with value 1 when
maximizing the convenience measure.

3.1.4 Minimum Cost based Station Deployment
Besides the concerns about the convenience for customers, an-

other important factor needs to be considered in bike station re-
deployment is the station deployment costs. The cost can be in-
troduced by either removing existing stations or constructing new
stations, where changing the location of an existing stations can be
achieved by removing the station first and construct a new station
at a new place. As introduced in Section 2, the costs of remov-
ing/constructing different stations can be represented as cost−s and
cost+s respectively.

For cell gi in set G, we introduce a new notation ȳ(gi) ∈ {0, 1}
to denote whether there is a current bike station in gi or not before
the re-deployment, which is a known value and can be obtained
by scanning the current station data. By combining notation ȳ(gi)
with the target variable y(gi), we can know what happens to cell gi
during the system expansion:

no current nor future station at gi, if ȳ(gi) = 0, y(gi) = 0;

a new station is constructed at gi, if ȳ(gi) = 0, y(gi) = 1;

a current station is removed from gi, if ȳ(gi) = 1, y(gi) = 0;

a current station is preserved at gi, if ȳ(gi) = 1, y(gi) = 1.

Meanwhile, the costs introduced by cell gi in bike station re-
deployment can be represented as

cost(gi) =


cost+s , if ȳ(gi) = 0, y(gi) = 1;

cost−s , if ȳ(gi) = 1, y(gi) = 0;

0, otherwise.

And the overall costs introduced by deploying stations in G can be
represented as be

cost(SF ) = cost(G) =
∑
gi∈G

cost(gi)

=
∑
gi∈G

max{y(gi)− ȳ(gi), 0} · cost+s + max{ȳ(gi)− y(gi), 0} · cost−s .

3.1.5 Distribution Density based Station Deployment
In addition to the convenience and cost issues, the overall distri-

bution of the stations within the city needs to be considered care-
fully. Concentrating too many stations densely within a small area
will greatly decrease usage frequency of each bike, while separat-
ing station too sparsely across the whole city will make the stations
unreachable within the free-ride time. To avoid these two extreme
cases, in this paper, we propose to constrain the bike station distri-
bution density in the CROWDPLANNING framework. Considering
that the stations are placed in the cells, the density of bike distribu-
tions is actually calculated based on a group of nearby cells on the
map.

The partitioned cell are actually square regions partitioned based
on the map, and each cell (e.g., gi ∈ G) can be connected to 8 other
cells on the map by sharing either common boundaries or common
vertices. In this paper, we introduce the concept of “grid-based
walk”, which can go to other nearby cells from the origin cell step
by step and each step passes through either a common boundary or
a vertex. For instance, as shown in Figure 2, from the origin cell
gi, by traveling at most one single step, the “grid-based random
walk” can reach 8 other different cells, which can be represented
as set ΓD(gi, 1). Similarly, we can represent the set of cells that
the “grid-based random walk” can reach with at most n steps as
ΓD(gi, n), n ∈ N and ΓD(gi, n − 1) ⊂ ΓD(gi, n) holds. With
the “grid-based walk”, we can represent the density of bike station
distribution within a square region involving (2n + 1)2 (n ≥ 1)
cells with gi as the center as

density(gi, n) =

∑
gj∈ΓD(gi,n)∪{gi} y(gj)

(2n+ 1)2
.

Furthermore, we can introduce the bike distribution density con-
straints to be

D ≤ density(gi, n) ≤ D,∀gi ∈ G.

Here, the parametersD andD represent the lower-bound and upper-
bound of the station distribution density respectively, whose sensi-
tivity analysis is available in the experiment section.

3.1.6 Joint Objective Function of Station Deployment
By taking considerations of both the suggestions from the crowd

and current station usages, we can obtain the concrete representa-
tion of the convenience(·) used in defining the CSSE problem
as

convenience(SF ) = conveniencec(SF ) + α · convenienceu(SF )

=
∑
gi∈G

y(gi) + α ·
∑
gi∈G

y(gi) · P (gi)

s.t. y(gi) ≥ y(gj), if |ΓH(gi)| ≥ |ΓH(gj)|, ∀gi, gj ∈ G,

where α denotes the weight for the convenience term based on the
historical usage information.

