
8Community Detection

Birds of a feather flock together.

8.1 Overview

In the real-world online social networks, users also tend to form different social groups [2]. Users
belonging to the same groups usually have more frequent interactions with each other, while those
in different groups will have less interactions on the other hand [61]. Formally, such social groups
form by users in online social networks are called the online social communities [52]. Online social
communities will partition the network into a number of components, where the intra-community
social connections are usually far more dense compared with the inter-community social connections
[52]. Meanwhile, from the mathematical representation perspective, due to these online social
communities, the social network adjacency matrix tend to be not only sparse but also low-rank [58].

Identifying the social communities formed by users in online social networks is formally defined
as the community detection problem [16, 52, 53]. Community detection is a very important problem
for online social network studies, as it can be a crucial prerequisite for numerous concrete social
network services: (1) a better organization of users’ friends in online social networks (e.g., Facebook
and Twitter), which can be achieved by applying community detection techniques to partition
users’ friends into different categories, e.g., schoolmates, family, celebrities, etc. [10]; (2) a better
recommender systems for users with common shopping preference in e-commerce social sites (e.g.,
Amazon and Epinions), which can be addressed by grouping users with similar purchase records
into the same clusters prior to recommender system building [36]; and (3) a better identification of
influential users [44] for advertising campaigns in online social networks, which can be attained by
selecting the most influential users in each community as the seed users in the viral marketing [35].

In this chapter, we will focus on introducing the social community detection problem in online
social networks. Given a heterogeneous network G with node set V , we can represent the involved
user nodes in networkG as set U ⊂ V . Based on both the social structures among users and the diverse
attribute information from the networkG, the social community detection problem aims at partitioning
the user set U into several subsets C = {U1,U2, . . . ,Uk}, where each subset Ui , i ∈ {1, 2, . . . , k} is
called a social community. Term k formally denotes the total number of partitioned communities,
which is usually provided as a hyper-parameter in the problem.

© Springer Nature Switzerland AG 2019
J. Zhang, P. S. Yu, Broad Learning Through Fusions,
https://doi.org/10.1007/978-3-030-12528-8_8

275

jwzhanggy@gmail.com

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12528-8_8&domain=pdf
https://doi.org/10.1007/978-3-030-12528-8_8

276 8 Community Detection

Depending on whether the users are allowed to be partitioned into multiple communities
simultaneously or not, the social community detection problem can actually be categorized into two
different types:

• Hard Social Community Detection: In the hard social community detection problem, each user will
be partitioned into one single community, and all the social communities are disjoint without any
overlap. In other words, given the communities C = {U1,U2, . . . ,Uk} detected from network G,
we have U =⋃i Ui and Ui ∩ Uj = ∅,∀i, j ∈ {1, 2, . . . , k} ∧ i '= j .

• Soft Social Community Detection: In the soft social community detection problem, users can belong
to multiple social communities simultaneously. For instance, if we apply the Mixture-of-Gaussian
Soft Clustering algorithm as the base community detection model (introduced in Sect. 2.5.4), each
user can belong to multiple communities with certain probabilities. In the soft social community
detection result, the communities are no longer disjoint and will share some common users with
other communities.

Meanwhile, depending on the network connection structures, the community detection problem
can be categorized as directed network community detection [28] and undirected network community
detection [61]. Based on the heterogeneity of the network information, the community detection
problem can be divided into the homogeneous network community detection [46] and heterogeneous
network community detection [37, 40, 59, 60]. Furthermore, according to the number of networks
involved, the community detection problem involves single network community detection [22] and
multiple network community detection [16, 52, 53, 59, 60]. In this chapter, we will take the hard
community detection problem as an example to introduce both the existing models proposed for
conventional (one single) homogeneous social network, and especially the recent broad learning based
(multiple aligned) heterogeneous social networks [20, 54–56], respectively.

This chapter is organized as follows. At the beginning, in Sect. 8.2, we will introduce the com-
munity detection problem and the existing methods proposed for traditional one single homogeneous
networks. After that, we will talk about the latest research works on social community detection across
multiple aligned heterogeneous networks. The cold start community detection [53] is introduced in
Sect. 8.3, in which we propose a new information transfer algorithm to propagate information from
other developed source networks to the emerging target network. In Sect. 8.4, we will be focused
on the concurrent mutual community detection [52] across multiple aligned heterogeneous networks
simultaneously, where information from other aligned networks will be applied to refine their
community detection results mutually. Finally, in Sect. 8.5, we talk about the synergistic community
detection across multiple large-scale networks based on the distributed computing platform [16].

8.2 Traditional Homogeneous Network Community Detection

Social community detection problem has been studied for a long time, and many community detection
models have been proposed based on different types of techniques. In this section, we will talk about
the social community detection problem for one single homogeneous networkG, whose objective is to
partition the user set U in network G into k disjoint subsets C = {U1,U2, . . . ,Uk}, where U = ⋃i Ui

and Ui ∩ Uj = ∅,∀i, j ∈ {1, 2, . . . , k}. Several different community detection methods will be
introduced, which include the node proximity based community detection, modularity maximization
based community detection, and spectral clustering based community detection.

jwzhanggy@gmail.com

8.2 Traditional Homogeneous Network Community Detection 277

8.2.1 Node Proximity Based Community Detection

The node proximity based community detection method assumes that “close nodes tend to be in the
same communities, while the nodes far away from each other will belong to different communities.”
Therefore, the node proximity based community detection model partitions the nodes into different
clusters based on the node proximity measures [24]. Various node proximity measures can be used
here, including the node structural equivalence to be introduced as follows, as well as various node
closeness measures as introduced in Sect. 3.3.3.

In a homogeneous network G, the proximity of nodes, like u and v, can be calculated based on
their positions and connections in the network structure.

Example 8.1 For instance, in Fig. 8.1, we show an example of a homogeneous networkG involving 9
nodes and 14 links among them. For the nodes 1 and 3, they have equivalent positions in the network
structure. According to the connections around 1 and 3, we can observe the neighbors of node 1 are
Γ (1) = {2, 3, 4}, while the neighbors of node 3 include Γ (3) = {1, 2, 4}. They share two common
neighbors {1, 2}, and also connect with each other. If we switch their positions, the network structure
will still be the same as the original one and the neighbors of nodes 1 and 3 will both remain the same.

Definition 8.1 (Structural Equivalence) Given a network G = (V, E), two nodes u, v ∈ V are said
to be structural equivalent iff

1. Nodes u and v are not connected and u and v share the same set of neighbors (i.e.,
(u, v) /∈ E ∧ Γ (u) = Γ (v)),

2. Or u and v are connected and excluding themselves, u and v share the same set of neighbors (i.e.,
(u, v) ∈ E ∧ Γ (u) \ {v} = Γ (v) \ {u}).

As mentioned before, for the nodes which are structural equivalent, they are substitutable and
switching their positions will not change the overall network structure. The structural equivalence
concept can be applied to partition the nodes into different communities. For the nodes which are
structural equivalent, they can be grouped into the same communities, while for the nodes which are
not equivalent in their positions, they will be partitioned into different groups. However, the structural
equivalence can be too restricted for practical use in detecting the communities in real-world social
networks. Computing the structural equivalence relationships among all the node pairs in the network
can lead to very high time cost. What’s more, the structural equivalence relationship will partition the
social network structure into lots of small-sized fragments, since the users will have different social
patterns in making friends online and few users will have identical neighbors actually.

To avoid the weakness mentioned above, some other measures are proposed to measure the
proximity among nodes in the networks. For instance, as introduced in Sect. 3.3.3, the node closeness

Fig. 8.1 Example of
homogeneous network
(nodes 1 and 3 are
structural equivalent) 9

7

8

5

6

4

3

2

1

jwzhanggy@gmail.com

278 8 Community Detection

measures based on the social connections can all be applied here to compute the node proximity, e.g.,
“common neighbor,” “Jaccard’s coefficient.” Here, if we use “common neighbor” as the proximity
measure, by applying the “common neighbor” measure to the network G, we can transform the
network G into a set of instances V with mutual closeness scores {c(u, v)}u,v∈V . Some existing
similarity/distance based clustering algorithms, like k-Medoids (a variant of k-Means as introduced in
Sect. 2.5.2), can be applied to partition the users into different communities.

8.2.2 Modularity Maximization Based Community Detection

Besides the pairwise proximity of nodes in the network, the connection strength of a community is
also very important in the community detection process. Different measures have been proposed to
compute the strength of a community like the modularity measure [29] to be introduced in this part.

The modularity measure takes into account of the node degree distribution. For instance, given the
networkG, the expected number of links existing between nodes u and v with degreesD(u) andD(v)

can be represented as D(u)·D(v)
2|E | . Meanwhile, in the network, the real number of links existing between

u and v can be denoted as entry A[u, v] in the social adjacency matrix A. For the user pair (u, v) with
a low expected connection confidence score, if they are connected in the real world, it indicates that
u and v have a relatively strong relationship with each other. Meanwhile, if the community detection
algorithm can partition such user pairs into the same group, it will be able to identify very strong
social communities from the network.

Based on such an intuition, the strength of a community, e.g., Ui ∈ C, can be defined as

∑

u,v∈Ui

(
A[u, v] − D(u) ·D(v)

2|E |

)
. (8.1)

Example 8.2 For instance, let’s take network shown in Fig. 8.1 as an example. We assume the
network nodes are partitioned into two groups, i.e., C = {U1,U2}, where U1 = {1, 2, 3, 4} and
U2 = {5, 6, 7, 8, 9}. According to the network structure, we can compute the expected number of
links between user pairs within community U1 in Table 8.1.

According to the above equation, we can compute the strength of community U1 = {1, 2, 3, 4} as

∑

u,v∈U1

(
A[u, v] − D(u) ·D(v)

2|E |

)
= 4.857. (8.2)

Furthermore, the strength of the overall community detection result C = {U1,U2, . . . ,Uk} can be
defined as the modularity of the communities as follows.

Table 8.1 Numerical analysis of community U1 = {1, 2, 3, 4}
(u,v) (1, 1) (1, 2) (1,3) (1,4) (2, 1) (2, 2) (2, 3) (2, 4) (3, 1) (3, 2) (3, 3) (3, 4) (4, 4) . . .

D(u), D(v) 3, 3 3, 2 3, 3 3, 4 2, 3 2, 2 2, 3 2, 4 3, 3 3, 2 3, 3 3, 4 4, 3 . . .

A[u,v] 0 1 1 1 1 0 1 0 1 1 0 1 1 . . .
D(u)·D(v)

2|E|
9
28

6
28

9
28

12
28

9
28

4
28

6
28

8
28

9
28

6
28

9
28

12
28

12
28 . . .

A[u, v] − D(u)·D(v)
2|E|

−9
28

22
28

19
28

16
28

19
28

−4
28

22
28

−8
28

19
28

22
28

−9
28

16
28

16
28 . . .

jwzhanggy@gmail.com

8.2 Traditional Homogeneous Network Community Detection 279

Definition 8.2 (Modularity) Given the community detection result C = {U1,U2, . . . ,Uk}, the
modularity of the community structure is defined as

Q(C) = 1
2|E |

∑

Ui∈C

∑

u,v∈Ui

(
A[u, v] − D(u) ·D(v)

2|E |

)
. (8.3)

The modularity concept effectively measures the strength of the detected community structure.
Generally, for a community structure with a larger modularity score, it indicates a good community
detection result.

Example 8.3 By following the analysis provided in Example 8.2, we can also compute the strength
of community U2 as

∑

u,v∈U2

(
A[u, v] − D(u) ·D(v)

2|E |

)
= 4.857. (8.4)

Therefore, we can compute the modularity of community detection results C = {U1,U2} as

Q(C) = 1
2|E |

∑

Ui∈C

∑

u,v∈Ui

(
A[u, v] − D(u) ·D(v)

2|E |

)
= 0.347. (8.5)

Another way to explain the modularity is from the number of links within and across communities.
By rewriting the above modularity equation, we can have

Q(C) = 1
2|E |

∑

Ui∈C

∑

u,v∈Ui

(
A[u, v] − D(u) ·D(v)

2|E |

)

= 1
2|E |

∑

Ui∈C

∑

u,v∈Ui

A[u, v] −
∑

Ui∈C

∑

u,v∈Ui

D(u) ·D(v)

2|E |

= 1
2|E |

∑

Ui∈C

∑

u,v∈Ui

A[u, v] − 1
2|E |

∑

Ui∈C

∑

u∈Ui

D(u) ·
∑

u∈Ui

D(v)

= 1
2|E |

∑

Ui∈C

∑

u,v∈Ui

A[u, v] − 1
2|E |

∑

Ui∈C

(∑

u∈Ui

D(u)
)2

 . (8.6)

In the above equation, term
∑

u,v∈Ui
A[u, v] denotes the number of links connecting users within

the community Ui (which will be 2 times the intra-community links for undirected networks, as each
link will be counted twice). Term

∑
u∈Ui

D(u) denotes the sum of node degrees in community Ui ,
which equals to the number of intra-community and inter-community links connected to nodes in
community Ui . If there exist lots of inter-community links, then the modularity measure will have a
smaller value. On the other hand, if the inter-community links are very rare, the modularity measure
will have a larger value. Therefore, maximizing the community modularity measure is equivalent to
minimizing the inter-community link numbers.

jwzhanggy@gmail.com

280 8 Community Detection

Themodularitymeasure can also be represented with linear algebra equations. Let matrixA denote
the adjacency matrix of the network, and vector d ∈ R|V |×1 denote the degrees of nodes in the
network. We can define the modularity matrix as

B = A − dd*

2|E | . (8.7)

Let matrix H ∈ {0, 1}|V |×k denote the communities that users in V belong to. In real application,
such a binary constraint can be relaxed to allow real value solutions for matrix H. The optimal
community detection result which can maximize the modularity can be obtained by solving the
following objective function

max
1

2|E |Tr(H
*BH)

s.t.H*H = I, (8.8)

where constraint H*H = I ensures there is no overlap in the community detection result.
The above objective function looks very similar to the objective function of spectral clustering to

be introduced in the next section. After obtaining the optimal H, the communities can be obtained by
applying the K-Means algorithm to H to determine the cluster labels of each node in the network.

