
7Link Prediction

7.1 Overview

Given a screenshot of the online social networks, the problem of inferring the missing links or the
links to be formed in the networks in the future is called the link prediction problem. Link prediction
problem has concrete applications in the real world, and many concrete services can be cast to the link
prediction problem. For instance, the friend recommendations problem [15] in online social networks
can be modeled as the friendship link prediction problem among users. Users’ trajectory prediction
problem [4] can be formulated as the prediction task of potential check-in links between users and
offline POIs (points of interest). The user identifier resolution problem [19, 26] across networks (i.e.,
the network alignment problem introduced in the previous chapters) can be modeled as the anchor
link prediction problem of user accounts across different online social networks.

In this chapter, we will take the friendship link as an example to introduce the general link
prediction problem in online social networks. Formally, given the training set Ttrain involving
links belong to different classes (Y = {+1,−1}, where +1 denotes the positive class and −1
denotes the negative class; sometimes we also use 0 to denote the negative class) and the test set
Ttest (with unknown labels for the links), the link prediction problem aims at building a mapping
f : Ttrain ∪ Ttest → Y to project these links to their potential labels in Y .

Depending on the scenarios where we study the link prediction problem, the existing link prediction
works can be divided into several different categories. Traditional link prediction problems are mainly
focused on inferring the links in one single homogeneous network, like inferring the friendship links
[62] among users in online social networks or co-author links [39] in bibliographic networks. As
the network structures are becoming more and more complicated, many complex network structures
can be modeled as the heterogeneous networks involving different types of nodes and complex
connections among them. The heterogeneity of the networks leads to many new link prediction
problems, like predicting the links between nodes belonging to different categories [58] and the
concurrent inference of multiple types of links in the heterogeneous networks [54, 58]. In recent
years, many online social networks have appeared, and lots of new research opportunities exist for
researchers and practitioners to study the link prediction problems from the cross-network perspective
[57, 58, 61].

Meanwhile, depending on the learning settings used in the link prediction problem formulation and
models, the existing link prediction works can be categorized into different groups according to the
supervision information involved in the model building. For some of the link prediction models, they
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230 7 Link Prediction

calculate the user-pair closeness [53] as the link prediction result without any training data, which are
referred to as the unsupervised link prediction models. For some other models, they will assign the
links with different labels, and use them as the training set to learn a supervised classification models
as the base model instead. These models are called the supervised link prediction models [14]. Usually,
manual labeling of the links is very expensive and tedious. In recent years, many of the works have
proposed to apply semi-supervised learning techniques [54, 59, 61] in the link prediction problem to
utilize the links without labels.

In this chapter, we will introduce the social link prediction problems in online social networks.
In Sect. 7.2, we will introduce the social link prediction works in one single homogeneous social
network, and the models involve the unsupervised models [23], classification based supervised model
[14,25], and the matrix factorization based link prediction model [1]. The link prediction works in the
heterogeneous networks will be introduced in Sect. 7.3, including both the supervised link prediction
model [14, 25] and the prediction task of multiple types of links [54, 58]. In the following sections,
we will talk about the link prediction problem across multiple heterogeneous social networks. In
Sect. 7.4, we introduce a novel cross-network social link prediction model to predict social links for
new users specifically [57]. In Sect. 7.5, we will focus on introducing the social link prediction model
with positive and unlabeled (PU) learning models [54,59]. Finally, to overcome the domain difference
problem, in Sect. 7.6, we will introduce a matrix estimation based social link prediction model with
both positive and unlabeled links [61].

7.2 Traditional Single Homogeneous Network Link Prediction

Traditional link prediction problems are mainly studied based on one single homogeneous network,
involving one single type of nodes and links. In this section, we will first briefly introduce how to
use the social closeness measures [23, 53] introduced in Sect. 3.3.3 for the link prediction tasks.
To integrate different social closeness measures together for the link prediction, we will introduce
the supervised link prediction model [14]. Some models formulate the link prediction task as a
recommendation problem, and propose to apply the matrix factorization method [1] to address
the problem. In this section, we will introduce these three types of link prediction models for the
traditional one single homogeneous network.

7.2.1 Unsupervised Link Prediction

Given a screenshot of a homogeneous network G = (V, E), the unsupervised link prediction models
[23, 53] introduced here aim at inferring the potential links that will be formed in the future. Usually,
the unsupervised link prediction models will calculate some metrics for the links, which will be used
as the predicted confidence scores for these links. Depending on the specific scenario and the link
formation assumptions applied, different metrics have been proposed for the link prediction tasks
already.

Many of the link prediction metrics are based on the assumption that “close users are more
likely to be friends,” and use the social closeness measure as the link prediction confidence score.
The social closeness measures introduced in Sect. 3.3.3, like the local closeness measures (e.g.,
common neighbor, Jaccard’s coefficient, Adamic/Adar), the global path based closeness measures
(e.g., shortest path, Katz), and the random walk based closeness measures (e.g., hitting time, commute
time, and cosine similarity), can all be used to infer potential connections among users.
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7.2 Traditional Single Homogeneous Network Link Prediction 231

In this part, we will not talk about these measures again, and the readers may refer to the previous
section for more information. Next, we will introduce the general learning settings and evaluation
metrics for the link prediction problem with the unsupervised learning models.

7.2.1.1 Unsupervised Link Prediction Problem Setting
Suppose in the network G = (V, E), each link is associated with a timestamp. For instance, for link
e ∈ E , we can denote the formation timestamp of link e as t (e). Given three time points tp < tc < tf
denoting a past time point tp, the current time point tc, and a future time point tf , we can retrieve
the network structure formed in the time range [tp, tc] as the current network Gtp,tc and the network
structure to be formed in the future time range (tc, tf ] as the future network Gtc,tf respectively. The
current network can serve as the input of a link prediction algorithm, i.e., Gtp,tc , which can infer the
new connections to be formed in the future time range (tc, tf ], i.e., the future network structureGtc,tf .

As the network structure evolves, new links will be formed and new nodes will be formed as
well. However, for a new node to join in the network in the time range (tc, tf ], we have no historical
knowledge about it and can hardly predict links incident to it, which is also referred to as the cold start
problem [57,63]. Generally, in the link prediction problems, we have a subset of the nodes as the core
set Vc ⊂ V , and we will be focused on studying the links incident to nodes in the core set only. For
all the new links to be formed in time range (tc, tf ], we will sample a subset of the links incident to
these nodes in the core set only to study the link prediction problem. For the cold start link prediction
problem regarding the new users, we will address it in Sect. 7.4 specifically.

Given the current network structure Gtp,tc and the core set Vc, we can represent the formed links
among the core set users as set Ec

tp,tc
= Etp,tc ∩ Vc × Vc. Meanwhile, the remaining links among the

core set users can be represented as set E r
tp,tc

= Vc × Vc \ ({(u, u)}u∈Vc ∪ Ec
tp,tc

). The link prediction
model aims inferring: “among all the links in E r

tp,tc
, which will be formed in the time range (tc, tf ]

and appear in the future network structure Gtc,tf (i.e., in set Ec
tc,tf

= Etc,tf ∩ Vc × Vc)”.

7.2.1.2 Unsupervised Link PredictionModels
In the unsupervised link prediction model, we use the social closeness as the prediction confidence
measure based on the assumption that “close users tend to be friends”. In Table 7.1, we summarize
some closeness measures we have introduced before. For instance, if we use “Common Neighbor” as
the social closeness measure, we can represent the closeness score of all the user pairs in set E r

tp,tc
as

{C(e)}e∈E r
tp,tc

.
The scores of all these remaining links, i.e., {C(e)}e∈E r

tp,tc
, can be outputted as the result.

Meanwhile, when determining the links to be recommended for each user in the core set, we can
pick either the top-k links with the highest predicted scores or set a threshold to select the links with
scores greater than the threshold as the ones to be formed. In other words, these selected links will
be assigned with positive labels, while the remaining unselected links will be assigned with negative
labels instead.

Table 7.1 Features
extracted from user pair u
and v from the
homogeneous network

Features Closeness measures
Common Neighbor (CN) Γ (u) ∩ Γ (v)

Jaccard’s Coefficient (JC) |Γ (u)∩Γ (v)|
|Γ (u)∪Γ (v)|

Adamic/Adar (AA)
∑

w∈(Γ (u)∩Γ (v))
1

log|Γ (w)|
Preferential Attachment (PA) |Γ (u)| · |Γ (v)|
Shortest Path (SP) min{|p|}p∈Pu,v

Katz
∑lmax

l=1 β l |P l
u,v |
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232 7 Link Prediction

7.2.1.3 Unsupervised Link Prediction Result Evaluation
Given all the remaining links in set E r

tp,tc
and the newly formed links in the future network Gtc,tf , we

can represent their ground truth labels as vector y ∈ {−1,+1}|E
r
tp,tc

|×1. For all the links formed in the
future network Gtc,tf , we can assign them with label +1, while for the remaining links, they will be
assigned with label −1 instead.

Given the calculated scores, e.g., {C(e)}e∈E r
tp,tc

, and the ground truth label vector, we can evaluate
the performance of the link prediction model by calculating the AUC score (i.e., the area under ROC
curve). Among all the links, the top k links can be picked, the prediction result can also be evaluated
with metrics like nDCG@k [18].

Meanwhile, if the top k links are selected to assign with labels, the output of the link prediction
model will be the prediction label of these links. By comparing them with the ground truth label
vector, metrics like Precision, Recall, F1, and Accuracy (at top k) can be calculated as the performance
evaluation results.

7.2.2 Supervised Link Prediction

In some cases, links in the networks are explicitly categorized into different groups, like links denoting
friends vs those representing enemies, friends (with connections) vs strangers (no connections). Given
a set of labeled links, e.g., set E , containing links belonging to different classes, the supervised link
prediction problem [14] aims at building a supervised learning model to address the link prediction
problem. The learned model will be applied to determine the labels of links in the test set. In this
part, we still take the link formation problem as an example to illustrate the supervised link prediction
model.

7.2.2.1 Supervised Link Prediction Problem Setting
Given the network structure G = (V, E) with the formed links in set E , we can represent all the
potential links among users in networkG as set L = V ×V \ {(u, u)}u∈V \E . These existing links can
be labeled as the positive training set, while a subset of links in L are identified as the links will never
be formed, which can be denoted as Ln ⊂ L and labeled as the negative training set. These positively
and negatively labeled links can be treated as the training set, i.e., Ltrain = E ∪Ln, and the remaining
links with unknown labels can be used as the testing set Ltest = L \ Ln. In the supervised link
prediction problem, we aim at building a supervised classification/regression model with the training
set Ltrain and apply the learned model to infer the label of links in the testing set Ltest .

7.2.2.2 Supervised Link Prediction Feature Extraction
To represent each of the social links, like link l = (u, v) ∈ E between nodes u and v, a set of features
representing the characteristics of the link l as well as nodes u, v will be extracted in the model
building. Normally, the features can be extracted for links in the prediction task can be divided into
two categories:

• Features of Nodes: The characteristics of the nodes can be denoted by the measures introduced
in Chap. 3.3, like these various node centrality measures. For instance, for the link (u, v), based
on the known links in the training set, we can compute the centrality measures based on degree,
normalized degree, eigen-vector, Katz, PageRank, Betweenness of nodes u and v as part of the
features for link (u, v), which can be denoted as vectors xu and xv respectively.
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7.2 Traditional Single Homogeneous Network Link Prediction 233

• Features of Links: The characteristics of the links in the networks can be calculated by computing
the closeness between the nodes composing the nodes. For instance, for link (u, v), based on the
known links in the training set, we can compute the closeness measures based on common neighbor,
Jaccard’s coefficient, Adamic/Adar, shortest path, Katz, hitting time, commute time, etc. between
nodes u and v as the features for link (u, v), which can be denoted as vector xu,v formally.

We can append the features for nodes u, v and those for link (u, v) together and represent the
extracted feature vector for link l = (u, v) as vector xl = [x(

u , x
(
v , x

(
u,v]( ∈ Rk of length k.

7.2.2.3 Supervised Link PredictionModel
With the training set Ltrain, we can represent the feature vectors and labels for the links in Ltrain as
the training data {(xl , yl)}l∈Ltrain

. Meanwhile, with the testing set Ltest , we can represent the features
extracted for the links in it as {xl}l∈Ltrain

. Different classification models can be used as the base model
for the link prediction task, like the decision tree model, artificial neural network model, and support
vector machine (SVM) model introduced in Sect. 2.3. These models can be trained with the training
data, and the labels of links in the testing set can be determined by applying models to the testing data
instances.

Depending on the specific models being applied, the output of the link prediction result can include
(1) the predicted labels of the links inLtest , and (2) the prediction confidence scores/probability scores
of links in Ltest .

7.2.2.4 Supervised Link Prediction Result Evaluation
Different evaluation metrics can be used for measuring the performance of the link prediction models.
For the models producing the prediction labels of the test set, evaluation metrics like precision, recall,
F1, and accuracy can be used in performance evaluation. Meanwhile, for the models producing the
confidence score list as the output, evaluation metrics like AUC, and Precision@k, nDCG@k can
be used in performance evaluation. For these metrics aforementioned, higher evaluation scores will
correspond to better link prediction performance.

7.2.3 Matrix Factorization Based Link Prediction

Besides unsupervised and supervised link prediction models, many other methods based on matrix
factorization can also be applied to solve the link prediction task in homogeneous networks [1,10,42].

