

PNA: Partial Network Alignment with Generic Stable Matching

Jiawei Zhang¹, Weixiang Shao¹, Senzhang Wang², Xiangnan Kong³, and Philip S. Yu^{1,4}

¹ University of Illinois at Chicago, Chicago, IL, USA
 ² Beihang University, Beijing, China
 ³ Worcester Polytechnic Institute, Worcester, MA, USA
 ⁴ Institute for Data Science, Tsinghua University, Beijing, China

Users participate in multiple social networks simultaneously

Problem Studied: Social Network Alignment via Shared Common Users

Proposed Network Alignment Framework: PNA (Partial Network Aligner)

 step 1: potential anchor link inference with information across networks Motivations: use the heterogeneous information across social networks to infer the existence probabilities of potential anchor links.

Motivations: networks studied in this paper are partially aligned, and each user in a network can be connected to at most one user in another network.

 step 2: network matching to prune redundant non-existing anchor links

Step 1: inferring potential anchor links across networks

• Proposed Method: Supervised Anchor Link Prediction

Challenge 1: Class Imbalance

training set

Pos

Negative

Proposed Solution 1: Down Sampling the Negative Links

- Distributions of Negative Links in the Feature Space
 - Safe Negative Links
 - Borderline Negative Links
 - Noisy Negative Links

Noisy

Negative

Redundant Negative Links

Redundant

Negative

Challenge 1: Class Imbalance

training set

Pos

Negative

• Proposed Solution 2: **Over Sampling** the Positive Links

- Synthetic Positive Links
 Generation in the Feature Space
 - generate random synthetic positive instances between pairs of positive instances in the feature space

Challenge 2: Network Heterogeneity & Feature Extraction

Information Types: Who Where What When

Proposed Solution: Anchor Meta Paths

bridge node: nodes (besides users) shared across networks

- feature extracted for anchor link (u⁽ⁱ⁾, v^(j)) based on anchor meta path Ψ
 - number of anchor meta path instances connecting $u^{(i)}\,\text{and}\,v^{(j)}$