8.2.3 Spectral Clustering Based Community Detection

In the community detection process, besides maximizing the proximity of nodes belonging to the
same communities (as introduced in Sect. 8.2.1), minimizing the connections among nodes in different
clusters is also an important factor. Different from the previous proximity based community detection
algorithms, another way to address the community detection problem is from the cost perspective.
Partitioning the nodes into different clusters will cut the links among the clusters. To ensure the nodes
partitioned into different clusters have less connections with each other, the number of links to be cut
in the community detection process should be as small as possible [45].

8.2.3.1 Cut
Formally, given the community structure C = {U1,U2, . . . ,Uk} detected from networkG. The number
of links cut [38] between communities Ui ,Uj ∈ C can be represented as

cut(Ui ,Uj) =
∑

u∈Ui

∑

v∈Uj

I(u, v), (8.9)

where function I(u, v) = 1 if (u, v) ∈ E ; otherwise, it will be 0.
The total number of links cut in the partition process can be represented as

cut(C) =
∑

Ui∈C
cut(Ui , Ūi), (8.10)

where set Ūi = C \ Ui denotes the remaining communities except Ui .

jwzhanggy@gmail.com

8.2 Traditional Homogeneous Network Community Detection 281

9

7

8

5

6

4

3

2

1
9

7

8

5

6

4

3

2

1

9

7

8

5

6

4

3

2

1
9

7

8

5

6

4

3

2

1

A B

C D

Fig. 8.2 Comparison of cut, ratio-cut, and normalized-cut measures in social network community detection ((a) input
network; (b)–(d) three different ways to partition the network into two communities)

By minimizing the cut cost introduced in the partition process, we can obtain the optimal
community detection result with the minimum number of cross-community links.

Example 8.4 For instance, in Fig. 8.2, we show 3 different community detection results (i.e., plots
(b)–(d)) of the input network as illustrated in plot (a). For the 9 nodes in the network, plot (b)
partitions the node into 2 communities: C = {U1,U2}, where U1 = {9} and U2 = {1, 2, 3, 4, 5, 6, 7, 8}.
Link (7, 9) is the only link between different communities in the network. According to the above
definition, the introduced cut can be represented as

cut(C) = cut(U1, Ū1)+ cut(U2, Ū2) = 2, (8.11)

where Ū1 = U2, Ū2 = U1 and cut(U1,U2) = |{(7, 9)}| = 1.
Meanwhile, for the community detection results in plot (c), its introduced cut will be 2 × 2,

since two edges {(4, 5), (4, 6)} are between the two communities, i.e., U1 = {5, 6, 7, 8, 9} and
U2 = {1, 2, 3, 4}. Community detection results in plot (d) introduce a cut of 8, and 4 edges
{(5, 7), (5, 8), (6, 7), (6, 8)} connect those two detected communities.

Considering that we don’t allow empty communities, plot (b) actually identifies the optimal
community structure of the input network data, where the cut cost is minimized. However, we can
also observe that the achieved community structure is also extremely imbalanced, where community
U1 = {9} contains a singleton node, while U2 = {1, 2, 3, 4, 5, 6, 7, 8} contains 8 nodes. Such a
problem will be much more severe when it comes to the real-world social network data. In the
following part of this section, we will introduce two other cost measures that can help achieve more
balanced community detection results.

jwzhanggy@gmail.com

282 8 Community Detection

8.2.3.2 Ratio-Cut and Normalized-Cut
As shown in the example, the minimum cut cost treats all the links in the network equally, and can
usually achieve very imbalanced partition results (e.g., a singleton node as a cluster) when applied in
the real-world community detection problem. To overcome such a disadvantage, some models have
been proposed to take the community size into consideration. The community size can be calculated
by counting the number of nodes or links in each community, which will lead to two new cost
measures: ratio-cut [45] and normalized-cut [45].

Formally, given the community detection result C = {U1,U2, . . . ,Uk} in network G, the ratio-cut
and normalized-cut costs introduced in the community detection result can be defined as follows,
respectively.

ratio − cut(C) = 1
k

∑

Ui∈C

cut(Ui , Ūi)

|Ui |
, (8.12)

where |Ui | denotes the number of nodes in community Ui .

ncut(C) = 1
k

∑

Ui∈C

cut(Ui , Ūi)

vol(Ui)
, (8.13)

where vol(Ui) denotes the degree sum of nodes in community Ui .

Example 8.5 For instance, by following the example as illustrated in Example 8.4 and Fig. 8.2, we
have already computed the cut cost introduced by the community detection results in plots (b), (c),
(d), which are 2, 4 and 8, respectively. Here, if we also consider the node number of node degree
volume of each community, we can get the ratio-cut and ncut of these community detection results as
follows:

• Plot (b): U1 = {9} and U2 = {1, 2, 3, 4, 5, 6, 7, 8}. We have cut(U1, Ū1) = cut(U2, Ū2) = 1. The
sizes and volumes of these communities are |U1| = 1, |U2| = 8, and vol(U1) = 1, vol(U2) = 27.
Therefore, we have

ratio-cut(C) = 1
2

(
cut(U1, Ū1)

|U1|
+ cut(U2, Ū2)

|U2|

)

= 1
2

(
1
1
+ 1

8

)
= 9

16
, (8.14)

ncut(C) = 1
2

(
cut(U1, Ū1)

vol(U1)
+ cut(U2, Ū2)

vol(U1)

)

= 1
2

(
1
1
+ 1

27

)
= 14

27
. (8.15)

• Plot (c): U1 = {5, 6, 7, 8, 9} and U2 = {1, 2, 3, 4}. We have cut(U1, Ū1) = cut(U2, Ū2) = 2. The
sizes and volumes of these communities are |U1| = 5, |U2| = 4, and vol(U1) = 16, vol(U2) = 12.
Therefore, we have

ratio-cut(C) = 1
2

(
cut(U1, Ū1)

|U1|
+ cut(U2, Ū2)

|U2|

)

= 1
2

(
1
5
+ 1

4

)
= 9

40
, (8.16)

ncut(C) = 1
2

(
cut(U1, Ū1)

vol(U1)
+ cut(U2, Ū2)

vol(U1)

)

= 1
2

(
1
16

+ 1
12

)
= 7

96
. (8.17)

jwzhanggy@gmail.com

8.3 Emerging Network Community Detection 283

• Plot (d): U1 = {7, 8, 9} and U2 = {1, 2, 3, 4, 5, 6}. We have cut(U1, Ū1) = cut(U2, Ū2) = 4. The
sizes and volumes of these communities are |U1| = 3, |U2| = 6, and vol(U1) = 20, vol(U2) = 8.
Therefore, we have

ratio-cut(C) = 1
2

(
cut(U1, Ū1)

|U1|
+ cut(U2, Ū2)

|U2|

)

= 1
2

(
1
3
+ 1

6

)
= 1

4
, (8.18)

ncut(C) = 1
2

(
cut(U1, Ū1)

vol(U1)
+ cut(U2, Ū2)

vol(U1)

)

= 1
2

(
1
20

+ 1
8

)
= 7

80
. (8.19)

As shown in the above example, from the computed costs, we find that the community detected
in plot (c) achieves much lower ratio-cut and ncut costs compared with those in plots (b) and (d).
Compared against the regular cut cost, both ratio-cut and normalized-cut prefer a balanced partition
of the social network.

8.2.3.3 Spectral Clustering
Actually the objective function of both ratio-cut and normalized-cut can be unified as the following
linear algebra equation

min
H∈{0,1}|V|×k

Tr(H*L̄H), (8.20)

where matrix H ∈ {0, 1}|V |×k denotes the communities that users in V belong to.
Let A ∈ {0, 1}|V |×|V | denote the social adjacency matrix of the network, and we can represent

the corresponding diagonal matrix of A as matrix D, where D has value D(i, i) = ∑j A(i, j) on its
diagonal. The Laplacian matrix of the network adjacency matrix A can be represented as L = D−A.
Depending on the specific measures applied, matrix L̄ can be represented as

L̄ =
{
L, for ratio-cut measure,

D
−1
2 LD

−1
2 , for normalized-cut measure.

(8.21)

The binary constraint on the variable H renders the problem a non-linear integer programming
problem, which is very hard to solve. One common practice to learn the variableH is to apply spectral
relaxation to replace the binary constraint with the orthogonality constraint.

min Tr(H*L̄H),

s.t.H*H = I. (8.22)

As proposed in [38], the optimal solution H∗ to the above objective function equals to the
eigenvectors corresponding to the k smallest eigenvalues of matrix L̄.

8.3 Emerging Network Community Detection

The community detection algorithms introduced in the previous section are mostly proposed for one
single homogeneous network. However, in the real world, most of the online social networks are
actually heterogeneous containing very complex information. In recent years, lots of new online social
networks have emerged and start to provide services, the information available for the users in these

jwzhanggy@gmail.com

284 8 Community Detection

emerging networks is usually very limited. Meanwhile, many of the users are also involved in multiple
online social networks simultaneously. For users who are using these emerging networks, they may
also be involved in other developed social networks for a long time [50,51]. The abundant information
available in these mature networks can actually be useful for the community detection in the emerging
networks. In this section, we will introduce the cross-network community detection for emerging
networks with information transferred from other mature social networks [53].

8.3.1 Background Knowledge

Witnessing the incredible success of popular online social networks, e.g., Facebook and Twitter, a
large number of new social networks offering specific services also spring up overnight to compete for
the market share. Generally, emerging networks are the networks containing very sparse information
and can be (1) the social networks which are newly constructed and start to provide social services
for a very short period of time; or (2) even more mature ones that start to branch into new geographic
areas or social groups [55]. These emerging networks can be of a wide variety, which include (1)
location-based social networks, e.g., Foursquare and Jiepang; (2) photo organizing and sharing sites,
e.g., Pinterest and Instagram; and (3) educational social sites, e.g., Stage 32.

Community detection in emerging networks is a new problem and conventional community
detection methods for well-developed networks cannot be applied directly. Compared with well-
developed networks, information in emerging networks can be too sparse to support traditional
community detection methods to calculate effective closeness scores and achieve good results.
According to the market report from DRM,1 by the end of 2013, the total number of registered
users in Foursquare has reached 45million but these Foursquare users have only post 40million tips.
In other words, each user has posted less than one tip in Foursquare on average. Meanwhile, the
1 billion registered Twitter users have published more than 300 billion tweets by the end of 2013 and
each Twitter user has written more than 300 tweets. We also provide a statistics investigation on a
crawled dataset, which include both Foursquare and Twitter, and the information distribution results
are given in Fig. 8.3. As shown in Fig. 8.3a–c, users in Twitter have far more social connections,
posts, and location check-ins than users in Foursquare. The shortage of information encountered
in community detection problems for emerging networks can be a serious obstacle for traditional
community detection methods to achieve good performance and is urgent to be solved.

In this section, we will introduce the social community detection for emerging networks with
information propagated across multiple partially aligned social networks, which is formally defined as
the “emerging network community detection” problem. Especially, when the network is brand new, the
problem will be the “cold start community detection” problem. Cold start problem is mostly prevalent
in recommender systems [54], where the system cannot draw any inferences for users or items, for
which it has not yet gathered sufficient information, but few works have been done on studying the
cold start problem in clustering/community detection problems. The “emerging network community
detection” problem and “cold start community detection” problem studied in this section are both
novel problems and very different from other existing works on community detection.

1http://expandedramblings.com.

jwzhanggy@gmail.com

http://expandedramblings.com

8.3 Emerging Network Community Detection 285

(a) degree distribution (b) checkin number distri-
bution

(c) post number distribu-
tion

Fig. 8.3 Information and anchor user distributions in Foursquare and Twitter. (a) social degree distribution, (b) number
of check-ins distribution, (c) number of posts distribution

8.3.2 Problem Formulation

Networks studied in this section can be formulated as two partially aligned attribute augmented
heterogeneous networks: G = ((Gt ,Gs), At,s), where Gt and Gs are the emerging target network
and well-developed source network, respectively and At,s is the set of anchor links between Gt and
Gs . Both Gt and Gs can be formulated as the attribute augmented heterogeneous social network,
e.g., Gt = (V t , E t ,At) (where sets V t , E t , and At denote the user nodes, social links, and diverse
attributes in the network). With information propagated across G, we can calculate the intimacy matrix,
H, among users in V t . The emerging network community detection problem aims at partitioning user
set V t of the emerging network Gt into K disjoint clusters, C = {C1, C2, . . . , CK}, based on the
intimacy matrix, H, where

⋃K
i Ci = V t and Ci ∩ Cj = ∅,∀i, j ∈ {1, 2, . . . , K}, i '= j . When the

target networkGt is brand new, i.e., E t = ∅ andAt = ∅, the problem will be the cold start community
detection problem. The “emerging network community detection” studied in this section is also very
challenging to solve due to the following reasons:

• network heterogeneity problem: Proper definition of closeness measure among users with link
and attribute information in the heterogeneous social networks is very important for community
detection problems.

• shortage of information: Community detection for emerging networks can suffer from the shortage
of information problem, i.e., the “cold start problem” [54, 55].

• network difference problem: Different networks can have different properties. Some information
propagated from other well-developed networks can be useful for solving the emerging network
community detection problem but some can be misleading on the other hand.