The convenience measure together with the the cost measure can
be used to define the final joint objective function, and the optimal
bike station re-deployment results Y∗ can be represented with the
following joint optimization function:

Y∗ = arg max
Y

convenience(SF )− β · cost(SF )

= arg max
Y

∑
gi∈G

(
y(gi) + α · y(gi) · P (gi)− β·

(max{y(gi)− ȳ(gi), 0} · cost+s + max{ȳ(gi)− y(gi), 0} · cost−s )
)

s.t. D ≤ density(gi, n) ≤ D,∀gi ∈ G,
y(gi) ≥ y(gj), if |ΓH(gi)| ≥ |ΓH(gj)|,∀gi, gj ∈ G,∑
gk∈G

y(gk) = K; y(gk) ∈ {0, 1}, ∀gk ∈ G.

The objective equation is an integer programming problem, which
is shown to be an NP-hard problem and the k-median problem can
be mapped to it in polynomial time. Therefore, no close-form
solution exists for the above objective equation. To address the
problem, in this paper, a two-step method is applied in framework
CROWDPLANNING:
Step 1 Constraint Relaxation: We propose to relax the strict bi-
nary constraints on variables y(gk) ∈ {0, 1},∀gk ∈ G and al-
low them to take any real values within range [0, 1], i.e., y(gk) ∈
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Figure 2: An example of grid-based walk.

[0, 1], ∀gk ∈ G. The relaxed objective function can be solved with
existing linear programming methods easily. We use the open-
source linear programming toolkit, e.g., PuLP5 and SciPy6, and de-
tailed derivation steps will not be introduced here due to the limited
space. The objective function of the linear programming problem
itself is convex, and the optimal solution can be identified.
Step 2 Post-Processing: Due to the constraint relaxation, the vari-
ables Y obtained in the previous step can take any real values in
range [0, 1]. To preserve the binary constraints, we propose to
round the obtained parameters by sorting the parameters decreas-
ingly. The top-K parameters with the largest values are selected
from the results and assigned with value 1, while the remaining are
assigned with 0 instead.

3.2 Capacity Assignment at Stations
For all the cells selected to place the bike stations, in this section,

we will study how to distribute the bikes to stations in these cells,
which is called the capacity assignment sub-problem. Similar to
the station deployment problem, the capacity assignment problem
can also be addressed based on information about (1) the sugges-
tions from the crowd, (2) current station usages, and (3) the con-
struction costs for adjusting the station capacities.
Crowd Suggestions based Capacity Assignment

Based on the re-deployment results, among all the cells in set G,
we can extract the cells with bike stations being deployed, which
can be represented as G̃ = {gi|gi ∈ G ∧ y(gi) = 1}. The capac-
ity assigned to these stations can be denoted as variable c(gi) ∈
N+, ∀gi ∈ G̃. Meanwhile, based on the suggestions from the
crowd, we will be mainly concerned about the suggested stations
which are in cells in G̃, and these suggested stations can be repre-
sented as S̃ = {si|si ∈ S ∧ f(si) ∈ G̃}. Multiple suggestions
can exist in each cell, and the suggestions received in cell gi can be
represented as ΓH(gi) = {si|si ∈ S̃ ∧ f(si) = gi}.

Generally, the more suggestions received from the crowd in cer-
tain cells, the more bike usage needs people will have, and the more
bikes should be placed at the station in the cell. Based on such an
intuition, we can introduce the following crowd suggestion based
capacity constraint:

c(gi) ≥ c(gj), if |ΓH(gi)| ≥ |ΓH(gj)|,∀gi, gj ∈ G̃,

Historical Usage based Capacity Assignment
Besides the suggestion from the crowd, from historical trip records,

we can also get information about the travel needs of the public for
stations in each cell. As introduced in Section 3.1, for cell gi ∈ G,
we can represent the trips starting from and ending at the station
in gi as set ΓT (gi). Generally, the more usages of the station in a
cell, the more travel needs people have, and the more bikes should
be assigned to the station. Therefore, for all the cells contain the
bike stations after re-deployment (i.e., G̃), we introduce another set
of capacity constraint based on the historical bike usage records:

c(gi) ≥ c(gj), if |ΓT (gi)| ≥ |ΓT (gj)|,∀gi, gj ∈ G̃.