- Common Out Neighbor Anchor Meta Path (Ψ_1) : $User^{(i)}$ $\xrightarrow{follow} User^{(i)} \xleftarrow{Anchor} User^{(j)} \xleftarrow{follow} User^{(j)}$ or " $\mathcal{U}^{(i)} \rightarrow \mathcal{U}^{(i)} \leftrightarrow \mathcal{U}^{(j)} \leftarrow \mathcal{U}^{(j)}$ " for short.
- Common In Neighbor Anchor Meta Path (Ψ_2): $User^{(i)} \xleftarrow{follow} User^{(i)} \xleftarrow{Anchor} User^{(j)} \xrightarrow{follow} User^{(j)} \text{ or } "\mathcal{U}^{(i)} \leftarrow \mathcal{U}^{(i)} \leftrightarrow \mathcal{U}^{(j)} \rightarrow \mathcal{U}^{(j)}"$.
- Common Out In Neighbor Anchor Meta Path (Ψ_3): $User^{(i)} \xrightarrow{follow} User^{(i)} \xleftarrow{Anchor} User^{(j)} \xrightarrow{follow} User^{(j)} \text{ or "}\mathcal{U}^{(i)} \rightarrow \mathcal{U}^{(i)} \leftrightarrow \mathcal{U}^{(j)} \rightarrow \mathcal{U}^{(j)}$.
- Common In Out Neighbor Anchor Meta Path (Ψ_4): $User^{(i)}$ $\xleftarrow{follow}{} User^{(i)} \xleftarrow{Anchor}{} User^{(j)} \xleftarrow{follow}{} User^{(j)}$ or " $\mathcal{U}^{(i)} \leftarrow$ $\mathcal{U}^{(i)} \leftrightarrow \mathcal{U}^{(j)} \leftarrow \mathcal{U}^{(j)}$ ".
- Common Location Checkin Anchor Meta Path 1 (Ψ_5): User⁽ⁱ⁾ \xrightarrow{write} Post⁽ⁱ⁾ $\xrightarrow{checkin \ at}$ Location $\xleftarrow{checkin \ at}$ Post^(j) \xleftarrow{write} User^(j) or " $\mathcal{U}^{(i)} \to \mathcal{P}^{(i)} \to \mathcal{L} \leftarrow \mathcal{P}^{(j)} \leftarrow \mathcal{U}^{(j)}$ ".
- Common Location Checkin Anchor Meta Path 2 (Ψ_6): User⁽ⁱ⁾ \xrightarrow{create} List⁽ⁱ⁾ $\xrightarrow{contain}$ Location $\xleftarrow{checkin at}$ Post^(j) \xleftarrow{write} $User^{(j)}$ or " $\mathcal{U}^{(i)} \to \mathcal{I}^{(i)} \to \mathcal{L} \leftarrow \mathcal{P}^{(j)} \leftarrow \mathcal{U}^{(j)}$ ".
- Common Timestamps Anchor Meta Path (Ψ_7): $User^{(i)} \xrightarrow{write} Post^{(i)} \xrightarrow{at} Time \xleftarrow{at} Post^{(j)} \xleftarrow{write} User^{(j)}$ or " $\mathcal{U}^{(i)} \rightarrow \mathcal{P}^{(i)} \rightarrow \mathcal{T} \leftarrow \mathcal{P}^{(j)} \leftarrow \mathcal{U}^{(j)}$ ".
- Common Word Usage Anchor Meta Path (Ψ_8): $User^{(i)} \xrightarrow{write} Post^{(i)} \xrightarrow{contain} Word \xleftarrow{contain} Post^{(j)} \xleftarrow{write} User^{(j)}$ or " $\mathcal{U}^{(i)} \to \mathcal{P}^{(i)} \to \mathcal{W} \leftarrow \mathcal{P}^{(j)} \leftarrow \mathcal{U}^{(j)}$ ".

score_{Ψ} $(u^{(i)}, v^{(j)}) = \left| \{ \psi | (\psi \in \Psi) \land (u^{(i)} \in T_1) \land (v^{(j)} \in T_k) \} \right|$

Step 2: Network Matching to Prune Non-existing Anchor Links

- Motivations:
 - constraint on anchor links is **1-to-1**, according to existing works
 - networks studied in this paper are partially aligned, many users are not connected to anchor links
 - revised constraint on anchor links is **1-to-1**≤ (one-to-at most one)
 - how to keep the 1-to-1≤ constraint and prune redundant nonexisting anchor links is very challenging

Proposed Solution of 1-to-1 Constraint: Stable Matching

Proposed Solution of 1-to-1≤ Constraint: Self Matching and Generic Stable Matching

stable matching result

- Self Matching: users who are shared common users prefer to stay unconnected
- Generic Stable Matching: Stable matching (for shared users) which also allows self matching (unshared users)
- How to do self matching and generic stable matching?

Self Matching and Generic Stable Matching

Preference List

place the user himself at the (K+1)th entry

Truncated Preference List

 K: partial matching rate, used to control the length of users' preference list, whose sensitivity analysis will be given in the experiments

Pseudo-code of Generic Stable Matching of Networks

Algorithm	1	Generic	Gale-Shapley	Algorithm
-----------	---	---------	--------------	-----------

Input: user sets of aligned networks: $U^{(1)}$ and $U^{(2)}$. classification results of potential anchor links in \mathcal{L} known anchor links in $\mathcal{A}^{(1,2)}$ truncation rate K

Output: a set of inferred anchor links \mathcal{L}'