• high memory space cost: Community detection across multiple aligned networks can involve too
many nodes and connections, which will lead to high space cost.

To solve all the above challenges, a novel community detection method, CAD [53], will be
introduced in great detail in this section: (1) CAD introduces a new concept, intimacy, to measure
the closeness relationships among users with both link and attribute information in online social
networks; (2) CAD can propagate useful information from aligned well-developed networks to the
emerging network to solve the shortage of information problem; (3) CAD addresses the network
heterogeneity and difference problems with both micro-level and macro-level control of the link
and attribute information proportions, whose parameters can be adjusted by CAD automatically; (4)
effective and efficient cross-network information propagation models are introduced in this section to
solve the high space cost problem.

jwzhanggy@gmail.com

286 8 Community Detection

8.3.3 IntimacyMatrix of Homogeneous Network

The CAD model is built based on the closeness scores among users, which is formally called the
intimacy scores in this section. Here, we will introduce the intimacy scores and intimacy matrix used
in CAD from an information propagation perspective.

For a given homogeneous network, e.g., G = (V, E), where V is the set of users and E is the set
of social links among users in V , we can define the adjacency matrix of G to be A ∈ R|V |×|V |, where
A(i, j) = 1, iff (ui, uj) ∈ E . Meanwhile, via the social links in E , information can propagate among
the users within the network, whose propagation paths can reflect the closeness among users [33].
Formally, term

pji =
A(j, i)

√∑
m A(j,m)

∑
n A(n, i)

(8.23)

is called the information transition probability from uj to ui , which equals to the proportion of
information propagated from uj to ui in one step.

We can use an example to illustrate how information propagates within the network more clearly.
Let’s assume that user ui ∈ V injects a stimulation into networkG initially and the information will be
propagated to other users in G via the social interactions afterwards. During the propagation process,
users receive stimulation from their neighbors and the amount is proportional to the difference of the
amount of information reaching the user and his neighbors. Let vector f (τ) ∈ R|V | denote the states of
all users in V at time τ , i.e., the proportion of stimulation at users in V at τ . The change of stimulation
at ui at time τ + ∆t is defined as follows:

f (τ+∆t)(i) − f (τ)(i)

∆t
= α

∑

uj∈V
pji(f

(τ)(j) − f (τ)(i)), (8.24)

where coefficient α can be set as 1 as proposed in [62]. The transition probabilities pij , i, j ∈
{1, 2, . . . , |V|} can be represented with the transition matrix

X = (D− 1
2AD− 1

2) (8.25)

of network G, where X ∈ R|V |×|V |, X(i, j) = pij and diagonal matrix D ∈ R|V |×|V | has value
D(i, i) =∑|V |

j=1A(i, j) on its diagonal.

Definition 8.3 (Social Transition Probability Matrix) The social transition probability matrix of
network G can be represented as Q = X − DX, where X is the transition matrix defined above and
diagonal matrix DX has value DX(i, i) =

∑|V |
j=1X(i, j) on its diagonal.

Furthermore, by setting ∆t = 1, denoting that stimulation propagates step by step in a discrete
time through network, we can rewrite the propagation updating equation as:

f (τ) = f (τ−1) + α(X − DX)f
(τ−1) = (I+ αQ)f (τ−1)

= (I+ αQ)τf (0). (8.26)

jwzhanggy@gmail.com

8.3 Emerging Network Community Detection 287

Such a propagation process will stop when f (τ) = f (τ−1), i.e.,

(I+ αQ)(τ) = (I+ αQ)(τ−1). (8.27)

The smallest τ that can stop the propagation is defined as the stop step. To obtain the stop step τ , CAD

needs to keep checking the powers of (I + αQ) until it doesn’t change as τ increases, i.e., the stop
criteria.

Definition 8.4 (Intimacy Matrix) Matrix

H = (I+ αQ)τ ∈ R|V |×|V | (8.28)

is defined as the intimacy matrix of users in V , where τ is the stop step and H(i, j) denotes the
intimacy score between ui and uj ∈ V in the network.

8.3.4 IntimacyMatrix of Attributed Heterogeneous Network

Real-world social networks can usually contain various kinds of information, e.g., links and attributes,
and can be formulated as G = (V, E,A) as introduced in Sect. 8.3.2. Attribute set A = {a1, a2, . . . ,
am}, ai = {ai1, ai2, . . . , aini } can have ni different values for i ∈ {1, 2, . . . , m}. An example of
attribute augmented heterogeneous network is given in Fig. 8.4, where Fig. 8.4a is the input attribute
augmented heterogeneous network. Figure 8.4b–d shows the attribute information in the network,
which include timestamps, text, and location check-ins. Including the attributes as a special type
of nodes in the graph definition provides a conceptual framework to handle social links and node
attributes in a unified framework. The effect on increasing the dimensionality of the network will be
handled as in Lemma 8.1 in a lower dimensional space.

Definition 8.5 (Attribute Transition Probability Matrix) The connections between users and
attributes, e.g., ai , can be represented as the attribute adjacency matrix Aai ∈ R|V |×ni . Based on
Aai , CAD formally defines the attribute transition probability matrix from users to attribute ai to be
Ri ∈ R|V |×ni , where

Ri (i, j) =
1

√(∑ni
m=1 Aai (i, m)

)(∑|V |
n=1Aai (n, j)

)Aai (i, j). (8.29)

Similarly, CAD defines the attribute transition probability matrix from attribute ai to users in V as
Si = R*

i .
The importance of different information types in calculating the closeness measure among users

can be different. To handle the network heterogeneity problem, the CAD model proposes to apply the
micro-level control by giving different information sources distinct weights to denote their differences:
ω = [ω0,ω1, . . . ,ωm]*, where

∑m
i=0 ωi = 1.0, ω0 is the weight of link information and ωi is the

weight of attribute ai , for i ∈ {1, 2, . . . , m}.

jwzhanggy@gmail.com

288 8 Community Detection

write

write

write

write

write

check in at

check in at check in at

check in at

at

at

at

at

timestamps words locationsusers

(a) augmented network

at

at
at

at

at

at

Users Timestamp Attributes

(b) timestamp attribute

write

Users Text Attributes

write

write

write

write

(c) text attribute

Users Checkin Attributes

check in at

check in at

check in at

check in at

check in at

check in at

check in at

(d) checkin attribute
Fig. 8.4 An example of attribute augmented heterogeneous network. (a) attribute augmented heterogeneous network,
(b) timestamp attribute, (c) text attribute, (d) location check-in attribute

Definition 8.6 (Weighted Attribute Transition Probability Matrix) With weights ω, CAD can
define matrices

R̃ = [ω1R1, . . . ,ωnRn] , (8.30)

S̃ = [ω1S1, . . . ,ωnSn]* (8.31)

to be the weighted attribute transition probability matrices between users and all attributes, where
R̃ ∈ R|V |×(naug−|V |), S̃ ∈ R(naug−|V |)×|V |, naug = (|V| +∑m

i=1 ni) is the number of all user and
attribute nodes in the augmented network.

Definition 8.7 (Network Transition Probability Matrix) Furthermore, the transition probability
matrix of the whole attribute augmented heterogeneous network G is defined as

Q̃aug =
[
Q̃ R̃
S̃ 0

]
, (8.32)

jwzhanggy@gmail.com

8.3 Emerging Network Community Detection 289

where Q̃aug ∈ Rnaug×naug and block matrix Q̃ = ω0Q is the weighted social transition probability
matrix of social links in E .

In the real world, heterogeneous social networks can contain large amounts of attributes, i.e., naug
can be extremely large. The weighted transition probability matrix, i.e., Q̃aug , can be of extremely
high dimensions and can hardly fit in the memory. As a result, it will be impossible to update the
matrix until the stop criteria meets to obtain the stop step and the intimacy matrix. To solve such
problem, CAD proposes to obtain the stop step and the intimacy matrix by applying partitioned block
matrix operations with the following Lemma 8.1.

Lemma 8.1 (Q̃aug)
k =

[
Q̃k Q̃k−1R̃

S̃Q̃k−1 S̃Q̃k−2R̃

]
, k ≥ 2, where

Q̃k =

I, if k = 0,

Q̃, if k = 1,

Q̃Q̃k−1 + R̃S̃Q̃k−2, if k ≥ 2

(8.33)

and the intimacy matrix among users in V can be represented as

H̃aug =
(
I+ αQ̃aug

)τ
(1 : |V|, 1 : |V|)

=
(

τ∑

t=0

(
τ

t

)
αt (Q̃aug)

t

)

(1 : |V|, 1 : |V|)

=
(

τ∑

t=0

(
τ

t

)
αt
(
(Q̃aug)

t (1 : |V|, 1 : |V|)
))

=
(

τ∑

t=0

(
τ

t

)
αt Q̃t

)

, (8.34)

where X(1 : |V|, 1 : |V|) is a sub-matrix of X with indexes in range [1, |V|]. Notation τ is the stop
step, achieved when Q̃τ = Q̃τ−1, i.e., the stop criteria, and Q̃τ is called the stationary matrix of the
attributed augmented heterogeneous network.

Proof The lemma can be proved by induction on k [63], which will be left as an exercise for
the readers. Considering that (R̃S̃) ∈ R|V |×|V | can be precomputed in advance, the space cost of
Lemma 8.1 is O(|V|2), where |V| - naug .

Since we are only interested in the intimacy and transition matrices among user nodes instead of
those between the augmented items and users for the community detection task, CAD creates a reduced
dimensional representation only involving users for Q̃k and H̃ such that CAD can capture the effect
of “user-attribute” and “attribute-user” transition on “user-user” transition. Q̃k is a reduced dimension
representation of Q̃k

aug , while eliminating the augmented items, it can still capture the “user-user”
transitions effectively.

jwzhanggy@gmail.com

290 8 Community Detection

8.3.5 IntimacyMatrix Across Aligned Heterogeneous Networks

When Gt is new, the intimacy matrix H̃ among users calculated based on the information in Gt

can be very sparse. To solve this problem, CAD proposes to propagate useful information from
other well-developed aligned networks to the emerging network. Information propagated from other
aligned well-developed networks can help solve the shortage of information problem in the emerging
network [54, 55]. However, as proposed in [32], different networks can have different properties and
information propagated from other well-developed aligned networks can be very different from that
of the emerging network as well.

To handle this problem, CAD model proposes to apply the macro-level control technique by using
weights, ρs,t , ρt,s ∈ [0, 1], to control the proportion of information propagated between the developed
network Gs and the emerging network Gt . If information from Gs is helpful for improving the
community detection results inGt , CAD can set a higher ρs,t to propagate more information fromGs .
Otherwise, CAD can set a lower ρs,t instead. The weights ρs,t and ρt,s can be adjusted automatically
with a method to be introduced in Sect. 8.3.7.

Definition 8.8 (Anchor Transition Matrix) To propagate information across networks, CAD intro-
duces the anchor transition matrices betweenGt andGs to be Tt,s ∈ R|V t |×|Vs | and Ts,t ∈ R|Vs |×|V t |,
where Tt,s (i, j) = Ts,t (j, i) = 1, iff (uti , u

s
j) ∈ At,s, uti ∈ V t , usj ∈ Vs .

Meanwhile, with weights ρs,t and ρt,s , the weighted network transition probability matrix of Gt

and Gs are represented as

Q̄t
aug = (1 − ρt,s)

[
Q̃t R̃t

S̃t 0

]
(8.35)

and

Q̄s
aug = (1 − ρs,t)

[
Q̃s R̃s

S̃s 0

]
, (8.36)

where Q̄t
aug ∈ Rntaug×ntaug and Q̄s

aug ∈ Rnsaug×nsaug , ntaug and nsaug are the numbers of all nodes in Gt

and Gs , respectively.
Furthermore, to accommodate the dimensions, CAD introduces the weighted anchor transition

matrices between Gs and Gt to be

T̄t,s = (ρt,s)

[
Tt,s 0
0 0

]
, (8.37)

T̄s,t = (ρs,t)

[
Ts,t 0
0 0

]
, (8.38)

where T̄t,s ∈ Rntaug×nsaug and T̄s,t ∈ Rnsaug×ntaug . Nodes corresponding to entries in T̄t,s and T̄s,t are of
the same order as those in Q̄t

aug and Q̄s
aug , respectively.

jwzhanggy@gmail.com

8.3 Emerging Network Community Detection 291

By combining the weighted intra-network transition probability matrices together with the
weighted anchor transition matrices, CAD defines the transition probability matrix across aligned
networks as

Q̄align =
[
Q̄t

aug T̄t,s

T̄s,t Q̄s
aug

]
(8.39)

where Q̄align ∈ Rnalign×nalign , and nalign = ntaug + nsaug is the number of all nodes across the aligned
networks.

Definition 8.9 (Aligned Network Intimacy Matrix) Based on the previous remarks, with Q̄align,
CAD can obtain the intimacy matrix, H̄align, of users in Gt to be

H̄align = (I+ αQ̄align)
τ (1 : |V t |, 1 : |V t |), (8.40)

where H̄align ∈ R|V t |×|V t |, τ is the stop step.

Meanwhile, the structure of (I+αQ̄align) cannot meet the requirements of Lemma 8.1 as it doesn’t
have a zero square matrix at the bottom right corner. As a result, methods introduced in Lemma 8.1
cannot be applied. To obtain the stop step, there is no other choice but to keep calculating powers of
(I + αQ̄align) until the stop criteria can meet, which can be very time consuming. In this part, we
will introduce with the following Lemma 8.2 adopted by CAD model for efficient computation of the
high-order powers of matrix (I+ αQ̄align).

