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Traditional social link prediction in one single social network

Temporal Activities

Locations Social Links

" 8AM12PM 4PM 8PM 11 PM

Contents: Tweets



Users use multiple social networks simultaneously
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Predicting social links in multiple
aligned networks simultaneously

Network 2 Network 1




class imbalance problem &SI  non-existing links
negative instances >> n ¢ 1=

8

positive instances negative links

non-existing links
should be
/“us" s D unlabeled !inks

network structure

informa
feature v

Supervised link
prediction ==> Positive
Unlabeled (PU) link

i — g. (us prediction
ul y T -
4PV Learning: How to find
link to be predicted

~ e Teliable negative links?
(us,uq) [ T » P WP 14DEl/SCoTe

model



Reliable Negative Links Extraction
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PU Link Prediction Setting
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Heterogeneous Information
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Network Schema
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Intra-network social meta paths
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Definition 10 (Intfa—Network Social Meta Path): For a

. R R R
given meta path ® = Ty — Tp —> ... 7N Ty de-

fined based on Sg, if 71 and Tk are both the “User” node
type, then P is defined as a social meta path. Depending on
whether 77,--- T, and Ry, .-, Rx—1 are the same or not,
P can be divided into two categories: homogeneous intra-
network social meta path and heterogeneous intra-network
social meta path.

Homogeneous Intra-Network Social Meta Path
e ID 0. Follow: User 22%2% User, whose notation is
“U— U” or ®o(U,U).
follow follow
e ID 1. Follower of Follower: User —— User —»
User, whose notation is “U — U — U” or ®,(U,U).

follow

e ID 2. Common QOut Neighbor: User —— User

follow ™1

User, whose notation is “U — U + U” or ®,(U,U).

follow

e ID 3. Common In Neighbor: —)

follow
—

User User

User, whose notation is “U < U — U” or
®3(U,U).

Heterogeneous Intra-Network Social Meta Path

contain

e ID 4. Common Words: User LT Post
write™

Word <24, post —) User, whose notation
is“U > P — W — P« U” or ®4(U,U).

. write contain
e ID 5. Common szestamps User —— Post
write

Time contain . Post —) User, whose notation is
“U—P —>T+ P+ U”or &;(U,U).

e ID 6. Common Location Checkins: User LTty Post

attach attach™! write

——— Location ——— Post —) User, whose
notation is “U -+ P —- L «+ P « U” or ®x(U,U).
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New network problem
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Anchor Meta path &
Inter-network social meta paths

Definition 12 (Anchor Meta Path): Let U’, U’ be the  Definition 13 (I‘;lter-Network Meta Pz;th): Meta path ¥ =

user nodes of G* and G? respectively and A*7 be the anchor R R. Ry )
P Y Ty — Tp —= --- ——— T} is an inter-network meta path

links between G* and G7. Meta path T =T, > Ts is an o § oy Rom B
anchor meta path between network G* and G’ iff Ty = U* dT(r((J)S’S ((/;J and G7 iff 3m € {1,2,--- ,k—1}, Tm < Tm1 =
and Tz = U’ and Ry = A™. The notation of anchor meta (U5 U7).

path from G* to G? is Y(U",U?) and the length of T(U*,U7)

s 1.

Category 1: Y(U*,U?)o(®(U?,U? \UDo(U?,U?))o Y (U?,U"),
whose notation is ¥ (U*, U*);

Category 2.: (<I>(U”,UZ)U<I>0(Ui, U)o X (U, U?)o(®(U?,U7)U
®o(U?,U?)) o Y (U?,U"), whose notation is Wo(U*, U*);
Category 3.: Y(U*,U?)o(®(U?,U?)UdPo(U?,U?))oY(U?,U*)o
(®(U*,U*) U ®o(U*,U")), whose notation is W3(U*,U*);
Category 4.: (®(U*,U*)Udo(U*, U)o Y (U*, U?)o(@(U?, U?)U
Do (U?,U?))oX(U?,U")o(®(U*,U")Ude(U*,U")), whose no-
tation is W4 (U", U":);



Inter-network social meta path instances

-----------------------------------------------------
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social link == ? = potential social link *
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Meta path selection

Let variable X; € [x%,xy]” be a feature extracted based

on a meta path in {®, U} and variable Y be the label. P(Y =
y) denotes the prior probability that links in the training set
having label y and P(X; = x) represents the frequency that
feature X; has value x. Information theory related measure
mutual information (mi) is used as the ranking criteria:

P(Xi=2z,Y =)

mi(Xi) =) ) P(Xi=2,Y =y)log prm—vEr— 5

L Yy
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Dataset

e Foursquare and Twitter

Table 2: Properties of the Heterogeneous Networks

network
property Twitter Foursquare
user 5,223 9,392
# node tweet/tip 9,490,707 48,756
location 297,182 38,921
friend /follow 164,920 76,972
# link write 9,490,707 48,756

locate 615,515 48,756




Experiment Settings

* Ground truth: existing social link among users
e hide part of the existing links in the test set

* build model to discover these links

e Comparison Methods

e MLI (Multi-network Link Identifier)

e LI (Link Identifier): predict links in each network independently

e SCAN(Supervised Cross-Aligned-Network link prediction): supervised link prediction,
no meta path selection,

e SCAN_s (SCAN with source network): features are extracted based on
infer-network meta paths

e SCAN_t (SCAN with target network): features are extracted based on intra-
network meta paths

e Evaluation Metrics
 AUC, Accuracy, Fl



collective link prediction is better than

independent link prediction
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PU link prediction setting and meta path
selection can improve the results

e

using features based on intra-network

network measure methods
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Parameter Analysis

e ratio of anchor links
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the more anchor links we have, the better
performance we can achieve



Convergence Analysis
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converge quickly, in less than 10 iterations



Conclusions

* Problem studied: collective link prediction across multiple aligned
social networks

e Proposed Method:
e PU Link Prediction Setting

Intra-network & Inter-network Meta Path based Feature Extraction
Meta path selection
Multi-network Collective PU Link Prediction Framework

e Experiment Results:

Collective Link Prediction is better than Independent Link Prediction
PU Link Prediction & Meta Path Selection can improve the results
Using information across networks can achieve better results

MLI can perform well consistently for different anchor link ratios & can
converge quickly






