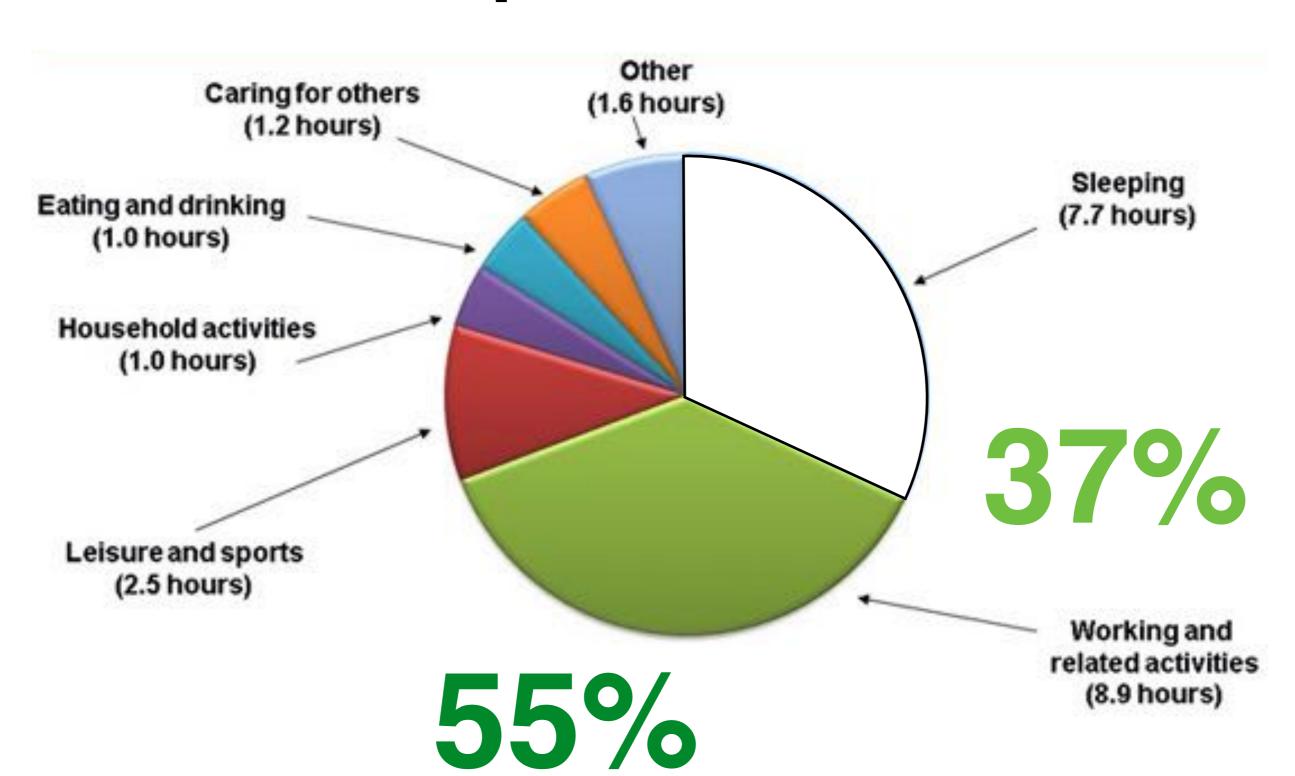


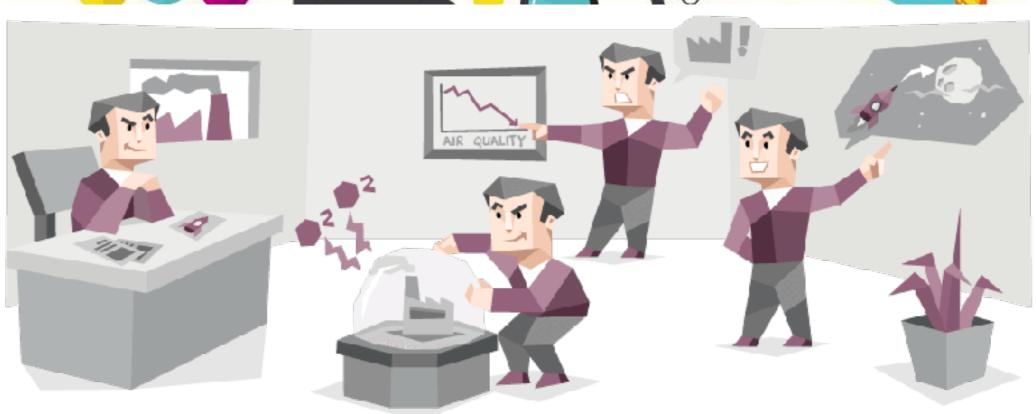
Information Diffusion at Workplace


Jiawei Zhang¹, Philip S. Yu^{1,2}, Yuanhua Lv³, Qianyi Zhan⁴

¹University of Illinois at Chicago, Chicago, IL, USA ²Institute for Data Science, Tsinghua University, Beijing, China ³Microsoft Research, Redmond, WA, USA ⁴Nanjing University, Nanjing, Jiangsu, China

Individuals need to spend a lot of time at workplace

Workplace has become an important social occasion for information exchange among employees

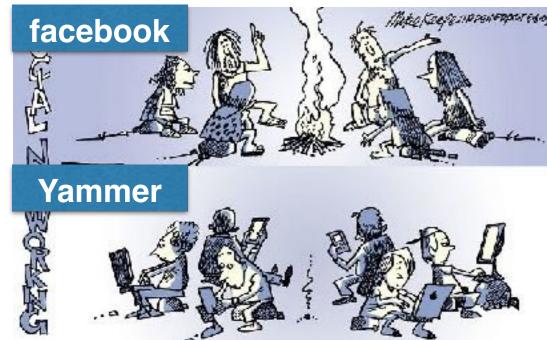

Online Workplace

Enterprise Social Networks

Offline Workplace

meetings, reports, office chat

Enterprise Social Networks(ESNs) are New and Different



What are Enterprise Social Networks?

 A kind of online social networks that provide employees with various integrated professional services to help deal with daily work issues.

Functions of Enterprise Social Networks


- better project management
- easier communication among employees
- broader information sharing
- more effective cooperator identification
- •

Different from Traditional Social Networks:

- Facebook: Casual and Personal
- ESN: Formal and Professional

Enterprise Social Networks (ESNs) are Launched in Many Companies (An example: Yammer)

Srinivas lyengar likes this.

Related Works: Enterprise Social Networks (ESNs)

- Enterprise context information fusion and mining (IFM)