Lemma 8.2 For the given matrix (I+ αQ̄align), its kth power meets

(I+ αQ̄align)
kP = PΛk, k ≥ 1, (8.41)

matrices P and Λ contain the eigenvector and eigenvalues of (I+αQ̄align). The ith column of matrix
P is the eigenvector of (I + αQ̄align) corresponding to its ith eigenvalue λi and diagonal matrix Λ

has value Λ(i, i) = λi on its diagonal.

Proof The Lemma can be proved by induction on k [34] as follows:

Base Case When k = 1, let pi and λi be the ith eigenvector and eigenvalue of matrixQ, respectively,
where

Qpi = λipi . (8.42)

Organizing all the eigenvectors and eigenvalues of Q in matrix P and Λ, we can have

Q1P = PΛ1. (8.43)

Inductive Assumption When k = m,m ≥ 1, let’s assume the lemma holds when k = m,m ≥ 1. In
other words, the following equation holds:

QmP = PΛm. (8.44)

jwzhanggy@gmail.com

292 8 Community Detection

Induction When k = m+ 1,m ≥ 1,

Q(m+1)P = QQmP = QPΛm = PΛΛm = PΛ(m+1). (8.45)

In sum, the lemma holds for k ≥ 1.

The time cost of calculating Λk is O(nalign), which is far less than that required to calculate (I +
αQ̄align)

k .

Definition 8.10 (Eigen-Decomposition Based Aligned Network Intimacy Matrix) In addition, if
P is invertible, we can have

(I+ αQ̄align)
k = PΛkP−1, (8.46)

whereΛk hasΛ(i, i)k on its diagonal. And the intimacy calculated based on eigenvalue decomposition
will be

H̄align =
(
PΛτP−1

)
(1 : |V t |, 1 : |V t |). (8.47)

where the stop step τ can be obtained when PΛτP−1 = PΛτ−1P−1, i.e., stop criteria.

8.3.6 Approximated Intimacy to Reduce Dimension

Eigendecomposition based method proposed in Lemma 8.2 enables CAD to calculate the powers of
(I + αQalign) very efficiently. However, when applying Lemma 8.2 to calculate the intimacy matrix
of real-world partially aligned networks, it can suffer from many serious problems. The reason is that
the dimension of (I+αQalign), i.e., nalign × nalign, is so high that matrix (I+αQalign) can hardly fit
in the memory. To solve that problem, CAD proposes to calculate the approximated intimacy matrix
H̄approx

align with less space and time costs instead.

Let’s define the transition probability matrices of Gt and Gs to be Q̃t
aug and Q̃s

aug , respectively.

By applying Lemma 8.1, we can get their stop step and the stationary matrices to be τ t , τ s , Q̃t
τ t

and
Q̃t

τ s , respectively. Stationary matrices Q̃
t
τ t
, Q̃t

τ s together with the anchor transition matrix, Tt,s and
Tt,s , can be used to define a low-dimensional reduced aligned network transition probability matrix,
which only involves users explicitly, while the effect of “attribute-user” or “user-attribute” transition
is implicitly absorbed into Q̃t

τ t
and Q̃s

τ s :

Q̄user
align =

[
(1 − ρt,s)Q̃t

τ t
(ρt,s)Tt,s

(ρs,t)Ts,t (1 − ρs,t)Q̃s
τ s

]
, (8.48)

where Q̄user
align ∈ R(|V |t+|Vs |)2 and (|V|t + |Vs |) - nalign.

jwzhanggy@gmail.com

8.3 Emerging Network Community Detection 293

Definition 8.11 (Approximated Aligned Network Intimacy Matrix) Furthermore, with Lemma
8.2, we can get intimacy matrix of users in Gt based on Q̄user

align to be:

H̄approx
align =

(
P∗(Λ∗)τ (P∗)−1

)
(1 : |V t |, 1 : |V t |), (8.49)

where
(
I+ αQ̄user

align

)
= P∗Λ∗(P∗)−1 and τ is the stop step.

The approximated intimacy matrix computation method introduced above can greatly reduce the
time and space costs. Let

∣∣V t
∣∣ = nt , the size of intimacy matrix H̄align will be (nt)2. However, to

obtain H̄align, we need to calculate the transition probability matrix Q̄align in advance, whose size is
(nalign)

2.
Space Cost: In eigendecomposition based method, we have to calculate and store matrices Q̄eigen

align ,
P, P−1, Λ ∈ Rnalign×nalign , whose space costs are O

(
4n2align

)
. However, in the approxima-

tion based method, we just need to store matrices Q̃x ∈ Rnx×nx , R̃x ∈ Rnx×
(∑

i n
x
i

)
, S̃x ∈

R
(∑

i n
x
i

)
×nx , x ∈ {s, t}, as well as Q̄approx

align ∈ R(nt+ns)×(nt+ns), whose space cost will be O(max{(nt+
ns)2, nt

(∑
i n

t
i

)
, ns
(∑

i n
s
i

)
}) < O

(
4n2align

)
.

Time Cost: In eigendecomposition based method, the matrix eigendecomposition of Q̄eigen
align , inversion

P−1, and multiplication of PΛkP−1 are all time-consuming operations, whose time costs are
O
(
kn2align

)
[47], O

(
n2align log(nalign)

)
[11] and O

(
2n3align

)
, respectively. As a result, the time cost of

eigendecomposition based method is about O
(
2n3align

)
. However, in approximation based methods,

we need to apply Lemma 2 to get H̄t and H̄t , whose time cost is

O
(
max

{
τ
(
(nt)3 + (nt)2

(∑

i

ati

))
, τ
(
(ns)3 + (ns)2

(∑

i

asi

))})
, (8.50)

which is much smaller than that of eigendecomposition based methods.

8.3.7 Clustering andWeight Self-adjustment

Intimacy matrix H̄align (or H̄approx
align) stores the intimacy scores among users in V t and can be used to

detect the communities in the network. CAD will use the low-rank matrix factorization method used
proposed in [43] to get the latent feature vectors,U, for each user. To avoid overfitting, CAD introduces
two regularization terms to the object function as follows:

min
U,V

∥∥∥H̄align − UVU*
∥∥∥
2

F
+ θ · ‖U‖2F + β · ‖V‖2F ,

s.t.U ≥ 0,V ≥ 0, (8.51)

whereU is the latent feature vectors,V stores the correlation among rows ofV, θ and β are the weights
of ‖U‖2F , ‖V‖2F , respectively.

This object function is hard to solve and obtaining the global optimal result for both U and V
simultaneously can be very challenging. CAD proposes to solve the objective function by fixing one
variable, e.g., U, and update another variable, e.g.,V, alternatively. The Lagrangian function of the

jwzhanggy@gmail.com

294 8 Community Detection

object equation can be represented as:

F = T r
(
H̄alignH̄*

align

)
− T r

(
H̄alignUV*U*

)

− T r
(
UVU*H̄*

align

)
+ T r

(
UVU*UV*U*

)

+ θT r
(
UU*

)
+ βT r

(
VV*

)
− T r(ΘU) − T r(ΩV) (8.52)

where Θ and Ω are the multipliers for the constraint of U and V, respectively. By taking derivatives
of F with regard to U and V, we can get

∂F
∂U

= −2
(
H̄*

alignUV+ H̄alignUV* − UV*U*UV* − UVU*UV* − θU
)

− Θ* (8.53)

∂F
∂V

= −2
(
U*H̄alignU − U*UVU*U − βV

)
− Ω* (8.54)

Let ∂F
∂U = 0 and ∂F

∂V = 0 and use the KKT complementary condition, we can get

U(i, j) ← U(i, j)

√√√√
(
H̄*

alignUV+ H̄alignUV*
)
(i, j)

(
UV*U*UV+ UVU*UV* + θU

)
(i, j)

, (8.55)

V(i, j) ← V(i, j)

√ (
U*H̄alignU

)
(i, j)

(
U*UVU*U+ βV

)
(i, j)

. (8.56)

The low-rank matrix U captures the information of each users from the intimacy matrix and can be
used as latent numerical feature vectors to cluster users inGt with traditional clustering methods, e.g.,
Kmeans [15].

Meanwhile, to handle the information heterogeneity problem in each network and the network
difference problem across networks, CAD uses weights, ωt , ωs , ρt,s , and ρs,t to denote the importance
of information in Gt , Gs and that propagated from Gt and Gs , respectively. For simplicity, CAD sets
ωt = ωs = ω = [ω0,ω1, . . . ,ωm] and ρt,s = ρs,t = ρ in CAD. Let C be the community detection
result achieved by CAD inGt . The optimal choices of parameters ω and ρ, evaluated by some metrics,
e.g., entropy [62], can be achieved with the following equation:

ω, ρ = min
ω,ρ

E(C). (8.57)

The optimization problem is very difficult to solve. CAD proposes a method to adjust ω and ρ

automatically to enable CAD to achieve better results.
The weight adjustment method used to deal with ω can work as follows: for example, in network

Gt , we have relational information and attribute information E and A = {A1, A2, . . . , Am}, whose
weights are initialized to be ω = {ω0,ω1, . . . ,ωm}. For ωi ∈ ω, i ∈ {0, 1, . . . , m}, CAD keeps
checking if increasing ωi by a ratio of γ , i.e., (1 + γ)ωi , can improve the performance or not. If
so, (1 + γ)ωi after re-normalization is used as the new value of ωi ; otherwise, CAD restores the old
ωi before increase and study ωi+1. In the experiment, γ is set as 0.05. Similarly, for the weight of
different networks, i.e., ρ, CAD can adjust them with the same methods to find the optimal ρ. The
pseudo code of CAD is available in Algorithm 1.

jwzhanggy@gmail.com

8.4 Mutual Community Detection 295

Algorithm 1 CAD with Parameter Self-Adjustment
Require: aligned network: G = {{Gt , Gs}, {At,s , As,t }}

parameters: ω, ρ, γ , α, β and method type M
Ensure: community detection results of Gt : C
1: ωold = ω, ρold = ρ, Eold = ∞
2: for parameter δ ∈ ω ∪ {ρ} do
3: while T rue do
4: δ = (1+ γ)δ and renormalize ω if δ ∈ ω to get ωnew, ρnew
5: construct transition probability matrix Q̄align

6: ifM = approximation then
7: construct Q̄user

align with Q̃t
τ t
, Q̃s

τ s calculated according to Lemma 1

8: calculate H̄approx
align with Q̄user

align according to Lemma 2

9: H̄align = H̄approx
align

10: else
11: calculate H̄align with Q̄align according to Lemma 2
12: end if
13: get lower-dimensional latent feature vectors U
14: C = Kmeans(U)
15: Enew = −∑K

i=1 P(i) logP(i), P (i) = |Ui |∑K
i=1|Ui |

, Ui ∈ C
16: if Enew < Eold then
17: ωold = ω, ρold = ρ, Eold = Enew

18: else
19: ω = ωold , ρ = ρold
20: break
21: end if
22: end while
23: end for

8.4 Mutual Community Detection

Besides the knowledge transfer from developed networks to the emerging networks to overcome
the cold start problem, information in developed networks can also be transferred mutually to help
refine the detected community structure detected from each of them. In this section, we will introduce
the mutual community detection problem across multiple aligned heterogeneous networks and talk
about a new cross-network mutual community detection model MCD [52]. To refine the community
structures, a new concept named discrepancy is introduced to help preserve the consensus of the
community detection result of the shared anchor users.

8.4.1 Background Knowledge

In this section, we will focus on the simultaneous community detection of each network across
multiple partially aligned social networks simultaneously, which is formally defined as the Mutual
Community Detection problem [52]. The goal is to distill relevant information from other aligned
social network to complement knowledge directly derivable from each network to improve the
clustering or community detection, while preserving the distinct characteristics of each individual
network. TheMutual Community Detection problem is very important for online social networks and
can be the prerequisite for many concrete social network applications: (1) network partition: detected
communities can usually represent small-sized subgraphs of the network, and (2) comprehensive
understanding of user social behaviors: community structures of the shared users in multiple aligned

jwzhanggy@gmail.com

296 8 Community Detection

networks can provide a complementary understanding of their social interactions in the online social
world.

Besides its importance, theMutual Community Detection problem is a novel problem and different
from existing clustering problems, including: (1) consensus clustering [12, 23, 26, 27, 31], which
aims at achieving a consensus result of several input clustering results about the same data; (2)
multi-view clustering [4, 6], whose target is to partition objects into clusters based on their different
representations, e.g., clustering webpages with text information and hyperlinks; (3) multi-relational
clustering [3, 49], which focuses on clustering objects in one relation (called target relation) using
information in multiple inter-linked relations; and (4) co-regularized multi-domain graph clustering
[7], which relaxes the one-to-one constraints on node correspondence relationships between different
views in multi-view clustering to “uncertain” mappings. Unlike these existing clustering problems,
the Mutual Community Detection problem aims at detecting the communities for multiple networks
involving both anchor and non-anchor users simultaneously and each network contains heterogeneous
information about users’ social activities.

8.4.2 Problem Formulation

For the given multiple aligned heterogeneous networks, i.e., those in G = ((G(1),G(2), . . . ,G(n)),
(A(1,2),A(1,3), . . . ,A(n−1,n))), the Mutual Community Detection problem aims to obtain the op-
timal communities {C(1), C(2), . . . , C(n)} for {G(1),G(2), . . . ,G(n)} simultaneously, where C(i) ={
U

(i)
1 , U

(i)
2 , . . . , U

(i)

k(i)

}
is a partition of the users set U (i) in G(i), k(i) =

∣∣C(i)
∣∣, U(i)

l ∩ U
(i)
m = ∅,

∀ l, m ∈ {1, 2, . . . , k(i)} and ⋃k(i)

j=1 U
(i)
j = U (i). Users in each detected social community are more

densely connected with each other than with users in other communities. In this section, we focus on
studying the hard (i.e., non-overlapping) community detection of users in online social networks.

