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Abstract—Privacy preservation in location-based proximity
services has recently received considerable attention in geo-social
networks. Nearby friends notification and social discoveries are
two important types of location-based proximity services. A large
number of privacy protection methods have been proposed on
nearby friends notification, but few on social discoveries. Most
of existing protection methods on nearby friends notification
cannot be applied in social discoveries, since a secret key needs
to be shared between dynamic friends. In this paper, we address
the research challenges that the location privacy protection in
distance-based social discoveries. We propose a novel framework
DistSD for the distance-based social discovery with personalized
posterior screening. We also show that the problem that finding
an optimal safe group of nearby seeking users is NP-hard.
Two heuristic privacy enhanced social discovery algorithms are
proposed, which protect users’ locations from a service result
perspective. Experiments are conducted based on the real-life
data and experimental results validate the effectiveness and
efficiency of the proposed algorithms.

I. INTRODUCTION

With the advance of location-acquisition and mobile com-
munication technologies, location based proximity services
have become increasingly prevalent. Location-based proximity
service is a distance preserving service, notifying users about
other nearby users and showing their distances. According
to the strength of social relation in the social networks,
location based proximity services are classified into contact-
based nearby friends notifications (e.g., Swarm, Facebook
Place, PCube, etc.) and distance-based social discoveries (e.g.,
Wechat, Tinder, Momo, etc.). Many of these services have
already been adopted and used by millions of users, and the
number keeps growing steadily.

Contact-based nearby friends notifications (called nearby
friends for short) are based on the prerequisite that two
users are friends mutually. However, distance-based social
discoveries (called social discoveries for short) establish the
connection of two users based on the physical proximity, even
though the two users may not know each other before. For
example, assume that a new user just creates an account on
Tinder, a popular mobile dating service. The profile of the new
user, such as sexual orientation, marital status, salary etc., is
visible to any Tinder user who is in the proximity instantly.
Therefore, privacy protection is critically needed for social
discoveries.

In this paper, we focus on the location privacy protection
in social discoveries. Unfortunately, the existing social dis-
coveries are risking the user’s location privacy. It is reported
that some government had used a mobile dating app to
locate and imprison gay users [11]. It has also been proved
theoretically and experimentally that social discoveries can
render users vulnerability to trilateration attacks and distance-
free locating attacks [7], [4], [3], [11]. More sadly, employing
the current workflow, it is impossible to provide a safe social
discovery service for each user. From the perspective of data
management, the existing social discovery service is a typical
scenario for k nearest neighbors queries in a constrained space
(i.e., the proximity region specified by a user). It has been
proved in the recent work [16] that the existing methods for
secure nearest neighbor (SNN) queries [6], [14] are not secure,
and it is impossible to construct SNN in standard security
models [2].

We use an example in Fig. 1 to illustrate the case of location
disclosure in social discoveries. Assume that u, u1, u2 and
u3 are social discovery app users (e.g., mobile dating). u1

is interested in u but u refuses to meet u1 in person. u1

asks his friends u2 and u3 for help, and u is shown to be
nearby to these three malicious users (i.e., u1, u2, and u3)
concurrently. By utilizing the precise locations and proximity
distances of u1, u2 and u3, they can infer that u must locate
within the gray area (i.e., the shared proximity regions by u1,
u2 and u3) in Fig. 1. If u1, u2 and u3 continue to change
their locations, the gray area can shrink to an exact location.
A software agent has been developed in [4] to conduct the
above attack automatically. Users in a famous social network
was pinpointed within 5 meters of their exact locations [11].
An exact location exposure can cause serious problems, such
as unwanted advertisement, location-based spams/scams, and
even stalking. To differentiate the roles of user u from u1, u2,
and u3, u is called a discovered user, while u1, u2 and u3

are called seeking users. Generally, a user can be a discovered
user, a seeking user, or both.

In order to protect user’s location in social discoveries, we
propose a novel framework DistSD (Distance-based Social
Discovery with Personalized Posterior Screening). The intrin-
sic of DistSD is that a discovered user can show up in front of
seeking users selectively, instead of being discovered passively.
We illustrate our basic idea with the same example in Fig. 1.
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Fig. 1. Location disclosure

User u can choose to be noticeable or not be noticeable by u1,
when u enters u1’s proximity region (PR). On the contrary,
in current workflow, the information that u is nearby is sent
to u1, u2, and u3 without u’s consent or awareness. A nearby
record (i.e., u1 is notified that u is nearby) represents the
proximity information that u is near u1. Moreover, u can
choose a subset of nearby friends (e.g., u1 and u3 only) to
be notified of her appearance. If u appears on the nearby
friends list of u1 and u3, from the perspective of service
results, u’s location is inferred to be the blue region (i.e.,
the shared PRs by u1 and u3) in Fig. 1. If u accepts the
blue region size, u1 and u3 will be notified that u is nearby.
DistSD is personalized to screen each discovered user after
service requests are answered, which is called as a posterior
screening.

However, we face three main challenges in implementing
DistSD with posterior screening. First, the posterior screening
mechanism puts us in a dilemma. In a sense, the new workflow
in DistSD seems like a reverse range query, in which a
discovered user (i.e., u) asks which seeking user’s (i.e., u1, u2

or u3) PR covers the discovered user. A service result (i.e.,
u1 and u3) cannot be obtained without the user’s location,
whereas the user’s location is protected from the perspective
of the service result. Second, location protection and quality
of services (QoS) are a pair of conflicting requirements. As
we will show in Section IV, finding an optimal group of
seeking users is NP-hard. Thus, how to find a safe seeking
users set with a maximum group size effectively and efficiently
in mobile devices is challenging. Third, it is impractical to
make discovered users notify numerous nearby seeking users
manually. How can service providers (SPs) notify seeking
users automatically without inferring additional information?