 - Offline data: organizational chart, project documents, etc.
 - Online data: enterprise social networks, online interactions, etc.

Organizational Chart Inference KDD' 15 Enterprise Social Link Recommendation CIKM' 15

Information Diffusion at Workplace CIKM' 16

Enterprise IFM

Enterprise Employee
Training via Project
Team Formation
WSDM' 17

Problem Studied: Information propagation at workplace

 Problem Studied: In this paper, we will study how information diffuses via both online and offline communication sources among employees at workplace

· Applications:

- For employees: choose effective and efficient channels for communication, improve work efficiency greatly
- For company: Via a combination of several communication channels, companies can convey important messages to all the employees in the company

· Challenges:

- Diffusion channel extraction and inference
- Diffusion channel aggregation
- Diffusion channel weighting and selection

Information propagation among employees

Workplace information propagation characteristics:

Multiple Sources

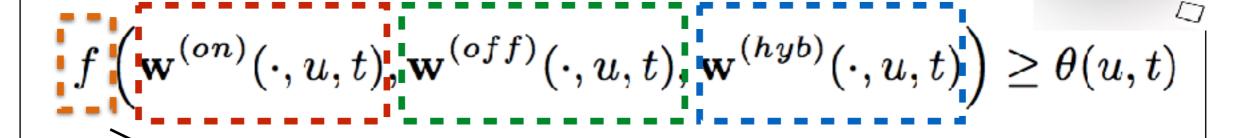
- Online heterogeneous source: online enterprise social network contacts
- Offline heterogeneous source: offline communication
- Hybrid source between online and offline sources

Multiple Channels —> (types of social interactions)

(M)

- online source: follow, notify(@), reply
- offline source: between managers, peers and subordinates