The Mutual Community Detection problem studied in this section is very challenging to solve due
to:

• Closeness Measure: Users in heterogeneous social networks can be connected with each other
by various direct and indirect connections. A general closeness measure among users with
such connection information is the prerequisite for addressing the Mutual Community Detection
problem.

• Network Characteristics: Social networks usually have their own characteristics, which can be
reflected in the community structures formed by users. Preservation of each network’s characteris-
tics (i.e., some unique structures in each network’s detected communities) is very important in the
Mutual Community Detection problem.

• Mutual Community Detection: Information in different networks can provide us with a more
comprehensive understanding about the anchor users’ social structures. For anchor users whose
community structures are not clear based on information in one network, utilizing the heteroge-
neous information in aligned networks can help refine and disambiguate the community structures
about the anchor users. However, how to achieve such a goal is still an open problem.

To solve all these challenges, a novel cross-network community detection method, MCD (Mutual
Community Detector), is proposed in this section. MCD maps the complex relationships in the
social network into a heterogeneous information network [41] and introduces a novel meta-path
based closeness measure, HNMP-Sim, to utilize both direct and indirect connections among users in
closeness scores calculation. With full considerations of the network characteristics, MCD exploits the

jwzhanggy@gmail.com

8.4 Mutual Community Detection 297

information in aligned networks to refine and disambiguate the community structures of the multiple
networks concurrently. More detailed information about the MCD model will be introduced as follows.

8.4.3 Meta Path Based Social Proximity Measure

Many existing similarity measures, e.g., “common neighbor” [13], “Jaccard’s coefficient” [13],
defined for homogeneous networks cannot capture all the connections among users in heterogeneous
networks. To use both direct and indirect connections among users in calculating the similarity score
among users in the heterogeneous information network, MCD introduces meta path based similarity
measure HNMP-Sim, whose information will be introduced as follows.

In heterogeneous networks, pairs of nodes can be connected by different paths, which are sequences
of links in the network. Meta paths [40, 41] in heterogeneous networks, i.e., heterogeneous network
meta paths (HNMPs), can capture both direct and indirect connections among nodes in a network. The
length of a meta path is defined as the number of links that constitute it. Meta paths in networks can
start and end with various node types. However, in this section, we are mainly concerned about those
starting and ending with users, which are formally defined as the social HNMPs. A formal definition
of social HNMPs is available in [52, 56, 57]. The notation, definition, and semantics of 7 different
social HNMPs used in MCD are listed in Table 8.2. To extract the social meta paths, prior domain
knowledge about the network structure is required.

These 7 different social HNMPs in Table 8.2 can cover lots of connections among users in
networks. Some meta path based similarity measures have been proposed so far, e.g., the PathSim
proposed in [41], which is defined for undirected networks and considers different meta paths to
be of the same importance. To measure the social closeness among users in directed heterogeneous
information networks, we extend PathSim to propose a new closeness measure as follows.

Definition 8.12 (HNMP-Sim) Let Pi (x ! y) and Pi (x ! ·) be the sets of path instances of the
ith HNMP going from x to y and those going from x to other nodes in the network. The HNMP-Sim
(HNMP based Similarity) of node pair (x, y) is defined as

HNMP-Sim(x, y) =
∑

i

ωi

(|Pi (x ! y)| + |Pi (y ! x)|
|Pi (x ! ·)| + |Pi (y ! ·)|

)
, (8.58)

Table 8.2 Summary of HNMPs

ID Notation Heterogeneous network meta path Semantics

1 U → U User
f ollow−−−−→ User Follow

2 U → U → U User
f ollow−−−−→ User

f ollow−−−−→ User Follower of follower

3 U → U ← U User
f ollow−−−−→ User

f ollow−1

−−−−−→ User Common out neighbor

4 U ← U → U User
f ollow−1

−−−−−→ User
f ollow−−−−→ User Common in neighbor

5 U → P → W ← P ← U User
write−−−→ Post

contain−−−−→ Word Posts containing
contain−1

−−−−−−→ Post
write−1

−−−−→ User Common words

6 U → P → T ← P ← U User
write−−−→ Post

contain−−−−→ Time Posts containing
contain−1

−−−−−−→ Post
write−1

−−−−→ User Common timestamps

7 U → P → L ← P ← U User
write−−−→ Post

attach−−−→ Location Posts attaching
attach−1

−−−−−→ Post
write−1

−−−−→ User Common check-ins

jwzhanggy@gmail.com

298 8 Community Detection

where ωi is the weight of the ithHNMP and
∑

i ωi = 1. In MCD, the weights of different HNMPs can
be automatically adjusted by applying a similar greedy search technique as introduced in Sect. 8.3.7.

Let Ai be the adjacency matrix corresponding to the ith HNMP among users in the network and
Ai(m, n) = k iff there exist k different path instances of the ith HNMP from user m to n in the
network. Furthermore, the similarity score matrix among users of HNMP # i can be represented as
Si =

(
Di + D̄i

)−1 (Ai + A*
i

)
, where A*

i denotes the transpose of Ai , diagonal matrices Di and D̄i

have values Di (l, l) =
∑

mAi (l, m) and D̄i (l, l) =
∑

m(A
*
i)(l, m) on their diagonals, respectively.

The HNMP-Sim matrix of the network which can capture all possible connections among users is
represented as follows:

S =
∑

i

ωiSi =
∑

i

ωi

((
Di + D̄i

)−1
(
Ai + A*

i

))
. (8.59)

8.4.4 Network Characteristic Preservation Clustering

Clustering each network independently can preserve each networks characteristics effectively as no
information from external networks will interfere with the clustering results. Partitioning users of
a certain network into several clusters will cut connections in the network and lead to some costs
inevitably. Optimal clustering results can be achieved by minimizing the clustering costs.

For a given network G, let C = {U1, U2, . . . , Uk} be the community structures detected from G.
Term Ui = U −Ui is defined to be the complement of set Ui inG. Various cost measures of partition
C can be used, e.g., cut and normalized cut.

cut(C) = 1
k

k∑

i=1

S(Ui, Ui) =
1
k

k∑

i=1

∑

u∈Ui,v∈Ui

S(u, v), (8.60)

ncut(C) = 1
k

k∑

i=1

S(Ui, Ui)

S(Ui, ·)
= 1

k

k∑

i=1

cut(Ui, Ui)

S(Ui, ·)
, (8.61)

where S(u, v) denotes the HNMP-Sim between u, v and S(Ui, ·) = S(Ui,U) = S(Ui, Ui) +
S(Ui, Ui).

For all users in U , their clustering result can be represented in the result confidence matrix H,
where H = [h1, h2, . . . , hn]*, n = |U |, hi = (hi,1, hi,2, . . . , hi,k) and hi,j denotes the confidence
that ui ∈ U is in cluster Uj ∈ C. The optimal H that can minimize the normalized-cut cost can be
obtained by solving the following objective function [45]:

min
H

Tr(H*LH),

s.t. H*DH = I. (8.62)

where L = D − S, diagonal matrix D has D(i, i) = ∑j S(i, j) on its diagonal, and I is an identity
matrix.

jwzhanggy@gmail.com

8.4 Mutual Community Detection 299

8.4.5 Discrepancy Based Clustering of Multiple Networks

Besides the shared information due to common network construction purposes and similar network
features [53], anchor users can also have unique information (e.g., social structures) across aligned
networks, which can provide us with a more comprehensive knowledge about the community
structures formed by these users. Meanwhile, by maximizing the consensus (i.e., minimizing the
“discrepancy”) of the clustering results about the anchor users in multiple partially aligned networks,
model MCD will be able to refine the clustering results of the anchor users with information in other
aligned networks mutually. We can represent the clustering results achieved in G(1) and G(2) as
C(1) = {U(1)

1 , U
(1)
2 , . . . , U

(1)
k(1)

} and C(2) = {U(2)
1 , U

(2)
2 , . . . , U

(2)
k(2)

}, respectively.
Let ui and uj be two anchor users in the network, whose accounts in G(1) and G(2) are u(1)i , u(2)i ,

u
(1)
j and u

(2)
j , respectively. If users u(1)i and u

(1)
j are partitioned into the same cluster in G(1) but their

corresponding accounts u(2)i and u(2)j are partitioned into different clusters in G(2), then it will lead to

a discrepancy [37, 52] between the clustering results of u(1)i , u(2)i , u(1)j and u
(2)
j in aligned networks

G(1) and G(2).

Definition 8.13 (Discrepancy) The discrepancy between the clustering results of ui and uj across
aligned networks G(1) and G(2) is defined as the difference of confidence scores of ui and uj being
partitioned in the same cluster across aligned networks. Considering that in the clustering results,
the confidence scores of u

(1)
i and u

(1)
j (u(2)i and u

(2)
j) being partitioned into k(1) (k(2)) clusters

can be represented as vectors h(1)i and h(1)j (h(2)i and h(2)j), respectively, while the confidence that

ui and uj are in the same cluster in G(1) and G(2) can be denoted as h(1)i (h(1)j)* and h(2)i (h(2)j)*.
Formally, the discrepancy of the clustering results about ui and uj is defined to be dij (C(1), C(2)) =(
h(1)i (h(1)j)* − h(2)i (h(2)j)*

)2
if ui, uj are both anchor users; and dij (C(1), C(2)) = 0 otherwise.

Furthermore, the discrepancy of C(1) and C(2) will be:

d(C(1), C(2)) =
n(1)∑

i

n(2)∑

j

dij (C(1), C(2)), (8.63)

where n(1) = |U (1)| and n(2) = |U (2)|. In the definition, non-anchor users are not involved in the
discrepancy calculation.

However, considering that d(C(1), C(2)) is highly dependent on the number of anchor users and
anchor links between G(1) and G(2), minimizing d(C(1), C(2)) can favor highly consented clustering
results when the anchor users are abundant but have no significant effects when the anchor users are
very rare. To solve this problem, we propose to minimize the normalized discrepancy instead.

Definition 8.14 (Normalized Discrepancy) The normalized discrepancy measure computes the
differences of clustering results in two aligned networks as a fraction of the discrepancy with regard
to the number of anchor users across partially aligned networks:

nd(C(1), C(2)) = d(C(1), C(2))(∣∣A(1,2)
∣∣) (∣∣A(1,2)

∣∣− 1
) . (8.64)

jwzhanggy@gmail.com

300 8 Community Detection

Optimal consensus clustering results of G(1) and G(2) will be ˆC(1), ˆC(2):

Ĉ(1), Ĉ(2) = arg min
C(1),C(2)

nd(C(1), C(2)). (8.65)

Similarly, the normalized-discrepancy objective function can also be represented with the cluster-
ing results confidence matrices H(1) and H(2) as well. Meanwhile, considering that the networks
studied in this section are partially aligned, matrices H(1) and H(2) contain the results of both
anchor users and non-anchor users, while non-anchor users should not be involved in the discrepancy
calculation according to the definition of discrepancy. We propose to prune the results of the non-
anchor users with the following anchor transition matrix first.

Definition 8.15 (Anchor TransitionMatrix) Binary matrixT(1,2) (orT(2,1)) is defined as the anchor
transition matrix from networks G(1) to G(2) (or from G(2) to G(1)), where T(1,2) = (T(2,1))*,
T(1,2)(i, j) = 1 if (u(1)i , u

(2)
j) ∈ A(1,2) and 0 otherwise. The row indexes of T(1,2) (or T(2,1)) are

of the same order as those of H(1) (or H(2)). Considering that the constraint on anchor links is “one-
to-one” in this section, as a result, each row/column of T(1,2) and T(2,1) contains at most one entry
filled with 1.

Example 8.6 In Fig. 8.5, we show an example about the clustering discrepancy of two partially
aligned networks G(1) and G(2), users in which are grouped into two clusters {{u1, u3}, {u2}} and
{{uA, uC}, {uB, uD}}, respectively. Users u1, uA and u3, uC are identified to be anchor users, based on
which we can construct the “anchor transition matrices” T(1,2) and T(2,1) as shown in the upper right
plot. Furthermore, based on the community structure, we can construct the “clustering confidence
matrices” as shown in the lower left plot. To obtain the clustering results of anchor users only, the
anchor transition matrix can be applied to prune the clustering results of non-anchor users from the
clustering confidence matrices. By multiplying the anchor transition matrices (T(1,2))* and (T(2,1))*

with clustering confidence matricesH(1) andH(2), respectively, we can obtain the “pruned confidence

Fig. 8.5 An example to
illustrate the clustering
discrepancy

uA

uB

uC
uD

u1

u2

u3

1 0 0 0

0 0 0 0

0 0 1 0

u1

u2

u3

uA uB uC uD

1 0 0

0 0 0

0 0 1

0 0 0

uA

uB

uC

uD

u1 u2 u3

T(1,2) T(2,1)

Network 1 Network 2

1 0

0 1

1 0

0 1

uA

uB

uC

uD

cluster1 cluster2

1 0

0 1

1 0

u1

u2

u3

cluster1 cluster2

H(1) H(2)

1 0

0 0

1 0

0 0

u1

u3

cluster1 cluster2

1 0

0 0

1 0

uA

uC

cluster1 cluster2

Anchor Transition Matrices

(T(1,2))T . H(1) (T(2,1))T . H(2)

jwzhanggy@gmail.com

8.4 Mutual Community Detection 301

matrices” as shown in the lower right plot of Fig. 8.5. Entries corresponding anchor users u1, u3, uA,
and uC are preserved but those corresponding to non-anchor users are all pruned.