- 1: Initialize the preference lists of users in $\mathcal{U}^{(1)}$ and $\mathcal{U}^{(2)}$ with predicted existence probabilities of links in \mathcal{L} and known anchor links in $\mathcal{A}^{(1,2)}$, whose existence probabilities are 1.0
- 2: construct the truncated strategies from the preference lists
- 3: Initialize all users in $\mathcal{U}^{(1)}$ and $\mathcal{U}^{(2)}$ as free
- 4: $\mathcal{L}' = \emptyset$
- 5: while \exists free $u_i^{(1)}$ in $\mathcal{U}^{(1)}$ and $u_i^{(1)}$'s truncated strategy is non-empty **do**
- 6: Remove the top-ranked account $u_j^{(2)}$ from $u_i^{(1)}$'s truncated strategy

7:	if $u_{j}^{(2)} == u_{i}^{(1)}$ then
8:	$\mathcal{L}' = \mathcal{L}' \cup \{(u_i^{(1)}, u_i^{(1)})\}$
9:	Set $u_i^{(1)}$ as stay unconnected
10:	else
11:	if $u_j^{(2)}$ is free then
12:	$\mathcal{L}' = \mathcal{L}' \cup \{(u_i^{(1)}, u_j^{(2)})\}$
13:	Set $u_i^{(1)}$ and $u_j^{(2)}$ as occupied
14:	else
15:	$\exists u_p^{(1)}$ that $u_j^{(2)}$ is occupied with.
16:	if $u_j^{(2)}$ prefers $u_i^{(1)}$ to $u_p^{(1)}$ then
17:	$\mathcal{L}' = (\mathcal{L}' - \{(u_p^{(1)}, u_j^{(2)})\}) \cup \{(u_i^{(1)}, u_j^{(2)})\}$
18:	Set $u_p^{(1)}$ as free and $u_i^{(1)}$ as occupied
19:	end if
20:	end if
21:	end if
22:	end while

Dataset

TABLE I PROPERTIES OF THE HETEROGENEOUS NETWORKS

		network			
	property	Twitter	Foursquare		
# node	user	5,223	5,392		
	tweet/tip	9,490,707	48,756		
	location	297,182	38,921		
# link	friend/follow	164,920	76,972		
	write	9,490,707	48,756		
	locate	615,515	48,756		

- # anchor links: 3,388
- Ground truth: existing anchor links
 - Hide part of the anchor links, and build models to discover them

Experiment Settings

- Comparison Methods:
 - PNAomg: Link Prediction (Over Sampling) + Generic Stable Matching
 - PNADMG: Link Prediction (Down Sampling) + Generic Stable Matching
 - PNAom: Link Prediction (Over Sampling) + Traditional Stable Matching
 - PNADM: Link Prediction (Down Sampling) + Traditional Stable Matching
 - PNAo: Link Prediction (Over Sampling)
 - PNAD: Link Prediction (Down Sampling)
 - MNA: Link Prediction without Sampling + Traditional Stable Matching
 - MNA-no: Link Prediction without Sampling

	РNА омд	PNA dmg	РНАом	PNA DM	ΡΝΑο	PNA D	MNA	MNA-no
over sampling								
down sampling								
generic stable matching								
traditional stable matching								

• Evaluation Metrics: Accuracy, AUC, F1

Effectiveness of Sampling Methods

Remarks: PNAo, PNAD and MNA-no are

identical, except

- PNAo uses over sampling to hand class imbalance issue
- PNAD uses down sampling to deal with class imbalance problem
- MNA-no doesn't use any sampling methods at all

(b) AUC: neg. pos. rate

θ: class imbalance rate, i.e., negative instance/positive instance

Observation:

PNA₀, PNA_D can outperform MNA-no consistently for networks with different η and θ

Explanation:

Over sampling and down sampling works well in dealing with the class imbalance problem