Multiple Topics

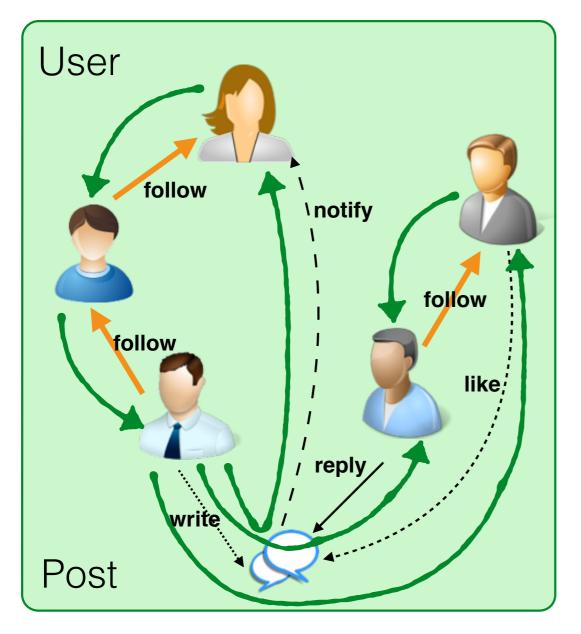

- work related topics: new products, projects, and colleagues
- personal life topics: personal interests, sports, and party

Diffusion Model: Muse

Terminologies:

- weight w: amount of information of different topics
 propagated among employees via different channels in different sources
- threshold θ: minimum amount of information of certain topics to active employees

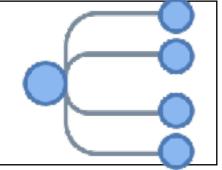
Activation criteria:



aggregation function: logistic function

Online Diffusion Channel Extraction

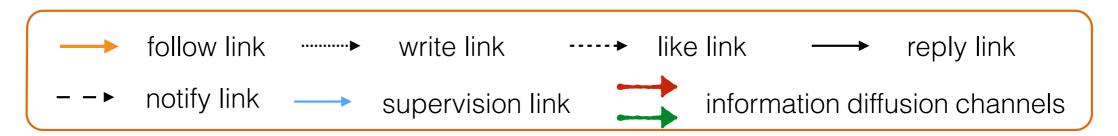
Online ESN



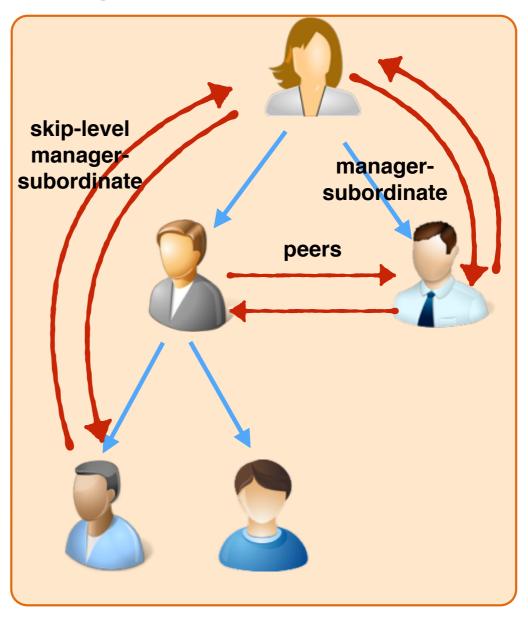
channel definition based on meta path

Online Diffusion Channel Extraction

- Meta path based online diffusion channel extraction
- tion is Φ_1 .
- Followee: $Employee \xleftarrow{Social^{-1}} Employee$, whose nota- Like Post: $Employee \xleftarrow{Like^{-1}} Post \xleftarrow{Write} Employee$, whose notation is Φ_4 .
- Followee-Followee: $Employee \stackrel{Social}{\longleftarrow} Employee$ \leftarrow Employee, whose notation is Φ_2 .
- Post Notification: $Employee \stackrel{Notify}{\leftarrow} Post \stackrel{Write}{\leftarrow}$ *Employee*, whose notation is Φ_5 .
- Reply Post: $Employee \stackrel{Reply^{-1}}{\longleftarrow} Post \stackrel{Write}{\longleftarrow} Employee$, whose notation is Φ_3 .
 - Information propagation weight quantification


$$\mathcal{C}^{(on)} = \{\Phi_1, \Phi_2, \Phi_3, \Phi_4, \Phi_5\}$$

Online information diffusion channels

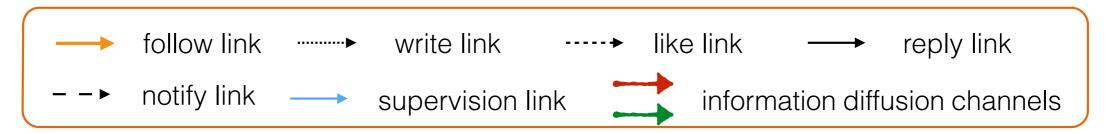

$$w^{(on),i}(v,u,t) = \frac{2 \left| \mathcal{P}_{\Phi_i}^{(on)}(v \leadsto u) \right| \cdot I(v,t)}{\left| \mathcal{P}_{\Phi_i}^{(on)}(v \leadsto \cdot) \right| + \left| \mathcal{P}_{\Phi_i}^{(on)}(\cdot \leadsto u) \right|},$$

