
6Semi-supervised Network Alignment

6.1 Overview

As mentioned before, in the real-world online social networks, the anchor links are extremely difficult
to label manually. The training set we can obtain is usually of a small size compared with the network
scale, and most of the potential anchor links are unlabeled actually. For instance, given the Facebook
and Twitter networks containing millions or billions of users, identifying a very small training set
merely with hundreds of correct anchor links is however not an easy task. Therefore, it is not realistic
to achieve a large set of labeled anchor links as required by the supervised network alignment models
introduced in Chap. 4. On the other hand, completely ignoring the (small) set of labeled anchor links,
just like the unsupervised network alignment models introduced in Chap. 5, may also create lots of
problems, since these labeled anchor links can provide important signals for the network alignment
model building. In this chapter, we will introduce another category of network alignment models based
on the semi-supervised learning setting [8, 23], where both the (small) labeled and (large) unlabeled
sets will be utilized in the model building process.

However, significantly different from the traditional semi-supervised learning problems, the anchor
link instances studied in the network alignment problem are not independent. The one-to-one
constraint on the anchor links actually limits the number of existing anchor links incident to each
user node across networks, which can also introduce extra information for inferring the anchor links.
For instance, given an identified anchor link (u

(1)
i , u

(2)
j ) between networks G(1) and G(2), we can

know that the remaining unlabeled anchor links incident to either u(1)i or u(2)j should not exist.
Given two heterogeneous online social networks G(1) and G(2), we can represent the small set of

positively labeled anchor links and large number of unlabeled anchor links asAtrain andAunlabeled =
U (1) × U (2) \ Atrain, respectively. The main objective of semi-supervised network alignment task is
to build a model to infer the existence labels of these unlabeled anchor links with both setsAtrain and
Aunlabeled . In our network alignment task, the test set is actually identical to the unlabeled set, i.e.,
Aunlabeled = Atest . The built model will be further applied to the test set to infer the potential labels
of these anchor links.

In this chapter, we will focus on studying the network alignment problem based on the semi-
supervised learning setting. This chapter will be organized as follows: At the very beginning, we
will provide an introduction to the semi-supervised learning task, which is very different from the
supervised and unsupervised learning tasks introduced before. With such a new learning setting, we
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will introduce three different network alignment models based on the semi-supervised learning [8,23],
active learning [16], and positive-unlabeled (PU) learning [12] settings, respectively.

6.2 Semi-supervised Learning: Overview

Semi-supervised learning [8, 23] is halfway between supervised and unsupervised learning. Besides
the unlabeled data, the learning algorithms are also provided with some supervision information from
a small set of labeled training data. In this section, we will provide a basic introduction to the classic
semi-supervised learning task. In addition, the semi-supervised learning problem also has several
special types, including active learning [16] and positive-unlabeled learning [12], which will be
introduced in this section as well.

6.2.1 Semi-supervised Learning Problem Setting

Semi-supervised learning [8,23] is a new type of learning tasks which were not covered in the machine
learning overview provided in Chap. 2. In semi-supervised learning tasks, besides the set of labeled
training data instances {(x1, y1), (x2, y2), . . . , (xl , yl)}, there also exists a large-sized unlabeled data
instance set {xl+1, xl+2, . . . , xl+u}. Semi-supervised learning tasks attempt to make use of this
combined information from both the labeled and unlabeled sets to surpass the performance that
could be obtained by either the supervised learning merely with the labeled instances or unsupervised
learning merely with the unlabeled instances.

Existing semi-supervised learning tasks can be generally divided into two main categories,
i.e., transductive semi-supervised learning [23] and inductive semi-supervised learning [23]. The
transductive semi-supervised learning tasks aim at inferring the correct labels of instances in the
unlabeled data set {xl+1, xl+2, . . . , xl+u}, while the inductive semi-supervised learning tasks want to
infer the correct mapping from the feature space to the label space instead (not just limited to the data
instances in the unlabeled set).

By reading here, a question may naturally arise in the readers’ mind: “Is semi-supervised learning
useful?” To answer the question from the mathematical perspective, the “semi-supervised learning
is useful” iff the knowledge obtained from the unlabeled instance feature vector distribution P(x)
is helpful for the inference of posterior probability P(y|x). If this is not the case, semi-supervised
learning will not yield any improvement over supervised learning (merely with the labeled set).
Otherwise, the involvement of the unlabeled instances will lead to a great improvement in learning
the probability function P(y|x), i.e., semi-supervised learning will be useful.

To ensure the effectiveness of semi-supervised learning, certain assumptions need to hold, like the
smoothness assumption [8], cluster assumption [8], and manifold assumption [8]. These assumptions
will provide the way to use the unlabeled instances in improving the learned models with the labeled
instances. Subject to these different assumptions, various semi-supervised learning models have been
proposed already, some of which will be introduced in this part as well.

6.2.1.1 Smoothness Assumption
The smoothness assumption [8] is the most popular assumption used in semi-supervised learning
tasks, which goes as follows:

“Given the feature vectors of two instances, x1 and x2, if their feature vectors are close, so will be
their corresponding labels.”
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The smoothness assumption implies that if two data instances are similar in their feature
representations, they will be more likely to share common labels. Clearly, with such an assumption,
we can generalize the finite training set by incorporating the unlabeled instances. The smoothness
assumption can be applied in both semi-supervised classification and regression models.