7.2.3.1 Matrix Factorization Based Link Prediction Problem Setting
Given a homogeneous social network G = (V, E) and the existing social links among users in set E ,
the remaining potential links among users can be represented as L = V × V \ {(u, u)}u∈V \ E . The
links in set E are the formed links and can be labeled as the positive instances, while those in set L
contain both the links to be formed and those will never be formed (i.e., involve both positive and
negative links) and should be unlabeled.

The training set available involves both the positively labeled links in set E and the unlabeled links
in set L. The testing set is the unlabeled set L, and we aim at inferring the labels of these potential
links with a matrix factorization based approach.

7.2.3.2 Matrix Factorization Based Link PredictionModel
Formally, given the homogeneous social network G = (V, E) and the existing social links among
users in set E , we can organize these links into the social adjacency matrixA ∈ {0, 1}|V |×|V |. Given the
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adjacency matrix A of network G, a low-rank compact representation matrix, U ∈ R|V |×d, d < |V|,
can be used to store the social information for each user in the network. Matrix U can be obtained by
solving the following optimization objective function:

min
U,V

∥∥∥A − UVU(
∥∥∥
2

F
, (7.1)

where U is the low rank matrix and matrix V contains the correlation among the rows of U, ‖·‖F
denotes the Frobenius norm of the matrix.

To avoid overfitting, regularization terms ‖U‖2F and ‖V‖2F are added to the object function as
follows [42]:

min
U,V

∥∥∥A − UVU(
∥∥∥
2

F
+ α · ‖U‖2F + β · ‖V‖2F ,

s.t.U ≥ 0,V ≥ 0, (7.2)

where α and β are the weights of terms ‖U‖2F , ‖V‖2F respectively.
This object function is very hard to achieve the global optimal result for bothU andV. A alternative

optimization schema can be used here, which can update U and V alternatively. The Lagrangian
function of the object equation should be:

F = T r(AA() − T r(AUV(U()

− T r(UVU(A()+ T r(UVU(UV(U()

+ αT r(UU()+ βT r(VV() − T r(ΘU) − T r(ΩV) (7.3)

where Θ and Ω are the multipliers for the constraints on U and V respectively.
By taking derivatives of F with regard to U and V respectively, the partial derivatives of F will be

∂F
∂U

= − 2A(UV − 2AUV( + 2UV(U(UV(

+ 2UVU(UV( + 2αU − Θ( (7.4)

∂F
∂V

= − 2U(AU+ 2U(UVU(U+ 2βV − Ω( (7.5)

By making ∂F
∂U = 0 and ∂F

∂V = 0 and using the KKT complementary condition, we can get:

U(i, j) ← U(i, j)

√ (
A(UV+ AUV() (i, j)

(
UV(U(UV+ UVU(UV( + αU

)
(i, j)

, (7.6)

V(i, j) ← V(i, j)

√ (
U(AU

)
(i, j)

(
U(UVU(U+ βV

)
(i, j)

. (7.7)

The low-rank matrixU captures the information of each user from the adjacency matrix. The matrix
U can be used in different ways. For instance, each row of U represents the latent feature vectors
of users in the network, which can be used in many link prediction models, e.g., supervised link
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7.3 Heterogeneous Network Collective Link Prediction 235

prediction models. Meanwhile, based on the matrix V learnt from the model, we can also represent
the predicted score of link (u, v) as UuVU(

v , where notations Uu and Uv represent the rows in matrix
U corresponding to users u and v, respectively.

7.2.3.3 Matrix Factorization Based Link Prediction Result Evaluation
Given the ground-truth labels of links in the unlabeled set L and their corresponding inferred scores
based on the matrices U and V learnt from the model, we can evaluate the performance of the
model with metrics like AUC and Precision@k as well as nDCG@k. In the exercise at the end of
this chapter, we will ask the readers to try to implement the above link prediction algorithms with a
preferred programming language, and compare their performance in inferring the social links within
a homogeneous network.

7.3 Heterogeneous Network Collective Link Prediction

Homogeneous networks with one single type of nodes/links is a very simple network representation.
In the real-world online social networks, there usually exist many different kinds of nodes, like users,
offline POIs, posts. Users can also perform various kinds of actions, like follow other users and check-
in at some places, which will create very complex connections among these nodes. Formally, for the
online social networks with such a complex structure, they are called the heterogeneous information
networks. There exist very diverse online social networks in the real world. In this section, we will be
mainly focused on the online social networks providing the geographic services, which are called the
location based social networks (LBSNs) [7], and study the collective link prediction task based on the
LBSNs [58].

7.3.1 Introduction to LBSNs

Location-based social networks (LBSNs) are one kind of online social networks that can provide
geographic services, e.g., location check-ins and posting reviews, and have been attracting much
attention in recent years [7, 33, 45, 48, 49]. LBSNs usually have very complex structures, including
multiple kinds of nodes (e.g., users, locations, etc.) and different types of links among these nodes
(e.g., social links among users and location links between users and locations). For example,
Foursquare1 is a mainstream LBSN. It involves millions of users and locations. Foursquare users
can add friends, check-in at different locations with their mobile phones, write reviews, and share the
locations with their friends.

Many important services offered by LBSNs can be cast as the link prediction problems. For exam-
ple, friend recommendation involves predicting social links among users; location recommendation
aims at predicting location links between users and locations. LBSNs can benefit a lot from the high-
quality social link and location link prediction results. The reason is that well-established social
ties can improve user’s engagement in social networks [21]. Meanwhile, in location-based social
networks, high-quality predicted location links can enhance the value of the location services in the
networks.

Conventional link prediction researches on LBSNs mostly focus on predicting either social links
[33,45] or location links [7,48] and usually assume that the prediction tasks of different types of links
to be independent. However, in many real-world LBSNs, the link prediction tasks for social links

1https://foursquare.com.
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236 7 Link Prediction

and location links are strongly correlated and mutually influential to each other [58]. For example, if
two users are friends with each other, they are more likely to check-in at similar locations. Thus the
performance of location recommendation can be significantly improved if we could make accurate
friendship predictions. Similarly, if two users often check-in at similar locations, they are more likely
to know each other and make friends in the real life. Viewed in this perspective, the performance of
friend recommendation can be greatly improved if we could make accurate location-link predictions.

7.3.2 Collective Link Prediction

In this section, we study the collective link prediction problem for LBSNs as introduced in [58] and
the links to be predicted include both social links and location links. The problem is very challenging
to solve due to the fact that social links and location links in LBSNs are correlated instead of being
independent. The prediction tasks on social links and location links should be considered at the same
time. Many existing works mainly focus on predicting one single type of links in LBSNs [7,33,45,48],
which fail to consider the correlations between different link prediction tasks.

In the following part, we will introduce a supervised collective linkage transferring method, TRAIL
(TRAnsfer heterogeneous lInks across LBSNs), proposed in [58] to address the above challenges.
TRAIL can accumulate auxiliary information for locations from online posts which have check-ins
at them and can extract heterogeneous features for both social links and location links. TRAIL can
predict social links and location links simultaneously.

Let G = (V, E) be the networks studied in this section, where V = ⋃i Vi is the union of different
types of nodes and Vi , i ∈ {1, 2, . . . , } is the set of nodes of the ith type. E = ⋃j Ej is the union of
link sets among nodes in V and Ej , j ∈ {1, 2, . . .} is the set of links of the jth type. Specially, for a
LBSN, node set V = U ∪ L ∪ T ∪ W is the union of node sets of users, locations, time, and words.
The link set E = Es ∪ El ∪ Et ∪ Ew is the union of link sets consisting of social friendships links, and
the links between users with location check-ins, active time, and published words, respectively.

Given an LBSNG = (V, E) with the existing social links Es and location links El , what we want to
predict in the studied network are a subset of potential social links among users inG:Ls ⊂ (U×U\Es)
and a subset of potential location check-in links in G: Ll ⊂ (U × L \ El ). In other words, we want
to build a mapping: f : {Ls ,Ll} → {−1, 1} to decide whether potential links in {Ls ,Ll} exist or not
and a confidence score function P : {Ls ,Ll} → [0, 1] denoting their existence probabilities. In the
following parts, we will introduce the supervised collective link transferring method, TRAIL, in detail
to address the problem.

7.3.3 Information Accumulation and Feature Extraction

TRAIL is based on a supervised learning setting and, as a result, we need to extract features for both
social links and location links using the heterogeneous information in the network. Slightly different
from users, the locations in online social networks cannot generate information on their own. Before
introducing the extracted features, we will introduce a method to accumulate information for locations
at first.

7.3.3.1 Information Accumulation for Locations
Locations are represented as (latitude, longitude) pairs in the studied problem, which possess no
auxiliary information except location links with users in the network. As a result, we will confront
problems of lacking auxiliary information when extracting heterogeneous features for location links
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7.3 Heterogeneous Network Collective Link Prediction 237

Fig. 7.1 Example of
information accumulation
for locations from online
posts (both Lincoln Park
and Scarlet Bar are located
in Chicago, US)

Nice shot of Francois' 
langur baby Pierre! 
You can see another 
picture of him at 
http://www.lpzoo.org/
blog/lincoln-park-
zoo/photo-week-
august-2-2013

10:28 AM - 14 Aug 13

This place totally 
violates capacity 
laws! Shitty dance 

 and weak 
drinks... It's like a 
smaller, less classy 
minibar. Stay away!

10:57 PM - 7 Aug 13

If you like trashy 
people, sticky 

, ghetto 
music, and 
shoulder-to-
shoulder space... 
Then this is your 
bar.

1:32 AM - 5 Aug 13

Even tigers know 
how to beat the heat! 
pic.twitter.com/
DVr0WtwFNS

11:50 AM - 11 Aug 13

Scarlet BarLincoln Park 
Zoo

Text: 
picture, tiger, 

langur baby, ...

Timestamps: 
10:28 AM - 14 Aug 13 
11:50 AM - 11 Aug 13

Text: 

drinks, music, ...

Timestamps: 
10:57 PM - 7 Aug 13 
1:32 AM - 5 Aug 13

between users and locations. Actually, we notice that users can publish online posts at the locations,
and the textual contents and timestamps information of the online posts checked in at a certain location
can be accumulated as the auxiliary information possessed by that location.

From a statistical point of view, information from posts published at a certain location, including
both timestamps and text contents, can reveal some properties of the location. For example, the
timestamps of most posts published at nightlife sites are after 6:00 PM.While those of posts published
at restaurants serving brunch are during the daytime. Posts published at national parks can contain
some phrases depicting the scenes, while posts published at basketball court may be mostly talking
about games, teams, and players. So, we can know more about the locations from the information
accumulated from online posts.

Example 7.1 For example, in Fig. 7.1, we have two totally different locations: the Lincoln Park Zoo2

and Scarlet Bar.3 The Lincoln Park Zoo is the largest free zoo in Chicago and is open during 10:00
AM–5:00 PM. The Scarlet Bar is one of the most famous bars in Chicago, where people can drink
with friends, dance to enjoy their night life, and it is open during 8:00 PM–2:00 AM.

We also have 4 online posts published by people at these two places in either Foursquare or Twitter.
From the contents of these posts, we find that people usually publish words about animals, pictures,
and the scene at the Lincoln Park Zoo. However, people who visit the Scarlet Bar mainly talk about
the atmosphere in the bar, the drinks, the dance floor, and the music there. So, users who frequently
talk about animals in daily life can be interested in the Lincoln Park Zoo, while those who usually
post words about the drinks may like the Scarlet Bar more. Meanwhile, we can also accumulate the
timestamps of posts published at these two places. The timestamps of posts published at the Lincoln
Park Zoo are mostly during the daytime, while those of posts published at the Scarlet Bar are at night.
So, users who are usually active in the daytime can be more likely to visit the Lincoln Park Zoo, while
people who are active during the night may prefer the Bar.

2http://www.lpzoo.org.
3http://www.scarletbarchicago.com.
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Table 7.2 Features
extracted from vector x
and y

Features Descriptions
Extended Degree Count (EDC) ||x||1, ||y||1
Extended Degree Ratio (EDR) ||x||1/||y||1
Extended Common Neighbor (ECN) x · y
Extended Jaccard’s Coefficient (EJC) x·y

‖x‖1·‖y‖1
Extended Preferential Attachment (EPA) ||x||1 · ||y||1
Euclidean Distance (ED) (

∑
k (xk − yk)

2)1/2

Cosine Similarity (CS) x·y
‖x‖2+‖y‖2

7.3.3.2 Heterogeneous Features
Based on the heterogeneous information in the networks, we will extract 4 different categories
of features for both social links and location links from the heterogeneous information in the
network, which include social features, spatial distribution features, text usage features, and temporal
distribution features. A summary of frequently used features is available in Table 7.2, where ||x||p =
(
∑|x|

i=1 |xi |p)1/p denotes the Lp-norm of vector x.