Offline Diffusion Channel Extraction

Organizational Chart

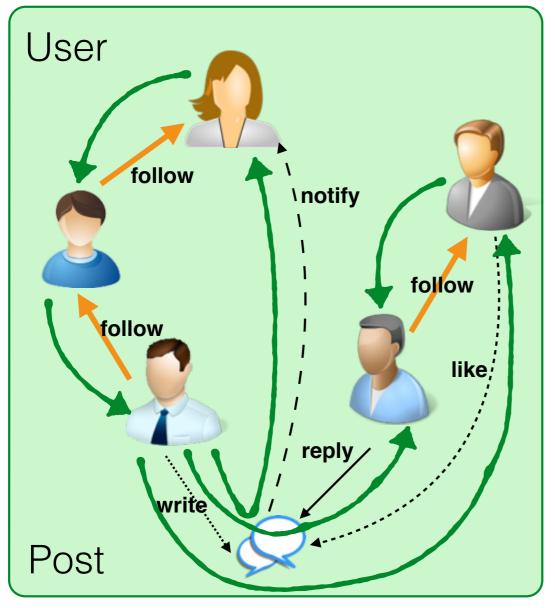
Offline Diffusion Channel Extraction

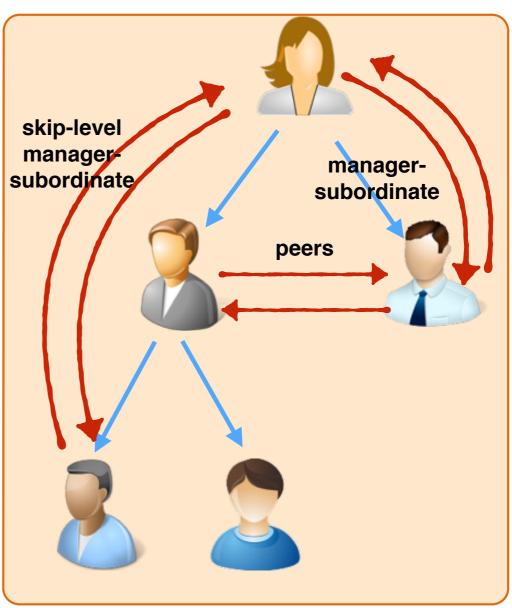
- Meta path based offline diffusion channel extraction
- Manager: $Employee \stackrel{Supervision}{\longleftarrow} Employee$, whose notation is Ω_1 .
- Subordinate: $Employee \xleftarrow{Supervision^{-1}} Employee$, whose notation is Ω_2 .
- Peer: $Employee \stackrel{Supervision}{\longleftarrow} Employee \stackrel{Supervision^{-1}}{\longleftarrow} Employee$, whose notation is Ω_3 .


- 2nd-Level Manager: $Employee \xleftarrow{Supervision} Employee \\ \xleftarrow{Supervision} Employee$, whose notation is Ω_4 .
- 2nd-Level Subordinate: $Employee \xleftarrow{Supervision^{-1}}$ $Employee \xleftarrow{Supervision^{-1}}$ Employee, whose notation is Ω_5 .
- Offline information diffusion channels

$$\mathcal{C}^{(off)} = \{\Omega_1, \Omega_2, \Omega_3, \Omega_4, \Omega_5\}$$

Information propagation weight quantification


$$w^{(off),i}(v,u,t) = \frac{2 \left| \mathcal{P}_{\Omega_i}^{(off)}(v \leadsto u) \right| \cdot I(v,t)}{\left| \mathcal{P}_{\Omega_i}^{(off)}(v \leadsto \cdot) \right| + \left| \mathcal{P}_{\Omega_i}^{(off)}(\cdot \leadsto u) \right|},$$