6.2.1.2 Cluster Assumption
In the feature space, the data instances tend to form clusters, where the data instances with
similar feature vectors tend to lie in the same cluster, while those which are different in feature
representations will be partitioned into different clusters instead. In the semi-supervised learning,
the cluster assumption [8] denotes

“For the data instances in the same cluster, they are more likely to have similar labels.”
Based on the cluster assumption, the unlabeled data instances can be used to help identify the

boundaries of the clusters in a more accurate way. We could run a clustering algorithm and use the
labeled instances to assign a class label to each cluster. In this way, depending on the belonging
relationships of the unlabeled instances, we can determine the potential labels of these unlabeled
instances. Here, we also want to clarify that the cluster assumption doesn’t imply that each class will
only form one single cluster, and it only denotes that the instances within the same cluster will have
the same label. For the same class, the data instances are also possible to form multiple clusters.

6.2.1.3 Manifold Assumption
Another frequently used assumption in semi-supervised learning is called the manifold assumption
[8]:

“The high dimensional data instances lie on a lower-dimensional manifold.”
In this case we can attempt to learn the manifold [8] using both the labeled and unlabeled data to

avoid the curse of dimensionality [5]. The manifold assumption is practical when high-dimensional
data are being generated by some processes that may be hard to model directly but only have a
few degrees of freedom. If the data happen to lie on a low-dimensional manifold, however, then the
learning algorithm can essentially operate in a space of the corresponding dimension, thus avoiding
the curse of dimensionality.

6.2.2 Semi-supervised LearningModels

Several existing models can be adjusted to be applied in the semi-supervised learning tasks. In
this part, we will introduce some existing semi-supervised learning models, which incorporate the
unlabeled instances in the model training in different ways.

6.2.2.1 Semi-supervised Support Vector Machine (S3VM)
For the smoothness assumption introduced in the previous subsection, another revised version [4] is
that

“Given the feature vectors of two instances, x1 and x2, if the feature vectors are close in the high-
density regions, so will be their corresponding labels.”

Generally, in semi-supervised learning, the decision boundary of learning models is assumed to be
situated in a low-density region (in terms of unlabeled data). Let notation f (x) ∈ Y (Y = {−1,+1})
denote the inferred label of the data instance with feature vector representation x, where f (·) is the
built model and Y = {−1,+1} is the binary label space. The decision boundary inferred by the model
f (·) can be denoted as f (x) = 0. Furthermore, the loss function on an unlabeled instance x can be
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represented as the following loss function:

l(f, x) = max(1 − |f (x)|, 0), (6.1)

where the loss term l(f, x) > 0 when −1 < f (x) < +1; otherwise, it will be 0.
By considering all the unlabeled instances in set {xl+1, xl+2, . . . , xl+u}, the average loss term of

these instance will become

l(f, {xl+1, xl+2, . . . , xl+u}) =
1
u

l+u∑

i=l+1

max(1 − |f (xi )|, 0). (6.2)

Generally, the average loss term counts the violations in the margin separation, which will lead to a
ranking score of potential mapping f ∈ F . The top ranked mapping f denotes the one whose decision
boundary avoids most unlabeled instances by a large margin.

If we use support vector machine (SVM) as the base model, i.e., mapping f (x) = w$x+ b, where
w and b are the variables involved in the model. By adding this loss term with the objective function of
support vector machine (SVM), we can represent the joint optimization objective function as follows:

min
w,b

1
l

l∑

i=1

max(1 − yi(w$xi + b), 0)+ c ‖w‖22 + λ · 1
u

l+u∑

i=l+1

max(1 − |w$xi + b|, 0), (6.3)

where the first term denotes the introduced loss on the labeled data instances, and ‖w‖22 denotes the
regularization on the model variables. The parameters c and λ are the weights of the last two terms,
respectively.

By solving the objective function, the variables of the model can be learned. Actually, the
loss term is non-convex, and the learning process of the objective function can be hard. Some
existing algorithms, like deterministic annealing [15], continuation method [1], and concave–convex
procedure (CCCP) [17], can be used to handle such a challenge. Formally, the above support vector
machine model with the semi-supervised learning setting is also named as the S3VM model [4].

6.2.2.2 Semi-supervised Graph BasedModel
Many of the semi-supervised learning models are based on graphs [24], where the data instances are
represented as the nodes in the graph and the links denote the pairwise distance of the instances. For
instance, given all the data instances, V = Atrain ∪ Aunlabeled , we can represent it as a weighted
graph G = (V,L, w), where link set L ⊂ V × V \ {(u, u)}u∈V . The mapping function w : L → R
denotes the weight of the links. For instance, given a link e = (u, v) ∈ L, its weight w(e) denotes
how similar u and v are. If there exists no link between nodes u and v, then the weight of the potential
link between them will be 0 instead.

The graph based semi-supervised learning models [24] can be viewed as estimating a projection
function f to project the nodes in the graph to the label set. Generally, the projection function f

needs to meet two requirements: (1) the inferred labels of the labeled nodes (i.e., data instances
with labels) should be close to their true labels, and (2) it should be smooth on the whole graph.
The first requirement can be viewed as minimizing the learning loss on labeled data, and the second
requirement can be viewed as a regularization term about the model. So far, the existing various
graph based semi-supervised models [24] mainly differ with each other in three aspects: (1) graph
construction, (2) the loss function, and (3) the regularization term.
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Graph construction is the key point of the graph based semi-supervised models, and it is still an
open question to this context so far. Several different approaches have been proposed to construct the
graphs already, which include:

• Graph construction with domain knowledge
• Neighbor graph construction
• Graph construction with local fit

More information about these graph construction approaches is provided in [24]. Besides graph
construction, choosing different loss functions and regularization terms will lead to different semi-
supervised models. We will introduce some of them as follows.