• Features of Social Links: For a certain social link (ui, uj ), we can get their neighbors from the
network, which can be represented as sets Γ (ui) and Γ (uj ), respectively. Based on Γ (ui), we can
construct the social link weight vector s̃(ui) for ui , where s̃(ui) = (p1,i , p2,i , . . . , pk,i , . . . , pn,i)

(

and n = |U | is the size of user set and pk,i is the weight of social link (uk, ui),∀uk ∈ U : if
uk ∈ (U \ Γ (ui)), pk,i = 0.0; if uk ∈ Γ (ui) and link (uk, ui) exists originally, then pk,i = 1.0;
otherwise, pk,i is the existence probability of link (uk, ui). Similarly, we can construct vector s̃(uj )
for user uj , which is of the same length as s̃(ui). From s̃(ui) and s̃(uj ), 7 different social features
are extracted for social link (ui, uj ), which are summarized in Table 7.2.

In a similar way, for a certain social link (ui, uj ), we can get the set of locations visited by user
ui and uj as sets Φ(ui) and Φ(uj ), from which we can obtain their location link weight vectors
as l̃(ui) and l̃(uj ), where the entries denote the times that these users visit the locations. From
the timestamps of posts published by users, we can obtain the users’ active patterns. Each day is
divided into 24 slots and the ratio of online posts published by user u in each hour is saved in a
temporal distribution vector t̃ (u), whose length is 24. For social link (ui, uj ), we can construct the
temporal distribution vectors: t̃ (ui) and t̃ (uj ) for ui and uj . In addition, we transform the words
used by two users ui and uj into two text usage vectors: w̃(ui) and w̃(uj ) weighted by TF-IDF
[31], which are of the same length. From these vectors, we can extract the spatial distribution
features, temporal distribution features, and text usage features similar to the social link features
summarized in Table 7.2 for social link (ui, uj ).

• Features of Location Links: Similarly, we can obtain the set of users who have visited a location
and regard them as the “neighbors” of that location. And for a location link (ui, lj ), we can get
the sets of neighbors of ui and lj as Γ (ui) and Ψ (lj ), from which we can construct the social link
weight vectors s̃(ui) and s̃(lj ), respectively. From the accumulated text and timestamps information
of locations and the auxiliary information owned by users, we can also construct the temporal
distribution vectors t̃ (ui) and t̃ (lj ) and the text usage vectors w̃(ui) and w̃(lj ) for location link
(ui, lj ). From these vectors, we can extract the social features, temporal distribution features, and
text usage features for location link (ui, lj ).

In addition, according to previous definitions, we can get the locations that user u has visited
in the past: Φ(u) and the location link weight vector l̃(u) of u as well as the neighbors Ψ (l) of a
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location l and its social link weight vector: s̃(l). For a certain location link (ui, lj ), we extract 3
spatial distribution features for the location links from the network:
(1) average weighted geographic distance between locations in Φ(ui) and lj

∑
lk∈Φ(ui )

GeoD(lk, lj ) · l̃(ui)lk
||l̃(ui)||1 · |Φ(ui)|

, (7.8)

whereGeoD(lk, lj ) is the geographic distance (e.g., the manhattan distance [2]) between lk and
lj and l̃(ui)lk is the weight of location link (ui, lk) saved in ui’s location link weight vector.

(2) weighted number of users who have visited both locations in Φ(ui) and lj

∑

lk∈Φ(ui )

s̃(lk) · s̃(lj ) · l̃(ui)lk (7.9)

(3) average weighted number of users who have visited both locations in Φ(ui) and lj

∑
lk∈Φ(ui )

s̃(lk) · s̃(lj ) · l̃(ui)lk
||l̃(ui)||1 ·

∑
lk∈Φ(ui )

||s̃(lk)||1
(7.10)

7.3.4 Collective Link PredictionModel

In this section, we will analyze and formulate the correlations between the social link prediction task
and the location link prediction task, and introduce an integrated collective link prediction framework
to address both of these two tasks simultaneously.

7.3.4.1 Correlation Between Different Tasks
When predicting a link with the supervised link prediction models introduced before, the classifiers
will give a score within range [0, 1] to show its existence probability. Newly predicted social links will
update the social link existence probability information in the network, which can affect the prediction
of other location links. For example, these updated social link existence probabilities can change the
extended common neighbors of a location and a user, and may further change the prediction results.
Similarly, the location link prediction task can also influence the social link prediction result.

Example 7.2 For example, in Fig. 7.2, we show an example of different link prediction methods.
Figure 7.2a is the input aligned networks, in which there are 4 users and some existing social
links (u3, u4), (u1, u4) and location links (u2, l1), (u3, l1), (u1, l2), (u1, l3) as well as many other
potential links to be predicted. Based on the information in the network, including social information
(e.g., common neighbors), location information (e.g., co-check-ins), and other auxiliary information,
traditional link prediction methods can predict social links and locate links independently. Figure 7.2b
shows the independent social link prediction result, in which social links (u2, u3) and (u1, u3) are
predicted to be positive (i.e., existing), while the other two social links (u1, u2) and (u2, u4) are
predicted to be negative (i.e., non-existing). Figure 7.2c shows the independent location link prediction
result and in the result, location links (u2, l2), (u1, l1), (u4, l3) are predicted to be positive (i.e.,
existing), while (u2, l3) and (u3, l3) is predicted to be negative (i.e., non-existing).

From the results in Fig. 7.2b, c, we can find some problematic phenomena. For example, user u2
and u1 are predicted that they will visit locations l1, l2 and they are also predicted to share a common
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Fig. 7.2 An example of
different link prediction
methods. (a) The input
network. (b), (c)
Independent social link and
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neighbor: u3. Based on the result, it is highly likely that these two users may know each other, and the
potential social link (u2, u3) will be predicted to be existing. However, according to the independent
prediction result, it is predicted to be non-existing as shown in Fig. 7.2b. Another example is that many
neighbors of user u3, including both the originally existing u4 and the newly predicted u1, have visited
or are predicted to have visited l3. Based on such an observation, u3 is highly likely to be predicted
to have visited l3. However, the location link between u3 and l3 is predicted to be non-existing in
Fig. 7.2c.

If we consider the correlation between these two link prediction tasks simultaneously, the predicted
results of social link (u1, u2) and location link (u3, l3) are highly likely to be predicted as existing.
In Fig. 7.2d, we show a potential result of collective link prediction methods, where the prediction
results of social links and location links seem to be much more consistent.

7.3.4.2 Collective Link Prediction
As introduced before, we represent the sets of potential social links and potential location links to

be predicted as Ls ⊂ (U × U \ Es) and Ll ⊂ (U × L \ El ), respectively, in the problem formulation
section. For links ls ∈ Ls and ll ∈ Ll , the supervised models built with the existing information in
the network will give them the predicted labels: y(ls) and y(ll), as well as the existence probability
scores: P(y(ls) = 1) and P(y(ll) = 1). Traditional methods predicting social links and location links
independently aim at finding the set of labels achieving the maximum likelihood scores for each kind
of these links. In other words, let Ŷs ⊂ {−1, 1}|Ls |, Ŷl ⊂ {−1, 1}|Ll | be the sets of optimal labels, the
objective functions of the social and location link prediction tasks can be denoted as

Ŷs = argmax
Ys

P (y(Ls) = Ys |x(Ls)), (7.11)

Ŷl = argmax
Yl

P (y(Ll ) = Yl |x(Ll )), (7.12)

jwzhanggy@gmail.com



7.3 Heterogeneous Network Collective Link Prediction 241

where P(y(Ls) = Ys) and P(y(Ll ) = Yl ) denote the probability scores achieved when links in Ls

and Ll are assigned with labels in Ys and Yl .
However, considering connections between these two link prediction tasks, the inferred social link

or location link information should be incorporated into the same framework. The jointly optimal
label sets Ŷs and Ŷl will be

Ŷs , Ŷl = arg max
Ys ,Yl

P (y(Ls) = Ys |y(Ll ) = Yl , x(Ls))

×P(y(Ll ) = Yl |y(Ls) = Ys , x(Ll )) (7.13)

For the given optimization equation, there are many different solutions. In this part, we will give an
iterative method, TRAIL, to address it, which can predict the social links and location links iteratively
until convergence. Let τ be the τth iteration and the optimal label sets of social links and location links
achieved in the τth iteration be Ŷ(τ )

s and Ŷ(τ )
l , then we have

Ŷ(τ )
s = argmax

Ys

P (y(Ls) = Ys |G, y(Ls) = Ŷ(τ−1)
s , y(Ll ) = Ŷ(τ−1)

l ) (7.14)

Ŷ(τ )
l = argmax

Yl

P (y(Ll ) = Ys |G, y(Ls) = Ŷ(τ )
s , y(Ll ) = Ŷ(τ−1)

l ). (7.15)

The pseudo code of TRAIL is available in Algorithm 1. Here, we mainly focus on providing the
overall framework of TRAIL and haven’t specified the classifier models to be used. Actually, any
classification algorithms (e.g., SVM, Neural Networks) we have introduced before can all be adopted
as the base classifier in the framework.

Algorithm 1 TRAIL
Require: heterogeneous LBSN, G.

existing social links and location links: Es , El

potential social links and location links: Ls , Ll

Ensure: the inferred labels and existence probabilities of links in Ls and Ll : Ŷs , P̂s , Ŷl , P̂l

1: construct training sets, test sets with Es , El , Ls and Ll .
2: converge ← False
3: while converge is False do
4: extract features x(Es) and x(Ls) for social links in Es and Ls from G.
5: Cs ← train([x(Es)

T , xs (Es)
T , ys(Es)]T , y(Es))

6: Ŷs , P̂s ← Cs.classify([x(Ls)
T , xs (Ls)

T , ys(Ls)]T )
7: update G with Ŷs , P̂s

8: Accumulate information for locations
9: extract features x(El) and x(Ll) for location links in El and Ll from G.
10: Cl ← train([x(El)

T , xs (El)
T , ys(El)]T , y(El))

11: Ŷl , P̂l ← Cl.classify([x(Ll)
T , xs (Ll)

T , ys(Ll)]T )
12: update G with Ŷl , P̂l

13: if Ŷs , P̂s , Ŷl , P̂l all converge then
14: converge ← T rue
15: end if
16: end while
17: Return Ŷs , P̂s , Ŷl , P̂l
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7.4 Cold Start Link Prediction for New Users

In this section, we study the problem of predicting social links for new users, who have created their
accounts for just a short period of time. Generally, new users who have just created the accounts,
they are more likely to accept the recommendations to establish their social communities. However,
the limited information available for these new users can pose a great challenge on high quality
recommendations of friends. Meanwhile, for the users who are new in one network, they may have
been involved in other online social networks for a long time. Information can be transferred from
these mature source networks for these users to the target network that we are focused on to resolve
the lack of information problem.

7.4.1 New User Link Prediction ProblemDescription

Many of previous works on link prediction [1, 13, 14, 23, 53] focus on predicting potential links that
will appear among all the users, based upon a snapshot of the social network. These works treat all
users equally and try to predict social links for all users in the network. However, in real-world social
networks, many new users are joining in the online social networks every day. It has been shown in
previous works that there is a negative correlation between the age of nodes in the network and their
link attachment rates. Predicting social links for these new users are more important than for those
existing active users in the network as it will leave a good first impression on the new users. First
impression often has a lasting impact on a new user and may decide whether he/she will become an
active user. A bad first impression can turn a new user away. So it is important to make meaningful
recommendations to new users to create a good first impression and attract them to participate more.
For simplicity, we refer users that have been actively using the network for a long time as “old users”.

The link prediction problem for new users is different from traditional link prediction problems.
Conventional supervised link prediction methods implicitly or explicitly assume that the information
are identically distributed over all the nodes in the network without considering the joining time of
the users. The models trained over one part of the network can be directly used to predict links in
other parts of the network. However, in real-world social networks, the information distributions of
the new users could be very different from that of old users. New users may have only a few activities
or even no activities (i.e., no social links or other auxiliary information) in the network; while old
users usually have abundant activities and auxiliary information in the network. In Figs. 7.3 and 7.4,
we show the degree distributions of the new users who registered their accounts within 3 months and
the old users who registered more than 3 months before in Twitter and Foursquare, respectively. In

Fig. 7.3 Degree
distributions of users in
Foursquare network
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Fig. 7.4 Degree
distributions of users in
Twitter network

the plots, the x axis denotes the node degrees and the y axis denotes the fraction of users with certain
degrees. We observe that the social link distributions of new users and old users are totally different
from each other in both Foursquare and Twitter. As a result, conventional supervised link prediction
models trained over old users based upon structural features, such as common neighbors, may not
work well on the new users.

Another challenging problem in link prediction for new users is that information owned by new
users can be very rare or even totally missing. Conventional methods based upon one single network
will not work well due to the lack of historical data about the new users. In order to solve this problem,
we need to transfer additional information about the new users from other sources. Nowadays, people
are usually involved in multiple social networks to enjoy more services. For example, people will
join Foursquare to search for nearby restaurants to have dinner with their family. Meanwhile, they
tend to use Face book to socialize with their friends and involve in Twitter to post comments about
recent news. The accounts of the same user in different networks can be linked through account
alignments. For example, when users register their Foursquare accounts, they can use their Face book
or Twitter accounts to sign in the Foursquare network. Such links among accounts of the same user
are named as “anchor links” [19, 57–59] according to the description in Sect. 3.4.3, which could help
align users’ accounts across multiple social networks. For example, in Fig. 7.5, there are many users
in two networks, respectively. We find that the accounts in these two networks are actually owned by 6
different users in reality and we add an anchor link between each pair of user accounts corresponding
to the same user. Via the anchor links, we could locate users’ corresponding accounts in the other
networks.