In our proposed framework DistSD, a user doesn’t send any
location to SPs. The SP computes a user’s PR from the user’s
nearby records. Since the safety of the user location has been
verified on user’s mobile devices beforehand, the computed
PR will not violate the owner’s location privacy requirement.
The SP organizes all PRs into an index (e.g., HGrid or DGrid).
Mobile devices download a fraction of the index periodically.
With PRs information, a discovered user can notify seeking
users of her appearance selectively and automatically by any
of the two proposed algorithms, FBuck and LCF2. Before
connecting to seeking users, posterior privacy screening is
conducted to insure that the discovered user’s location is
protected from seeking users and SPs. No one knows a user’s
precise location except the user herself.

The contributions of this paper are summarized as follows.

• We propose a novel framework DistSD, in which a user
can determine whom she may share her proximity with,
rather than automatically give the location and thus leak
private information.

• We propose two algorithms FBuck and LCF2 in mobile
devices to achieve a balance between QoS and location
privacy protection.

• We propose a posterior screening mechanism in distance-
based social discoveries, which aims to protect the loca-
tion privacy on the basis of service results.

• A series of experiments is conducted on a real dataset to
evaluate the performance of our proposed algorithms.

The rest of the paper is organized as follows. We review
the related work in Section II. The new framework DistSD
is given in Section III. Section IV formally defines the
problem. Section V sketches out the basic idea of the proposed
algorithms. Two privacy-enhanced social discovery algorithms
FBuck and LCF2 are proposed in Section VI and Section VII
respectively. Section VIII presents the performance evaluation
results. Finally, the paper is concluded in Section IX.

II. RELATED WORK

A great of research efforts [8], [10], [1], [12] have been
devoted in investigating location privacy protection, that pre-
serves the privacy of mobile users and ensures the high quality
of LBSs. We categorize the existing location privacy protection
mechanisms into a priori protection and a posterior screen-
ing. In a priori protection mechanism, an actual location is
replaced with an obfuscated location before the query is issued.
The mainstream idea for location obfuscation [8], [10], [1]
includes generalization (e.g., spatial cloaking), cryptography
(e.g., PIR), generating dummies, and adding noise (e.g., geo-
indistinguishability). A priori privacy protection has been a
very active research area in points of interests retrieval in
LBSs in the last decade. In contrast, in a posterior screening
mechanism, the user’s location is protected from a query
result perspective after the query is answered. The obfuscated
location for each user is an uncertain region in our method.
However, the obfuscated location is computed from the service
results (i.e., nearby records) instead of being sent by the
user themselves. Thus, our work falls into the category of a
posterior screening.

Privacy protection on nearby friends has been extensively
studied in recent years [9], [13]. The basic idea is to allow
two friends to determine if they are in proximity based on
both spatial cloaking and encryption, which falls into the
category of a priori protection. One drawback of the existing
methods is that a proximate distance and a distance ranking
list between friends are revealed, which can result in location
disclosure [7]. Another one is that each user needs to share a
symmetric secret key with each of her friends. However, all
nearby users are considered as friends in social discoveries.
The set of friends changes dynamically, and the number of
potential friends for each user is large. Sharing a secret with
each friend dynamically seems to be impractical [9]. Thus,
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existing privacy protection methods on nearby friends cannot
be applied in social discoveries.

III. FRAMEWORK OF DISTSD
We employ a client-server architecture, including users and

SPs. None of the entities in the service space is trusted. Thus,
like most existing work [16], [6], we assume SPs and users
are semi-honest, who are honest but potentially curious. Since
the SP is un-trusted, the form of a user’s obfuscated location
owned by the SP has two options, i.e., an encrypted location
or an uncertain region. Users may prefer encrypted locations,
which indicate a strong privacy protection. However, to the
best of our knowledge, secure reverse range queries, that the
problem of finding encrypted regions where a user locates,
is still an open issue. Thus, a safe uncertain region is used
as a user’s obfuscated location in this paper. Note that, the
obfuscated location of a user is computed by the SP from
nearby records instead of being sent by the user herself.

SPs store users’ registration information and seeking users’
PRs. Each PR is extended from the user’s obfuscated location.
The SP organizes PRs as a grid based index (details in
Section VI-A and Section VII-A). Before using the social
discovery service, each user personalizes the minimum size
of obfuscated locations at the mobile device. Only the user
herself knows the size. The minimum uncertain size indicates
the maximum acceptable area, which the user allows other
un-trusted entities to know, e.g., SPs or curious friends. Users
in DistSD (i.e., mobile devices) download a fraction of PRs
of seeking users periodically. When a user uses the social
discovery service, the user aims to meet local new friends, that
implies a seeking user will stay at a location for a while. Thus,
we assume seeking users don’t update locations frequently.

When a user opens a social discovery app, a list of selective
nearby seeking users, whose PR covers the user’s location,
is recommended to the user by running any of the proposed
methods in mobile devices. The user’s location privacy is
posterior screened from the recommended seeking users. The
proximity information in the form of nearby records is sent
to the SP automatically. Based on the nearby records, the SP
notifies the corresponding seeking users that the discovered
user is nearby. Then, an obfuscated location of each discovered
user is inferred by the SP as the attack scenario described in
Fig. 1. The safety of the obfuscated location has been verified
in mobile devices (i.e., in our proposed methods) beforehand.
The SP extends the obfuscated location to a PR as the user’s
registration information. We use a rectangle for representing a
PR to simplify computation. The grid based index is updated
when a new seeking user with her correspond PR is inserted.
Each user has a valid time interval T , which is a system
parameter. If a user has no actions within T , e.g., being notified
or chatting, the user’s log-in information will expire and be
deleted from the SP.

Note that a PR is created from the user’s nearby records
indirectly. At the initial phase, the system will encounter a
cold startup problem. Since none of the users has nearby
records initially, the SP can get neither obfuscated locations

nor PRs. We resolve this problem in two ways. One method
is to employ venues check-in records in check-in services,
where a check-in record corresponds to a proximity record.
Many nearby friends services and venues check-in services
are combined in one app, such as Foursquare, Google+, and
etc. It is possible to borrow venues check-in records to start
the system. The other method is to employ a prior privacy
protection method to obtain an obfuscated location, which is
prevented from background knowledge attacks [12].

