Contents

Part I Background Introduction

1 **Broad Learning Introduction** .. 3
 1.1 What Is Broad Learning .. 3
 1.2 Problems and Challenges of Broad Learning 4
 1.2.1 Cross-Source Information Fusion 4
 1.2.2 Cross-Source Knowledge Discovery 6
 1.2.3 Challenges of Broad Learning 6
 1.3 Comparison with Other Learning Tasks 7
 1.3.1 Broad Learning vs. Deep Learning 7
 1.3.2 Broad Learning vs. Ensemble Learning 8
 1.3.3 Broad Learning vs. Transfer Learning vs. Multi-Task Learning 8
 1.3.4 Broad Learning vs. Multi-View, Multi-Source, Multi-Modal,
 Multi-Domain Learning ... 9
 1.4 Book Organization .. 10
 1.4.1 Part I ... 10
 1.4.2 Part II ... 11
 1.4.3 Part III ... 11
 1.4.4 Part IV ... 12
 1.5 Who Should Read This Book ... 12
 1.6 How to Read This Book .. 13
 1.6.1 To Readers .. 13
 1.6.2 To Instructors ... 13
 1.6.3 Supporting Materials ... 14
 1.7 Summary ... 14
 1.8 Bibliography Notes ... 14
 1.9 Exercises ... 15
References ... 15

2 **Machine Learning Overview** ... 19
 2.1 Overview ... 19
 2.2 Data Overview ... 20
 2.2.1 Data Types .. 20
 2.2.2 Data Characteristics ... 26
 2.2.3 Data Pre-processing and Transformation 26

jwzhanggy@gmail.com
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3</td>
<td>Supervised Learning: Classification</td>
<td>32</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Classification Learning Task and Settings</td>
<td>33</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Decision Tree</td>
<td>34</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Support Vector Machine</td>
<td>40</td>
</tr>
<tr>
<td>2.4</td>
<td>Supervised Learning: Regression</td>
<td>46</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Regression Learning Task</td>
<td>46</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Linear Regression</td>
<td>46</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Lasso</td>
<td>47</td>
</tr>
<tr>
<td>2.4.4</td>
<td>Ridge</td>
<td>48</td>
</tr>
<tr>
<td>2.5</td>
<td>Unsupervised Learning: Clustering</td>
<td>48</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Clustering Task</td>
<td>49</td>
</tr>
<tr>
<td>2.5.2</td>
<td>K-Means</td>
<td>50</td>
</tr>
<tr>
<td>2.5.3</td>
<td>DBSCAN</td>
<td>52</td>
</tr>
<tr>
<td>2.5.4</td>
<td>Mixture-of-Gaussian Soft Clustering</td>
<td>54</td>
</tr>
<tr>
<td>2.6</td>
<td>Artificial Neural Network and Deep Learning</td>
<td>56</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Artificial Neural Network Overview</td>
<td>57</td>
</tr>
<tr>
<td>2.6.2</td>
<td>Deep Learning</td>
<td>62</td>
</tr>
<tr>
<td>2.7</td>
<td>Evaluation Metrics</td>
<td>66</td>
</tr>
<tr>
<td>2.7.1</td>
<td>Classification Evaluation Metrics</td>
<td>66</td>
</tr>
<tr>
<td>2.7.2</td>
<td>Regression Evaluation Metrics</td>
<td>68</td>
</tr>
<tr>
<td>2.7.3</td>
<td>Clustering Evaluation Metrics</td>
<td>69</td>
</tr>
<tr>
<td>2.8</td>
<td>Summary</td>
<td>71</td>
</tr>
<tr>
<td>2.9</td>
<td>Bibliography Notes</td>
<td>72</td>
</tr>
<tr>
<td>2.10</td>
<td>Exercises</td>
<td>72</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>73</td>
</tr>
<tr>
<td>3</td>
<td>Social Network Overview</td>
<td>77</td>
</tr>
<tr>
<td>3.1</td>
<td>Overview</td>
<td>77</td>
</tr>
<tr>
<td>3.2</td>
<td>Graph Essentials</td>
<td>78</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Graph Representations</td>
<td>78</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Connectivity in Graphs</td>
<td>80</td>
</tr>
<tr>
<td>3.3</td>
<td>Network Measures</td>
<td>82</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Degree</td>
<td>82</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Centrality</td>
<td>85</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Closeness</td>
<td>91</td>
</tr>
<tr>
<td>3.3.4</td>
<td>Transitivity and Social Balance</td>
<td>96</td>
</tr>
<tr>
<td>3.4</td>
<td>Network Categories</td>
<td>98</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Homogeneous Network</td>
<td>99</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Heterogeneous Network</td>
<td>102</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Aligned Heterogeneous Networks</td>
<td>106</td>
</tr>
<tr>
<td>3.5</td>
<td>Meta Path</td>
<td>111</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Network Schema</td>
<td>111</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Meta Path in Heterogeneous Social Networks</td>
<td>111</td>
</tr>
<tr>
<td>3.5.3</td>
<td>Meta Path Across Aligned Heterogeneous Social Networks</td>
<td>114</td>
</tr>
<tr>
<td>3.5.4</td>
<td>Meta Path-Based Network Measures</td>
<td>116</td>
</tr>
<tr>
<td>3.6</td>
<td>Network Models</td>
<td>117</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Random Graph Model</td>
<td>118</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Preferential Attachment Model</td>
<td>120</td>
</tr>
</tbody>
</table>
Part II Information Fusion: Social Network Alignment