Adjustment Costs based Capacity Assignment
5https://pypi.python.org/pypi/PuLP
6http://www.scipy.org/topical-software.html

Similar to placing stations, station capacity assignment will lead
to certain construction costs as well. Considering that the costs of
assigning bike capacities to brand new stations (as well as moving
current stations to new places) have already been counted in the
station construction, here, we will be mainly concerned about the
costs introduced by adjusting the capacities of the current stations,
whose locations are not changed. As introduced in Section 2, the
costs introduced by adding/removing bike docks can be represented
as cost+d and cost−d respectively. Meanwhile, the capacities of cur-
rent stations in cells G̃ before and after the system expansion can
be represented as {c(gi)|gi ∈ G̃} and {c(gi)|gi ∈ G̃} respectively,
depending on which, we can infer the the capacity changes of the
cells in the system expansion:

more bikes added to gi, if c(gi) > c(gi);

station capacity doesn’t change at gi, if c(gi) = c(gi);

some bikes are removed from gi, if c(gi) < c(gi).

The costs introduced due to the capacity re-assignment in cell
gi ∈ G̃ can be represented as

cost(gi) =


cost+d · (c(gi)− c(gi)), if ȳ(gi) = y(gi) = 1, c(gi) ≥ c(gi);

cost−d · (c(gi)− c(gi)), if ȳ(gi) = y(gi) = 1, c(gi) ≥ c(gi);

0, otherwise.

And the costs introduced by all the cells in G̃ will be

cost(G̃) =
∑

gi∈G̃

cost(gi)

=
∑

gi∈G̃

ȳ(gi) · y(gi) ·
(cost+

d
·max{c(gi)− c(gi), 0} + cost−

d
·max{c(gi)− c(gi), 0}

)
.

Joint Optimization Objective Function
By integrating all the information together, we can obtain the

optimal capacity assignment which can minimize the construction
costs with the following optimization objective function:

min
{cgi}gi∈G̃

∑
gi∈G̃

ȳ(gi) · y(gi) ·
(
cost+d ·max{c(gi)− c(gi), 0}

+ cost−d ·max{c(gi)− c(gi), 0}
)

s.t. c(gi) ≥ c(gj), if |ΓH(gi)| ≥ |ΓH(gj)|, ∀gi, gj ∈ G̃,

c(gi) ≥ c(gj), if |ΓT (gi)| ≥ |ΓT (gj)|, ∀gi, gj ∈ G̃,∑
gi∈G̃

c(gi) = C; c(gi) ∈ N+, ∀gi ∈ G̃.

Similarly, the objective function is also a constrained integer pro-
gramming problem, which can be solved with open-source python
toolkits, e.g., PuLP and SciPy. We will not describe the solutions
here due to the limited space. By addressing the equation, we can
obtain the number of bikes assigned to the stations of each cell in
G̃, which together with cells G̃ are used as the final output of frame-
work CROWDPLANNING.

4. EXPERIMENTS
To test the effectiveness of the proposed framework CROWD-

PLANNING in addressing the CSSE problem, extensive experi-
ments have been done on a real-world BSS dataset, Divvy, in the
paper. In this section, we will first introduce the datasets used in the
experiments, and then talk about the experiment settings in detail.
Experiment results and detailed analysis will be provided at the end
of the section.



4.1 Dataset Descriptions
Divvy is a BSS launched in the Chicago city, which started to

operate on June 28, 2013. Now, Divvy has about 4, 760 bicycles at
474 stations within the Chicago city area, and plans to further ex-
pand to nearby areas soon. Divvy releases new datasets every two
quarters and 5 separate datasets covering the past years are avail-
able for download already at its official webpage7. These datasets
contain both the bike station distribution information, as well as
the complete bike trip records. The statistical information about
these 5 datasets is available in Table 1 (the station number in these
datasets denote the number of available stations at the end of each
time range.