In summary, the work flow of DistSD is as follows. At
the client side: (1) The user specifies a minimum size of an
obfuscated location as the privacy requirement in the mobile
device. (2) A fraction of seeking users’ PRs are downloaded
periodically. (3) A list of posterior-privacy-screened seeking
users is recommended. The user can select to notify the seek-
ing user manually or automatically. (4) The nearby records are
sent to the SP. At the SP side:(1) The SP notifies the seeking
users in the nearby records that the discovered user is nearby.
(2) The SP infers an obfuscated location for each discovered
user from the nearby records. (3) When a discovered user
changes to be a seeking user, a PR is computed based on the
obfuscated location, and the gird based index is updated. (4)
When a user has no actions for T , the user is deleted from
DistSD.

Safety analysis: In our work, the protection target is the
user’s locations. Most of social discovery services require
users to use real name for safety considerations. Thus, we
don’t consider identity anonymization. From the SP side: The
locations of a user, that SPs have, include both an obfuscated
location and a PR. Since the latter one is extended from
the former one, the obfuscated location is the most accurate
location that the SP knows. Recall that an obfuscated location
is computed from the nearby records of the user. The safety
of the obfuscated location has been ensured with posterior
screening mechanism in our proposed methods before the
nearby records are sent to the SP. Thus, the location privacy
is protected from the semi-honest SPs.

From the users side: For a discovered user, the worst case
is that all the notified seeking users collude with each other. In
such a case, the information that the corrupted users can gather
is just the nearby records known by the SP. The exact location
of the discovered user can neither be broken down by the
SP as the above analysis, nor by the corrupted seeking users.
Meanwhile, the seeking user’s own locations cannot help them
to reduce the uncertainty of the discovered user’s location.
Thus, the accurate location of a discovered user is protected
from seeking users. On the other hand, if a discovered user is
malicious, the discovered user can only get the PR of a seeking
user, which satisfies the seeking user’s privacy requirement. In
another word, no one knows a user’s precise location in DistSD
except the user herself.

IV. PRELIMINARY

A. Attack model
Definition 1. (Footprints) A set of user u’s nearby records is
formalized as {⟨u, u1⟩ , ⟨u, u2⟩ , . . . , ⟨u, un⟩}. ⟨u, ui⟩ indicates
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TABLE I
INTERPRETATION OF SYMBOLS

term description
pt the smallest intersection rectangle of PRs
Upt the set of users related to pt
pru the proximity region of user u
FSu the footprints set of a discovered user u
minu u’s minimum uncertain requirement
OLF Su the obfuscated location of u w.r.t. FSu

locu the location of user u
l, r, b, t the left, right, bottom and top boundary of a

rectangle
δ the cell size of a DGrid G
ur a user rectangle
rc the tightest m-rect where a user locates
dvui the minimum perpendicular distance from u to the

rectangle boundary determined by ui

RM ty
d the number of remaining related users locating at

d far away after ty is opened

u is within ui’s PR, i.e. locu ∈ prui
(1 ≤ i ≤ n), where

locu is the location of u, and prui
is ui’s PR. u is called

a discovered user, and ui is called a seeking user. Seeking
users u1, u2, . . . , un constitute a footprints set FSu of the
discovered user u.

For the example in Fig. 1, u1, u2, and u3 can be notified
that u is nearby without considering location leakage. Then,
FSu = {u1, u2, u3}. From the view of social discovery
services, the users in FSu are the service results of u. Before
defining the attack formally, we give the definition of an
obfuscated location from a service result perspective.

Definition 2. (Obfuscated Location w.r.t. Footprints) Let FSu

be u’s footprints set. Each user ui ∈ FSu is associated with
a PR prui

. The obfuscated location of u w.r.t. FSu is defined
as OLFSu

= {p|p ∈
⋂

ui∈FSu

prui
}.

As the example in Fig. 1, the gray region is u’s obfuscated
location w.r.t. FSu = {u1, u2, u3}.

Recall the attack scenario in Section I, we observe that over-
share is an important factor of the location leakage. Without
u1’s friends support (i.e., u2, u3), u’s location cannot be
easily found out. A large number of friends based on physical
proximity in social discoveries worsen the over-share problem.
Thus, we define over-share discovery attacks as follows.
Definition 3. (Over-share Discovery Attacks) Let OLFSu

be
u’s obfuscated location w.r.t. the footprints set FSu. minu

is the minimum uncertain size (i.e. the privacy requirement)
specified by u. If size(OLFSu

) < minu, we regard u suffers
from an overshare discovery attack.

In order to prevent overshare discovery attacks, our objec-
tive is to find a footprints set FSu for the discovered user u,
such that the size of OLFSu

is not less than minu. Like most
existing privacy protection work [8], we specify the size of
OLFSu

as the area of the obfuscated location.

B. Problem Definition
Theorem 1 proves the maximum users that a user u can

notify without considering location privacy. For convenience,

Fig. 2. Pure rectangles

we first define pure rectangles before the specific proof.

Definition 4. (Pure Rectangles) A pure rectangle pt is a
rectangle that hasn’t been crossed by the boundaries of
any PRs. The set of users related to pt is represented as
Upt = {u|pt ⊆ pru}.

Pure rectangles can be obtained through partitioning the PRs
along certain borders of PRs. The users Upt related to pt are
the users whose PR covers pt. Fig. 2 shows the PRs of u1, u2,
and u3 are divided into 10 pure rectangles. The users related
to the pure rectangle labeled in 7⃝ are {u1, u2, u3}.

Theorem 1. Let pt be the pure rectangle where u locates,
Upt be the users related to pt, and FS Set be the set of all
possible footprints set of u. For ∀FS ∈ FS Set, FS ⊆ Upt.