New users in one social network (i.e., target network) might have been using other social networks
(i.e., source networks) for a long time. These user accounts in the source networks can provide
additional information about the new users in the source network. This additional information is
crucial for link prediction about these new users, especially when the new users have little activities
or no activities in the target network (i.e., cold start problem).

Example 7.3 For instance, in Fig. 7.5, we have two social networks, i.e., the target network and the
source network, with aligned user accounts. In the target network, there are many old users with
abundant social links and auxiliary information, such as posts, spatial and temporal activities. In
addition, there are also some new users, i.e., user ut1 and ut2, in the target network. These two new
users have just created their accounts in the target network and have not yet created many social links
or auxiliary information. However, we can see that there is abundant information about these two new
users in the source network, based on their “anchor linked” user accounts us1 and us2 in the source
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Fig. 7.5 Example of predicting social links across two aligned heterogeneous online social networks

network. The new users’ information in source networks can be exploited to help improve the link
prediction performances in the target network.

In order to solve these problems, in this section, we will introduce a novel supervised cross
aligned networks link recommendation method, SCAN, proposed in [57]. Different from previous
works, SCAN extracts heterogeneous features from other aligned networks to improve link prediction
results for new users in the target network. SCAN analyzes the problem about the differences in
information distributions between new users and old users in great detail and proposes a within-
network personalized sampling method to accommodate that difference. What’s more, SCAN can also
solve the cold start social link prediction problem assisted by other aligned source networks. Intra-
and inter-network information transfer can be conducted simultaneously in SCAN to make a full use
of the information contained in these aligned networks to improve the prediction results.

7.4.2 Cold Start Link Prediction Problem Formulation

The problem studied in this section is social link prediction for new users. We will introduce a
supervised method based on aligned heterogeneous networks. Let G = ((Gt ,Gs), (At,s )) be two
aligned heterogeneous social networks, where Gt is the target network and Gs is an aligned source
network. At,s denotes the set of anchor links between Gt and Gs . We want to predict social links for
the new users in the target network. Let U t = U t

new ∪ U t
old be the user set in Gt , where U t

new and U t
old

are the sets of new users and old users, respectively, and U t
new ∩U t

old = ∅. What we want to predict is
a subset of potential social links between the new users and all other users: L ⊆ U t

new × U t . In other
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words, we want to build a function f : L → {0, 1}, which could decide whether certain links related
to new users exist in the target network or not.

7.4.3 Link PredictionWithin Target Network

Based on the heterogeneous information available in the online social networks, a set of features can
be extracted for the social links as introduced in Sect. 7.3.3.2. Next we will introduce how to use these
features to build supervised methods to predict links for new users in the target network. Before doing
that, we notice that the new users’ information distribution can be totally different from that of the old
users in the target network. However, information of both new users and old users is so important that
should be utilized. In this section, we will analyze the differences in information distributions of new
users and old users in the target network and propose a personalized within-network sampling method
to process old users’ information to accommodate the differences. Then, we will extend the traditional
supervised link prediction method by using the old users’ sampled information in the target network
to improve the prediction results.

7.4.3.1 Sampling Old Users’ Information
A natural challenge inherent in the usage of the target network to predict social links for new users is
the differences in information distributions of new users and old users as mentioned before. To address
this problem, the SCAN model proposes to accommodate old users’ and new users’ sub-networks
by using a within-network personalized sampling method to process old users’ information. Totally
different from the link prediction with sampling problem studied in [3], SCAN conducts personalized
sampling within the target network, which contains heterogeneous information, rather across multiple
non-aligned homogeneous networks. And the link prediction target are the new users in the target
network. By sampling the old users’ sub-network, we want to achieve the following objectives:

• Maximizing Relevance: We aim at maximizing the relevance of the old users’ sub-network and the
new users’ sub-network to accommodate differences in information distributions of new users and
old users in the heterogeneous target network.

• Information Diversity: Diversity of old users’ information after sampling is still of great signifi-
cance and should be preserved.

• Structure Maintenance: Some old users possessing sparse social links should have higher proba-
bility to survive after sampling to maintain their links so as to maintain the network structure.

Let the heterogeneous target network be Gt = {V t , E t }, and U t = U t
old ∪ U t

new ⊂ V t is the set
of user nodes (i.e., set of old users and new users) in the target network. Personalized sampling is
conducted on the old users’ part: Gt

old = {V t
old , E

t
old}, in which each node is sampled independently

with the sampling rate distribution vector δ = (δ1, δ2, . . . , δn), where n =
∣∣U t

old

∣∣,
∑n

i=1 δi = 1 and
δi ≥ 0. Old users’ heterogeneous sub-network after sampling is denoted as Ḡt

old = {V̄ t
old , Ē

t
old}.

The main objective of the old users’ information sampling is to make the old users’ sub-network
as relevant to new users’ as possible. To measure the similarity score of a user ui and a heterogeneous
network G, we define a relevance function as follows:

R(ui,G) = 1
|U |

∑

uj∈U
S(ui, uj ) (7.16)
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where U is the user set of networkG and S(ui, uj ) measures the similarity between user ui and uj in
the network. Each user has social relationships as well as other auxiliary information and S(ui, uj ) is
defined as the average of similarity scores of these two parts:

S(ui, uj ) =
1
2
(Saux(ui, uj )+ Ssocial(ui, uj )) (7.17)

In our problem settings, the auxiliary information of each users could also be divided into 3
categories: location, temporal, and text. So, Saux(ui, uj ) is defined as the mean of these three aspects.

Saux(ui, uj ) =
1
3
(Stext (ui, uj )+ Sloc(ui, uj )+ Stemp(ui, uj )) (7.18)

There are many different methods measuring the similarities of these auxiliary information in
different aspects, e.g. cosine similarity [16, 53]. As to the social similarity, Jaccard’s coefficient [17]
can be used to depict how similar two users are in their social relationships. We will not talk about
these measures in this part.

The relevance between the sampled old users’ network and the new users’ network could be defined
as the expectation value of function R(ūtold ,G

t
new):

R(Ḡt
old ,G

t
new) = E(R(ūtold ,G

t
new))

= 1∣∣U t
new

∣∣

|U t
new|∑

j=1

E(S(ūtold , u
t
new,j ))

= 1∣∣U t
new

∣∣

|U t
new|∑

j=1

|U t
old |∑

i=1

δi · S(ūtold,i , utnew,j )

= δ(s (7.19)

where vector s equals:

1∣∣U t
new

∣∣ [
|U t

new|∑

j=1

S(ūtold,1, u
t
new,j ), . . . ,

|U t
new|∑

j=1

S(ūtold,n, u
t
new,j )]( (7.20)

and
∣∣U t

old

∣∣ = n. Besides the relevance, we also need to ensure that the diversity of information in
the sampled old users’ sub-network could be preserved. Similarly, it also includes diversities of the
auxiliary information and social relationships. The diversity of auxiliary information is determined by
the sampling rate δi , which could be defined with the averaged Simpson Index [36] over the old users’
sub-network.

Daux(Ḡ
t
old ) =

1∣∣U t
old

∣∣ ·
|U t

old |∑

i=1

δ2i (7.21)

As to the diversity in the social relationship, we could get the existence probability of a certain social
link (ui, uj ) after sampling to be proportional to δi · δj . So, the diversity of social links in the sampled
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network could be defined as average existence probabilities of all the links in the old users’ sub-
network.

Dsocial(Ḡ
t
old ) =

1∣∣∣E t
old,s

∣∣∣
·
|U t

old |∑

i=1

|U t
old |∑

j=1

δi · δj × I(ui, uj ) (7.22)

where
∣∣∣E t

old,s

∣∣∣ is the size of social link set of old users’ sub-network and I(ui, uj ) is an indicator
function I : (ui, uj ) → {0, 1} to show whether a certain social link exists or not originally before
sampling. For example, if link (ui, uj ) is a social link in the target network originally before sampling,
then I(ui, uj ) = 1, otherwise it will be equal to 0.

By considering these two terms simultaneously, we could have the diversity of information in the
sampled old users’ sub-network to be the average diversities of these two parts:

D(Ḡt
old ) =

1
2
(Dsocial(Ḡ

t
old )+Daux(Ḡ

t
old ))

= 1
2
(

|U t
old |∑

i=1

|U t
old |∑

j=1

1∣∣∣E t
old,s

∣∣∣
· δi · δj × I(ui, uj )+

|U t
old |∑

i=1

1∣∣U t
old

∣∣ · δ
2
i )

= δ( · ( 1

2
∣∣∣E t

old,s

∣∣∣
· At

old +
1

2
∣∣U t

old

∣∣ · I|U t
old |) · δ (7.23)

where matrix I|U t
old | is the diagonal identity matrix of dimensions

∣∣U t
old

∣∣ ×
∣∣U t

old

∣∣ and At
old is the

adjacency matrix of old users’ sub-network.
To ensure that the structure of the original old users’ subnetwork is not destroyed, we need to

ensure that users with few links could also preserve their links. So, we could add a regularization term
to increase the sampling rate for these users as well as their neighbors by maximizing the following
terms:

Reg(Ḡt
old ) = min{|Γ (ui)|, min

uj∈Γ (ui )
{|Γ (uj )|}} × δ2i = δ( ·M · δ (7.24)

where matrixM is a diagonal matrix withMi,i = min{|Γ (ui)|,minuj∈Γ (ui ){|Γ (uj )|}} on its diagonal,
where Γ (ui) denotes the neighbor set of user uj . So, if a user or his/her neighbors have few links,
then this user as well as his/her neighbors should have higher sampling rates so as to preserve the links
between them.

Example 7.4 For example, in Fig. 7.6, we have 6 users. To decide the sampling rate of user ut1, we
need to consider his/her social structure. We find that since ut1’s neighbor u

t
2 has no other neighbors

except ut1. To preserve the social link between ut1 and ut2 we need to increase the sampling rate of ut2.
However, the existence probability of link (ut1, u

t
2) is also decided by the sampling rate of user ut1,

which also needs to be increased too.
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Fig. 7.6 Personalized
sampling preserving
network structures

Combining the diversity term and the structure preservation term, we could define the regularized
diversity of information after sampling to be

DReg(Ḡ
t
old ) = D(Ḡt

old )+ Reg(Ḡt
old ) = δ( · N · δ (7.25)

where N = 1
2|U t

old | · I|U t
old | +

1
2
∣∣∣E t

old,s

∣∣∣
· At

old +M.

The optimal value of δ should be able to maximize the relevance of new users’ sub-network and
old users’ as well as the regularized diversity of old users’ information in the target network

δ = argmax
δ

R(Ḡt
old ,G

t
new)+ θ ·DReg(Ḡ

t
old )

= argmax
δ

δ(s+ θ · δ( · N · δ

s.t.

|U t
old |∑

i=1

δi = 1 and δi ≥ 0, (7.26)

where parameter θ denotes the weight of the regularization term on information diversity.

7.4.3.2 TRAD
A traditional supervised link prediction method TRAD (Traditional Link Prediction) can be applied
for our task by using the existing links in the target network to train a classifier and applying it to
classify the potential social links for new users. In method TRAD, only the target network is used,
which consists of new users and unsampled old users. To overcome the differences in information
distribution between new users and old users in the target network, we revise it a little bit and get
method: TRAD-PS (Traditional Link Prediction with Personalized Sampling). TRAD-PS consists of
two steps: (1) personalized sampling of the old users’ sub-network with the previous method; (2) usage
of similar techniques as TRAD to predict links based on the sampled network. Theoretically, TRAD

and TRAD-PS could work well by using information in the target network. However, considering the
fact that it is impossible for new users to possess a large amount of information actually, TRAD and
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Fig. 7.7 Different methods to predict social link for new users. (a) TRAD method. (b) NAIVE method. (c) SCAN method

TRAD-PS would suffer from the long-standing cold start problem caused by the lack of historical
information indicating these new users’ preferences. This problem will be even worse when dealing
with brand-new users, who have no information at all in the target network.

Example 7.5 For example, in Fig. 7.7a, user ut1 and ut2 are two new users in the target network, who
possess very few social links with other users and little auxiliary information. We cannot get any
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information about these two new users and the information we could use is that possessed by other
old users. As a result, the links that TRAD and TRAD-PS predicted could hardly be of a high quality.

In order to deal with such a problem, we will introduce a method to use aligned networks
simultaneously in the next section.

7.4.4 Cold-Start Link Prediction

In the current problem settings, we have two aligned social networks and the methods proposed in the
previous section using the target network may suffer from the cold start problems when processing
brand-new users. In this section, we will introduce two methods to utilize the aligned source network
to help solve the problem and improve the prediction results.

7.4.4.1 NAIVE

Suppose we have a new user uti in the target network, a naive way to use the aligned source network to
recommend social links for user uti is to recommend all the corresponding social links related to this
user’s aligned account usi in the aligned source network to him/her. Based on this intuition, a cold start
link prediction method NAIVE (Naive Link Prediction) as proposed in [57] can be applied. To clarify
how NAIVE works in the reality, we will give an example next. And before that, we will introduce
a new term pseudo label [57] to denote the existence of corresponding links in the aligned source
network.

Definition 7.1 (Pseudo Label) The pseudo label of a link (uti , u
t
j ) in the target denotes the existence

of its corresponding link (usi , u
s
j ) in the aligned source network and it is 1 if (usi , u

s
j ) exists and 0

otherwise.