Table 1: The Divvy Datasets
datasets trip station bike

2013 Q3-Q4 759,788 300 5,040

2014 Q1-Q2 905,699 300 5,209

2014 Q3-Q4 1,548,935 300 5,040

2015 Q1-Q2 1,096,239 474 8,274

2015 Q3-Q4 2,087,204 474 8,274

Besides the Divvy bike station and trip information, we also
crawled all the crowd suggestion data from the site8 on Novem-
ber 11, 2015. As shown in Table 2, 1, 098 new station suggestions
together with 775 comments are received from the public. For each
suggestion, we can get both the specific location coordinates of the
suggested station and the suggestion text information.

Table 2: Crowd Suggestion Dataset
datasets suggestions comments

Crowd Suggestion 1,098 775

4.2 Experiment Setting

4.2.1 Experiment Setup
In the experiments, we use the station placement at the end of

year 2014 (i.e., stations from dataset “2014 Q3-Q4”) as the current
stations in the bicycle-sharing system. Meanwhile, considering that
Divvy had the expansion in the first half year of 2015, the bike sta-
tions at the end of 2015 (i.e., stations from dataset “2015 Q3-Q4”)
are used as the future bike stations after the expansion, i.e., the
ground-truth. The ground-truth will be used for evaluation only
and are not involved in the model building. Trips taken by the end
of 2014 are used as the historical trips among all the current bike
stations, and the posts and comments written by the public online
by 2015 Q2 are extracted and used as the effective crowd sugges-
tions, while the remaining trips and posts are not used.

Initially, we obtain the future service region from the future sta-
tions (which should be pre-determined in the real scenarios). The
crowd suggestions are pruned by removing the suggested stations
outside the service region. The service region is divided into cells
iteratively, where the distance between the closest bike stations is
used as the required granularity of the cells (i.e., parameter w̄ used
before). In the station deployment step, for each cell in the service
region, one unique variable is defined to denote whether there is a
station placed in it or not. In addition, based on the current sta-
tion location, historical usage and crowd suggestion information,
we further check the existence of current stations and count up the
trips/suggestions taken/suggested in each cell respectively, which

7https://www.divvybikes.com/data
8http://suggest.divvybikes.com/page/about
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Figure 3: Bike station distribution density.

together with the station construction costs cost+s and cost−s will
be used to define the station deployment objective function. Con-
sidering that more bike stations are added to the system than those
removed in the expansion, the cost of adding and removing stations
are set as cost+s = 10.0 and cost−s = 20.0 in the experiment re-
spectively to model such an operation bias. From the solution, the
cells corresponding the variables being assigned with value 1 will
be selected to place the bike stations.

Based on the station deployment result, we can obtain the cells
being deployed with a station. In the capacity assignment step, for
each cell selected in the previous step, one unique capacity vari-
able is introduced to represent the number of bikes being assigned
to the station. In addition, we will also count the number of histor-
ical trips and station suggestions taken/posted in each cell, which
together with the bike dock construction/remove costs cost+d (1.0)
and cost−d (5.0) will be used to define the bike capacity assignment
objective function. From the solution, the values of these capacity
variables will be outputted as the results, denoting the number of
bikes assigned to the stations in these cells.

4.2.2 Comparison Methods
The CSSE problem is a new research problem, and no crowd-

planning based planning methods exist that can address it directly
so far. To show the advantages of the CROWDPLANNING frame-
work in addressing the CSSE problem, we compare CROWDPLAN-
NING with several traditional planning methods. The comparison
methods used in the experiments are summarized as follows:

• CROWDPLANNING: The framework CROWDPLANNING is
the method introduced in this paper. CROWDPLANNING in-
fers both the locations and capacities of the stations after the
system expansion based on various categories of informa-
tion, which include (1) the crowd suggestion from the pub-
lic, (2) the historical bike usages, and (3) system expansion
costs.

• CP-NODENS: Density constraint introduced in the paper
can effectively constrain the overall distribution of the bike
stations. To demonstrate its effectiveness, a variant of frame-
work CROWDPLANNING is used as a baseline method to
compare with CROWDPLANNING. The capacity assignment
step in CP-NODENS is identical to that of CROWDPLAN-
NING.