1. MinCut Model In the binary case, the classification of the data instances can be viewed as a cut
problem to partition nodes in the graph into two disjoint subsets. We can treat the positive labels as
the sources and the negative labels as the sinks. The objective of MinCut model [6] is to find a set of
edges, removal of which can block all the flow between the source and sink nodes. In the cut result,
nodes connected to the source nodes will be classified as the positive instances, and those connected
to the sink nodes are classified as the negative instances.

Formally, the loss term introduced in the MinCut model can be represented as

loss =
l∑

i=1

(f (xi ) − yi)
2, (6.4)

where f (xi ) denotes the inferred label for the data instance xi .
Meanwhile, the regularization term in the MinCut model can be represented as

reg = 1
2

l+u∑

i,j=l+1,i )=j

w(xi , xj ) ·
(
f (xi ) − f (xj )

)2
. (6.5)

The regularization terms can ensure the smoothness of the model. By minimizing the regularization
term, the data instance pairs with closer representations, i.e., w(xi , xj ) is large, should have closer

labels, i.e.,
(
f (xi ) − f (xj )

)2 will be small.
To ensure that the labeled instances are classified correctly, the loss term is usually assigned with a

very large weight. The joint optimization function can be represented as

minα ·
l∑

i=1

(f (xi ) − yi)
2 + 1

2

l+u∑

i,j=l+1,i )=j

w(xi , xj ) · (f (xi ) − f (xj ))2

s.t. f (xi ) ∈ {+1,−1},∀i ∈ {1, 2, . . . , l, l + 1, . . . , l + u}, (6.6)

where α is assigned with a very large value, like α = ∞. For simplicity, in the learning process,
instead of learning the function f (·), we can treat f (x) = fi as a variable instead, which takes values
from the label space Y = {+1,−1}. The learned variables will be outputted as the inferred labels for
the data instances.
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2. Local and Global Consistency Model The links in the weighted graph G can be represented as a
weighted adjacency matrixW ∈ R|V |×|V |, where entry W(i, j) denotes

W(i, j) =
{
w((ui, uj )), if (ui, uj ) ∈ L,
0, otherwise.

(6.7)

Based on the weight matrix W, we can define its corresponding normalized and unnormalized
Laplacian matrix to be

Ln = I − D− 1
2WD− 1

2 , and L = D − W, respectively, (6.8)

where the diagonal matrix D has value D(i, i) =∑j W(i, j) on its diagonal.

The local and global consistency model [22] uses the following loss function:

loss =
l∑

i=1

(fi − yi)
2, (6.9)

where fi denotes the inferred label of the input data instance featured by vector xi . Meanwhile, the
regularization function used in the local and global consistency model can be represented as

reg = f$Lnf. (6.10)

Besides the regularization term used above, many other regularization functions, like Tikhonov
regularizer f$Lf [2], or manifold regularizer ‖f‖2K + ‖f‖2I [3], can all be used to define the objective
function of the semi-supervised learning models, which will lead to different learning performance. In
the equations,K denotes a base kernel, where ‖f‖2K denotes an “intrinsic norm” on f in the reproducing
Kernel Hilbert space (RKHS), and ‖f‖2I = 1

(l+k)2
f$Lf.

6.2.2.3 Semi-supervised Generative Model
In the case that the base model used is a generative model, like

fθ (x) = argmax
y

P (y|x, θ) = argmax
y

P (x, y|θ)∑
y′ P(x, y′|θ) , (6.11)

where θ denotes the parameter vector involved in the generative model. The term P(x, y|θ) denotes
the joint probability of instance’s feature vector and label in the generative model.

For the unlabeled instances, the likelihood for them to fit in the model can be represented as

L(fθ , {xl+1, xl+2, . . . , xl+k}) =
l+u∑

i=l+1

log




∑

y∈Y
P(xi , y|θ)



 . (6.12)
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To learn the model that can fit well for both the labeled instances and unlabeled instances, we can
represent the objective function as follows:

argmax
θ

log

(
l∑

i=1

P(yi |xi , θ)
)

+ λ ·
l+u∑

i=l+1

log




∑

y∈Y
P(xi , y|θ)



 . (6.13)

The parameter θ can be learned with the expectation–maximization (EM) algorithm [9] and some
existing numerical optimization methods.

Besides these three models introduced in this section, there also exist many other types of semi-
supervised learning models, like semi-supervised co-training models [7]. For the readers who are
interested in semi-supervised learning works, please refer to [8, 23] for more information. These
models introduced in this part can all be applied to solve the network alignment problem to infer the
anchor links between different social networks. By utilizing the unknown anchor links, more accurate
decision boundary can be determined with a small number of labeled instances. More information
about the network alignment method based on semi-supervised learning setting is available in
Sect. 6.3.

6.2.3 Active Learning

Active learning [16] is a special case of semi-supervised learning tasks, in which a learning algorithm
is able to interactively query an oracle (denoting an information source) to obtain the desired labels
of some unlabeled data instances. In the situation where manual labeling of the data instances is
extremely hard, if the learning algorithm can actively query for the labels of some data instances,
the learning process will be more efficient and effective. In active learning, the number of required
labeled instances will be much smaller than the number of labels required by the normal supervised
learning models. Meanwhile, in the data instance label query process, choosing the most informative
instances [16] will be crucial for active learning, which can also reduce the number of required queries
significantly to determine a good decision boundary.