Hybrid Diffusion Channel Extraction

Online ESN

Organizational Chart

Hybrid Diffusion Channel Extraction

- Meta path based hybrid diffusion channel extraction
- Followee-Manager: $Employee \xleftarrow{Social^{-1}} Employee$ $\xleftarrow{Supervision} Employee$, whose notation is Ψ_1 ,
- Followee-Subordinate: $Employee \xleftarrow{Social^{-1}} Employee$ $\xleftarrow{Supervision^{-1}} Employee$, whose notation is Ψ_2 ,
- Manager-Followee: $Employee \xleftarrow{Supervision} Employee$ $\xleftarrow{Social^{-1}} Employee$, whose notation is Ψ_3 ,

- Subordinate-Followee: $Employee \xleftarrow{Supervision^{-1}}$ $Employee \xleftarrow{Social^{-1}} Employee$, whose notation is Ψ_4 ,
- Followee-Peer: $Employee \xleftarrow{Social^{-1}} Employee$ $\xleftarrow{Supervision} Employee \xleftarrow{Supervision^{-1}} Employee$, whose notation is Ψ_5 ,
- Peer-Followee: $Employee \xleftarrow{Supervision} Employee$ $\xleftarrow{Supervision^{-1}} Employee \xleftarrow{Social^{-1}} Employee$, whose notation is Ψ_6 ,
- Hybrid information diffusion channels

$$\mathcal{C}^{(hyb)} = \{\Psi_1, \Psi_2, \Psi_3, \Psi_4, \Psi_5, \Psi_6\}$$

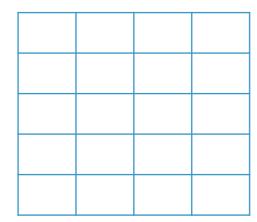
Information propagation weight quantification

$$w^{(hyb),i}(v,u,t) = \frac{2 \left| \mathcal{P}_{\Psi_i}^{(hyb)}(v \leadsto u) \right| \cdot I(v,t)}{\left| \mathcal{P}_{\Psi_i}^{(hyb)}(v \leadsto \cdot) \right| + \left| \mathcal{P}_{\Psi_i}^{(hyb)}(\cdot \leadsto u) \right|}.$$

Diffusion Channel Aggregation Function

$$f\left(\mathbf{w}^{(on)}(\cdot, u, t), \mathbf{w}^{(off)}(\cdot, u, t), \mathbf{w}^{(hyb)}(\cdot, u, t)\right)$$

$$= \frac{e^{\left(g(\mathbf{w}^{(on)}(\cdot, u, t)) + g(\mathbf{w}^{(off)}(\cdot, u, t)) + g(\mathbf{w}^{(hyb)}(\cdot, u, t)) + \theta_0\right)}}{1 + e^{\left(g(\mathbf{w}^{(on)}(\cdot, u, t)) + g(\mathbf{w}^{(off)}(\cdot, u, t)) + g(\mathbf{w}^{(hyb)}(\cdot, u, t)) + \theta_0\right)}},$$


$$g(\mathbf{w}^{(on)}(\cdot, u, t)) = \sum_{i=1}^{k^{(on)}} \alpha_i \cdot \sum_{v \in \Gamma_{out}^{(on), i}(u)} w^{(on), i}(v, u, t),$$

$$g(\mathbf{w}^{(off)}(\cdot, u, t)) = \sum_{i=1}^{k^{(off)}} \beta_i \cdot \sum_{v \in \Gamma_{out}^{(off), i}(u)} w^{(off), i}(v, u, t),$$

$$g(\mathbf{w}^{(hyb)}(\cdot, u, t)) = \sum_{i=1}^{k^{(hyb)}} \gamma_i \cdot \sum_{v \in \Gamma_{out}^{(hyb), i}(u)} w^{(hyb), i}(v, u, t),$$

Diffusion Channel Weighting and Selection

topics

$$lpha^*, eta^*, \gamma^*, heta_0^* = \arg\min_{lpha, eta, \gamma, heta_0} \|\mathbf{F} - \mathbf{H}\|_F^2$$