Experiment Results

η: percentage of existing anchor links

			anchor link sampling rate η						
	Methods	0.1	0.2	0.3	0.4	0.5	0.6	0.7	4
	PNAomg	0.964	0.966	0.973	0.967	0.987	0.989	0.981	
Acc	PNADMG	0.960	0.974	0.961	0.976	0.983	0.975	0.982	
	PNAOM	0.942	0.938	0.948	0.945	0.954	0.960	0.970	
	PNADM	0.940	0.951	0.949	0.929	0.949	0.947	0.969	2
	MNA	0.917	0.918	0.922	0.922	0.931	0.937	0.940	
	PNAo	0.905	0.907	0.915	0.915	0.918	0.927	0.926	ļ
	PNAD	0.905	0.908	0.911	0.912	0.915	0.926	0.923	
	MNA_no	0.895	0.899	0.901	0.907	0.916	0.921	0.922	
	PNAomg	0.280	0.375	0.442	0.496	0.615	0.717	0.776	'
	PNADMG	0.283	0.374	0.412	0.481	0.589	0.658	0.783	
	PNAOM	0.230	0.318	0.384	0.452	0.543	0.638	0.723	,
F1	PNADM	0.239	0.324	0.369	0.424	0.526	0.593	0.716	
	MNA	0.211	0.267	0.375	0.420	0.496	0.578	0.705	
	PNAo	0.014	0.054	0.211	0.210	0.305	0.402	0.413	
	PNAD	0.010	0.048	0.131	0.165	0.257	0.380	0.365	
	MNA_no	0.004	0.021	0.042	0.067	0.232	0.322	0.339	_

in this table, class imbalance rate θ , i.e., negative/positive = 10

Observations:

- 1. All the methods achieve better results as η increases
- Accuracy score achieved by all methods are very high
- 3. PNAomg (PNADMG) performs better than

PNAOM (PNADM)

- 4. PNAOM and PNADM achieves better results than MNA
- 5. PNAom (PNAdm and MNA) out-perform PNAo (PNAd and MNA-no)

Explanations

- 1. more anchor links, more training instances to build models
- 2. due to the class imbalance problem, all these methods can make correct prediction of negative links easily and achieve high accuracy
- 3. generic stable matching and self matching works better for partial network alignment than traditional stable matching
- 4. over sampling and down sampling works well in addressing the class imbalance problem
- 5. stable matching is helpful for pruning nonexisting anchor links

Parameter Analysis

- **Observations:** for networks with lower class imbalance rates and alignment rate (e.g., θ =5, η =0.4)
- the optimal "partial alignment rate" K for methods PNAomg and PNAdmg is 1, i.e., the optimal matching results are candidates with the highest prediction scores
- performance of PNAomg and PNAdmg will become worse as K increases from1 to 5
- as K further increases, it will have no effects on PNAomg and PNAdmg, as candidates which are far behind in the preference list will never be selected in the matching result

Observations: for networks with higher class imbalance rates and alignment rate (e.g., θ =50, η =0.9)

- the optimal "partial alignment rate" K for methods PNAomg and PNAdding are 3 and 5 respectively,
- performance of PNAoмg (PNAdmg) will become worse as K increases from1 to 3 (1 to 5), but drops are K increases to 10
- as K further increases, it will have no effects on PNAomg and PNAdmg, as candidates which are far behind in the preference list will never be selected in the matching result

Summary

- In this paper, we study the partial network alignment problem.
- A 2-phrase network alignment framework, PNA, is introduced to address the problem
 - step 1: supervised anchor link prediction
 - over sampling/down sampling to handle the class imbalance problem
 - extract features from across the heterogeneous networks based on a set of anchor meta paths
 - step 2: partial network matching with Generic Stable
 Matching to maintain the 1-to-1≤ constraint on anchor links
 - self matching is introduced to deal with unshared users

PNA: Partial Network Alignment with Generic Stable Matching

Q&A

Jiawei Zhang¹, Weixiang Shao¹, Senzhang Wang², Xiangnan Kong³, and Philip S. Yu^{1,4}

jzhan9@uic.edu,wshao4@uic.edu, szwang@cse.buaa.edu.cn, xkong@wpi.edu,

UNIVERSITY OF ILLINOIS AT CHICAGO