Compared with the classical semi-supervised learning tasks, both active learning and semi-
supervised learning tasks aim at obtaining a good learning performance without demanding too many
labeled instances. Meanwhile, there also exist some differences in the way they work. Semi-supervised
learning focuses more on using the unlabeled data instances to assist the learning models to improve
the learning results. However, the objective of active learning is to choose one part of unlabeled data
instances to query for their labels, which will be involved in the model training process as the known
instances instead.

Formally, let T = {(x1, y1), (x2, y2), . . . , (xl , yl)} denote the set of labeled data instances, and U =
{xl+1, xl+2, . . . , xl+u} represent the set of unlabeled instances. Active learning aims at partitioning the
unlabeled set U into two disjoint subsets UQ and UU , and will query for the labels of the instances in
set UQ. Therefore, the crucial task in active learning is to choose the data instances for set UQ from
the unlabeled data instance set.

Different query strategies [16] have been proposed already to determine the instances to be selected
for set UQ, which include

• Uncertainty Sampling: The uncertainty sampling strategy will select the data instances that the
current model is least certain about what the output should be. Many measures can be adopted to
measure the prediction uncertainty, e.g., posterior prediction probability for probabilistic models,
prediction result entropy for classification tasks, and the prediction loss for regression tasks.
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• Query by Committee: In this approach, a variety of models are built with the current labeled data
instances, which will vote on the output labels for the unlabeled data instances. For the data
instances that these current models disagree the most, they will be selected finally by the query
by committee strategy.

• Expected Model Change: Labeling some unknown data instances and adding them to the training
set will lead to changes of the current model. The expected model change strategy aims at selecting
the data instances which can introduce the maximum model changes. Different metrics can be used
for measuring the expected model changes, like the introduced gradient by the new data instance
in the model loss function.

• Expected Error Reduction: Labeling the data instances and retraining the models with these newly
labeled instances may reduce the model’s generalization error. The expected error reduction
strategy will choose to label the data instances that can lead to the maximum expected error
reduction instead.

• Variance Reduction: Minimizing the expectation of a loss function directly is expensive, and in
general this cannot be done in closed form. However, we can still reduce generalization error
indirectly by minimizing the output variance, which sometimes does have a closed-form solution.
The variance reduction strategy focuses on selecting the data instances that can lead to the
maximum variance reduction in the result.

• Balance Exploration and Exploitation: Labeling the unlabeled data instances is seen as a dilemma
between the exploration and the exploitation over the data space representation. Such a strategy
manages this compromise by modeling the active learning problem as a contextual bandit problem
instead.

• Exponentiated Gradient Exploration: This strategy uses a sequential algorithm named exponenti-
ated gradient (EG)-active that can improve any active learning algorithm by an optimal random
exploration.

Example 6.1 In Fig. 6.1, we show an example of active learning with both labeled and unlabeled
data instances. The complete data distribution is provided in plot (a), where the green dots and red
triangles denote the data instances belonging to two different classes, respectively. Given a few labeled
data instances in the feature space as shown in plot (b), we can fit a model with these labeled data
instances, whose decision boundary is denoted as the purple line. Generally, for the data instances
which are far away from the decision boundary, we can know that they are more likely to be either
the positive or negative instances. Meanwhile, for those lying near the decision boundary, we are
less certain about their specific labels and obtaining the true labels of these instances will help to
determine more correct decision boundary. For instance, in plot (c), we further query for some labels
nearby the decision boundary. By adding the new labeled data instance into the labeled training set,
the new decision boundary is updated, which can not only classify the queried data instances but also
the remaining unlabeled data instances as well.

Fig. 6.1 An example of active learning
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Active learning can also be applied to solve the network alignment problem when inferring the
anchor links across networks. By keeping querying the labels of unlabeled instances, the model
can refine the decision boundary with a very small training set. Different methods can be applied
in selecting the unlabeled instances to query for their labels in the network alignment problem, which
will be introduced in great detail in Sect. 6.4.

6.2.4 Positive and Unlabeled (PU) Learning

In some special case, the labeled training set may only involve the data instances belonging to one
single class. For instance, in the e-commerce sites, when recommending products for the users, the
training data available is merely the products that users have purchased in the past but no data about
the products that the users will not purchase definitely. If we label the purchased products as the
positive instances for the users, the training data available will only involve the positive instance only.
Besides these positively labeled instances, there also exist a large number of instances in the site that
we have no idea about whether the user is interested in or not. These remaining products will be the
unlabeled instances on the other hand. Such examples are very common in the real world. On the
web, the materials/contents that users are interested are relatively easy to obtain, while we have no
idea about those that they dislike. Learning from these positively labeled and unlabeled data is called
the positive-unlabeled learning (PU learning) task.

Definition 6.1 (Positive and Unlabeled (PU) Learning) Formally, the categories of learning tasks
with a positive set P and unlabeled set U are called the positive and unlabeled (PU) learning tasks.
With the P and U sets, PU learning aims at building a model to classify the unlabeled instances in U
or some other future data.

The PU learning task is one type of the semi-supervised learning tasks as the unlabeled instances
are involved in the model building. Different from classic semi-supervised learning tasks, the labeled
instances in the PU learning tasks belong to one single type of class. Viewed in such a perspective,
the PU learning task is also one type of one-class learning task [13], which is also known as the unary
learning tasks aiming at identifying objects of one specific class among all the objects.