Example 7.6 For instance, in Fig. 7.7b, to decide whether to recommend ut1 to u
t
2 in the target network

or not, we could find their aligned accounts: us1 and us2, and their social link: (us1, u
s
2) in the aligned

source network with the help of anchor links. We find that us1 and u
s
2 are friends in the aligned source

network and link (us1, u
s
2) exists in the aligned source network. As a result, the pseudo label of link

(ut1, u
t
2) is 1 and in the target network, we could recommend ut2 to ut1. And that is the reason why the

social link between ut1 and ut2 is predicted to be existing by method NAIVE. Other links in Fig. 7.7b
can be predicted in a similar way.

Method NAIVE is very simple and could work well in addressing the cold start link prediction task
even when these new users are brand new, which means that we could overcome the cold start problem
by using this method. However, it may still suffer from some disadvantages: (1) the social structures
of different networks are not always identical which will degrade the performance of NAIVE a lot; (2)
NAIVE only utilizes these new users’ social linkage information in the source network and ignores all
other information.

7.4.4.2 SCAN
To overcome all these disadvantages mentioned above, a new method SCAN (Supervised Cross
Aligned Networks Link Prediction with Personalized Sampling) is proposed in [57]. As shown in
Fig. 7.7c, it could use heterogeneous information existing in both the target network and the aligned
source and it is built across two aligned social networks. By taking the advantages of the anchor
links, we could locate the users’ aligned accounts and their information in the aligned source network
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exactly. If two aligned networks are used simultaneously, different categories of features can be
extracted from aligned networks.

To use multiple networks, these feature vectors extracted for the corresponding links in aligned
networks are merged into an expanded feature vector. The expanded feature vector together with the
labels from the target network are used to build a cross-network classifier to decide the existence of
social links related to these new users in the target network. This is how method SCAN works. SCAN

is quite stable and could overcome the cold start problem for the reason that the information about
all these users in the aligned source network doesn’t change much with the variation of the target
network and we get the information showing of these new users’ preferences from the information
he/she leaves in the aligned source network. As the old users’ information inside the target network is
also used in SCAN, personalized sampling is also conducted to preprocess the old users’ information
in the target network.

In addition to features mentioned before, SCAN also utilizes the information used by NAIVE, i.e.,
the pseudo label defined before, by treating it as an extra feature.

• An Extra Feature: SCAN uses the social link pseudo label as an extract feature to denote the
existence of the corresponding links in the aligned source network.

Compared with SCAN with NAIVE, SCAN has many advantages: (1) SCAN utilizes multiple
categories of information; (2) SCAN can make use of the information hidden in the old users’ network
by incorporating them into the training set; and (3) SCAN doesn’t rely on the assumption that the
social relationships in different networks are identical, which is very risky actually.

Compared with TRAD and TRAD-PS, SCAN can solve the cold start problem as it could have
access to information owned by these new users in other aligned source networks. Similar to TRAD

and TRAD-PS, these new users’ information is used if they are not very new and other old users’
information in the target is also preprocessed by using the within-network personalized sampling
method before the intra-network knowledge transfer.

7.5 Spy Technique Based Inter-Network PU Link Prediction

Besides the link prediction problems in one single target network, some research works have been
done on simultaneous link prediction in multiple aligned online social networks concurrently. In the
supervised link prediction model introduced before, among all the non-existing social links, a subset
of the links can be identified and labeled as the negative instances. However, in the real world, labeling
the links which will never be formed can be extremely hard and almost impossible. In this section,
we will study the cross-network concurrent link prediction problem with PU learning, and introduce
a spy technique based link prediction method MLI proposed in [59].

7.5.1 Cross-Network Concurrent Link Prediction Problem

Traditional link prediction problems which aim at predicting one single kind of links in one network
[7,33,45,48] have been studied for many years. Dozens of different link prediction methods have been
proposed so far [5,7,25,33,41,45,48]. Conventional link prediction methods usually assume that there
exists sufficient information within the network to compute features (e.g., common neighborhoods
[13]) for each pair of nodes. However, as proposed in [19, 58], such an assumption can be violated
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seriously when dealing with social networks containing little information because of the “new
network” problems [59].

The new network problem can be encountered when online social networks branch into new
geographic areas or social groups [58] and information within the new networks can be too sparse
to build effective link prediction models. Meanwhile, the recent works [19, 57, 58] notice that users
nowadays can participate in multiple online social networks simultaneously. Users who are involved in
a new network may use other well-developed networks for a long time, in which they can have plenty
of heterogeneous information. To address the new network problem, some papers [57, 58] propose
to transfer information from the well-developed networks to overcome the shortage of information
problem in the new network. Formally, networks that share some common users are defined as the
“partially aligned networks” and the common users shared across these aligned networks are named
as the “anchor users” [19,57,58]. Meanwhile, the unshared users are named as the “non-anchor users”
between the aligned networks as introduced in Sect. 3.4.3.

Social networks aligned by the “anchor users” can share common information. Meanwhile, as
proposed in [28,50], different online social networks constructed to provide different services usually
have distinct characteristics. Moreover, information in various social networks may be of different
distributions [28, 50], which is named as the “network difference problem” in [59]. The “network
difference problem” will be an obstacle in link prediction across multiple partially aligned networks,
as it is likely that information transferred from other aligned networks could deteriorate the prediction
performance in a given network.

In this section, we want to predict the formation of social links in multiple partially aligned
networks simultaneously, which is formally defined as themulti-network link prediction problem [59].
As introduced at the beginning of this section, themulti-network link prediction problem can have very
extensive applications in real-world social networks. As a result, the multi-network link prediction
problem studied in this section is very important for multiple partially aligned social networks.

The multi-network link prediction problem studied in this section is also very challenging to solve
due to: (1) lack of features, (2) network partial alignment problem, (3) network difference problem,
and (4) simultaneous link prediction in multiple networks. To solve all these above challenges in the
multi-network link prediction problem, a novel link prediction framework, MLI proposed in [59], will
be introduced in this section. Inspired by Sun’s work on meta path [40] as a means to capture similarity
of nodes, which are not directly connected in heterogeneous information networks, MLI explores the
meta path concept to generate useful features. MLI can generate not only intra-network features via
“intra-network meta paths,” but also inter-network features via “inter-network meta paths” through the
anchor links. By judiciously selecting the “inter-network meta paths,” MLI can take advantage of the
commonality among the multiple partially aligned networks, while containing the potential negative
transfers from network differences. These derived features can greatly improve the effectiveness of
MLI in predicting links for each network. Furthermore, MLI is a general link formation prediction
framework that solves the multi-network link prediction problem and the link prediction tasks in
different networks can help each other mutually.

7.5.2 Concurrent Link Prediction Problem Formulation

Let G(1),G(2), . . . ,G(n) denote n different heterogeneous online social network, where the sets of
anchor links among them can be represented asA(1,2),A(1,3), . . . ,A(n−1,n). The user set and existing
social link set ofG(i) can be represented as U (i) and E (i)

u,u, respectively. In networkG(i), all the existing
links are the formed links and, as a result, the formed links of G(i) can be represented as P(i), where
P(i) = E (i)

u,u. Furthermore, a large set of unconnected user pairs are referred to as the unconnected
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Fig. 7.8 Schema of
heterogeneous network
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links, Ū (i), and can be extracted from networkG(i): Ū (i) = U (i)×U (i)\P(i). However, no information
about links that will never be formed can be obtained from the network. With the formed link set P(i)

and unconnected link set Ū (i), the link formation prediction problem can be formulated as a PU link
prediction problem.

Formally, let {P(1), . . . ,P(n)}, {Ū (1), . . . , Ū (n)} and {L(1), . . . ,L(n)} be the sets of formed links,
unconnected links, and links to be predicted ofG(1),G(2), . . . ,G(n), respectively. With the formed and
unconnected links ofG(1),G(2), . . . ,G(n), we can solve the multi-network link prediction problem as
the concurrent PU link prediction problem.

In the following subsections, we will introduce MLI to solve the multi-network link prediction
problem. This section includes 3 parts: (1) social meta path based feature extraction and selection; (2)
PU link prediction; (3) multi-network concurrent link prediction framework.

7.5.3 Social Meta Path Definition and Selection

Before talking about the link prediction methods, we will introduce the features extracted from the
partially aligned networks in this subsection at first. The feature extraction in MLI is based on the
meta paths as defined in Sect. 3.5. Based on the schema of the network studied in this section, shown
in Fig. 7.8, we can define many different kinds of homogeneous and heterogeneous intra-network
social meta paths for the network, whose physical meanings and notations are listed as follows:
Homogeneous Intra-Network Social Meta Path

• ID 0. Follow: User
f ollow−−−−→ User, whose notation is “U → U” or Φ0(U,U).

• ID 1. Follower of Follower: User
f ollow−−−−→ User

f ollow−−−−→ User, whose notation is “U → U → U” or
Φ1(U,U).

• ID 2. Common Out Neighbor: User
f ollow−−−−→ User

f ollow−1

−−−−−→ User, whose notation is “U → U ←
U” or Φ2(U,U).

• ID 3. Common In Neighbor: User
f ollow−1

−−−−−→ User
f ollow−−−−→ User, whose notation is “U ← U → U”

or Φ3(U,U).
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Heterogeneous Intra-Network Social Meta Path

• ID 4. CommonWords: User
write−−−→ Post

contain−−−−→Word
contain−1

−−−−−−→ Post
write−1

−−−−→User, whose notation
is “U → P → W ← P ← U” or Φ4(U,U).

• ID 5. Common Timestamps: User
write−−−→ Post

contain−−−−→ Time
contain−1

−−−−−−→ Post
write−1

−−−−→ User, whose
notation is “U → P → T ← P ← U” or Φ5(U,U).

• ID 6. Common Location Check-ins: User
write−−−→ Post

attach−−−→ Location
attach−1

−−−−−→ Post
write−1

−−−−→ User,
whose notation is “U → P → L ← P ← U” or Φ6(U,U).

Social Meta Path based Features: These meta paths can actually cover a large number of path
instances connecting users in the network. Formally, we denote that node n (or link l) is an instance
of node type T (or link type R) in the network as n ∈ T (or l ∈ R). Identity function I(a,A) ={
1, if a ∈ A

0, otherwise,
can check whether node/link a is an instance of node/link type A in the network.

To consider the effect of the unconnected links when extracting features for social links in the network,
the Intra-Network Social Meta Path based Features can be formally defined as follows:

Definition 7.2 (Intra-Network Social Meta Path Based Features) For a given link (u, v), the

feature extracted for it based on meta path Φ = T1
R1−→ T2

R2−→ · · · Rk−1−−−→ Tk from the network is
defined to be the expected number of formed path instances between u and v in the network:

x(u, v) = I(u, T1)I(v, Tk)
∑

n1∈{u},n2∈T2,...,nk∈{v}

k−1∏

i=1

p(ni, ni+1)I((ni, ni+1), Ri), (7.27)

where p(ni, ni+1) = 1.0 if (ni, ni+1) ∈ Eu,u and otherwise, p(ni, ni+1) denotes the formation
probability of link (ni, ni+1) to be introduced in Sect. 7.5.4.

Features extracted by MLI based on Φ = {Φ1, . . . ,Φ6} are named as the intra-network social meta
path based social features. (Φ0 will be used in the following subsection only.)
Inter-Network Social Meta Paths: When a network is very new, features extracted based on intra-
network social meta paths can be very sparse, as there exist few connections in the network.

Example 7.7 Consider, for example, in Fig. 7.9, we want to predict whether social link (A(1), B(1))

in network G(1) will be formed or not. Merely based on the intra-network social meta paths, the
feature vector of extracted for link (A(1), B(1)) will be 0. However, we find that A(1) and B(1) can
be correlated actually with various inter-network paths, e.g., B(1) → B(2) → A(2) → A(1), B(1) →
B(2) → F (2) → A(2) → A(1) and B(1) → B(2) → G(2) → A(2) → A(1).

By following this idea, MLI proposes to transfer useful information from aligned networks with
the following anchor meta path and the inter-network social meta paths, whose formal definitions are
available in Sect. 3.5. In MLI, we are mainly concerned about inter-network meta path starting and
ending with users, which are named as the inter-network social meta path. Let Υ (U(i), U(j)) denote
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the anchor meta path defined between networks G(i) and G(j). The 4 specific inter-network social
meta paths used in MLI include:

• Category 1: Υ (U(i), U(j)) ◦ (Φ(U(j), U(j))∪Φ0(U
(j), U(j))) ◦Υ (U(j), U(i)), whose notation is

Ψ1(U
(i), U(i));

• Category 2.: (Φ(U(i), U(i))∪Φ0(U
(i),U(i)))◦Υ (U(i), U(j))◦(Φ(U(j), U(j))∪Φ0(U

(j), U(j)))◦
Υ (U(j), U(i)), whose notation is Ψ2(U

(i), U(i));
• Category 3.: Υ (U(i), U(j))◦ (Φ(U(j), U(j))∪Φ0(U

(j), U(j)))◦Υ (U(j), U(i))◦ (Φ(U(i), U(i))∪
Φ0(U

(i), U(i))), whose notation is Ψ3(U
(i), U(i));

• Category 4.: (Φ(U(i), U(i))∪Φ0(U
(i), U(i)))◦Υ (U(i),U(j))◦(Φ(U(j), U(j))∪Φ0(U

(j), U(j)))◦
Υ (U(j), U(i)) ◦ (Φ(U(i), U(i)) ∪ Φ0(U

(i), U(i))), whose notation is Ψ4(U
(i), U(i));

where Φ(U(i), U(i)) ∪ Φ0(U
(i), U(i)) = {Φ0(U

(i), U(i)), . . . ,Φ6(U
(i), U(i))} denote the 7 intra-

network social meta paths in network G(i) introduced before.
Let Ψ = {Ψ1,Ψ2,Ψ3,Ψ4}. Ψ is a comprehensive inter-network social meta path set and features

extracted based on Ψ can transfer information for both anchor users and non-anchor users from other
aligned networks.