Proof. We prove it by contradiction. Assume ∃FS′ ∈
FS Set, but FS′ ! Upt. It must ∃ui ∈ FS′, but ui ̸∈ Upt.
Since ui ∈ FS′, locu ∈ prui

. Since locu ∈ pt and pt is a
pure rectangle, pt ⊆ prui

. As Definition 4, ui ∈ Upt. That is
contradictory to our assumption. Proof done.

In the best case, if the area of pt is not less than minu, Upt

is just the target we aim to find. However, we consider the
opposite case that the area of pt is less than minu. We observe
that the obfuscated location of a user will become larger when
a user notifies a subset of Upt. In the above example, if u
notifies {u1, u3}, or {u1}, etc., minu may be satisfied. The
objective of our problem can be formally described as follows.

Goal: We aim to find a users set sbu for a discovered user u,
such that (1) sbu ⊂ Upt; (2) size(OLsbu

) ≥ minu; (3) ∀sb′u ⊂
Upt (sb′u ̸= sbu) and size(OLsb′u

) ≥ minu, |sbu| ≥ |sb′u|,
where |sbu| is the users number in sbu. The third condition
indicates sbu is one of the largest subsets of Upt that satisfies
the first two conditions.

Theorem 2. Finding a maximal subset sbu in Upt with the
constraint size(OLsbu

) ≥ minu is NP-complete.

Our problem can be exactly mapped to a classical frequent
item set selection problem by treating Upt as the complete
item set and sbu as the selected subset (whose occurrence
frequency is size(OLsbu

)). minu corresponds with the min-
imum frequency requirement. The problem of counting the
number of the maximal minu-frequent itemset in Upt has been
proven to be #P-complete in [15], i.e., the correspond maximal
frequent itemset mining problem is NP-complete. Therefore,
our problem is also NP-complete. For convenience, we list
the interpretations of primary symbols throughout the paper
in Table I.
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V. PROPOSED ALGORITHMS SKETCH

In order to achieve the above goal, our basic idea is to
divide the task into two parts. One part is to organize PRs on
the SP into an index, which is downloaded by mobile devices
periodically. With the help of a PR index, a mobile user can
find the covered PRs FSu efficiently. The complete contents
of a user in SPs include numerics, texts, images, graphs
(e.g., friends circles), and even videos, whose size could be
significant. It is impractical to download the complete contents
due to the constrained network bandwidth, device battery, etc.
Thus, we propose two grid-based indices (i.e., HGrid and
DGrid in Section VI-A and Section VII-A respectively) to
organize the PRs in SPs.

The other part is to find a maximum safe footprints in
mobile devices, which is the core of our proposed methods.
The basic process of finding a maximum safe footprints is as
follows. With the index downloaded from SPs and the user’s
own exact location, the users FSu whose PR covers the mobile
client’s location are found. Then, from this subset of FSu, the
corresponding intersection area of their PRs are computed.
Next, the intersection area is verified by the user’s uncertain
requirement minu. If minu is not satisfied, another subset of
FSu is checked. Finally, a maximum subset of FSu whose
PRs intersection area is not less than minu is returned as the
safe footprints.

Baseline: The naive method for finding the maximum safe
subset of FSu is the brute-force calculation. Specifically, we
enumerate each user combination in FSu with decreasing size
of users set, and compute the intersection area of their PRs.
As we know, enumeration each combination of a users set
is costly. As the number of seeking users in FSu increases
(e.g., several thousands in our experiments), the efficiency of
baseline will deteriorate. In order to improve the efficiency,
we propose two grid-based algorithms: a global algorithm
FBuck (in Section VI-B) and a local algorithm LCF2 (in
Section VII-B).

VI. FBUCK: GLOBAL FOOTPRINTS FINDING ALGORITHM

A. HGrid
A HGrid on the SP contains a grid and a hash table. The

grid just stores the seeking users identities, which helps mobile
clients to find the seeking users whose PR covers the client’s
location. Each cell in the grid maintains two linked lists: (1)
pl: a list that tracks the users whose PR covers the cell partly.
(2) fl: a list that stores the users whose PR covers the whole
cell. Meanwhile, a hash table saves the location of a user’s PR.
Each item in the hash table is (id, x1, y1, x2, y2), where id is
the seeking user identity, (x1, y1) and (x2, y2) are bottom-left
and top-right coordinates of the user’s PR respectively.

B. FBuck
Incorporating with the HGrid and the user location (x, y),

the users set FSu whose PR covers (x, y) are found. Different
from Baseline, we employ top items in four buckets to
compute the intersection area for each user combination from
FSu.

We first show the data structure of the bucket, and then
give the main idea of the algorithm. For simplicity, we name
four borders of a rectangle as left, right, bottom and top. Each
bucket represents one kind of PR bounds, that is, a left bucket
l buk, a right bucket r buk, a bottom bucket b buk, and a top
bucket t buk. The item in each bucket includes a user id and
a boundary coordinate pos of the PR on the x-axis (for l buks
and r buks) or the y-axis (for b buks and t buks). Using pos
as the key, l buk and b buk are sorted non-increasingly, and
r buk and t buk are sorted non-decreasingly. Fig. 3(a) shows
an example of four buckets for three users’ PRs.

We observe that the top items in the four buckets constitute
the smallest intersection rectangle (i.e., a pure rectangle) at
present. Based on this observation, the main idea is as follows.
The top items in the four buckets constitute a rectangle ur. If
ur.area < minu, a user du is selected among the four top
items, and is deleted from each bucket. The selection strategy
for user removing is in the next subsection. The new top items
shape into a new intersection rectangle. If the new rectangle
area is still less than minu, the above steps are repeated until
every bucket becomes empty or the area is not less than minu.
Algorithm 1 shows the details of FBuck.