Generally speaking, it is “not learnable” merely with the positive instances. However, the addition
of the unlabeled instances will make learning from the positive instances possible. Formally, let (x, y)
be an instance tuple with feature vector x and label y ∈ {−1,+1}, the built model can be represented
as a mapping f : x → y. We can rewrite the probability of achieving a wrong prediction as

P(f (x) )= y) = P(f (x) = +1, y = −1)+ P(f (x) = −1, y = +1), (6.14)

which denotes the cases that f (·) misclassify the negative (or positive) instances to be positive (or
negative).

On the other hand, we know that

P(f (x) = +1, y = −1)

= P(f (x) = +1) − P(f (x) = +1, y = +1)

= P(f (x) = +1) − (P (y = +1) − P(f (x) = −1, y = +1)) . (6.15)
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By plugging it into Eq. (6.14), we can have

P(f (x) )= y)

= P(f (x) = +1) − P(y = +1)+ 2P(f (x) = −1, y = +1)

= P(f (x) = +1) − P(y = +1)+ 2P(f (x) = −1|y = +1)P (y = +1). (6.16)

Noting that P(y = +1) is a constant number, if we can also control P(f (x) = −1|y = +1)
to be a small value, then the learning process (i.e., error minimization) is approximately the same
as minimizing P(f (x) = +1). Meanwhile, holding P(f (x) = −1|y = +1) small is equivalent to
ensuring P(f (x) = +1|y = +1) to be as large as possible while minimizing P(f (x) = +1, y =
+1 ∨ y = −1) at the same time. Here, the notation P(f (x) = +1|y = +1) denotes the probability
of classifying positive instances correctly, and P(f (x) = +1, y = +1 ∨ y = −1) represents
the probability of classifying unlabeled instances as positive instances. Therefore, if we can ensure
the positive instances are correctly classified, while the unlabeled are less likely to be classified as
positive instances, the error of the model will be relatively low. Several different techniques have
been proposed to ensure the low loss of the learned model, like the spy techniques [12] and bridging
probability inference [18, 19], which will be introduced in Sect. 6.5.

PU learning is a good learning setting for many research problems in social networks, like link
prediction, network alignment, and recommendations. By labeling the known friendship links, anchor
links, and product purchase actions as the positive instances while the remaining unknown ones as the
unlabeled instances, these tasks aforementioned can all be formulated as the PU learning problems.
In Sect. 6.5, we will introduce more information about the network alignment model based on PU
learning.

6.3 Semi-supervised Network Alignment

In the real-world online social networks involving millions even billions of users, labeling a large
number of known anchor links is almost an infeasible task. In a real-world setting, we can usually have
a small-sized training set (of identified anchor links), and a relatively big unlabeled set of the anchor
links. Model building with the small-sized training set can hardly achieve a very good performance.
How to involve the unlabeled set in the model building to improve its performance will become
necessary. In this part, we will introduce a method to align the online social networks based on the
semi-supervised learning setting. A new linear model similar to S3VM will be introduced first, and
we will introduce how to apply the model to address the network alignment problem [20].

6.3.1 Loss Function for Labeled and Unlabeled Instances

Here, we denote all the set of potential anchor links between networks G(1) and G(2) as set L =
U (1) × U (2). Meanwhile the set of positively labeled anchor links (i.e., the existing anchor links) can
be represented as set A, and the remaining unlabeled anchor links can be denoted as set U = L \ A
for simplicity.

For all the links in set L (involving links in both A and U ), a set of features will be extracted. For
instance, we can represent the feature vector extracted for link l ∈ L as vector xl ∈ Rd . Meanwhile,
we can denote the label of link l ∈ L as yl ∈ Y = {0,+1} (here, we use 0 to denote the negative class
label and +1 to denote the positive class label). All the links in set A will be assigned with known

jwzhanggy@gmail.com
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positive labels +1, while the labels of links in set U are unknown. Therefore, based on these features
and labels, all the links in set L can be represented as a tuple set {(xl , yl)}l∈L.

Depending on the separability of the anchor links in set L, different kinds of models can be applied.
Here, if we use a linear model to fit the link instances, the model f : Rd → {+1, 0} to be learned can
be represented as a linear combination of the features parameterized with weight w. For instance, with
model fw(·), we can represent the inferred label of link instance l as fw(xl ) = w$xl +w0, where w0
is a bias term. By adding a dummy feature 1 for all the link instances, we can also incorporate w0 into
the variable vector w. Therefore, we will use vector w to represent the weights for the features as well
as the bias term when referring to the model variables, and simply use fw(xl ) = w$xl to denote the
model mathematical representation. Based on the known links in set A, we can represent the training
loss term as

L(fw,A) =
∑

l∈A
max(1 − fw(xl ) · yl, 0) =

∑

l∈A
max

(
1 − (w$xl ) · yl, 0

)
. (6.17)

Meanwhile, for the unlabeled links, we have no idea about their true labels in the training process.
By following the intuition introduced for the S3VM model, we can represent the loss introduced by
the unlabeled links as

L(fw,U) =
∑

l∈U
max

(
1 − |w$xl |, 0

)
. (6.18)

By combining the loss function defined for the labeled and unlabeled links, we can represent the
combined joint optimization function as follows:

min
w,{yl}l∈U

c1

2
L(fw,A)+ 1

2
‖w‖22 +

c2

2
L(fw,U)

s.t. yl ∈ {+1, 0},∀l ∈ U . (6.19)

Here, ‖w‖22 is a regularization term on the model variable w, and c1, c2 represent the weights of loss
terms of labeled and unlabeled links, respectively.