Example 7.8 For example, in Fig. 7.9, by following path “B(1) → B(2) → A(2) → A(1),” we can go
from an anchor user B(1) to another anchor user A(1) and such path is an instance of Ψ1(U

(1), U(1));
by following path C(1) → A(1) → A(2) → D(2) → D(1), we can go from a non-anchor user
C(1) to an anchor user D(1), which is an instance of Ψ2(U

(1), U(1)); in addition, by following path
C(1) → A(1) → A(2) → B(2) → B(1) → E(1), we can go from a non-anchor user C(1) to another
non-anchor user E(1), which is an instance of Ψ4(U

(1), U(1)).

Social Meta Path Selection: As introduced in Sect. 7.5.1, information transferred from aligned
networks is helpful for improving link prediction performance in a given network but can be
misleading as well, which is called the network difference problem. To solve the network difference

Fig. 7.9 Meta path across
aligned networks
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problem, MLI proposes to rank and select the topK features from the feature vector extracted based on
the intra-network and inter-network social meta paths, [x(

Φ , x
(
Ψ ](, from the multiple partially aligned

heterogeneous networks.
Let variable Xi ∈ [x(

Φ , x
(
Ψ ]( be a feature extracted based on a meta path in {Φ,Ψ } and variable Y

be the label. P(Y = y) denotes the prior probability that links in the training set having label y and
P(Xi = x) represents the frequency that feature Xi has value x. Information theory related measure
mutual information (mi) [43] is used as the ranking criteria:

mi(Xi) =
∑

x

∑

y

P (Xi = x, Y = y) log
P(Xi = x, Y = y)

P (Xi = x)P (Y = y)
(7.28)

Let [x̄(
Φ , x̄

(
Ψ ]( be the features of the top K mi score selected from [x(

Φ , x
(
Ψ ](. In the next

subsection, we will use the selected feature vector [x̄(
Φ , x̄

(
Ψ ]( to build a novel PU link prediction

model.

7.5.4 Spy Technique Based PU Link Prediction

In this subsection, we will first introduce a method to solve the PU link prediction problem in one
single network. As introduced in Sect. 7.5.2, from a given network, e.g., G, we can get two disjoint
sets of links: connected (i.e., formed) links P and unconnected links Ū . To differentiate these links,
we define a new concept “connection state,” z, to show whether a link is connected (i.e., formed)
or unconnected in network G. For a given link l, if l is connected in the network, then z(l) = +1;
otherwise, z(l) = −1. As a result, we can have the “connection states” of links in P and Ū to be:
z(P) = +1 and z(Ū) = −1.

Besides the “connection state,” links in the network can also have their own “labels,” y, which can
represent whether a link is to be formed or will never be formed in the network. For a given link l, if
l has been formed or to be formed, then y(l) = +1; otherwise, y(l) = −1. Similarly, we can have the
“labels” of links in P and Ū to be: y(P) = +1 but y(Ū) can be either +1 or −1, as Ū can contain
both links to be formed and links that will never be formed.

By using P and Ū as the positive and negative training sets, we can build a link connection
prediction model Mc, which can be applied to predict whether a link exists in the original network,
i.e., the connection state of a link. Let l be a link to be predicted, by applying Mc to classify l, we
can get the connection probability of l to be:

Definition 7.3 (Connection Probability) The probability that link l’s connection states is predicted
to be connected (i.e., z(l) = +1) is formally defined as the connection probability of link l: p(z(l) =
+1|x(l)), where x(l) = [x̄Φ(l)

(, x̄Ψ (l)(](.

Meanwhile, if we can obtain a set of links that “will never be formed,” i.e., “-1” links, from the
network, which together with P (“+1” links) can be used to build a link formation prediction model
Mf . Here, model Mf can be used to get the formation probability of l to be:

Definition 7.4 (Formation Probability) The probability that link l’s label is predicted to be formed
or will be formed (i.e., y(l) = +1) is formally defined as the formation probability of link l: p(y(l) =
+1|x(l)).
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Fig. 7.10 PU link
prediction
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However, from the network, we have no information about “links that will never be formed”
(i.e., “-1” links). As a result, the formation probabilities of potential links that we aim to obtain as
proposed in Sect. 7.5.2 can be very challenging to calculate. Meanwhile, the correlation between link
l’s connection probability and formation probability has been proved in existing works [11] to be:

p(y(l) = +1|x(l)) ∝ p(z(l) = +1|x(l)). (7.29)

In other words, for links whose connection probabilities are low, their formation probabilities will
be relatively low as well. This rule can be utilized to extract links which can be more likely to be the
reliable “-1” links from the network. The link connection prediction model Mc built with P and Ū
can be applied to classify links in Ū to extract the reliable negative link set.

Definition 7.5 (Reliable Negative Link Set) The reliable negative links in the unconnected link set
Ū are those whose connection probabilities predicted by the link connection prediction model, Mc,
are lower than threshold ε ∈ [0, 1]:

RN = {l|l ∈ Ū , p(z(l) = +1|x(l)) < ε}. (7.30)

Some heuristic based methods have been proposed to set the optimal threshold ε, e.g., the spy
technique proposed in [24]. As shown in Fig. 7.10, we randomly selected a subset of links in P as
the spy, SP , whose proportion is controlled by s% (s% = 15% is used as the default sample rate as
introduced in [59]). Sets (P \SP) and (Ū ∪SP) are used as positive and negative training sets to the
spy predictionmodel,Ms . By applyingMs to classify links in (Ū ∪SP), we can get their connection
probabilities to be:

p(z(l) = +1|x(l)), l ∈ (Ū ∪ SP), (7.31)

and parameter ε is set as the minimal connection probability of spy links in SP:

ε = min
l∈SP

p(z(l) = +1|x(l)). (7.32)
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With the extracted reliable negative link setRN , we can solve the PU link prediction problem with
classification based link prediction methods, where P and RN are used as the positive and negative
training sets, respectively. Meanwhile, when applying the built model to predict links in L(i), their
optimal labels, i.e., Ŷ(i), should be those which can maximize the following formation probabilities:

Ŷ(i) = argmax
Y (i)

p(y(L(i)) = Y(i)|G(1),G(2), . . . ,G(k))

= argmax
Y (i)

p(y(L(i)) = Y(i)|
[
x̄Φ(L(i))(, x̄Ψ (L(i))(

](
) (7.33)

where y(L(i)) = Y(i) represents that links in L(i) have labels Y(i).

7.5.5 Multi-Network Concurrent PU Link Prediction Framework

Method MLI to be introduced in this part is a general link prediction framework and can be applied
to predict social links in n partially aligned networks simultaneously. When it comes to n partially
aligned network formulated in Sect. 7.5.2, the optimal labels of potential links {L(1),L(2), . . . ,L(n)}
of networks G(1),G(2), . . . ,G(n) will be:

Ŷ(1), Ŷ(2), . . . , Ŷ(n) = arg max
Y (1),Y (2),...,Y (n)

p(y(L(1)) = Y(1), y(L(2)) = Y(2),

. . . , y(L(n)) = Y(n)|G(1),G(2), . . . ,G(n)) (7.34)

The above target function is very complex to solve and, in [59], MLI obtains the solution by
updating one variable, e.g., Y(1), and fix other variables, e.g., Y(2), . . . ,Y(n), alternatively with the
following equation:






(Ŷ(1))(τ ) = argmaxY (1) p(y(L(1)) = Y(1)|G(1),G(2), . . . ,G(n),

(Ŷ(2))(τ−1), (Ŷ(3))(τ−1), . . . , (Ŷ(n))(τ−1))

(Ŷ(2))(τ ) = argmaxY (2) p(y(L(2)) = Y(2)|G(1),G(2), . . . ,G(n),

(Ŷ(1))(τ ), (Ŷ(3))(τ−1), . . . , (Ŷ(n))(τ−1))

. . . . . .

(Ŷ(n))(τ ) = argmaxY (n) p(y(L(n)) = Y(n)|G(1),G(2), . . . ,G(n),

(Ŷ(1))(τ ), (Ŷ(2))(τ ), . . . , (Ŷ(n−1))(τ ))

(7.35)

The architecture of framework MLI is shown in Fig. 7.11. When predicting social links in network
G(i), MLI can extract features based on the intra-network social meta path, xΦ , extracted from G(i)

and those extracted based on the inter-network social meta path, xΨ , across G(1),G(2), . . . ,G(i−1),
G(i+1), . . . ,G(n) for links in P(i), Ū (i) and L(i). Feature vectors xΦ(P), xΦ(Ū) and xΨ (P), xΨ (Ū)
as well as the labels, y(P), y(Ū), of links in P and Ū are passed to the PU link prediction model
M(i) and the meta path selection modelMS(i). The formation probabilities of links in L(i) predicted
by model M(i) will be used to update the network by replacing the weights of L(i) with the newly
predicted formation probabilities. The initial weights of these potential links in L(i) are set as 0 (i.e.,
the formation probability of links mentioned in Definition 7.2). After finishing these steps onG(i), we
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will move to conduct similar operations on G(i+1). We predict links in G(1) to G(n) alternatively in a
sequence until the results in all of these networks converge.

7.6 Sparse and Low RankMatrix Estimation Based PU Link Prediction

Different online social networks usually have different functions, and information in them follows
totally different distributions. When predicting the links across multiple aligned online social
networks, the link prediction models aforementioned, which merely append the feature vectors from
different sources, can hardly address the domain difference problem at all. In this section, we will
introduce a new cross-network link prediction model proposed in [61], which embeds the feature
vectors of links from aligned networks into a shared feature space. The knowledge from the source
networks is transferred to the target network in the shared feature space.

7.6.1 ProblemDescription

In this section, we will study the link prediction problem for the target network, which is aligned
with multiple source networks concurrently. Formally, the problem is named as the “Social Link
Transfer” (SLT) problem. Formally, given the multiple aligned online social networks G =
({Gt,G(1),G(2), . . . ,G(K)}, {A(t,1),A(t,2), . . . ,A(K−1,K)}), the SLT problem to be studied in this
section aims at inferring the potential social connections among users in the target network Gt with
information across all these networks. Formally, based on information available in G, the objective of
SLT is to build a social link prediction function S : U t × U t \ E t

u → [0, 1] to infer the confidence
scores of all the potential social connections among the users in the target network Gt , where U t and
E t
u represent the existing users and social links in Gt , respectively.
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Fig. 7.12 An example of link prediction across aligned networks

Example 7.9 An example to illustrate the SLT problem is provided in Fig. 7.12. In Fig. 7.12, network
Gt is the target network, and G(1), . . . ,G(4) are the other aligned source networks, which share a
number of common users with Gt . With the information across networks {Gt,G(1), . . . ,G(4)}, the
objective of SLT is to infer potential social links (i.e., the red dashed lines) to be formed in the target
network Gt .

The SLT problem studied in this section is based on the same setting as those in [57, 59], but
we will introduce a new model to address the problem. We summarize the differences of this work
from these existing works as follows. Firstly, the link prediction model proposed in this section
is based on the matrix estimation, which is totally different from the classification based models
proposed in [57, 59] and will not suffer from the class imbalance problem. Secondly, considering the
connections among users in the networks are usually very sparse and users tend to form densely
connected local communities, a sparse regularizer and a low-rank regularizer are incorporated in
the objective function. Thirdly, these existing works [57, 59] transfer information across different
networks without considering the domain differences. Meanwhile, based on the known anchor and
social link information, our model overcomes the domain difference problem by mapping the feature
vectors extracted for links from the aligned networks to a shared lower-dimensional latent feature
space instead.

The SLT problem studied in this section is very hard to solve mainly due to the following challenges
caused by (1) the heterogeneity of networks, (2) the multiple aligned networks setting, (3) the sparse
and low-rank property of the target network, and (4) the objective function is hard to solve. To
overcome these challenges, a novel link prediction model named SLAMPRED (Sparse Low-rAnk
Matrix estimation based Prediction) [61] will be introduced in this part. SLAMPRED formulates
the link prediction problem as a sparse and low-rank matrix estimation problem. Heterogeneous
information is used to calculate the similarity among users, and similar users tend be linked. With
the existing anchor and social link information, SLAMPRED proposes to map the feature vectors
of the social links extracted from the target and other aligned source networks to a common
low-dimensional latent feature space. Two regularizers are introduced in the objective function of
SLAMPRED to preserve the sparse and low-rank properties. Furthermore, SLAMPRED solves the
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objective function with the iterative CCCP (convex concave procedure), and in each iteration the
involved non-differentiable sparsity and low-rank regularizers are effectively handled by the proximal
operators.