Algorithm 1 FBuck
1: find the covering users FSu in the cell c;
2: init l buk,r buk,b buk,t buk by the PR of each ui in FSu;
3: sort items in l buk and b buk non-increasingly;
4: sort items in r buk and t buk non-decreasingly;
5: while l buk is not empty do
6: get the top item from each bucket;
7: a rectangle ur is formed from the top items;
8: if ur.area < minu then
9: du=the user selected to be removed;

10: delete du from the four buckets and FSu;
11: re-sort l buk, r buk, b buk, t buk;
12: else
13: return remaining users in FSu as the footprints;

Fig. 3 shows a running example of FBuck. The user u
(i.e., the small triangle in Fig. 3) is covered by the PRs
of {u1, u2, u3}. Initially, the top items in the four buckets
constitute a rectangle ABCD. The users in the current top
items are {u1, u2, u3}. If the area of ABCD is less than
minu, u3 is assumed to be deleted from each bucket. Then,
each bucket is shown in Fig. 3(b) after u3 is deleted. Now, the
new top items constitute a new rectangle EFGC. If the area is
not less than minu, {u1, u2} is returned as the safe footprints
set.

1) Removing Users Selection: Our basic user removing idea
is to delete the user whose PR borders limit or will limit
the size of the obfuscated location, such that the uncertain
requirement will be satisfied as early as possible. Before
specifying the selective metrics, we define two distances (i.e.,
inner distances and outer distances) between a discovered user
u and a seeking user ui.

Definition 5. (Inner Distance) Let FSu be a seeking users
set, pt be the intersection rectangle of PRs of users in FSu,
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Fig. 3. An example of FBuck (a) init state (b) removing u3

and the boundary users of pt be FSb
u(⊆ FSu). Assume that

a discovered user u locates in pt. For ∀ui ∈ FSu, the inner
distance

indist(u, ui) =

{

dvui
, if ui ∈ FSb

u,

∞, if ui ∈ FSu − FSb
u.

(1)

where dvui
is the minimum perpendicular distance from u to

the pt boundary determined by ui.

A small indist(u, ui) implies one of ui PR’s boundaries
limits the size of pt. If a user ui with the small inner distance
is removed earlier, the intersection area of PRs tends to become
larger.

Definition 6. (Outer Distance) pbl
ui

, pbr
ui

, ptl
ui

, ptr
ui

are the four
corner points of ui’s PR (ui ∈ FSu), that is the bottom-left
corner, the bottom-right corner, the top-left corner and the
top-right corner respectively. For ∀ui ∈ FSu, the outer
distance

outdist(u, ui) = MIN
p∈{pbl

ui
,pbr

ui
,ptl

ui
,ptr

ui
} ∧ p̸∈pt

(distpu)

where distpu is the distance between the location of u and
the point p.

A small outdist(u, ui) indicates ui’s PR may limit the
size of the obfuscated location later. In other words, a small
outdist(u, ui) implies a small available space to increase the
intersection area. Thus, the users with small outer distances are
expected to be removed earlier. We take u and u1 in Fig. 3(b)
as an example. indist(u, u1)= d1, and outdist(u, u1)= d2.

The options for selecting a removing user (line 9 in Algo-
rithm 1):

Option 1: A user with the minimum inner distance indist
is removed.

Option 2: A user with the minimum outer distance outdist
is removed.

Option 3: A user with the minimum indist × outdist is
removed.

VII. LCF2 :LOCAL CELL FOOTPRINTS FINDING
ALGORITHM

In FBuck, the whole PRs are downloaded by mobile clients.
The communication cost can be high. We observe that a city
is usually divided into independent districts on the basis of
different urban functions, geographical position, etc., which is

far greater than location uncertain requirements. For example,
Beijing contains 16 districts. In order to reduce the commu-
nication cost, we propose LCF2, which downloads a part of
PRs in a district, and finds a safe footprints set from local
PRs. The problem of how to divide a city is out of our scope.

A. DGrid: A Grid with Corner-Rect Departure Cells

We still use a grid to index the PRs. However, the PRs’
location information is stored in the cells of the grid.

1) Cells of a DGrid: Before elaborating the feature of
the DGrid, we first define the cell size. We observe that a
closed region is formed when a left l meets a right r on
the x-dimension, meanwhile, a bottom b meets a top t on
the y-dimension. This phenomena still holds when the four
borders belong to different users. The cell size is defined as
the minimum distance, at which an l meets an r or a b meets a
t when x-coordinates and y-coordinates increase respectively.
All PR’s x-coordinates (y-coordinates) of l and r (b and t)
constitute a set PRl and PRr (PRb and PRt) respectively.
PRl, PRr, PRb and PRt are sorted ascendingly.

Definition 7. (Cell Size) The cell size δ of a grid G is δ =
MIN(δx, δy), where δx = MIN

∀xl∈PRl,xr∈PRr,xr>xl

(xr − xl),
δy = MIN

∀yb∈PRb,yt∈PRt,yt>yb

(yt − yb). G is called a DGrid.

For a cell c in a DGrid, if an r and an l cross c at the same
time, the r must locate at the left of l. Similarly, if a t and a b
are in c simultaneously, the t must be below the b. In Fig. 4,
the dash square represents a cell. Fig. 4(a) shows the cases
when four kinds of PR’s borders cross c simultaneously, and
Fig. 4(b) shows a case which never occurs in a DGrid.

A corner rectangle is formed when a PR intersects with a
cell. For instance, a bottom-right corner rectangle (br-rect) is
formed when a PR intersects with a cell partly by a PR bottom
and a PR right. As shown in Fig. 4 (a), the corner rectangles
(i.e., br-rects, bl-rects, tr-rects, and tl-rects) in a cell depart
from each other. This property is formalized in Theorem 3.

Theorem 3. For any cell c in a DGrid G, if the right of a PR
pru and the left of another PR pru′ cross c simultaneously,
pru.xr ≤ pru′ .xl; otherwise, the right of pru and the left
of pru′ must locate at the right and left boundaries of c
respectively, where pr.xl and pr.xr are the x-coordinates of
pr’s left and right respectively. Similarly, if the top of pru and
the bottom of pru′ cross c simultaneously, pru.yt ≤ pru′ .yb;
otherwise, the top of pru and the bottom of pru′ must locate
at the top and bottom boundaries of c respectively, where
pr.yb and pr.yt are the y-coordinates of pr’s bottom and top
respectively.