In this example, the clustering discrepancy of the partially aligned networks should be 0 according
to the above discrepancy definition. Meanwhile, networks G(1) and G(2) are of different sizes
and the pruned confidence matrices are of different dimensions, e.g., (T(1,2))*H(1) ∈ R4×2 and
(T(2,1))*H(2) ∈ R3×2. To represent the discrepancy with the clustering confidence matrices, we
need to further accommodate the dimensions of different pruned clustering confidence matrices. It
can be achieved by multiplying one pruned clustering confidence matrices with the corresponding
anchor transition matrix again, which will not prune entries but only adjust the matrix dimensions.
Let H̄(1) = (T(1,2))*H(1) and H̄(2) = (T(1,2))*(T(2,1))*H(2). In the example, we can represent the
clustering discrepancy to be

∥∥∥∥H̄
(1)
(
H̄(1)

)*
− H̄(2)

(
H̄(2)

)*∥∥∥∥
2

F

= 0, (8.66)

where matrix H̄H̄* indicates whether pairs of anchor users are in the same cluster or not.

Furthermore, the objective function of inferring clustering confidence matrices, which can
minimize the normalized discrepancy can be represented as follows:

min
H(1),H(2)

∥∥∥H̄(1) (H̄(1))* − H̄(2) (H̄(2))*
∥∥∥
2

F∥∥T(1,2)
∥∥2
F

(∥∥T(1,2)
∥∥2
F

− 1
) ,

s.t. (H(1))*D(1)H(1) = I, (H(2))*D(2)H(2) = I. (8.67)

where D(1), D(2) are the corresponding diagonal matrices of HNMP-Sim matrices of networks G(1)

and G(2), respectively.

8.4.6 Joint Mutual Clustering of Multiple Networks

Normalized-Cut objective function favors clustering results that can preserve the characteristic of
each network, however, normalized-discrepancy objective function favors consensus results which are
mutually refined with information from other aligned networks. Taking both of these two issues into
considerations, the optimal Mutual Community Detection results Ĉ(1) and Ĉ(2) of aligned networks
G(1) and G(2) can be achieved as follows:

arg min
C(1),C(2)

α · ncut (C(1))+ β · ncut (C(2))+ θ · nd(C(1), C(2)) (8.68)

where α, β, and θ represent the weights of these terms and, for simplicity, α, β are both set as 1 in
MCD.

jwzhanggy@gmail.com

302 8 Community Detection

By replacing ncut(C(1)), cut(C(2)), nd(C(1), C(2)) with the objective equations derived above, we
can rewrite the joint objective function as follows:

min
H(1),H(2)

α·Tr((H(1))*L(1)H(1))+ β · Tr((H(2))*L(2)H(2))

+ θ ·

∥∥∥H̄(1) (H̄(1))* − H̄(2) (H̄(2))*
∥∥∥
2

F∥∥T(1,2)
∥∥2
F

(∥∥T(1,2)
∥∥2
F

− 1
) ,

s.t. (H(1))*D(1)H(1) = I, (H(2))*D(2)H(2) = I, (8.69)

where L(1) = D(1)−S(1), L(2) = D(2)−S(2) and matrices S(1), S(2) and D(1), D(2) are the HNMP-Sim
matrices and their corresponding diagonal matrices defined before.

The objective function is a complex optimization problem with orthogonality constraints, which
can be very difficult to solve because the constraints are not only non-convex but also numerically

expensive to preserve during iterations. Meanwhile, by substituting
(
D(1)) 12 H(1) and

(
D(2)) 12 H(2)

with X(1), X(2), we can transform the objective function into a standard form of problems solvable
with method proposed in [48]:

min
X(1),X(2)

α ·
(
Tr((X(1))*L̃(1)X(1))+ β · Tr((X(2))*L̃(2)X(2))

+ θ ·

∥∥∥∥T̃
(1)X(1)

(
T̃(1)X(1)

)*
− T̃(2)X(2)

(
T̃(2)X(2)

)*∥∥∥∥
2

F∥∥T(1,2)
∥∥2
F

(∥∥T(1,2)
∥∥2
F

− 1
)

)
,

s.t. (X(1))*X(1) = I, (X(2))*X(2) = I. (8.70)

where L̃(1) = ((D(1))−
1
2)*L(1)((D(1))−

1
2), L̃(2) = ((D(2))−

1
2)*L(2)((D(2))−

1
2) and T̃(1) =

(T(1,2))*(D(1))−
1
2 , T̃(2) = (T(1,2))*(T(2,1))*(D(2))−

1
2 .

Wen et al. [48] propose a feasible method to solve the above optimization problems with a
constraint-preserving update scheme. They propose to update one variable, e.g., X(1), while fixing the
other variable, e.g., X(2), alternatively with the curvilinear search with Barzilai-Borwein step method
until convergence. For example, when X(2) is fixed, we can simplify the objective function into

min
X

F(X), s.t.(X)*X = I, (8.71)

where X = X(1) and F(X) is the objective function, which can be solved with the curvilinear search
with Barzilai-Borwein step method proposed in [48] to update X until convergence and the variable
X after the (k + 1)th iteration will be

Xk+1 = Y(τk),Y(τk) =
(
I+ τk

2
A
)−1 (

I − τk

2
A
)
Xk, (8.72)

A = ∂F(Xk)

∂X
X*
k − Xk

(∂F(Xk)

∂X

)*
, (8.73)

jwzhanggy@gmail.com

8.4 Mutual Community Detection 303

where let τ̂ =
(

Tr
(
(Xk−Xk−1)

*(Xk−Xk−1)
)

∣∣Tr((Xk−Xk−1)*(∇F(Xk)−∇F(Xk−1)))
∣∣

)
, τk = τ̂ δh, δ is the Barzilai-Borwein step size

and h is the smallest integer to make τk satisfy

F (Y(τk)) ≤ Ck + ρτkF ′
τ (Y(0)) . (8.74)

TermsC,Q are defined asCk+1 = (ηQkCk + F(Xk+1)) /Qk+1 andQk+1 = ηQk+1,Q0 = 1. More
detailed derivatives of the curvilinear search method (i.e., Algorithm 2) with Barzilai-Borwein step
are available in [48]. Meanwhile, the pseudo-code of method MCD is available in Algorithm 3. Based

on the achieved solutions X(1) and X(2), we can get H(1) =
(
D(1))− 1

2 X(1) and H(2) =
(
D(2))− 1

2 X(2),
from which we will be able to achieve the community structures of networks G(1) and G(2) by
applying the KMeans algorithms on matrices H(1) and H(2).

Algorithm 2 Curvilinear Search Method (CSM)
Require: Xk Ck ,Qk and function F

parameters ε = {ρ, η, δ, τ, τm, τM }
Ensure: Xk+1, Ck+1,Qk+1

1: Y(τ) =
(
I+ τ

2A
)−1 (I − τ

2A
)
Xk

2: while F (Y(τ)) ≥ Ck + ρτF ′ ((Y(0))) do
3: τ = δτ
4: Y(τ) =

(
I+ τ

2A
)−1 (I − τ

2A
)
Xk

5: end while
6: Xk+1 = Yk(τ)

Qk+1 = ηQk + 1
Ck+1 = (ηQkCk + F(Xk+1)) /Qk+1
τ = max (min(τ, τM), τm)

Algorithm 3 Mutual Community Detector (MCD)
Require: aligned network: G = {{G(1), G(2)}, {A(1,2), A(2,1)}};

number of clusters in G(1) and G(2): k(1) and k(2);
HNMP Sim matrices weight: ω;
parameters: ε = {ρ, η, δ, τ, τm, τM };
function F and consensus term weight θ

Ensure: H(1), H(2)

1: Calculate HNMP Sim matrices, S(1)i and S(2)i

2: S(1) =∑i ωiS
(1)
i , S(2) =∑i ωiS

(2)
i

3: Initialize X(1) and X(2) with Kmeans clustering results on S(1) and S(2)

4: Initialize C(1)
0 = 0,Q(1)

0 = 1 and C
(2)
0 = 0,Q(2)

0 = 1
5: converge = False
6: while converge = False do
7: /* update X(1) and X(2) with CSM */

X(1)
k+1, C

(1)
k+1,Q

(1)
k+1 = CSM(X(1)

k , C
(1)
k ,Q

(1)
k ,F, ε)

X(2)
k+1, C

(2)
k+1,Q

(2)
k+1 = CSM(X(2)

k , C
(2)
k ,Q

(2)
k ,F, ε)

8: if X(1)
k+1 and X

(2)
k+1 both converge then

9: converge = T rue
10: end if
11: end while
12: H(1) =

(
(D(1))−

1
2

)T
X(1), H(2) =

(
(D(2))−

1
2

)T
X(2)

jwzhanggy@gmail.com

304 8 Community Detection

8.5 Large-Scale Network Synergistic Community Detection

The community detection algorithm proposed in the previous section involves very complicated
matrix operations, and works well for small-sized network data. However, when being applied to
handle real-world online social networks involving millions even billions of users, they will suffer
from the time complexity problem a lot. In this section, we will introduce a synergistic community
detection algorithm SPMN [16] for multiple large-scale aligned online social networks.

8.5.1 Problem Formulation

The problem to be introduced here follows the same formulation as the one introduced in Sect. 8.4, but
the involved networks are of far larger sizes in terms of both node number and the social connection
number. Synergistic partitioning across multiple large-scale social networks is very difficult for the
following challenges:

• Social Network: Distinct from generic data, network structured data usually contain intricate
interactions. In addition, the multiple heterogeneous networks formulation also renders the cross-
network relationships to be an important part in considerations.

• Network Scale: Network size implies it is difficult for stand-alone programs to apply traditional
partitioning methods and it is a difficult task to parallelize the existing stand-alone network
partitioning algorithms.

• Distributed Framework: For distributed algorithms, load balance should be taken into considera-
tions and how to generate balanced partitions is another challenge.

To address the challenges, in this section, we will introduce a network structure based distributed
network partitioning framework, namely SPMN [16]. The SPMN model identifies the anchor nodes
among the multiple networks, and selects one network as the datum network, then divides it into k
balanced partitions and generate 〈anchor node ID, partition ID〉 pairs as the main objective. Based on
the objective, SPMN coarsens the other aligned networks into smaller ones, which will further divide
the smallest networks into k balanced initial partitions, and tries to assign same kinds of anchor nodes
into the same initial partition as many as possible. Here, anchor nodes of same kind means that they
are divided into the same partition in the datum network. Finally, SPMN projects the initial partitions
back to the original networks.

8.5.2 DistributedMultilevel k-Way Partitioning

In this section, we describe the heuristic based framework for synergistic partitioning among multiple
large-scale social networks, and we call the framework as SPMN. For large-sized networks, data
processing in SPMN can be roughly divided into two stages: datum generation stage and network
alignment stage.

When getting the anchor node set A(1,2) between networks G(1) and G(2), the SPMN framework
will apply a distributed multilevel k-way partitioning method onto the datum network to generate k
balanced partitions. During this process, the anchor nodes are ignored and all the nodes are treated
identically. We call this process as the datum generation stage. When finished, partition result of
anchor nodes will be generated, and SPMN stores them in a set-Map〈anidx, pidx〉, where anidx

is anchor node ID and pidx represents the partition ID the anchor node belongs to. After the

jwzhanggy@gmail.com

8.5 Large-Scale Network Synergistic Community Detection 305

datum generation stage, synergistic networks will be partitioned into k partitions according to the
Map〈anidx, pidx〉 to make the synergistic networks to align to the datum network, and during this
process discrepancy and cut are the objectives to be minimized. We call this process as the network
alignment stage.

Algorithms guaranteed to find out near-optimal partitions in a single network have been studied
for a long period. But most of the methods are stand-alone, and their performance is limited by the
server’s capacity. Inspired by the multilevel k-way partitioning (MKP) method proposed by Karypis
and Kumar [18, 19] and based on our previous work [1], SPMN uses MapReduce [9] to speed up the
MKPmethod. As the same with other multilevel methods, MapReduce based MKP also includes three
phases: coarsening, initial partitioning, and un-coarsening.

Coarsening phase is a multilevel process and a sequence of smaller approximate networks Gi =
(Vi , Ei) are constructed from the original networkG0 = (V, E) and so forth, where |Vi | < |Vi−1|, i ∈
{1, 2, . . . , n}. To construct the coarser networks, node combination and edge collapsing should be
performed. The task can be formally defined in terms of matching inside the networks [5]. An intra-
network matching can be represented as a set of node pairs M = {(vi, vj)}, i '= j and (vi, vj) ∈ E ,
in which each node can only appear for no more than once. For a network Gi with a matching Mi ,
if (vj , vk) ∈ Mi then vj and vk will form a new node vq ∈ Vi+1 in network Gi+1 coarsen from Gi .
All the links connected to vj or vk in Gi will be connected to vq in Gi+1. The total weight of edges
and number of nodes will be greatly reduced. Let’s define W(·) to be the sum of edge weight in the
input set and N(·) to be the number of nodes/components in the input set. In the coarsening process,
we have

W(Ei+1) = W(Ei) − W(Mi), (8.75)

N(Vi+1) = N(Vi) − N(Mi). (8.76)

Analysis in [17] shows that for the same coarser network, smaller edge-weight corresponds to
smaller edge-cut. With the help of MapReduce framework, SPMN uses a local search method to
implement an edge-weight based matching (EWM) scheme to collect larger edge weight during
the coarsening phase. For the convenience of MapReduce, SPMN designs an emerging network
representation format: each line contains essential information about a node and all its neighbors
(NN), such as node ID and edge weight (W). The whole network data are distributed in distributed file
system, such as HDFS [39], and each data block only contains a part of node set and corresponding
connection information. Function map() takes a data block as input and searches locally to find node
pairs to match according to the edge weight. Function reduce() is in charge of node combination,
renaming and sorting. With the new node IDs and matching, a simple MapReduce job will be able to
update the edge information and write the coarser network back onto HDFS. The complexity of EWM
is O(|E |) in each iteration and the pseudo code about EWM is shown in Algorithm 4.