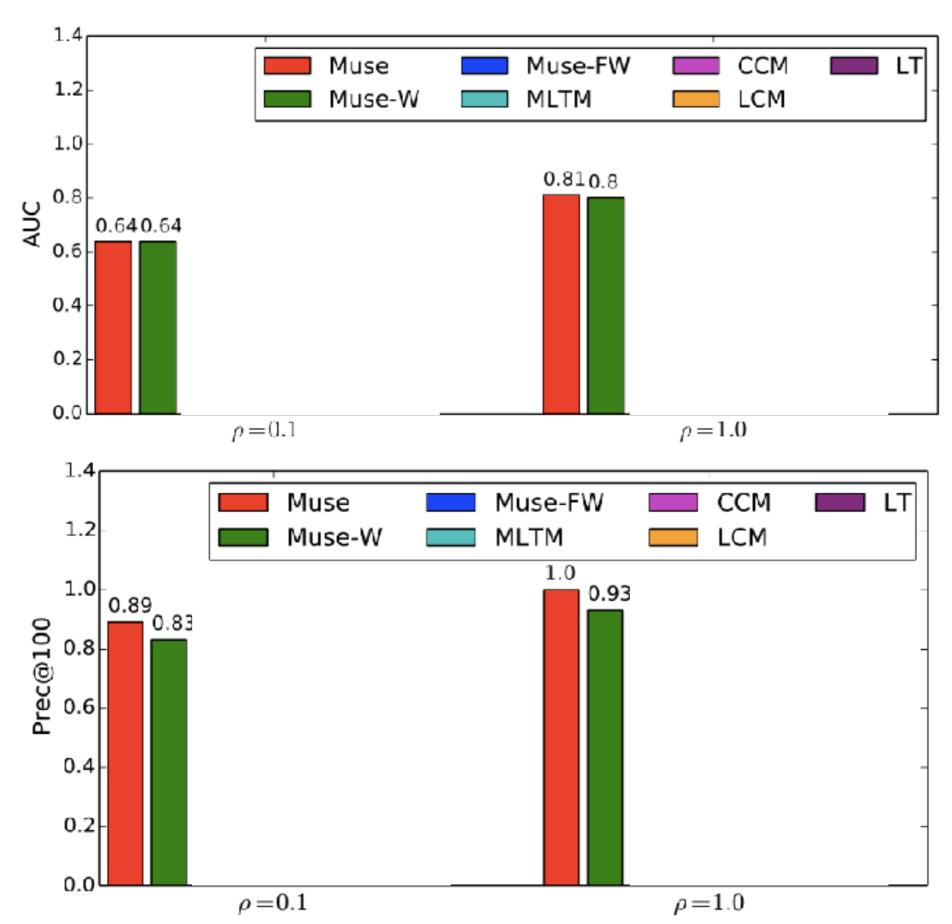
$$s.t. \sum_{i=1}^{k^{(on)}} \alpha_i + \sum_{i=1}^{k^{(off)}} \beta_i + \sum_{i=1}^{k^{(hyb)}} \gamma_i + \theta_0 = 1.$$