Theorem 3 can be proved by contradiction. Due to space
limitation, the proof is omitted.

Definition 8. (m-rects) An m-rect is the intersection of a
user’s PR and a cell c. m is the number of m-rect boundaries
determined by a user’s PR. From Theorem 3, m ∈ {0, 1, 2}.
The other 4 − m boundaries are cell borders.
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Fig. 4. An illustrative example of Theorem 3

If m=0, the PR fully covers the cell c; otherwise, the PR
partly covers c. Fig. 5 (a) shows a DGird with three PRs. The
m-rect in the cell (6, 6) is a 0-rect, whose borders are all
the cell’s boundaries. On the other hand, a rectangle, whose
borders are all the boundaries of user’s PRs, is called a user
rectangle.

A cell contains several m-rects.

Definition 9. (Information in a Cell) Let G be a DGrid. The
information in each cell c ∈ G is formalized as (pos, rects).
pos = (cx, cy) is the location index of the cell in G. rects is
a collection of m-rect= (ty, ids, dist).

• If m = 0, ids are user identities whose PR covers c fully.
ty and dist are both null.

• If m=1, ty ∈ {l, r, b, t} represents that a left, right,
bottom or top border of PR crosses c; ids are the users
whose PR’s ty boundary crosses c ; dist is the width wid
of m-rect if ty ∈ {l, r} or the height hgt of m-rect if
ty ∈ {b, t}.

• If m = 2, ty ∈ {bl, br, tl, tr} represents a bottom-left,
a bottom-right, a top-left, or a top-right corner rectangle
in c, as Fig. 4(a) shows. ids = (idlr, idbt), where idlr

(idbt) are users whose PR’s left or right (bottom or top)
crosses c. dist = (wid, hgt), where wid (hgt) is the
width (height) of m-rect.

In Fig. 5 (a), the cell (5, 7) has three m-rects, i.e., an l rect,
a t rect, and a tl rect.

2) Inserting and Deleting Users: When a user u is deleted
from a DGrid G, the cells which are covered by pru are found.
Then, u is deleted from the corresponding m-rects in the cells.
When a new user u is inserted into G, the insertion methods
for fully covered cells and partly covered cells are different.
For fully covered cells, u is inserted into 0-rects. For partly
covered cells, there is a case that an (a) l (b) meets an (a) r (t)
in c, which will violate Definition 7. In this case, the affected
left (right, bottom, or top) of a user’s PR is shifted to the left
(right, bottom, or top) boundary of the cell. In other words, an
affected PR border is extended by no more than δ. Then, the
user is inserted into the corresponding m-rects. The detailed
insertion and deletion algorithms are omitted due to the space
limit.

B. LCF2

LCF2 employs the m-rects in local cells to find the safe
footprints. The basic idea is to extend the m-rect in the cell,
which the user is in, by the proper m-rects in neighbor cells,
such that a safe user rectangle is formed. The users related to
the safe user rectangle are the safe footprints.

Fig. 5. DGrid

The main procedure is as follows. LCF2 starts from a tight-
est m-rect where the user is (details in Section VII-B1). The
m-rect is extended to be a user rectangle ur by applying an
extending rule (details in Section VII-B2). If ur.area < minu,
ur is inserted into a stack st. While st is not empty, the
top item tm is got. According to a boundary selection rule
(details in Section VII-B3), one border of tm is opened.
According to the extending rules at opening points (details
in Section VII-B2), a new user rectangle nur is found. If
nur.area ≥ minu, the users related to nur are returned as
the safe footprints; otherwise, nur is inserted into st, and the
above steps are repeated.

We use an example to illustrate the main idea. To be clear,
we zoom in the cells (cx ∈ [4, 9] and cy ∈ [3, 8]) in Fig. 5(a)
and show them in Fig. 5(b). Assume that the user u locates in
the cell (6, 6). A 0-rect is found. As the extending rule for a
0-rect (i.e., Rule 0), an r-rect and an l-rect are found in the cell
(7, 6) and the cell (5, 6) respectively. A t-rect and a b-rect are
found in the cell (6, 7) and the cell (6, 5) respectively. Then,
four borders of a user rectangle are fixed ur = p1p2p3p4.
If ur.area < minu, ur is inserted into a stack. Now, the
top item in the stack is p1p2p3p4. As an opening boundary
selection rule, p3p4 is assumed to be opened. It means u1 is
removed, which results in p2p3 being opened as well. With
u1 being removed, ur changes to a special bl-rect, which
traverses more than one cell. As the extending rule at opening
points, a new user rectangle nur = p1p7p6p5 is got. Assume
nur.area ≥ minu, u2 and u3 related to p1p7p6p5 are returned
as the footprints. LCF2 is shown in Algorithm 2.

Algorithm 2 LCF2:Local Cell Footprints Finding Algorithm
1: locate the tightest m-rect rc using u’s location (x,y);
2: rc is extended to ur by applying extending rules;
3: insert ur into a stack st;
4: while st is not empty do
5: ur=get the top item from st;
6: if ur.area ≥ minu then
7: return users related to ur as the footprints;
8: if all four borders have been opened then
9: pop the top item from st;

10: else
11: open the boundary that hasn’t been opened;
12: extend the opened rectangle to a new user rectangle ur;
13: insert ur into st;

We continue to illustrate the details of LCF2 through
answering four questions: (1) Which m-rect is tightest when a
user locates in more than one m-rect? (2) What information of
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a user rectangle is saved in a stack? (3) What are the extending
rules for finding a user rectangle? (4) If minu is not satisfied,
which boundary is selected to be opened?

1) The Tightest m-rect and The Stack: Since more users are
expected to be returned as the safe footprints, we define the
priority order of m-rect as 2-rect>1-rect>0-rect. When a user
locates in more than one m-rects, a m-rect with the highest
priority is selected.