• CP-NOCOST: Construction costs is an important factor af-
fecting the bicycle-sharing system expansion. To support
such a claim, we compare CROWDPLANNING with another
variant method CP-NOCOST. Method CP-NOCOST assumes
the system expansion will introduce no costs at all, and sta-
tion and bike dock adding/removing costs are all fixed as 0
in CP-NOCOST.

• IMILP: In the experiments, we also extend an existing sta-
tion placement algorithm, IMILP (Iterative Mixed-Integer
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Figure 5: Local station capacity assignment result evaluated by MSE, MAE and R2.

Linear Program) [7] based station placement, to find the op-
timal station places which are closest to the suggested places
with consideration of the costs. Since no capacity assignment
problem is studied in [7], therefore the capacity assignment
algorithm in IMILP is identical to that in CROWDPLAN-
NING but merely with the suggestion information only.

• OSD: Based on the historical usage information, we propose
to extend a state-of-art station placement algorithm OSD (Op-
timal Station Deployment) [9] to identify the spots to place
the bike stations with consideration of the costs. The ca-
pacity assignment algorithm in OSD is identical to that in
CROWDPLANNING, but it is based on the historical usage
information only.

• RANDOM: The method RANDOM assigns the stations in the
cells within the service region randomly. Meanwhile, the ca-
pacities of the cells being assigned with stations are random
assigned as well.

4.2.3 Evaluation Metrics
To evaluate the performance of different methods, various eval-

uation metrics are applied in this paper for the station deployment
and capacity assignment problems.

In the station deployment, we will obtain the prediction values
of the binary variables corresponding each cell in the service re-
gion, where the value 1 denotes the station is placed in the cell.
Meanwhile, from the ground truth, we can obtain the true values
of these variables. Most of the evaluation metrics for traditional
binary classification problems can be applied in the station deploy-
ment problem, and we will use the F1, Precision, Recall and Accu-
racy metrics in this paper.

On the other hand, for the cells selected to place the bike sta-
tions, we can further infer the capacities assigned to the stations. In
addition, from the ground truth, we can obtain the real capacities of
these stations as well. Most evaluation metrics for regular regres-
sion problems can be used here for the bike capacity assignment
problem, and we propose to use the MAE (mean absolute error),
MSE (mean square error) and R2 in this paper.

4.3 Parameter Selection
Bike station distribution density can affect the overall placement

of the bike stations a lot. Due to the bike free-ride time is limited in
bicycle-sharing systems, the stations cannot be placed too far from

each other. Meanwhile, the stations cannot concentrated within a
limited area neither. To control the overall distribution of bike sta-
tions within the service region, we introduce the distribution den-
sity concept in this paper, A group of parameters are introduced to
control the overall station distributions densities, i.e., n, D and D
respectively, where n denotes the steps of walking from the centric
cells, D and D represent the upper and lower bounds of the station
distribution densities. Before deploying the bike stations, we need
to pre-determine these parameters to ensure the CROWDPLANNING
framework can work effectively.

Therefore, we first study the parameters based on the historical
bike station distribution. As show in Figure 3, we change the step
size n with values in {0, 1, 2, · · · , 19}. The bike station distribu-
tion upper bound decreases as n increases steadily, while the lower
bound increases first and then decreases. The specific values of the
upper and lower density bounds achieved at n ∈ {0, 5, 10, 15, 20}
are marked on the plot. For instance, the density upper bound
achieved at n = 0 (i.e., single cell) is 1.0 (if the cell contains a
bike station), and the lower bound is 0 (if the cell doesn’t contain a
bike station). Meanwhile, when n increases to 10 (i.e., the nearby
212 cells), the density upper bound decreases to 0.116, while the
lower bound increases to 2.27 × 10−3. In the following experi-
ment, we set n = 10 and use 0.116 and 2.27 × 10−3 as the value
of parameters D and D respectively.

4.4 Experiment Result
The experiment results are shown in Figures 4-6, where Fig-

ure 4 is about the station deployment results of different compar-
ison methods, while Figure 5 and Figure 6 show the capacity as-
signment results.