Channels with positive weights will be selected

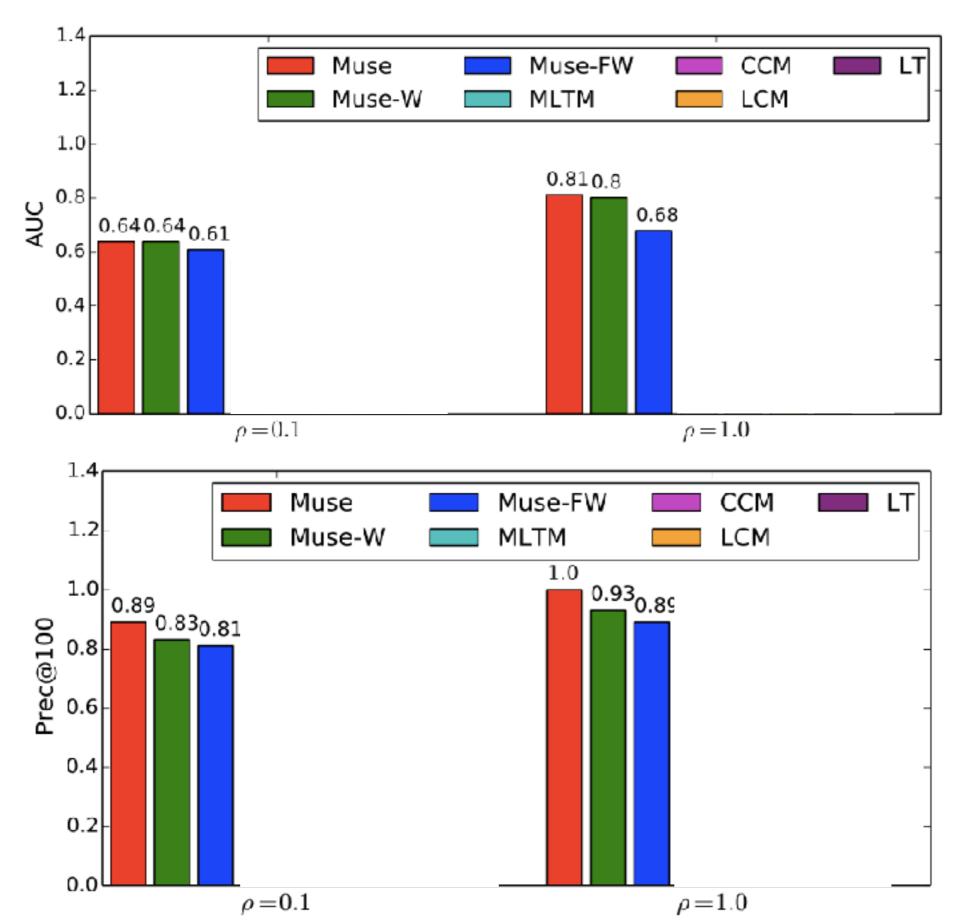
Experimental Dataset and Settings

Dataset¹

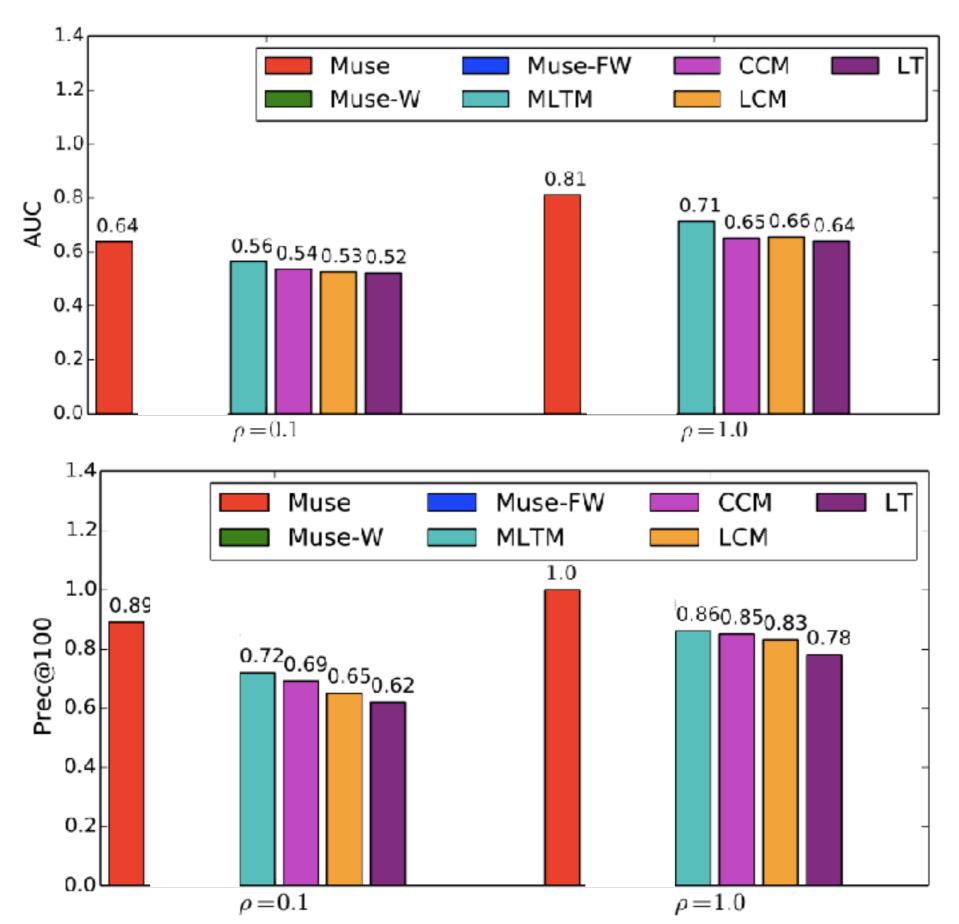
- Yammer used in Microsoft
 - covers all the user-generated content (such as posts, replies, etc.) and social graphs (such as user-user following links, user-group memberships, etc.)
- Complete organizational chart of all employees in Microsoft
 - includes more than 100k Microsoft employees
- Task: to infer the propagation of online social group information among employees
- Ground truth: Real-world employee group membership
- Information Topics: groups of different categories (work related, or personal interest oriented)


We are not able to reveal the actual numbers here and throughout the paper for commercial reasons.