4 Supervised Network Alignment
4.1 Overview
4.2 Supervised Network Alignment Problem Definition
4.3 Supervised Full Network Alignment
4.3.1 Feature Extraction for Anchor Links
4.3.2 Supervised Anchor Link Prediction Model
4.3.3 Stable Matching
4.4 Supervised Partial Network Alignment
4.4.1 Partial Network Alignment Description
4.4.2 Inter-Network Meta Path Based Feature Extraction
4.4.3 Class-Imbalance Classification Model
4.4.4 Generic Stable Matching
4.5 Anchor Link Inference with Cardinality Constraint
4.5.1 Loss Function for Anchor Link Prediction
4.5.2 Cardinality Constraint Description
4.5.3 Joint Optimization Function
4.5.4 Problem and Algorithm Analysis
4.5.5 Distributed Algorithm
4.6 Summary
4.7 Bibliography Notes
4.8 Exercises

5 Unsupervised Network Alignment
5.1 Overview
5.2 Heuristics Based Unsupervised Network Alignment
5.2.1 User Names Based Network Alignment Heuristics
5.2.2 Profile Based Network Alignment Heuristics
5.3 Pairwise Homogeneous Network Alignment
5.3.1 Heuristics Based Network Alignment Model
5.3.2 IsoRank
5.3.3 IsoRankN
5.3.4 Matrix Inference Based Network Alignment
5.4 Multiple Homogeneous Network Alignment with Transitivity Penalty
5.4.1 Multiple Network Alignment Problem Description
5.4.2 Unsupervised Multiple Network Alignment
5.4.3 Transitive Network Matching
5.5 Heterogeneous Network Co-alignment
5.5.1 Network Co-alignment Problem Description
5.5.2 Anchor Link Co-inference
5.5.3 Network Co-matching
6 Semi-supervised Network Alignment