According to Figure 4, the Accuracy score obtained by CROWD-
PLANNING is still slightly higher than the other methods, which
can denote the advantages of CROWDPLANNING compared with
these baseline methods. In addition, we can observe that the Ac-
curacy scores obtained by all the comparison methods are all very
high (about 0.9). The potential explanation can be: in the service
region on the map, by partitioning the region into cells, the majority
of the cells are actually have no bike stations. Therefore, inference
of the cells to put the stations is actually a class imbalance problem.
In such a problem setting, Accuracy cannot evaluate the compari-
son methods’ performance well.

Therefore, the Precision and Recall metrics are also applied in
this paper. Meanwhile, in the station deployment problem, the
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Figure 6: Global station capacity assignment result evaluated by MSE, MAE and R2.

number cells predicted to place the stations and the number of
those containing real stations are both K. Therefore, according to
the definitions of Recall and Precision, the numerator and the de-
nominator of these two measures are actually equal. Therefore, the
corresponding Recall and Precision score (as well as the F1 score,
which is not shown) of these different methods are identical. For in-
stance, the Precision and Recall scores achieved by CROWDPLAN-
NING are both 0.69 as shown in the plot, which is much higher than
the other baseline methods.

Based on the station predicted to deploy the bike stations, we
further assign the bikes to these stations. Merely by treating the
cells predicted to place the stations as the domain, we evaluate the
bike assignment performance of different comparison methods in
Figure 5.

According to the result, CROWDPLANNING outperforms the other
comparison methods with great advantages. For instance, the MSE
score achieved by CROWDPLANNING is 14.69, which is 22% lower
than that achieved by CP-NODENS, 42.57% lower than the MSE
achieved by IMILP, and takes only about 1

13
of the MSE obtained

by OSD, 1
17

of MSE achieved by CP-NOCOST and 1
20

of RAN-
DOM. Similar results can be observed for the MAE andR2 metrics.
By comparing CROWDPLANNING with CP-NOCOST, the obser-
vation that CROWDPLANNING can outperform CP-NOCOST with
significant advantages demonstrates the importance of incorporat-
ing the cost factors in the system expansion. Meanwhile, com-
pared with the OSD method without utilizing the crowd sugges-
tions, CROWDPLANNING can achieve better bike assignment re-
sult, which shows the effectiveness of the crowd suggestions in
addressing the CSSE problem. Furthermore, compared with the
other comparison methods, better performance of CROWDPLAN-
NING shows the importance of the density constraint and historical
usages respectively.

Considering that the predicted cells to place the bike stations are
not all correct, and lots of the cells containing real bike stations
are pruned in the deployment process and are not actually involved
in the capacity assignment result. Therefore, to evaluate the bike
assignment of the different comparison methods from a global per-
spective, we treat all the cells in the service region as the domain,
and the performance achieved by different comparison methods are
shown in Figure 6. Compared with Figure 5, generally the perfor-
mance of these comparison methods in Figure 6 are slightly worse,
as it incorporates both the mistakes made in the deployment and
the assignment at the same time. However, according to the results,
CROWDPLANNING can outperform the other comparison methods
with great advantages, which have demonstrated the motivations of
introducing the framework CROWDPLANNING in the method sec-
tion.

4.5 Result Analysis
Besides evaluating the comparison methods’ performances with

these metrics, we also analyze the deployment and capacity assign-
ment results and compare with the historical usages and crowd sug-
gestions in Figures 7.
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Figure 7: Station Deployment and Capacity Assignment Re-
sults Analysis.

In Figure 7, we show the station deployment results and histori-
cal bike usages and crowd suggestions for each cell in the service
region. In the deployment bar chart, for cells assigned with stations,
the bar value is 1, while for the remaining cells, the number will be
0. By enlarging the plot, we can observe that for the cells having
very heavy historical bike usages and many suggestions, CROWD-
PLANNING will place a bike station in the cell. Meanwhile for
those having neither usage counts nor suggestions from the public,
CROWDPLANNING will not place the station in the cell generally.
Similarly, by comparing the number of bikes assigned to each cell
with the usage and suggestions, we can observe that generally the
number of bike docks assigned to each cell is positively correlated
with the historical usages and crowd suggestions in the correspond-
ing cell.