In the above objective function, the variables to be learned include the weight variable w, as well
as the labels of links in the unlabeled set U , i.e., {yl}l∈U . Some approximation methods have been
introduced to solve the problem. For example, by assuming that the labels of the link instances in set
U can be correctly inferred by the built model, i.e., yl = sign(w$xl ), l ∈ U . Depending on the value
of yl , we can rewrite the loss introduced by link l as follows:

L(fw, l) =
{
max

(
1 − w$xl , 0

)
, if w$xl > 0,

max
(
1+ w$xl , 0

)
, if w$xl < 0.

(6.20)

Here, we will preserve the general representation for the loss term introduced by the unlabeled
anchor links as follows:

L(fw,U) =
∑

l∈U
max

(
1 − yl · (w$xl ), 0

)
, (6.21)

where labels yl of these unlabeled links are the variables to be inferred in the model as well.
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6.3.2 Cardinality Constraint on Anchor Links

As introduced before, the anchor links in the networks are subject to the one-to-one cardinality
constraint [11]. Such a constraint will control the maximum number of links incident to the nodes
across the networks. Subject to the link cardinality constraints, the prediction tasks of anchor links
between the network are no longer independent. For instance, for the links subject to the one-to-one
constraint, if we can know/infer that the link (u, v) is a positive link (i.e., an existing anchor link), then
all the remaining links incident to u or v in the unlabeled set U will be negative by default. Viewed
in such a perspective, the cardinality constraint on links should be incorporated into the problem
definition and the result can be improved significantly with such a constraint. In this part, we will
introduce the link cardinality constraint and use it to define a set of mathematical constraints on node
degrees.

The anchor links studied in this book are assumed to be bi-directional and the node in and out
degrees denote the number of links going into/out from them. To represent the node–link incidence
relationships, we introduce the node–link in and out matrices Ai ,Ao ∈ {0, 1}|V |×|L|. Entry Ai(i, j) =
1 iff the directed link lj ∈ L ends with node ni , while entry Ao(i, j) = 1 iff the directed link lj ∈ L
starts with node ni .

According to the analysis provided before, we can represent the labels of links in L as vector
y ∈ {+1, 0}|L|×1, where entry y(i) represents the label of link li ∈ L. Depending on which group li
belongs to, its value has different representations

y(i) =
{
+1, if li ∈ A,

variable to be inferred, if li ∈ U \ Uq .
(6.22)

Furthermore, based on the known and inferred labels of links in y, we can represent the node
degrees according to the following theorem.

Theorem 6.1 The in and out degrees of node ui in either networkG(1) orG(2) can be represented as
Ai (i, :)y and Ao(i, :)y, respectively, where Ai (i, :) and Ao(i, :) denote the rows corresponding to ui .

Proof As introduced before, for the node ui , we can get the set of links going out from ui from the
ith row of matrix Ao, i.e., Ao(i, :). For the entries with value 1 in Ao(i, :), ui will have a potential link
from ui to the corresponding node. Therefore, the product Ao(i, :)y will remove the remaining links,
and sum all the labels of links starting from node ui . Considering that the labels have value either +1
or 0, Ao(i, :)y will actually denote the degree of node ui . In a similar way, we can also obtain that the
node in degree di equals to Ai (i, :)y.

Let 0 and 1 denote the vectors with all 0s and 1s of length |L|, respectively. According to the
previous analysis, the link cardinality constraint can be applied to define the degree constraint of
nodes in the network, which can be represented as follows:

0 ! Aiy ! 1, (6.23)

0 ! Aoy ! 1. (6.24)
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6.3.3 Joint Objective Function for Semi-supervised Network Alignment

By adding the node degree constraint to the objective function introduced before, we can represent
the joint optimization objective function as

min
w,y

c1

2
L(fw,A)+ 1

2
‖w‖22 +

c2

2
L(fw,U)

s.t. yl ∈ {+1, 0},∀l ∈ L, yl = +1,∀l ∈ A,

0 ! Aiy ! 1, 0 ! Aoy ! 1. (6.25)

The objective function involves two variables, and it is easy to see that it is not jointly convex in
terms of these two variables. To solve the function, techniques like alternative updating can be applied
here. By fixing one variable, we can keep updating the other variable. Such an alternative updating
process will continue until convergence.

Step 1: By fixing y, the objective function will be reduced to the objective function of traditional
SVM model involving variable w only:

min
w

c1

2

∑

l∈A
max

(
1 − yl · (w$x), 0

)
+ 1

2
‖w‖22 +

c2

2

∑

l∈U
max

(
1 − yl · (w$x), 0

)
. (6.26)

The learning methods for the SVM model introduced in Sect. 2.3.3 can be applied to learn the
optimal model variable, which will not be introduced here again.

Step 2: By fixing w, the objective function will be reduced to the link selection problem we
introduced before in Sect. 4.5. Let ŷl = w$xl denote the inferred label of link l, and the objective
function will be reduced to

min
y

c1

2

∑

l∈A
max

(
1 − ŷl · yl, 0

)
+ 1

2
‖w‖22 +

c2

2

∑

l∈A
max

(
1 − ŷl · yl, 0

)

s.t. yl ∈ {+1, 0},∀l ∈ L, yl = +1,∀l ∈ A,

0 ! Aiy ! 1, 0 ! Aoy ! 1. (6.27)

Some algorithms like greedy link selection introduced in Sect. 4.5 can be applied to determine the
label vector y. Here, we will not talk about that algorithm again, and more information about the
selection algorithm is provided in Algorithm 3 in Sect. 4.5.