A user rectangle ur is inserted into a stack if ur.area <
minu. The stack is in a decreasing order with the number
of users related to ur as the key. Each item ur in the stack
includes: (1) the bottom-left and top-right coordinates of ur;
(2) users related to ur; (3) a bitstring representing whether the
left, right, bottom or top boundary has been opened. When four
boundaries have been opened, ur is popped from the stack.

2) Extending Rules: With the aim of locating new bound-
aries, the extending rules are used in two cases: one is to find
a user rectangle ur for a m-rect; the other is to find a new user
rectangle ur when some borders are opened. The extending
rules in the second case can be revised from the ones in the
first case. Thus, we show the extending rules of m-rects first.

Let rc be the tightest m-rect where a user locates. The basic
idea of extending is to find the corresponding types of m-
rects to locate a new left, right, bottom or top user boundaries
in neighbor cells. Due to Theorem 3, not every m-rect in a
cell needs to be checked. We only search the proper m-rects.
Taking 0-rects as an example, to locate a right bound, r-rects,
br-rects, and tr-rects are supposed to be checked. However, in
our method, only r-rects are used to locate the new right bound
(details see Rule 0). That is because neither br-rects nor tr-
rects will occur before an r-rect is encountered. This point is
assured by Theorem 3, which can be proved by contradiction.

Rule 0:(0-rects) Let the cell where the user locates be
(cx0

, cy0
). Starting from p = cx0

+ 1 (p = cx0
− 1), the

first r-rect (l-rect) found in the cell (p, cy0
) determines the

right (left) border of ur when p increases (decreases) by 1.
Symmetrically, starting from p = cy0

+ 1 (p = cy0
− 1), the

first t-rect (b-rect) found in the cell (cx0
, p) determines the top

(bottom) border of ur when p increases (decreases) by 1.
For an m-rect (m=1 or 2), m borders of ur have been fixed

by the m-rect itself. For instance, the right of ur inherits the
right of rc for r-rects (m=1). Thus, the rules for m-rects (m=1
or 2) are used to find the other 4-m unknown borders. The
searching idea is similar, which can be revised easily from
Rule 0. For space limit, the specific rules for m-rects (m=1
or 2) are omitted.

When a boundary of ur is opened, a new boundary is
expected to be found on the opened direction. If more than
one border is opened, a ur becomes a special m-rect. The
corresponding extending rules for m-rects are applied, but
the searching start cell changes to the ones where the opened
boundaries located. If only one border is opened, related m-
rects are checked on the opened direction. For example, if the
right is opened, the first tr-rect, br-rect or r-rect encountered
determines the new right. The start cell scanned is the cell
where the old right locates.

3) Removing Users Selection: Recall FBuck has three
options for removing users selection. However, Option 2 and
Option 3 in FBuck cannot be applied in LCF2, since LCF2

has no global PRs information. In addition, FBuck removes
users one by one. In order to improve the efficiency, we
propose three strategies for users removing on the basis of
the boundary. Each time a boundary is opened, all users on
the boundary are removed together. We revise Option 1 in
FBuck as follows on the basis of the boundary.

Option 1: Four borders are opened as the increasing border
score. The border score is defined based on the inner distance
and the number of boundary users.

Definition 10. (Score) Let NUMty be the number of ty
boundary users of ur, where ty ∈ {l, r, b, t}. The border score
is defined as scorety = indistty ∗ NUMty.

Option 1 aims to find a safe user rectangle earlier. Option 2
intends to obtain a large footprints set. However, it is unknown
when minu will be satisfied, and how many users will remain
when different boundaries are opened. Thus, we estimate the
number of remaining users in an safe obfuscated location with
different boundaries being opened. d = minu−AREA(ur)

MIN(wid,hgt) is the
farthest distance by which ur is extended to achieve minu.
The number of remaining users RM ty

d , who locate at d far
away from ur in the ty direction, is counted, where ty ∈
{l, r, b, t}. If RM ty

d in any direction is 0, d is divided by 2
until RM ty

d ̸= 0. Based on this idea, we propose Option 2.
Option 2: The larger RM ty

d is, the sooner ty is selected to
be opened.

Option 3: The boundaries are opened in a random order, but
the horizontal and vertical directions are selected alternately.
For example, a random opening order is {r, b, l, t}.

VIII. PERFORMANCE EVALUATION

In this section, the effectiveness and efficiency of our
proposed algorithms, FBuck and LCF2, are experimentally
evaluated under different system settings. The evaluation met-
rics include the downloaded PRs size, query time, location
protection cost at the client’s site, and index updating time
at the server site. None of the existing algorithms considers
a social discovery service with posterior privacy screening.
Hence, we only compare FBuck and LCF2 with the baseline.
The algorithms are implemented in C++ and evaluated on a
desktop running Windows 7 with an Intel Core 2.1GHz CPU
and 4GB main memory.

To the best of our knowledge, no real large-scale social
discovery datasets have been publicly released to date. There-
fore, we use a real check-in data crawled from Foursquare [5],
which has more than 20 million users and 2 billion check-
ins records. We extract the most dense 64*64 km2 subspace
as a service space. Real venues simulate seeking users, and
real check-in users are discovered users. A total of 20,238
simulated users are in the space. The cell size of the grid is
set to 0.3% of the space width. By default, the proximity range
R for each seeking user is 4% of the space width. For each
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discovered user, the width of location uncertain requirement
is 200 m.
A. Different Options for Removing User Selection

Different selections on removing users affect the query time
and the location protection cost. Query time is the time to find
safe footprints at the client site. Location protection cost is
how much QoS is sacrificed to protect privacy. The cost is
evaluated by (1- |FSu|

|Upt|
), where FSu (Upt) is the footprints set

with (without) privacy protection. Based on the experimental
results, a default option for removing users selection is set for
LCF2 and FBuck in the following experiments.