6.1 Overview

6.2 Semi-supervised Learning: Overview

6.2.1 Semi-supervised Learning Problem Setting

6.2.2 Semi-supervised Learning Models

6.2.3 Active Learning

6.2.4 Positive and Unlabeled (PU) Learning

6.3 Semi-supervised Network Alignment

6.3.1 Loss Function for Labeled and Unlabeled Instances

6.3.2 Cardinality Constraint on Anchor Links

6.3.3 Joint Objective Function for Semi-supervised Network Alignment

6.4 Active Network Alignment

6.4.1 Anchor Link Label Query Strategy

6.4.2 Active Network Alignment Objective Function

6.5 Positive and Unlabeled (PU) Network Alignment

6.5.1 PU Network Alignment Problem Formulation and Preliminary

6.5.2 PU Network Alignment Model

6.6 Summary

6.7 Bibliography Notes

6.8 Exercises

References

Part III Broad Learning: Knowledge Discovery Across Aligned Networks

7 Link Prediction

7.1 Overview

7.2 Traditional Single Homogeneous Network Link Prediction

7.2.1 Unsupervised Link Prediction

7.2.2 Supervised Link Prediction

7.2.3 Matrix Factorization Based Link Prediction

7.3 Heterogeneous Network Collective Link Prediction

7.3.1 Introduction to LBSNs

7.3.2 Collective Link Prediction

7.3.3 Information Accumulation and Feature Extraction

7.3.4 Collective Link Prediction Model

7.4 Cold Start Link Prediction for New Users

7.4.1 New User Link Prediction Problem Description

7.4.2 Cold Start Link Prediction Problem Formulation

7.4.3 Link Prediction Within Target Network

7.4.4 Cold-Start Link Prediction

References
7.5 Spy Technique Based Inter-Network PU Link Prediction

- **7.5.1 Cross-Network Concurrent Link Prediction Problem**
- **7.5.2 Concurrent Link Prediction Problem Formulation**
- **7.5.3 Social Meta Path Definition and Selection**
- **7.5.4 Spy Technique Based PU Link Prediction**
- **7.5.5 Multi-Network Concurrent PU Link Prediction Framework**

7.6 Sparse and Low Rank Matrix Estimation Based PU Link Prediction

- **7.6.1 Problem Description**
- **7.6.2 Intra-Network Link Prediction**
- **7.6.3 Inter-Network Link Prediction**
- **7.6.4 Proximal Operator Based CCCP Algorithm**

7.7 Summary

7.8 Bibliography Notes

7.9 Exercises

References

8 Community Detection

- **8.1 Overview**
- **8.2 Traditional Homogeneous Network Community Detection**
 - **8.2.1 Node Proximity Based Community Detection**
 - **8.2.2 Modularity Maximization Based Community Detection**
 - **8.2.3 Spectral Clustering Based Community Detection**
- **8.3 Emerging Network Community Detection**
 - **8.3.1 Background Knowledge**
 - **8.3.2 Problem Formulation**
 - **8.3.3 Intimacy Matrix of Homogeneous Network**
 - **8.3.4 Intimacy Matrix of Attributed Heterogeneous Network**
 - **8.3.5 Intimacy Matrix Across Aligned Heterogeneous Networks**
 - **8.3.6 Approximated Intimacy to Reduce Dimension**
 - **8.3.7 Clustering and Weight Self-adjustment**
- **8.4 Mutual Community Detection**
 - **8.4.1 Background Knowledge**
 - **8.4.2 Problem Formulation**
 - **8.4.3 Meta Path Based Social Proximity Measure**
 - **8.4.4 Network Characteristic Preservation Clustering**
 - **8.4.5 Discrepancy Based Clustering of Multiple Networks**
 - **8.4.6 Joint Mutual Clustering of Multiple Networks**
- **8.5 Large-Scale Network Synergistic Community Detection**
 - **8.5.1 Problem Formulation**
 - **8.5.2 Distributed Multilevel k-Way Partitioning**
 - **8.5.3 Distributed Synergistic Partitioning Process**
- **8.6 Summary**
- **8.7 Bibliography Notes**
- **8.8 Exercises**
- **References**
Contents

9 Information Diffusion

9.1 Overview ... 315
9.2 Traditional Information Diffusion Models 316
 9.2.1 Threshold Based Diffusion Model 317
 9.2.2 Cascade Based Diffusion Model 319
 9.2.3 Epidemic Diffusion Model ... 321
 9.2.4 Heat Diffusion Models ... 323
9.3 Intertwined Diffusion Models ... 324
 9.3.1 Intertwined Diffusion Models for Multiple Topics 325
 9.3.2 Diffusion Models for Signed Networks 328
9.4 Inter-Network Information Diffusion 331
 9.4.1 Network Coupling Based Cross-Network Information Diffusion 332
 9.4.2 Random Walk Based Cross-Network Information Diffusion 334
9.5 Information Diffusion Across Online and Offline World 337
 9.5.1 Background Knowledge ... 337
 9.5.2 Preliminary ... 339
 9.5.3 Online Diffusion Channel .. 340
 9.5.4 Offline Diffusion Channel 341
 9.5.5 Hybrid Diffusion Channel 342
 9.5.6 Channel Aggregation ... 343
 9.5.7 Channel Weighting and Selection 344
9.6 Summary ... 345
9.7 Bibliography Notes .. 346
9.8 Exercises ... 347