In the following parts, we will first introduce the link prediction model built with the observed
network connection information and other heterogeneous attribute information available in the target
network. After that, we will talk about the target network link prediction problem with information
across multiple aligned networks, where the features extracted from different networks are projected to
a lower-dimensional feature space to accommodate the domain differences. Finally, we will introduce
the joint optimization objective function, which can be resolved by the proximal operator based
iterative CCCP algorithm effectively.

7.6.2 Intra-Network Link Prediction

Users’ diverse online social activities may generate heterogeneous information in the online social
networks, which include both the network structure information and the different categories of
attribute information about the users. In this subsection, we will introduce the link prediction method
with the heterogeneous information available in the target network.

7.6.2.1 Intra-Network Link Prediction with Link Information
Given the target network Gt involving users U t , we can represent the observed social connection
among the users with the binary social adjacency matrixAt ∈ {0, 1}|U t |×|U t |, where entryAt(i, j) = 1
iff the corresponding social link (uti , u

t
j ) exists between users uti and utj in Gt . In the SLT problem,

our objective is to infer the potential unobserved social links for the target network, which can be
achieved by finding a sparse and low-rank predictor matrix S ∈ S from some convex admissible set
S ⊂ R|U t |×|U t |. Meanwhile, the inconsistency between the inferred matrix S and the observed social
adjacency matrix At can be represented as the loss function l(S,At ). The optimal social link predictor
for the target network can be achieved by minimizing the loss term, i.e.,

argmin
S∈S

l(S,At ). (7.36)

The loss function l(S,At ) can be defined in many different ways, and the loss function can be
approximated by counting the loss introduced by the existing social links in E t

u, i.e.,

l(S,At ) = 1
|E t

u|
∑

(uti ,u
t
j )∈E t

u

1
((
At(i, j) − 1

2

)
· S(i, j) ≤ 0

)
. (7.37)

7.6.2.2 Intra-Network Link Prediction with Heterogeneous Attribute Information
Besides the connection information, there also exists a large amount of attribute information available
in the target network, e.g., location check-in records, online social activity temporal patterns, and
text usage patterns, etc. Based on the attribute information, a set of features can be extracted for all
the potential user pairs to denote their closeness, which are called the intimacy features formally. For
instance, given a user pair (uti , u

t
j ) in the target network, we can represent its intimacy features as

vector xti,j ∈ Rdt (dt denotes the extracted intimacy feature number). According to the existing works
[14, 57], different intimacy features can be extracted from the attribute information.
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More generally, we can represent the feature vectors extracted for user pairs as a 3-way tensor
Xt ∈ Rdt×|U t |×|U t |, where slice Xt (k, :, :) denotes all the kth intimacy features among all the user
pairs. In online social networks, homophily principle [27] has been observed to widely structure the
users’ online social connections, and users who are close to each other are more likely to be friends.
Based on such an intuition, we can infer the potential social connection matrix S by maximizing the
overall intimacy scores of the inferred new social connections, i.e.,

argmax
S∈S

int (S,Xt ). (7.38)

SLAMPRED proposes to define the intimacy score term int (S,Xt ) by enumerating and summing
the intimacy scores of the inferred social connections, i.e.,

int (S,Xt ) =
dt∑

k=1

∥∥S ◦ Xt (k, :, :)
∥∥
1 , (7.39)

where operator ◦ denotes the Hadamard product (i.e., entrywise product) of two matrices.

7.6.2.3 Joint Optimization Function for Intra-Network Link Prediction
By considering the link and attribute information in the target network at the same time, we can
represent the joint optimization for link prediction in the target network to be

argmin
S∈S

l(S,At ) − αt · int (S,Xt )+ γ · ‖S‖1 + τ · ‖S‖∗ . (7.40)

Considering that the social connections in online social networks are usually very sparse and of low-
rank, the regularizers ‖S‖1 and ‖S‖∗ are added to preserve the sparse and low rank properties of the
inferred predictor matrix S. Parameters αt , γ , τ denote the importance scalars of different terms in
the objective function.

7.6.3 Inter-Network Link Prediction

Besides the information available in the target network, a large amount of information about the users’
social activities is available in other external source networks as well, which can be transferred to the
target network to help improve the link prediction results, especially when the target network suffers
from information sparsity problem. To be general, we can represent the intimacy features extracted
for user pairs in source network G(i) (i ∈ {1, 2, . . . , K}) as a 3-way tensor X(i) ∈ Rd(i)×|U (i)|×|U (i)|,
where U (i) denotes the user set in G(i) and d(i) is the extracted feature number.

Meanwhile, different online social networks are constructed for different purposes, information
from which may follow totally different distributions actually. To adopt the information domains
of these different aligned networks, SLAMPRED proposes to project the extracted feature vectors
from different networks (both Gt and aligned source networks G(1), . . . ,G(K)) to a common lower-
dimensional feature space instead. Given theK+1 partially aligned social networks, we formulate the
information domain adaption problem as a mapping function inference problem instead. Our objective
is to construct K + 1 mapping functions, f t : Rdt → Rc, . . . , f (K) : Rd(K) → Rc to map the K + 1
input features to a new c-dimensional latent space, where certain properties about the networks are
still preserved.
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Fig. 7.13 An example of method SLAMPRED on social link embedding

SLAMPRED achieves the objective by utilizing the existing anchor links and social links across
the networks. As shown in Fig. 7.13, the links in different social networks are first categorized into
different sets: (1) social links aligned by anchor links (i.e., the aligned social links to be introduced
later), (2) similar social links (i.e., connected user pairs or unconnected user pairs), and (3) dissimilar
social links (i.e., the connected user pairs vs. the unconnected ones). Based on the categorization
information about the links, in the link embedding process, we aim at placing aligned social links and
similar social links closely in the common latent feature space, while placing the dissimilar ones far
away from each other in the feature space. More information about these concepts and the embedding
process will be introduced in the following parts in great detail.

7.6.3.1 Anchor Link Based Feature Space Projection
Before introducing the anchor link based feature space projection method, we first introduce the
concept of aligned social link as follows:

Definition 7.6 (Aligned Social Link) Given two social links (uti , u
t
j ) and (u

(k)
m , u

(k)
n ) in networksGt

and G(k), respectively, if uti , u
(k)
m and utj , u

(k)
n are both aligned by the anchor links (i.e., (uti , u

(k)
m ) ∈

A(t,k) and (utj , u
(k)
n ) ∈ A(t,k)), then (uti , u

t
j ) and (u

(k)
m , u

(k)
n ) are called the aligned social links.

Let sets Lt and L(k) denote all the potential social links in networks Gt and G(k), respec-
tively, where Lt = U t × U t \ {(u, u)}u∈U t and L(k) = U (k) × U (k) \ {(u, u)}u∈U (k) . Based
on the anchor links between networks Gt and G(k) (i.e., A(t,k)), we can denote all the aligned
social links with the aligned social link indicator matrix W(t,k)

A ∈ {0, 1}|Lt |×|L(k)|, where entry
W

(t,k)
A (i, j) = 1 iff the corresponding social links lti ∈ Lt and l

(k)
j ∈ L(k) are aligned social

links.
Generally, the aligned social links are actually connecting the accounts of the same users, and

the feature vectors extracted for them from different networks should be mapped to close areas in
a low-dimensional latent feature space. Based on such an intuition, we can define the inconsistency
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introduced in projecting the features for aligned social links between networks Gt and other external
source networks as term CostA:

CostA = µ

K∑

m=t

K∑

n=t

|L(m)|∑

i=1

|L(n)|∑

j=1

∥∥∥f (m)(xmlmi ) − f (n)(xnlnj )
∥∥∥
2
W

(m,n)
A (i, j), (7.41)

where notation
∑K

m=t denotes the enumeration of all the networks in the set {Gt,G(1), . . . ,G(K)},
and µ is the scalar.

Minimizing the cost term will encourage the features extracted for social links corresponding to
the aligned social links being mapped to similar locations in the latent feature space. Furthermore, for
all the pairwise networks, we can group all the aligned social link indicator matrices together as the
big joint aligned social link indicator matrix WA ∈ {0, 1}|L|×|L|, where L = Lt ∪ L(1) ∪ · · · ∪ L(K).
Formally, matrixWA can be represented as

WA =





W(t,t)
A W(t,1)

A · · · W(t,K)
A

W(1,t)
A W(1,1)

A · · · W(1,K)
A

...
...

. . .
...

W(K,t)
A W(K,1)

A · · · W(K,K)
A




. (7.42)

In addition, we can represent its Laplacian matrix as LA = DA − WA, where matrix DA denotes the
diagonal row sum matrix of WA with entry DA(i, i) =

∑
j WA(i, j) on the diagonal. Matrix LA will

be used in the projection function inference to be introduced in the following parts.

7.6.3.2 Existing Social Link Based Feature Space Projection
Besides the anchor link information, we also propose to utilize the existing social connections among
the users to help infer the feature mapping functions. Before introducing the detailed method, we will
define the concept of link existence label y(·) first as follows:

Definition 7.7 (Link Existence Label) Given a link l
(k)
i ∈ L(k) in network G(k), k ∈

{t, 1, 2, . . . , K}, if link l
(k)
i exists in the network then its corresponding link existence label

y(l
(k)
i ) = 1, otherwise y(l(k)i ) = 0.

Since our ultimate goal is to infer the potential feature vector mappings to the latent feature space
to transfer information for the link prediction tasks, the social link existence information will plan a
very important role in identifying the potential feature space mappings. Based on the known social
connections in a pair of aligned networks Gt and G(k) (k ∈ {1, 2, . . . , K}), we can construct the
similar link existence label indicator matrix W(t,k)

S ∈ {0, 1}|Lt |×|L(k)| and dissimilar link existence

label indicator matrixW(t,k)
D ∈ {0, 1}|Lt |×|L(k)| between networksGt andG(k). For any link instances

lti ∈ Lt and l
(k)
j ∈ L(k), if lti and l

(k)
j share the same link existence label, we will assign the

corresponding entry in W(t,k)
S with value 1 (and the corresponding entry in W(t,k)

D with value 0);
otherwise, we will assign the corresponding entry inW(t,k)

S with value 0 (and the corresponding entry
in W(t,k)

D with value 1). Therefore, matrices W(t,k)
S and W(t,k)

D store all the link existence information
in the networks Gt and G(k).
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As pointed out in [44], the instances which share common labels tend to be projected together in the
latent feature space, while those having different labels will be projected to be apart from each other
instead. Based on such an intuition, terms CostS and CostD can be defined to denote the mapping
costs introduced by the link existence label information (for the links having similar and different
labels), respectively:

CostS =
K∑

m=t

K∑

n=t

|L(m)|∑

i=1

|L(n)|∑

j=1

∥∥∥f (m)(xmlmi ) − f (n)(xnlnj )
∥∥∥
2
W

(m,n)
S (i, j), (7.43)

CostD =
K∑

m=t

K∑

n=t

|L(m)|∑

i=1

|L(n)|∑

j=1

∥∥∥f (m)(xmlmi ) − f (n)(xnlnj )
∥∥∥
2
W

(m,n)
D (i, j). (7.44)

If link instances lti and l
(k)
j in networks Gt and G(k) share the same link existence label (i.e.,

W
(t,k)
S (i, j) = 1), but their embeddings are far away from each other, then CostS will be larger.

Meanwhile, if link instances lti and l
(k)
j have different link existence labels (i.e.,W(t,k)

D (i, j) = 1), and
their embeddings are close to each other, the introduced CostD will be small. Therefore, minimizing
CostS and maximizing CostD simultaneously will encourage the link instances of the same label to
be projected to similar areas, while those of different labels to be projected separately instead.

What’s more, in a similar way, we can also group all the network pairwise similar link existence
label indicator matrices and dissimilar link existence label indicator matrices together in the same
order as matrix WA, which can be represented as WS and WD . Their corresponding Laplacian
matrices can be denoted as LS and LD , respectively.

7.6.3.3 Joint Mapping Function Inference
Wemay want to ensure the mapping functions can achieve the above three objectives at the same time,
which can be achieved by minimizing the overall cost function

minCost (f t , f (1), f (2), . . . , f (K)) = CostA + CostS

CostD
. (7.45)

The projection mappings can be of different forms, and we will take the linear mapping as an
example here. In other words, the mappings f t , f (1), f (2), . . . , f (K) can be represented as K + 1
matrices Ft ∈ Rdt×c, F(1) ∈ Rd(1)×c, . . ., F(K) ∈ Rd(K)×c, respectively, where dt , d(1), . . . , d(K)

denote the length of features from networks Gt,G(1), . . . ,G(K) and c is the dimension of the
projected feature space.

Formally, given all the feature vectors extracted for potential user pairs in the networks
Gt,G(1), . . . ,G(K), we can group them together and represent it as matrix

Z =





Zt 0 · · · 0
0 Z(1) · · · 0
...

...
...

...

0 · · · 0 Z(K)




, (7.46)

where submatrix Z(k) = (z(k)1 , z(k)2 , . . . , z(k)|L(k)|×|L(k)|) and vector z(k)i ∈ Rd(k)×1 represents the feature

vector extracted for the ith social link in network G(k). Furthermore, we can group all the projection
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function together and represent it as a (dt + d(1) + · · · + d(K)) × c dimensional matrix

F =
(
(Ft )(, (F(1))(, . . . , (F(K))(

)(
, (7.47)

which can be effectively inferred with the following theorem.

