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Predicting social links in multiple 
aligned networks simultaneously
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Disadvantages of Supervised Link 
Prediction Setting
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PU Learning: How to find 
reliable negative links?

Supervised link 
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Unlabeled (PU) link 
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Reliable Negative Links Extraction
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PU Link Prediction Setting
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Heterogeneous Information

Social Links

Contents: Tweets
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Intra-network social meta paths
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New network problem
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sparse information ==> sparse feature

information in other aligned networks can 


be transferred to the new network or not?



Anchor Meta path & 


Inter-network social meta paths



Inter-network social meta path instances
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Meta path selection



Multi-network collective link 
prediction framework

Network 1

Network N

…

y(P1), y(U1)
y(L1)

update network

Network 2

update network

update network

build predict

build predict
P1,U1 L1

build predict

L2P2,U2
y(P2), y(U2)

y(L2)

y(Ln)
Pn,Un Ln

feature 	


extraction

… …

p(Ln)

p(L2)

p(L1)
x�(P1),x�(U1)

x�(P2),x�(U2)

x�(Pn),x�(Un)

x (Pn),x (Un)

x (P2),x (U2)

x (P1),x (U1)
x (L1)

x (L2)

x (Ln)

x�(Ln)

x�(L2)

x�(L1)

y(Pn), y(Un)

M1,MS1

M2,MS2

Mn,MSn



Dataset

• Foursquare and Twitter



Experiment Settings

• Ground truth: existing social link among users


• hide part of the existing links in the test set


• build model to discover these links


!

• Comparison Methods


• MLI (Multi-network Link Identifier)


• LI (Link Identifier): predict links in each network independently


• SCAN(Supervised Cross-Aligned-Network link prediction): supervised link prediction, 

no meta path selection, 


• SCAN_s (SCAN with source network): features are extracted based on 

inter-network meta paths


• SCAN_t (SCAN with target network): features are extracted based on intra-

network meta paths


!

• Evaluation Metrics


• AUC, Accuracy, F1



Experiment Results

collective link prediction is better than 
independent link prediction

PU link prediction setting and meta path 
selection can improve the results

using features based on intra-network 
meta paths and inter-network meta paths 
simultaneously can achieve better results



Parameter Analysis

• ratio of anchor links

the more anchor links we have, the better 
performance we can achieve



Convergence Analysis

converge quickly, in less than 10 iterations



Conclusions
• Problem studied: collective link prediction across multiple aligned 

social networks



• Proposed Method:


• PU Link Prediction Setting


• Intra-network & Inter-network Meta Path based Feature Extraction


• Meta path selection


• Multi-network Collective PU Link Prediction Framework



• Experiment Results:


• Collective Link Prediction is better than Independent Link Prediction


• PU Link Prediction & Meta Path Selection can improve the results


• Using information across networks can achieve better results


• MLI can perform well consistently for different anchor link ratios & can 

converge quickly
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