References ... 347

10 Viral Marketing

10.1 Overview ... 351
10.2 Traditional Influence Maximization 352
 10.2.1 Influence Maximization Problem 352
 10.2.2 Approximated Seed User Selection 353
 10.2.3 Heuristics-Based Seed User Selection 356
10.3 Intertwined Influence Maximization 357
 10.3.1 Conditional TIM ... 358
 10.3.2 Joint TIM ... 360
10.4 Cross-Network Influence Maximization 365
 10.4.1 Greedy Seed User Selection Across Networks 366
 10.4.2 Dynamic Programming-Based Seed User Selection 369
10.5 Rumor Initiator Detection ... 373
 10.5.1 The ISOMIT Problem ... 375
 10.5.2 NP-Hardness of Exact ISOMIT Problem 375
 10.5.3 A Special Case: k-ISOMIT-BT Problem 376
 10.5.4 RID Method for General Networks 377
10.6 Summary ... 380
10.7 Bibliography Notes .. 381
10.8 Exercises ... 382

References ... 382
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Network Embedding</td>
<td>385</td>
</tr>
<tr>
<td>11.1</td>
<td>Overview</td>
<td>385</td>
</tr>
<tr>
<td>11.2</td>
<td>Relation Translation Based Graph Entity Embedding</td>
<td>386</td>
</tr>
<tr>
<td>11.2.1</td>
<td>TransE</td>
<td>386</td>
</tr>
<tr>
<td>11.2.2</td>
<td>TransH</td>
<td>387</td>
</tr>
<tr>
<td>11.2.3</td>
<td>TransR</td>
<td>389</td>
</tr>
<tr>
<td>11.3</td>
<td>Homogeneous Network Embedding</td>
<td>390</td>
</tr>
<tr>
<td>11.3.1</td>
<td>DeepWalk</td>
<td>390</td>
</tr>
<tr>
<td>11.3.2</td>
<td>LINE</td>
<td>393</td>
</tr>
<tr>
<td>11.3.3</td>
<td>node2vec</td>
<td>395</td>
</tr>
<tr>
<td>11.4</td>
<td>Heterogeneous Network Embedding</td>
<td>397</td>
</tr>
<tr>
<td>11.4.1</td>
<td>HNE: Heterogeneous Information Network Embedding</td>
<td>398</td>
</tr>
<tr>
<td>11.4.2</td>
<td>Path-Augmented Heterogeneous Network Embedding</td>
<td>400</td>
</tr>
<tr>
<td>11.4.3</td>
<td>HEBE: HyperEdge Based Embedding</td>
<td>400</td>
</tr>
<tr>
<td>11.5</td>
<td>Emerging Network Embedding Across Networks</td>
<td>403</td>
</tr>
<tr>
<td>11.5.1</td>
<td>Concept Definition and Problem Formulation</td>
<td>404</td>
</tr>
<tr>
<td>11.5.2</td>
<td>Deep DIME for Emerging Network Embedding</td>
<td>405</td>
</tr>
<tr>
<td>11.6</td>
<td>Summary</td>
<td>410</td>
</tr>
<tr>
<td>11.7</td>
<td>Bibliography Notes</td>
<td>411</td>
</tr>
<tr>
<td>11.8</td>
<td>Exercises</td>
<td>412</td>
</tr>
<tr>
<td>References</td>
<td>412</td>
<td></td>
</tr>
</tbody>
</table>

Part IV **Future Directions**

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Frontier and Future Directions</td>
<td>417</td>
</tr>
<tr>
<td>12.1</td>
<td>Overview</td>
<td>417</td>
</tr>
<tr>
<td>12.2</td>
<td>Large-Scale Broad Learning</td>
<td>417</td>
</tr>
<tr>
<td>12.3</td>
<td>Multi-Source Broad Learning</td>
<td>418</td>
</tr>
<tr>
<td>12.4</td>
<td>Broad Learning Applications</td>
<td>418</td>
</tr>
<tr>
<td>12.5</td>
<td>Summary</td>
<td>418</td>
</tr>
<tr>
<td>12.6</td>
<td>Exercises</td>
<td>418</td>
</tr>
<tr>
<td>References</td>
<td>419</td>
<td></td>
</tr>
</tbody>
</table>