Experimental Setting: continued


multi-source multi-channel multi-topic

- Comparison Methods
 - MUSE: our method, weight learning + channel selection
 - MUSE-W: our variant method, weight learning, no channel selection
 - MUSE-FW: our variant method, fixed weight, no learning
 - MLTM: single heterogeneous network only
 - CCM: single organizational chart only
 - LCM: multiple homogeneous networks
 - LT: single homogeneous LT model
- Evaluation Metrics
 - · AUC
 - Precision@100


Experimental Results

Experimental Results

Experimental Results

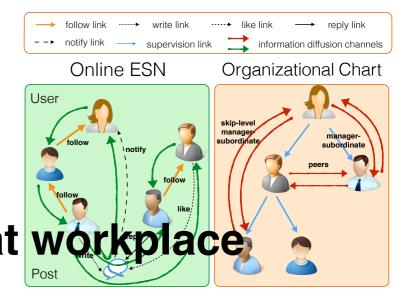
Experimental Results: Rank of different diffusion channels

Table	3.	Rank	of	different	diffusion	channels.
Table	o.	nank	OΙ	umerem	umusion	channels.

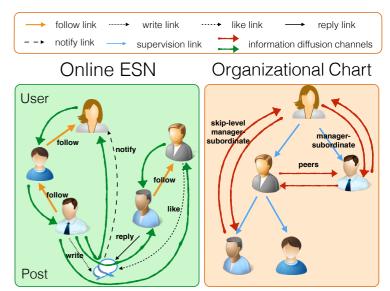
Table 3: Rank of different diffusion channels.					
Rank	Channal Notation	Channal Physical Meaning			
1	Ω_1	"Manager"			
2	Φ_1	"Followee"			
3	Ω_4	"2nd-Level Manager"			
4	Ψ_6	"Peer-Followee"			
5	Ψ_3	"Manager-Followee"			
6	Ω_3	"Peer"			
7	Φ_2	"Followee-Followee"			
8	Ψ_1	"Followee-Manager"			
9	Ψ_5	"Followee-Peer"			
10	Ψ_4	"Subordinate-Followee"			
11	Ψ_2	"Followee-Subordinate"			
12	Ω_2	"Subordinate"			
13	Ω_5	"2nd-Level Subordinate"			
14	Φ_3	"Reply Post"			
15	$\boldsymbol{\Phi_5}$	"Post Notification"			
16	Φ_4	"Like Post"			

Experimental Results: Rank of different diffusion channels

Table 3: Rank of different diffusion channels.


Table 5. Italik of different diffusion chamies.						
Rank	Channal Notation	Channal Physical Meaning				
1	Ω_1	"Manager"				
2	Φ_1	"Followee"				
3	Ω_4	"2nd-Level Manager"				
4	Ψ_6	"Peer-Followee"				
5	Ψ_3	"Manager-Followee"				
6	Ω_3	"Peer"				
7	Φ_2	"Followee-Followee"				
8	Ψ_1	"Followee-Manager"				
9	Ψ_5	"Followee-Peer"				
10	Ψ_4	"Subordinate-Followee"				
11	Ψ_2	"Followee-Subordinate"				
12	Ω_2	"Subordinate"				
13	Ω_5	"2nd-Level Subordinate"				
14	Φ_3	"Reply Post"				
15	Φ_5	"Post Notification"				
16	Φ_4	"Like Post"				
<u> </u>						

Observations:


- Influence: Manger > Peer >> Subordinate
- Hybrid channels are important
- Text content information is not important
- Short diffusion channels have higher weights

Summary

- Problem Studied: information diffusion at workplace
- Proposed Diffusion Channel: MUSE (multi-source multichannel and multi-topic information diffusion model)
 - Diffusion channel extraction: online, offline hybrid channels
 - Diffusion channel aggregation: with logistic function
 - Diffusion channel weighting and selection
- Experiments on Microsoft internal datasets
 - Yammer: enterprise online social network about Microsoft employees
 - Organization chart of Microsoft

Information Diffusion at Workplace

Q&A

Jiawei Zhang, Philip S. Yu, Yuanhua Lv and Qianyi Zhan jzhan9@uic.edu, yuanhual@microsoft.com, psyu@cs.uic.edu, qianyizhan@gmail.com