After several iterations, a coarsest weighted network Gs consisting of only hundreds of nodes will
be generated. For the network size of Gs , stand-alone algorithms with high computing complexity
will be acceptable for initial partitioning. Meanwhile, the weight of edges of coarser networks is
set to reflect the weights of the finer network during the coarsening phase, so Gs contains sufficient
information to intelligently satisfy the balanced partition and the minimum edge-cut requirements.
Plenty of traditional bisection methods are quite qualified for the task. In SPMN, it adopts the KL
method with anO(|E |3) computing complexity to divideGs into two partitions and then take recursive
invocations of KL method on the partitions to generate balanced k partitions.

jwzhanggy@gmail.com

306 8 Community Detection

Algorithm 4 Edge Weight Based Matching (EWM)
Require: Network Gh

Maximum weight of a node maxVW = n/k
Ensure: A coarser network Gh+1
1: map() Function:
2: for node i in current data block do
3: if match[i] == −1 then
4: maxIdx = −1
5: sortByEdgeWeight (NN(i))
6: for vj ∈ NN(i) do
7: if match[j] == −1 and VW(i)+ VW(j) < maxVW then
8: maxIdx = j
9: end if
10: match[i] = maxIdx
11: match[maxIdx] = i
12: end for
13: end if
14: end for
15: reduce() Function:
16: new newNodeID[n+ 1]
17: new newVW [n+ 1]
18: set idx = 1
19: for i ∈ {1, 2, · · · , n} do
20: if i < match[i] then
21: set newNodeID[match[i]] = idx
22: set newNodeID[i] = idx
23: set newVW [i] = newVW [match[i]] = VW(i)+ VW(match[i[)
24: idx ++
25: end if
26: end for

Un-coarsening phase is the inverse processing of the coarsening phase. With the initial partitions
and the matching of the coarsening phase, it is easy to run the un-coarsening process on the
MapReduce cluster.

8.5.3 Distributed Synergistic Partitioning Process

In this part, we will talk about the synergistic partitioning process in SPMN based on the synergistic
networks with the knowledge of partition results of anchor nodes from datum network. The synergistic
partitioning is also an MKP process but quite different from the general MKP methods.

In the coarsening phase, anchor nodes are endowed with a higher priority than non-anchor nodes.
When choosing nodes to pair, SPMN assumes that anchor nodes and non-anchor nodes have different
tendencies. Let Gd be the datum network. For an anchor node vi in another aligned networks, at the
top of its preference list, it would like to be matched with another anchor node vi , which has the same
partition ID in the datum network, i.e., pidx(Gd, vi) = pidx(Gd, vj) (here pidx(Gd, vi) denotes
the community label that vj belongs to inGd). Second, if there is no appropriate anchor node, it would
try to find a non-anchor node to pair. When planning to find a non-anchor node to pair, the anchor
node, assuming to be vi , would like to find a correct direction, and it would prefer to match with the
non-anchor node vj , which has lots of anchor nodes as neighbors with the same pidx with vi . When
being matched together, the new node will be given the same pidx as the anchor node. To improve

jwzhanggy@gmail.com

8.5 Large-Scale Network Synergistic Community Detection 307

Fig. 8.6 An example of
synergistic partition
process. In coarsening
phase, the networks are
stored in two servers,
V i
1 = {vi(j)|j ≤ |V i |/2}

are stored on a sever and
the others are on the other
server. Anchor nodes are
with colors, and different
colors represent different
partitions. Node pairs
encircled by dotted chains
represent the matchings.
Numbers on chains mean
the order of pairing

the accuracy of synergistic partitioning among multiple social networks, an anchor node will never
try to combine with another anchor node with different pidx.

For a non-anchor node, it would prefer to be matched with an anchor node neighbor which belongs
to the dominant partition in the non-anchor node’s neighbors. Here, dominant partition in a node’s
neighbors means the number of anchor nodes with this partition ID is the largest. Next, a non-anchor
node would choose a general non-anchor node to pair with. At last, a non-anchor node would not like
to combine with an anchor node being part of the partitions which are in subordinate status. After
being combined together, the new node will be given the same pidx as the anchor node. To ensure
the balance among the partitions, about 1

3 of the nodes in the coarsest network are unlabeled.

Example 8.7 In Fig. 8.6, we show a diagrammatic sketch of the synergistic partitioning process. Take
network G0 for example, nodes v1 − v7 and the corresponding links information are stored on the
same server and the other nodes are stored on another server. Nodes in pairs (v1, v2) and (v10, v11)

are all with the same pidx, so they should be tackled first. v6 and v15 choose a correct direction to
make a pair. Then, v3 cannot pair with v1, so it chooses to combine with v4. Finally, after searching
locally, v7 cannot find a local neighbor to pair, but has to make a pair with its remote neighbor v8.

In addition to minimizing both the discrepancy and cut loss terms simultaneously, SPMN also tries
to balance the size of partitions are the objectives in synergistic partitioning process. However, it is
impossible to achieve them simultaneously. So, SPMN tries to make a compromise among them and
develop a heuristic method to tackle the problems.

• First, according to the conclusion, smaller edge-weight corresponds to smaller edge-cut and the
pairing tendencies, SPMN proposes a modified EWM (MEWM) method to find a matching in the
coarsening phase, of which the edge-weight is as large as possible. At the end of the coarsening
phase, there is no impurity in any node, meaning that each node contains no more than one type of
anchor nodes. Besides, a “purity” vector attribute and a pidx attribute are added to each node to
represent the percentage of each kind of anchor nodes swallowed up by it and the pidx of the new
node, respectively.

• Then, during the initial partitioning phase, SPMN treats the anchor nodes as labeled nodes and uses
a modified label propagation algorithm to deal with the non-anchor nodes in the coarsest network.

jwzhanggy@gmail.com

308 8 Community Detection

Algorithm 5 Synergistic Partitioning (SP)
Require: Network Gh

Anchor Link Map Map < anidx, pidx >
Maximum weight of a node maxVW = n/k

Ensure: A coarser network Gh+1
1: Call Synergistic Partitioning-Map Function
2: Call Synergistic Partitioning-Reduce Function

• At the end of the initial partitioning phase, SPMN will be able to generate balanced k partitions and
to maximize the number of same kind of anchor nodes being divided into the same partitions.

• Finally, SPMN projects the coarsest network back to the original network, which is the same as the
traditional MKP process.

The pseudo code of the coarsening phase in synergistic partitioning is available in Algorithm 5,
which will call theMap() and Reduce() functions in Algorithms 6 and 7, respectively.

8.6 Summary

In this chapter, we focused on the community detection problem in online social networks. Community
detection has been demonstrated as an important research problem especially for online social
networks. We summarized several existing community detection methods for one single homogeneous
networks, which are based node proximity, community modularity maximization, and spectral
clustering, respectively. These single-homogeneous network community detection methods provide
the basis for addressing the problem in more complicated problem settings, e.g., heterogeneous
networks and multiple networks.

We introduced a novel problem setting based on multiple aligned heterogeneous social networks,
i.e., the emerging network community detection, where the target network lacks sufficient information
for detecting effective community structure in it. To address the problem, we introduced an effective
and efficient method to compute the intimacy scores among users based on the heterogeneous
information available across the social networks. Information from different sources are assigned with
different weights, whose values can be adjusted automatically based on a weight selection algorithm.

We also talked about the mutual community detection problem of multiple aligned heterogeneous
social networks, where information across these networks can be utilized for mutual community
structure refinement. To preserve the characteristics of the social networks, we partitioned each social
network by minimizing the normalized-cut metric. Meanwhile, to transfer useful knowledge across the
networks, we introduced a newmetric, i.e., discrepancy, minimization of which allows the information
from different networks to refine the communities detected from each social network.

Finally, at the end of this chapter, we introduced the synergistic community detection of large-scale
social networks involving millions even billions of users. We proposed to identify the anchor nodes
among the multiple networks, and select one network as the datum network, then divide it into k
balanced partitions. By coarsening the other aligned networks into smaller ones, we introduced to
further divide the smallest networks into k balanced initial partitions, and try to assign same kinds of
anchor nodes into the same initial partition as many as possible. Finally, we proposed to project the
initial partitions back to the original networks.

jwzhanggy@gmail.com

8.6 Summary 309

Algorithm 6 Synergistic Partitioning-Map
Require: Network Gh

Anchor Link Map Map < anidx, pidx >
Maximum weight of a node maxVW = n/k

Ensure: A coarser network Gh+1
1: map() Function:
2: for node i in current data block do
3: if match[i] == −1 then
4: set f lag = f alse
5: sortByEdgeWeight (NN(i))
6: if vi ∈ Map < anidx, pidx > then
7: for vj ∈ NN(i) & match[j] == −1 do
8: if vj ∈ Map < anidx, pidx > & Map.get (vi) == Map.get (vj) & VW(i) + VW(j) < maxVW

then
9: match[i] = j,match[j] = i
10: f lag = true, break
11: end if
12: end for
13: if f lag == f alse, no suitable anchor node then
14: for vj ∈ NN(i) & match[j] == −1 & VW(vi)+ VW(vj) < maxVW do
15: indirectNeighbor = NN(vj)
16: sortByEdgeWeight (NN(i))
17: for vk ∈ indirectNeighbor do
18: if vk ∈ Map < anidx, pidx > &Map.get (vi) == Map.get (vk) then
19: match[i] = j,match[j] = i
20: f lag = true, break
21: end if
22: end for
23: if f lag == true then
24: break
25: end if
26: end for
27: end if
28: else
29: sortByEdgeWeight (NN(i))
30: for vj ∈ NN(vi) & vj /∈ Map < anidx, pidx > & VW(i)+ VW(j) < maxVW & match[j] == −1

do
31: match[i] = j , match[j] = i, break
32: end for
33: end if
34: end if
35: end for

Three novel community detection algorithms CAD, MCD, and SPMN have also been introduced
in great detail in this section. These three proposed community detection algorithms learn the
social community structures of the multiple aligned networks with the (strong/weak) supervision of
anchor links, based on the assumption that anchor users tend to be involved into relatively similar
communities in different networks. Meanwhile, they also take considerations of the network properties
at the same time, where each social network can maintain their characteristics as well.

jwzhanggy@gmail.com

310 8 Community Detection

Algorithm 7 Synergistic Partitioning-Reduce
Require: Network Gh

Anchor Link Map Map < anidx, pidx >
Maximum weight of a node maxVW = n/k

Ensure: A coarser network Gh+1
1: reduce() Function:
2: new newNodeID[n+ 1]
3: new newVW [n+ 1]
4: set idx = 1
5: for i ∈ newNodeID[] do
6: if i < match[i] then
7: set newNodeID[match[i]] = idx
8: set newNodeID[i] = idx
9: set newVW [i] = newVW [match[i]] = VW(i)+ VW(match[i[)
10: idx ++
11: end if
12: end for
13: new newPurity[idx + 1]
14: new newP idx[idx + 1]
15: for i ∈ [1, idx] do
16: newPurity[i] = purity[i]∗VW(i)+purity[j]∗VW(j)

VW(i)+VW(j)

17: newP idx[i] = max{pidx[i], pidx[match[i]]}
18: end for

8.7 Bibliography Notes

Clustering aims at grouping similar objects in the same cluster and many different clustering methods
have also been proposed. One type is the hierarchical clustering methods [14], which include
agglomerative hierarchical clustering methods [8] and divisive hierarchical clustering methods [8].
Another type is the partition-based clustering methods, which include K-means for instances with
numerical attributes [15].

In addition, clustering is also a very broad research area, which include various types of
clustering problems, e.g., consensus clustering [26, 27], multi-view clustering [4, 6], multi-relational
clustering [49], co-training based clustering [21], and dozens of papers have been published on these
topics. Lourenco et al. [27] propose a probabilistic consensus clustering method by using evidence
accumulation. Lock et al. propose a Bayesian consensus clustering method in [26]. Meanwhile, Bickel
et al. [4] propose to study the multi-view clustering problem, where the attributes of objects are split
into two independent subsets. Cai et al. [6] propose to apply multi-view K-Means clustering methods
to big data. Yin et al. [49] propose a user-guided multi-relational clustering method, CrossClus, to
perform multi-relational clustering under user’s guidance. Kumar et al. propose to address the multi-
view clustering problem based on a co-training setting in [21].

Clustering based community detection in online social networks is a hot research topic and many
different techniques have been proposed to optimize certain measures of the results, e.g., modularity
function [30] and normalized cut [38]. Malliaros et al. give a comprehensive survey of correlated
techniques used to detect communities in networks in [28] and a detailed tutorial on spectral clustering
has been given by Luxburg in [45]. These works are mostly studied based on homogeneous social
networks.

In recent years, many community detection works have been done on heterogeneous online social
networks. Zhou et al. [63] propose to do graph clustering with relational and attribute information
simultaneously. Zhou et al. [62] propose a social influence based clustering method for heterogeneous

jwzhanggy@gmail.com

8.8 Exercises 311

information networks. Some other works have also been done on clustering with incomplete data.
Sun et al. [42] propose to study the clustering problem with complete link information but incomplete
attribute information. Lin et al. [25] try to detect the communities in networks with incomplete
relational information but complete attribute information.

8.8 Exercises

1. (Easy) Given a network as shown in Fig. 8.7, please find all the nodes which are structural
equivalent.

2. (Easy) Let C = {U1,U2} denote the community detected from network in Fig. 8.7, where U1 =
{1, 2, 3} and U2 = {4, 5, 6, 7, 8, 9}. Please compute the community strength of communities U1
and U2, respectively, as well as the modularity of C.