6.4 Active Network Alignment

In this section, we will introduce an algorithm to address the network alignment problem based on
active learning [16]. Different from the traditional active learning problems, due to the one-to-one
constraint on anchor links, if an unlabeled anchor link a = (u, v) is identified as positive (i.e.,
existing), all the other unlabeled anchor links incident to u or v will be negative (i.e., non-existing)
automatically. Viewed in such a perspective, querying for the labels of potential positive anchor links
in the unlabeled set will be much more rewarding in the active network alignment problem, since
the identification of one positive anchor link will help identify a bunch of negative anchor links
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simultaneously. Various novel anchor link information gain measures will be defined in this section,
based on which several active network alignment methods will be introduced.

Active learning aims at minimizing the labeling cost of the training set by asking the model to
choose which examples to query for the labels. We can represent the set of labeled anchor links as
set A = {(x1, y1), (x2, y2), . . . , (xl , yl)}, which involves the positively labeled anchor links existing
between the networks. The active learning algorithm will train an anchor link prediction model M
with the training set A. During the training process, what the active learner needs to do is to select a
query pool of unlabeled anchor links from the unlabeled anchor link set U = U (1) × U (2) \ A. The
selection strategy is to pick the most valuable anchor link(s) according to the values computed by
applying M on U , which can be represented as set UQ ⊂ U . The data instances in UQ together with
their labels will be added to U to update the modelM . The training process and query process will be
repeated until the limit of query cost has been reached.

In this section, we will first introduce several anchor link query strategy [25] for the network
alignment problem first, based on which we will introduce the objective function of active network
alignment [14] afterwards and provide the solutions.

6.4.1 Anchor Link Label Query Strategy

The main challenge in the active network alignment problemwill be the query process of the unlabeled
data instances. In each round of query process, traditional active learning methods usually just add
the newly queried samples to the training set. However, via the one-to-one constraint, the constrained
active learning methods will be able to infer the labels of some unlabeled anchor links after identifying
one positive anchor link, and thus the samples to be added to the training set can be more than the
queried samples.

Example 6.2 As shown in Fig. 6.2, there are 4 unlabeled anchor links in the query pool, i.e.,
{(u(1)1 , u

(2)
1 ), (u

(1)
1 , u

(2)
2 ), (u

(1)
2 , u

(2)
1 ), (u

(1)
2 , u

(2)
2 )}. Let’s assume after querying an oracle, we get the

label for link (u
(1)
1 , u

(2)
1 ) to be +1 (i.e., u(1)1 and u

(2)
1 are the same user). Traditional active learners

will just add (u
(1)
1 , u

(2)
1 ) to the positive training set. However, a constrained active learner will firstly

infer that (u(1)1 , u
(2)
2 ) and (u

(1)
2 , u

(2)
1 ) to be “negative” according to the one-to-one constraint, and

then add (u
(1)
1 , u

(2)
1 ) to the positive training set, as well as (u(1)1 , u

(2)
2 ) and (u

(1)
2 , u

(2)
1 ) to the negative

training set. In this way, the constrained active learning methods can incorporate two more negatively
labeled data instances (i.e., anchor links) than the traditional active learning methods under the same

Fig. 6.2 An example of
active anchor link query
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query limitation (where the query limitation means the cost of achieving anchor link labels within one
round of query).

6.4.1.1 Regular Active Network Alignment
Many active learning methods usually involve the evaluation of the informativeness of unlabeled
instances. However, due to the challenges created by the one-to-one cardinality constraint, many
query methods used in active learning cannot be applied to the anchor link prediction task. Among
the existing query methods [16], the simplest and most commonly used query strategy is uncertainty
sampling, where the learner will query the labels of instances that it is the least certain about. There
exist several commonly used sampling strategies in uncertainty sampling, including least confidence
sampling, the margin sampling, and the entropy based sampling. Compared with the former two
sampling strategies, the entropy based sampling generalizes more easily to complex structured
instances. It is because by computing the entropy, we can compare the amount of information
contained in different multi-structured samples in a uniform metric. The active network alignment
method to be introduced here is based on the entropy theory, and aims to calculate the potential entropy
H(l) for each unlabeled link l ∈ U . Here we define H(l) as the evaluated amount of information that
the active network alignment model can gain by identifying the label of anchor link l.

Here, we use notation Γ (l) to represent the related anchor link set of a given anchor link l, i.e.,
the set of all anchor links in U that are incident to the nodes forming l. The major idea of the regular
active learning method is to calculate H(l) for each of the unlabeled anchor link l ∈ U , and select the
anchor link with the highest score to query for its label. If the label for the link is “negative,” the link
will be added to the training set. Meanwhile, if the label of the link is “positive,” besides this link, we
will also extract the remaining incident anchor links, i.e., those in Γ (l), and add them as “negative”
instances into the training set.

Formally, the information entropy of the anchor link l ∈ A can be represented as

H(l) = −
∑

y∈Y
PM(y|xl )logPM(y|xl ), (6.28)

where the term PM(y|xl ) denotes the posterior probability of anchor link l ∈ A inferred by an anchor
link inference model M . Literally, for the anchor link that can introduce a larger entropy, the learned
modelM is less certain about its label. Querying for the label of such links can actually introduce the
maximum information gain.