Theorem 7.1 The projection functions that minimize the overall cost function are given by the
eigenvectors corresponding to the smallest non-zero eigenvalues of the generalized eigenvalue
decomposition

Z(µLA + LS)Z(x = λZLDZ(x. (7.48)

Proof Depending on the specific value of c, the theorem can be proven by considering two cases:

Case 1 if c > 1, with the above defined matrices, we can rewrite the introduced cost terms CostA,
CostS , and CostD in the linear algebra representation:

CostA = Tr(F(ZµLAZ(F), (7.49)

CostS = Tr(F(ZLSZ(F), (7.50)

CostD = Tr(F(ZLDZ(F). (7.51)

Furthermore, the objective function can be represented as

argmin
F

Tr(F(Z(µLA + LS)Z(F)
Tr(F(ZLDZ(F)

. (7.52)

According to [44, 46], the matrix F which can minimize the objective function are actually the
c eigenvectors corresponding to the c smallest non-zero eigenvalues of the following generalized
eigenvalue decomposition function:

Z(µLA + LS)Z(x = λZLDZ(x. (7.53)

Case 2 if c = 1, then matrix F to be inferred is actually a vector and the cost terms can be simply
represented as

CostA = F(ZµLAZ(F, (7.54)

CostS = F(ZLSZ(F, (7.55)

CostD = F(ZLDZ(F. (7.56)

The optimization objective function can be rewritten with the new cost representations as

argmin
F

F(Z(µLA + LS)Z(F
F(ZLDZ(F

, (7.57)

which is actually the Rayleigh quotient of (µLA+LS) relative to LD . According to the existing books
on linear algebra and related works [34, 38], the optimal solution to the objective function can be
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represented as the eigenvectors corresponding to the c small non-zero eigenvalues of the generalized
eigenvalue problem:

Z(µLA + LS)Z(x = λZLDZ(x. (7.58)

Therefore, we can formally represent the feature tensors of network Gk (including both the target
and aligned source networks) after the domain adaption as X̂k ∈ R|Uk |×|Uk |×c (∀k ∈ {t, 1, 2, . . . , K}),
where feature vector

X̂k(i, j, :) = (Fk)(Xk(i, j, :). (7.59)

7.6.3.4 Inter-Network Link Prediction Objective Function
With the information from the external source networks, we can obtain more knowledge about the
users and their social patterns. Based on the adapted feature tensors X̂(1), . . . , X̂(K), we can represent
the intimacy scores of the potential social links as

int (S, X̂(1), . . . , X̂(K)) =
K∑

k=1

α(k) · int (S, X̂(k)) (7.60)

where term int (S, X̂(k)) =
∥∥∥S ◦ X̂(k)

∥∥∥
1
, and users in X̂(k) are organized in the same order as Xt .

Parameters α(i) denote the importance of the information transferred from the source network G(i).
Furthermore, by adding the intimacy terms about the source networks into the objective function, we
can rewrite it as follows:

argmin
S∈S

l(S,At ) − αt · int (S, X̂t ) −
K∑

k=1

α(i) · int (S, X̂(k)))+ γ ‖S‖1 + τ ‖S‖∗ (7.61)

7.6.4 Proximal Operator Based CCCP Algorithm

By studying the objective function, we observe that the intimacy terms are convex while the empirical
loss term l(S,At ) is non-convex, which can be approximated with other classical loss functions (e.g.,
the hinge loss and the Frobenius norm), and the convex squared Frobenius norm loss function is
used (i.e., l(S,At ) =

∥∥S − At
∥∥2
F
). Therefore, the above objective function can be represented as a

convex loss term minus another convex term together with two convex non-differentiable regularizers,
which actually renders the objective function non-trivial. According to the existing works [37,51], this
kind of objective function can be addressed with the concave-convex procedure (CCCP). CCCP is a
majorization-minimization algorithm that solves the difference of convex functions problems as a
sequence of convex problems. Meanwhile, the regularization terms can be effectively handled with
the proximal operators [29] in each iteration of the CCCP process.

7.6.4.1 CCCP Algorithm
Formally, we can decompose the objective function into two convex functions:

u(S) = l(S,At )+ γ · ‖S‖1 + τ · ‖S‖∗ , (7.62)
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v(S) = αt · int (S, X̂t )+
K∑

k=1

α(k) · int (S, X̂(k)), (7.63)

With u(S) and v(S), we can rewrite the objective function to be

argmin
S∈S

u(S) − v(S). (7.64)

The CCCP algorithm can address the objective function with an iterative procedure that solves the
following sequence of convex problems:

S(h+1) = argmin
S∈S

u(S) − S(∇v(S(h)) (7.65)

It is easy to show that function v(S) differentiable, and the derivative of function v(S) is actually a
constant term

∇v(S) =
K∑

k=t

α(i)
c∑

i=1

X̂(k)(i, :, :). (7.66)

By relying on the Zangwill’s global convergence theory [52] of iterative algorithms, it is
theoretically proven in [37] that as such a procedure continues, the generated sequence of the variables
{S(h)}∞h=0 will converge to some stationary points S∗ in the inference space S .

7.6.4.2 Proximal Operators
Meanwhile, in each iteration of the CCCP updating process, objective function is not easy to address
due to the non-differentiable regularizers. Some works have been done to deal with the objective
function involving non-smooth functions. The Forward-Backward splitting method proposed in [8]
can handle such a kind of optimization function with one single non-smooth regularizer based on the
introduced proximal operators. More specifically, as introduced in [8], we can represent the proximal
operators for the trace norm and L1 norm as follows:

proxτ‖·‖∗(S) = Udiag((σi − τ )+)iV(, (7.67)

proxγ ‖·‖1(S) = sgn(S) ◦ (|S| − γ )+, (7.68)

where S = Udiag(σi )iV( denotes the singular decomposition of matrix S, and diag(σi )i represents
the diagonal matrix with values σi on the diagonal.

Recently, some works have proposed the generalized Forward-Backward algorithm to tackle the
case with q(q ≥ 2) non-differentiable convex regularizers [30]. These methods alternate the gradient
step and the proximal steps to update the variables. For instance, given the above objective function
in iteration h of the CCCP, we can represent the alternative updating equations in step k to address the
objective function as follows:






S(k) = S(k−1) − θ · ∇S
(
l(S,A) − S(∇v(S(h))

)
,

S(k) = proxθτ‖·‖∗(S
(k)),

S(k) = proxθγ ‖·‖1(S
(k)),

(7.69)
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Algorithm 2 Proximal operator based CCCP algorithm
Require: social adjacency matrix A

projected feature tensors X̂t , X̂1, . . . , X̂K

Ensure: link predictor matrix S
1: Initialize matrix Scccp = A
2: Initialize CCCP convergence CCCP-tag = False
3: while CCCP-tag == False do
4: Initialize Proximal convergence Proximal-tag = False
5: Solve optimization function minS∈S u(S) − S(∇v(Scccp)
6: Initialize Spo = Scccp
7: while Proximal-tag == False do
8: Spo = Spo − θ∇S

(
l(Spo,A) − S(

po∇v(Scccp)
)

9: Spo = proxθτ‖·‖∗ (Spo)
10: Spo = proxθγ ‖·‖1 (Spo)
11: if Spo converges then
12: Proximal-tag = True
13: Scccp = Spo
14: end if
15: end while
16: if Scccp converges then
17: CCCP-tag = True
18: end if
19: end while
20: Return Scccp

where the parameter θ denotes the learning rate and it is assigned with a very small value to ensure
the converge of the above functions [32]. We will also give the convergence analysis about the model
in the experiment section.

The pseudo-code of the Proximal Operators based CCCP algorithm is available in Algorithm 2.

7.7 Summary

In this chapter, we introduced the link prediction problem in social networks, where various social
network services can all be cast as the link prediction problem for simplicity. To address the
problem, we introduced the traditional link prediction models for one single homogeneous networks,
including the unsupervised link prediction models, supervised link prediction models, and the matrix
factorization based link prediction models.

We also introduced the collective link prediction model for heterogeneous social networks, where
we took the location-based social networks as an example to describe the problem setting and the
proposed model. In the studied problem, we aimed at inferring multiple types of links in the location-
based social networks simultaneously, including both the social links and location links. We provided
a brief introduction of an integrated link prediction framework, which integrates these sub-problems
into one unified framework.

To address the cold start problem in predicting potential links of new users, we introduced the cold
start link prediction model, which can be built by utilizing the information about the “old users” within
and across the networks. To accommodate the information distribution difference problem about the
new users and old users, we introduced a method to sample the old users’ subnetwork. Features
extracted from multiple aligned heterogeneous can promisingly resolve the cold start problem in the
proposed model.
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Instead of modeling the non-existing links as the negative instances, we introduced an approach to
address the link prediction problem as a PU learning problem, where those non-existing anchor links
are treated as unlabeled instead. To identify a subset of the unlabeled anchor links which are highly
likely to be negative (i.e., the reliable negative instances), we introduced to apply the spy techniques in
the introduced model, which can work well to infer the social links in multiple networks concurrently.

To overcome the domain difference problem, at the end of this chapter, we introduced an approach
to address the link prediction as a PU learning problem, where the link representations from different
networks are projected into a shared low-dimensional feature space. Considering that the social
network structure formed by the users are usually very sparse and users tend to form some small
groups inside the social networks, the adjacency matrix of the social networks can have both the
sparsity and low-rank properties. The introduced model resolves the problem as an optimization
problem, where CCCP and proximal operators are adopted to learn the potential social links among
the users.

7.8 Bibliography Notes

Link prediction problems is a traditional research problem studied in various areas, which aims at
inferring the connections among nodes in the graph. To this context so far, dozens of link prediction
works have been published already [3, 6, 9, 25, 47]. Depending on the learning setting utilized, the
existing link prediction models for information networks can be divided into several categories.
Initially, researchers study the link prediction problem based on an unsupervised learning setting
[22], which predicts links by calculating the similarity scores among nodes with the assumption that
close nodes are more likely to be connected. Afterwards, to utilize the supervision information and
incorporate multiple closeness measures altogether, researchers introduce the supervised classification
based link prediction models [14], where the existing and non-existing links are labeled as the positive
and negative instances, respectively. Recently, researchers point that labeling the non-existing as
negative instances is not reasonable, since some of the links will be formed, which should be unlabeled
actually [54, 59]. Based on such an intuition, link prediction framework based on PU (Positive and
Unlabeled) learning setting is introduced in [54, 59].

Most existing works solve link prediction problem with a single source of information. Nowadays,
the researchers have pushed the problem boundary further forward by proposing the link prediction
across multiple domains. Tang et al. [41] focus on inferring the particular type of links over multiple
heterogeneous networks and develop a framework for classifying the type of social ties. To deal
with the differences in information distributions of multiple networks, Qi et al. [3] propose to use
biased cross-network sampling to do link prediction across networks. Meanwhile, some works have
also been done on predicting multiple kinds of links simultaneously. Konstas et al. [20] propose to
recommend multiple kinds of links with collaborative filtering methods. Fouss et al. [12] propose to
use a traditional model, random walk, to predict multiple kinds of links simultaneously in networks.

Since Zhang et al. [19, 57] propose the concept of “aligned social networks,” “anchor links,”
“anchor users,” the social network studies across multiple aligned social networks have become a hot
research area in recent years. Dozens of papers have been published around various problems about
the multiple aligned networks, including network alignment [19, 55, 56] and link prediction [54, 57–
60]. The link prediction models introduced in [54, 57–59] propose to combine the information from
different sites by simply merging the extracted feature vectors together without considerations about
the domain differences at all, which are totally different from the model introduced in this chapter.
The recent paper [60] aims at unifying the link prediction problems subject to different cardinality
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constraints, like one-to-one, one-to-many and many-to-many, and introduce a general scalable link
prediction framework to solve the problem.

To gain a more comprehensive knowledge about existing link prediction works, please refer to the
survey paper [13, 35, 53] for more information.

7.9 Exercises

1. (Easy) Please implement the various unsupervised link predictors introduced in Sect. 7.2.1.2 and
compare their effectiveness in inferring the friendship links within an online social network.

2. (Easy) Please explain the advantages of the supervised link prediction model over the unsuper-
vised link predictors based on the closeness measures, e.g., common neighbor and Jaccard’s
coefficient.

3. (Easy) Please explain why the SCAN model introduced in Sect. 7.4 can resolve the cold start
problem in predicting links for new users.

4. (Easy) Please define several of inter-network meta paths across aligned networks, and explain
their physical meanings.

5. (Medium) Please try to implement the supervised link prediction model, and evaluate its
performance with a synthetic network dataset.

6. (Medium) Please explain why the spy technique can help identify a set of reliable negative
instances from the unlabeled set.

7. (Medium) Please explain why the L1-norm and trace-norm introduced in Sect. 7.6 can maintain
the sparse and low-rank properties of the matrix to be estimated.

8. (Hard) Please implement the matrix factorization based link prediction model introduced in
Sect. 7.2.3, and evaluate its performance on a synthetic network dataset.

9. (Hard) Please implement the spy technique based PU learning algorithm introduced in Sect. 7.5.4,
and use in the link prediction task.

10. (Hard) Please try to implement the sparse and low-rank matrix estimation based link prediction
model introduced in Algorithm 2 with a preferred programming language.
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