In addition, as shown in Table 1, by comparing the trips taken in
2015 during as well as after the system expansion, we observe that
the system expansion can effective increase the bike usages form
the public. The total number of trips taken during 2015 (from Q1
to Q4) is 3, 183, 443, which is even comparable to the total trips
taken within the past one year and a half (from Q3 2013 to Q4
2014). After the expansion, with more bikes and stations avail-
able in the extended service region, the number of bike usage has
increased to 2, 087, 204, which is the highest on record. Consider-
ing the high Accuracy, Precision and Recall achieved by CROWD-
PLANNING compared with the ground truth, the usage record also
demonstrates the effective of the expansion strategy indirectly.

5. RELATED WORK
To the best of our knowledge, we are the first to propose to re-

deploy bike stations in BSS expansion based on the crowd plan-
ning. The problem studied in this paper is different from existing
works on (1) gas station and hydrogen filling station placement, (2)
bicycle-sharing system studies, and (3) urban computing.
Station Placement: Traditional gas station and hydrogen filling
station and the recent charging station placement problems have
been studied for a long time and dozens of papers have been pub-



lished on these topics so far. Unlike private facility location analy-
sis, the objectives of public facility location (e.g., gas and hydrogen
filling stations) analysis are more difficult to embrace and to quan-
tify. Church et al. propose maximal service distance concept in [5]
to measure the distance or time that a user need to travel to reach
that facility. More specifically, Bapna et al. [3] propose to address
the problem of optimally locating gas station facilities for devel-
oping nations, which are in the process of converting from leaded
to unleaded fuel. Meanwhile, Nicholas gives a case study about
the hydrogen station siting and refueling analysis by using the ge-
ographic information systems and study the station sitting problem
in [12]. In recent years, electric vehicles are becoming more and
more popular now. Some of the works have been done on studying
the charging station placement problem. Li et al. propose to study
the charging station network growth problem for electric vehicles
based on the trajectory data of the vehicles in [9].
Bicycle-Sharing System: The bicycle-sharing systems are an im-
portant part in urban computing. Many research works have been
done on bicycle-sharing systems and other transportation systems
to study the system design problem [11], load balance problem
[13], and bicycle traffic prediction problem [10]. Lin et al. [11]
introduce a strategic design problem for bicycle sharing systems
incorporating bicycle stock considerations, which is formulated as
a hub location inventory model. Pavone et al. develop methods for
maximizing the throughput of a mobility-on-demand urban trans-
portation system and introduce a rebalancing policy that minimizes
the number of vehicles performing rebalancing trips [13]. The op-
timal rebalancing policy can be found as the solution to a linear
program effectively in the proposed model. Li et al. propose a hi-
erarchical prediction model to predict the number of bikes that will
be rent from/returned in a future period [10].
Urban Computing: In recent years, urban computing has become
an emerging research area, and lots of works have been done in
the area already. Generally speaking, urban computing aims at im-
proving individuals’ living environment in large cities by utilizing
the urban sensing, data management and data analysis techniques.
Zheng et al. have done lots of works in the area in the past years,
and he also provides a review about the urban computing concepts,
methodologies, and applications in [17]. Various problems are cov-
ered in urban computing, e.g., urban air quality prediction and fore-
cast [18], urban noise diagnosis [19], urban travel and transporta-
tion prediction [9].

6. CONCLUSION
In this paper, we have studied the CSSE problem to re-deploy

the bike stations within the new service region in the BSSs ex-
pansion. Two sub-problems are covered in CSSE simultaneously,
which are the station deployment and station capacity assignment
problems. A novel station re-deployment framework, named CROWD-
PLANNING, is introduced in this paper. CROWDPLANNING fuses
the information from the crowd suggestions, historical bike usages
and station construction costs together and formulates the sub-tasks
as optimization problems respectively. Extensive experiments have
bee conducted on real-world bicycle-sharing system and the crowd
suggestion datasets. The experimental results demonstrate the ef-
fectiveness of the CROWDPLANNING framework in addressing the
CSSE problem.
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