3. (Easy) Please find all the potential community partition of the network in Fig. 8.7 that can
introduce the minimum cut costs.

4. (Easy) Given the mutual community detection result in Fig. 8.8, please compute its normalized
discrepancy.

5. (Easy) Please justify the coarsening process from G1 to G2 in Fig. 8.6.
6. (Medium) Given two different partitions (i.e., plots (a) and (b) in Fig. 8.9) of the input social

network shown in Fig. 8.7, please justify which partition achieves better community detection
results based on cut, ratio-cut, and normalized-cut costs, respectively.

7. (Medium) Given the network in Fig. 8.7, please implement the algorithm introduced in Sect. 8.2.3
to identify the optimal community structure based on normalized cut cost, where community
number k = 2.

Fig. 8.7 An example of
homogeneous network

9

7

8

5

6

4

3

2

1

Fig. 8.8 Mutual
community detection
example

uA

uB

uC
uD

u1

u2

u3

Network 1 Network 2

jwzhanggy@gmail.com

312 8 Community Detection

9

7

8

5

6

4

3

2

1
9

7

8

5

6

4

3

2

1

A B

Fig. 8.9 Two potential community detection results

8. (Medium) Please prove Lemma 8.1.
9. (Hard) Please implement the MCD algorithm introduced in Sect. 8.4.

10. (Hard) Please introduce a new aligned heterogeneous network community detection algorithm
based on the Gaussian Mixture Model.

References

1. C. Aggarwal, Y. Xie, P. Yu, Gconnect: a connectivity index for massive disk-resident graphs. Proc. VLDB Endow.
2(1), 862–873 (2009)

2. A. Arenas, L. Danon, A. Díaz-Guilera, P.M. Gleiser, R. Guimerá, Community analysis in social networks. Eur.
Phys. J. B 38(2), 373–380 (2004)

3. I. Bhattacharya, L. Getoor, Relational clustering for multi-type entity resolution, in Proceedings of the 4th
International Workshop on Multi-Relational Mining (ACM, New York, 2005), pp. 3–12

4. S. Bickel, T. Scheffer, Multi-view clustering, in Fourth IEEE International Conference on Data Mining (ICDM’04),
vol 4 (ACM, New York, 2004), pp. 19–26

5. T. Bui, C. Jones, A heuristic for reducing fill-in in sparse matrix factorization, in Proceedings of the Sixth SIAM
Conference on Parallel Processing for Scientific Computing, PPSC 1993, Norfolk, Virginia (1993), pp. 445–452

6. X. Cai, F. Nie, H. Huang, Multi-view k-means clustering on big data, in Twenty-Third International Joint
Conference on Artificial Intelligence (2013), pp. 2598–2604

7. W. Cheng, X. Zhang, Z. Guo, Y. Wu, P. Sullivan, W. Wang, Flexible and robust co-regularized multi-domain graph
clustering, in Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (ACM, New York, 2013), pp. 320–328

8. P. Cimiano, A. Hotho, S. Staab, Comparing conceptual, divisive and agglomerative clustering for learning
taxonomies from text, in Proceedings of the 16th European Conference on Artificial Intelligence (ECAI’2004)
(2004), pp. 435–439

9. J. Dean, S. Ghemawat, MapReduce: simplified data processing on large clusters. Commun. ACM 51(1), 107–113
(2008)

10. M. Eslami, A. Aleyasen, R. Moghaddam, K. Karahalios, Friend grouping algorithms for online social networks:
preference, bias, and implications, in International Conference on Social Informatics (Springer, Cham, 2014), pp.
34–49

11. P. Gács, L. Lovász, Complexity of algorithms. Lect. Notes (1999)
12. A. Goder, V. Filkov, Consensus clustering algorithms: comparison and refinement, in Proceedings of the

9th Workshop on Algorithm Engineering and Experiments (Society for Industrial and Applied Mathematics,
Philadelphia, 2008), pp. 109–117

13. M. Hasan, M.J. Zaki, A survey of link prediction in social networks, in Social Network Data Analytics, ed. by C.C.
Aggarwal, (Springer, Boston, 2011), pp. 243–275

14. T. Hastie, R. Tibshirani, J. Friedman, Hierarchical clustering, in The Elements of Statistical Learning, 2nd edn., ed.
by T. Hastie, R. Tibshirani, J. Friedman (Springer, New York, 2009), pp. 520–528

15. Z. Huang, Extensions to the k-means algorithm for clustering large data sets with categorical values. Data Min.
Knowl. Disc. 2(3), 283–304 (1998)

16. S. Jin, J. Zhang, P. Yu, S. Yang, A. Li, Synergistic partitioning in multiple large scale social networks, in IEEE
BigData (IEEE, Piscataway, 2014), pp. 281–290

jwzhanggy@gmail.com

References 313

17. G. Karypis, V. Kumar, Analysis of multilevel graph partitioning, in Supercomputing (IEEE, Piscataway, 1995),
p. 29

18. G. Karypis, V. Kumar, Parallel multilevel k-way partitioning scheme for irregular graphs, in Proceedings of the
1996 ACM/IEEE Conference on Supercomputing (Supercomputing ’96) (IEEE, Piscataway, 1996)

19. G. Karypis, V. Kumar, Multilevel k-way partitioning scheme for irregular graphs. J. Parallel Distrib. Comput. 20(1),
359–392 (1998)

20. X. Kong, J. Zhang, P. Yu, Inferring anchor links across multiple heterogeneous social networks, in Proceedings of
the 22nd ACM International Conference on Information & Knowledge Management (ACM, New York, 2013), pp.
179–188

21. A. Kumar, H. Daumé, A co-training approach for multi-view spectral clustering, in Proceedings of the 28th
International Conference on Machine Learning (ICML-11) (2011), pp. 393–400

22. J. Leskovec, K. Lang, M. Mahoney, Empirical comparison of algorithms for network community detection, in
Proceedings of the 19th International Conference on World Wide Web (ACM, New York, 2010), pp. 631–640

23. T. Li, C. Ding, M.I. Jordan, Solving consensus and semi-supervised clustering problems using nonnegative matrix
factorization, in Seventh IEEE International Conference on Data Mining (ICDM 2007) (IEEE, Piscataway, 2007),
pp. 577–582

24. D. Liben-Nowell, J. Kleinberg, The link-prediction problem for social networks. J. Am. Soc. Inf. Sci. Technol.
58(7), 1019–1031 (2007)

25. W. Lin, X. Kong, P. Yu, Q. Wu, Y. Jia, C. Li, Community detection in incomplete information networks, in
Proceedings of the 21st International Conference on World Wide Web (ACM, New York, 2012), pp. 341–350

26. E.F. Lock, D.B. Dunson, Bayesian consensus clustering. Bioinformatics 29(20), 2610–2616 (2013)
27. A. Lourenço, S.R. Bulò, N. Rebagliati, A.L.N. Fred, M.A.T. Figueiredo, M. Pelillo, Probabilistic consensus

clustering using evidence accumulation. Mach. Learn. 98(1–2), 331–357, (2013)
28. F.D. Malliaros, M. Vazirgiannis, Clustering and community detection in directed networks: a survey. CoRR,

abs/1308.0971, abs/1308.0971 (2013)
29. M. Newman, Modularity and community structure in networks. Proc. Natl. Acad. Sci. U. S. A. 103(23), 8577–8582

(2006)
30. M.E.J. Newman, M. Girvan, Finding and evaluating community structure in networks. Phys. Rev. E 69(2), 026113

(2004)
31. N. Nguyen, R. Caruana, Consensus clusterings, in Seventh IEEE International Conference on Data Mining (ICDM

2007) (IEEE, Piscataway, 2007), pp. 607–612
32. S. Pan, Q. Yang, A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010)
33. R. Panigrahy, M. Najork, Y. Xie, How user behavior is related to social affinity, in Proceedings of the Fifth ACM

International Conference on Web Search and Data Mining (WSDM ’12) (ACM, New York, 2012), pp. 713–722
34. P. Petersen, Linear Algebra (Springer, New York, 2012)
35. M. Richardson, P. Domingos, Mining knowledge-sharing sites for viral marketing, in Proceedings of the Eighth

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’02) (ACM, New York,
2002), pp. 61–70

36. R. Roman, Community-based recommendations to improve intranet users’ productivity, Master’s thesis (2016)
37. W. Shao, J. Zhang, L. He, P. Yu, Multi-source multi-view clustering via discrepancy penalty, in 2016 International

Joint Conference on Neural Networks (IJCNN) (IEEE, Piscataway, 2016), pp. 2714–2721
38. J. Shi, J. Malik, Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905

(2000)
39. K. Shvachko, H. Kuang, S. Radia, R. Chansler, The Hadoop distributed file system, in 2010 IEEE 26th Symposium

on Mass Storage Systems and Technologies (MSST) (IEEE, Piscataway, 2010), pp. 1–10
40. Y. Sun, Y. Yu, J. Han, Ranking-based clustering of heterogeneous information networks with star network schema,

in Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(ACM, New York, 2009), pp. 797–806

41. Y. Sun, J. Han, X. Yan, P. Yu, T.Wu, PathSim: meta path-based top-k similarity search in heterogeneous information
networks. Proc. VLDB Endow. 4(11), 992–1003 (2011)

42. Y. Sun, C. Aggarwal, J. Han, Relation strength-aware clustering of heterogeneous information networks with
incomplete attributes. Proc. VLDB Endow. 5(5), 394–405 (2012)

43. J. Tang, H. Gao, X. Hu, H. Liu, Exploiting homophily effect for trust prediction, in Proceedings of the Sixth ACM
International Conference on Web Search and Data Mining (ACM, New York, 2013), pp. 53–62

44. M. Trusov, A. Bodapati, R. Bucklin, Determining influential users in internet social networks. J. Mark. Res. 47(4),
643–658 (2010)

45. U. von Luxburg, A tutorial on spectral clustering. Stat. Comput. 17(4) (2007). arXiv:0711.0189
46. X. Wang, G. Chen, Complex networks: small-world, scale-free and beyond. IEEE Circuits Syst. Mag. 3(1), 6–20

(2003)

jwzhanggy@gmail.com

314 8 Community Detection

47. S. Wang, Z. Zhang, J. Li, A scalable cur matrix decomposition algorithm: lower time complexity and tighter bound.
Mach. Learn. (2012). arXiv:1210.1461

48. Z. Wen, W. Yin, A feasible method for optimization with orthogonality constraints, Technical report, Rice
University (2010)

49. X. Yin, J. Han, P. Yu, CrossClus: user-guided multi-relational clustering. Data Min. Knowl. Disc. 15(3), 321–348
(2007)

50. Q. Zhan, J. Zhang, S. Wang, P. Yu, J. Xie, Influence maximization across partially aligned heterogeneous social
networks, in Pacific-Asia Conference on Knowledge Discovery and Data Mining (Springer, Cham, 2015), pp. 58–69

51. J. Zhang, P. Yu, Integrated anchor and social link predictions across partially aligned social networks, in
Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (2015)

52. J. Zhang, P. Yu, Mcd: mutual clustering across multiple social networks, in 2015 IEEE International Congress on
Big Data (IEEE, Piscataway, 2015). 10.1109/BigDataCongress.2015.127

53. J. Zhang, P. Yu, Community detection for emerging networks, in Proceedings of the 2015 SIAM International
Conference on Data Mining (Society for Industrial and Applied Mathematics, Philadelphia, 2015), pp. 127–135

54. J. Zhang, X. Kong, P. Yu, Predicting social links for new users across aligned heterogeneous social networks, in
2013 IEEE 13th International Conference on Data Mining (IEEE, Piscataway, 2013), pp. 1289–1294

55. J. Zhang, X. Kong, P. Yu, Transferring heterogeneous links across location-based social networks, in Proceedings
of the 7th ACM International Conference on Web Search and Data Mining (ACM, New York, 2014), pp. 303–312

56. J. Zhang, P. Yu, Z. Zhou, Meta-path based multi-network collective link prediction, in Proceedings of the 20th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (ACM, New York, 2014), pp.
1286–1295

57. J. Zhang, P. Yu, Y. Lv, Q. Zhan, Information diffusion at workplace, in Proceedings of the 25th ACM International
on Conference on Information and Knowledge Management (ACM, Piscataway, 2016), pp. 1673–1682

58. J. Zhang, J. Chen, S. Zhi, Y. Chang, P. Yu, J. Han, Link prediction across aligned networks with sparse low rank
matrix estimation, in 2017 IEEE 33rd International Conference on Data Engineering (ICDE) (IEEE, Piscataway,
2017), pp. 971–982

59. J. Zhang, L. Cui, P. Yu, Y. Lv, BL-ECD: broad learning based enterprise community detection via hierarchical
structure fusion, in Proceedings of the 2017 ACM on Conference on Information and Knowledge Management
(ACM, New York, 2017), pp. 859–868

60. J. Zhang, P. Yu, Y. Lv, Enterprise community detection, in Proceedings of the 2017 ACM on Conference on
Information and Knowledge Management (ACM, New York, 2017), pp. 859–868

61. Y. Zhao, E. Levina, J. Zhu, Community extraction for social networks. Proc. Natl. Acad. Sci. USA 108(18), 7321–
7326 (2011)

62. Y. Zhou, L. Liu, Social influence based clustering of heterogeneous information networks, in Proceedings of the
19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (ACM, New York, 2013),
pp. 338–346

63. Y. Zhou, H. Cheng, J. Yu, Graph clustering based on structural/attribute similarities. Proc. VLDB Endow. 2(1),
718–729 (2009)

jwzhanggy@gmail.com

10.1109/BigDataCongress.2015.127