For LCF2, Option 3 shows the best query time in Fig. 6(a).
Option 1 is slighter higher than Option 3, whereas Option 2
is the worst. That is because more time is spent by Option
2 on finding the direction with the most remaining seeking
users iteratively. In contrast, the location protection cost using
Option 2 is minimum among the three options (see Fig. 6(b)).
Though the location protection cost for Option 3 is higher
than Option 2, less than 2% redundant cost is sacrificed.
Considering the tradeoff between short query time and low
query cost, we apply Option 3, a random selection, as the
default setting for LCF2.
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Fig. 6. Different removing users selection options

For FBuck, we observe that Option 3 shows the best perfor-
mance on both query time and location protection cost. That
is because Option 3 considers both inner distances and outer
distances. Thus, Option 3 is used as the default setting. We
also observe that the performance using Option 2 and Option
3 looks similar. That implies the effect of outer distances
dominates inner distances. Comparing the performances of
Option 1 between FBuck and LCF2, we can see that the query
time of LCF2 is better than FBuck, since several users are
removed when a boundary is opened. In contrast, the location
protection cost of LCF2 is higher than FBuck.
B. Different Minimum Uncertain Requirements

Since Baseline and FBuck both use the HGrid, Baseline is
not included in evaluation on size of downloaded PRs and
index updating time. The PRs downloaded size indicates the
communication cost between mobile devices and SPs. Recall
that LCF2 downloads a partial PRs. In our experiments, we
evaluate the downloaded size in the densest sub-space. The
size of the sub-space is 100 times to the most constraint
uncertain requirement. Fig. 7(a) shows the effect of minu

on the size of downloaded PRs. The downloaded PRs size
doesn’t change for the two methods. Since the global PRs are
downloaded, the downloaded size of FBuck is about two times

larger than LCF2. More sophisticated pruning techniques can
be done on the SP site to reduce the download size, which
due to space limitation is beyond the scope of this paper.

Fig. 7(b) shows the trend of query time at various minu

settings. The actual query time of Baseline is too worse to be
shown. In order to improve the efficiency of Baseline, we apply
an approximate computation that an anchor is used to represent
the users with a group of close PRs. The query time of three
methods increases with minu, since a user requires a large
obfuscated location. Among three algorithms, Baseline shows
the worst query time even though an approximate computation
is employed. When minu is small (less than 1502), FBuck is
faster than LCF2, since LCF2 spends more time on searching
proper m-rects in neighbor cells. When minu continues to
increase, LCF2 becomes the best one. The reason is that, when
minu becomes large, more users are removed to enlarge the
intersection area. FBuck iterates to delete the proper users one
by one. By contrast, a boundary is opened by LCF2, which
removes several users once.

Fig. 7(c) shows that the location protection costs of three al-
gorithms increase with minu increasing. Since Baseline finds
a maximum footprints set greedily, the location protection cost
of Baseline is smallest among three algorithms. Global PRs
is used in FBuck. Thus, the location protection cost of FBuck
is smaller than LCF2 at most cases. When minu increases
to 3002, LCF2 outperforms FBuck. Generally, global PRs
information is helpful to find a safe footprints set with small
privacy protection cost.

The index updating time are the insertion time and deletion
time at the SP, when a user with PR is inserted into or deleted
from the index. For GDrid, the insertion time dominates the
deletion time. Recall in a DGrid, certain user’s PRs are shifted
to the cell boundary due to Theorem 3. As a result, an insertion
may lead to several users deletions and re-insertions. Thus, we
utilize the average insertion time to show the change trend of
the index updating time. Fig. 7(d) shows increasing minu has
no effect on the insertion time. As expected, the insertion time
of HGrid is much smaller than DGrid. Even so, the average
insertion time of DGrid is about 0.06s, which is acceptable
for SPs.

C. Different Proximity Ranges
In this section, the range (R) of PR varies in [1%, 4%] of

the space width. Fig. 8(a) shows the changes of downloaded
PRs size. In general, the downloaded size increases with R.
Increasing R indicates more PRs intersect with each other, and
more information needs to be saved in an index. Specifically,
an enlarged PR covers more cells, thus the grid size increases
for FBuck; the number of m-rects in a cell also increases for
LCF2. When R is 1% of the space width, the downloaded
size of FBuck and LCF2 is similar. When R continues to
enlarge, the advantage of partly downloading is obvious. LCF2

outperforms FBuck. Fig. 8(b) shows the query time of three
algorithms increases with R enlarging, since a user locates in
more seeking user’s PRs. Since Baseline is a greedy algorithm,
its query time grows exponentially when R increases. Though
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the query time of FBuck and LCF2 also increases, their rise
rates are very small. When R increases to 4%, the query time
of FBuck is 0.08s, while LCF2 needs 0.03s.

From Fig. 8(c), we observe that the location protection
cost of three algorithms decreases with the increase of R.
That is because the intersection area of PRs becomes large
on average. Then, fewer users are removed from a candidate
users set to satisfy the personalized uncertain requirements.
For location protection cost, FBuck and Baseline outperform
LCF2 at all settings. When R is small, the cost gap between
LCF2 and FBuck (Baseline) is obvious. When R is large, the
gap shrinks. Similar to Fig. 7(d), the insertion time of HGrid is
better than DGrid. From Fig. 8(d), enlarging R has little effect
on the insertion time for HGrid. The insertion time of DGrid
increases sharply. The number of m-rects in a cell increases
with R. As a result, DGrid takes more time on affected users
deletions and re-insertions.

IX. CONCLUSION

In this paper, we investigated two privacy enhanced social
discovery algorithms with posterior screening. We observed
that traditional social discoveries cannot provide secure ser-
vices in standard security model. To address this problem,
we propose a novel framework DistSD, where a discovered
user’s location privacy is ensured through posterior screening
in mobile devices. Two heuristic algorithms (FBuck and LCF2)
are proposed under the new framework. Experimental results
show that FBuck has the best efficiency at the server site, but
the downloaded size is high. LCF2 has a small downloaded
size and the best query efficiency at client site, whereas
the location protection cost is a little high but acceptable.
Considering a limited network bandwidth, LCF2 achieves a
good tradeoff between the privacy protection and the query
cost.
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