6.4.1.2 Biased Constrained Active Network Alignment
For the network alignment task, generally identifying the potentially positive instances can lead to
more information, since the identification of one positive instance can lead to a bunch of identified
negative anchor links at the same time due to the one-to-one constraint. As we discussed before,
because of the sparsity of anchor links, acquiring enough informative positive anchor links under a
limited cost is very important. However, in the regular active network alignment method introduced
in the previous subsection, there may not be enough mechanism to increase the probability of each
identified link to be positive. So if we can explore such a mechanism, and integrate it into the active
network alignment model, we will be able to achieve better results. In this part, we will present the
biased constrained active network alignment method, which prefers the potential positive links over
the negative ones in the query process.

According to [11], under different circumstances, when predicting the existing anchor links, by
incorporating the one-to-one cardinality constraint into the learning model, it will bring about a much
higher accuracy. So in the biased constrained network alignment approach to be introduced here,
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the learner should firstly apply the existing non-active network alignment models (e.g., MNA [11] as
introduced in Sect. 4.3) to predict the potentially positive anchor links in U , which can be recognized
as set U+ ⊂ U . In each round, links from set U+ will be selected to query for their labels, where those
which can introduce the maximum information gain can be the optimum here. Different strategies
can be applied to rank the anchor links in set U+. Meanwhile, considering that the anchor links to be
inferred are correlated, ranking of the candidates in set U+ depends on not only these links themselves
but also the other links incident to them.

Here, we would like to introduce two new strategies, i.e., biased likelihood and biased entropy, for
ranking the links in U+. Given two links l, l′ ∈ L, we can use notation l∩ l′ to denote the set of shared
nodes by l and l′. Given a link l ∈ U+, we can represent the links incident to l (i.e., sharing a common
node) as set Γ (l) = {l′|l′ ∈ L, l ∩ l′ )= ∅}.
Biased Likelihood: By labeling link l to be positive, we can know that links in set Γ (l) will be

negative by default. The likelihood of such a case can be represented as

P(l,Γ (l)) = P(yl = +1|xl ) ·
∏

l′∈Γ (l)

P (yl′ = −1|xl′). (6.29)

Links in set U+ can be sorted according to the probability P(l,Γ (l)) and those with higher
probability can be queried for the labels.

Biased Entropy: Besides the likelihood, a similar measure like the entropy can be defined based
on the intuition as well, which considers not only the positive link labels but also the uncertainty.
For instance, after querying for the label of link l, we can have two scenarios:

• l is positive: If link l is positive, links in Γ (l) will be negative for sure.
• l is negative: If link l is negative, links in Γ (l) can be either positive or negative.

Therefore, the uncertainty about the labels of link l and its incident set Γ (l) can be represented as

H(l,Γ (l))

= P(yl = +1|xl ) ·H(l,Γ (l)|yl = +1)+ P(yl = −1|xl ) ·H(l,Γ (l)|yl = −1). (6.30)

In the above equation, we have H(l,Γ (l)|yl = +1) and H(l,Γ (l)|yl = +1) denotes the
conditional entropy as follows:

H(l,Γ (l)|yl = +1) = − PM(yl = +1|xl )logPM(yl = +1|xl )

−
∑

l′∈Γ (l)

PM(yl′ = −1|xl′)logPM(yl′ = −1|xl′) (6.31)

and

H(l,Γ (l)|yl = −1) = − PM(yl = −1|xl )logPM(yl = −1|xl )

−
∑

l′∈Γ (l)

∑

y∈Y
PM(yl′ = y|xl′)logPM(yl′ = y|xl′). (6.32)

For the link l with a larger biased entropy, we will be less sure about the results of l and its incident
neighbor set Γ (l). All the potentially positive anchor links in set U+ can be sorted according to their
entropy scores, and those with larger biased entropy scores can be picked for labeling.
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6.4.2 Active Network Alignment Objective Function

Here, we will use the loss function for labeled anchor links and cardinality constraints introduced in
Sect. 6.3, but for the unlabeled anchor links, we propose to further query for the labels of a subset of
the data instances. Given the unlabeled anchor link set U , we can denote the subset of anchor links to
be selected for querying the labels as UQ. The true label of link l ∈ UQ after query can be represented
as ỹl ∈ {+1,−1}. The remaining links in set U can be represented as U \ UQ, whose labels are still
unknown. Based on the loss functions introduced before, depending on whether the labels of links are
queried or not, we can further specify the loss function for set U as

L(fw,U) = L(fw,UQ)+ L(fw,U \ UQ)

=
∑

l∈UQ

(w$xl − ỹl)
2 +

∑

l∈U\UQ

(w$xl − yl)
2. (6.33)

Here, we need to add more remarks that notation ỹl denotes the queried label of link l ∈ UQ which
will be a known value, while yl will be a variable to be inferred in the model for all the links U \ UQ.

By combining the loss functions for links in different subsets together with the anchor link
cardinality constraint, we can represent the objective function for active network alignment to be

min
w,y,UQ

c1

2
L(fw,A)+ 1

2
‖w‖22 +

c2

2
L(fw,UQ)+

c3

2
L(fw,U \ UQ)

s.t. |UQ| ≤ b,

yl ∈ {+1,−1},∀l ∈ L, yl = +1,∀l ∈ A, yl = ỹl ,∀l ∈ UQ,

0 ! Aoy ! 1, 0 ! Aiy ! 1, (6.34)

where c1, c2, and c3 denote the weights of the loss terms and b represents the available query budget
in the learning process.

As shown in the above objective function, besides the variable w of the model and the link labels y
to be inferred, we also need to select the optimal node set UQ to query for the labels in active learning.
The selection of different node subsets can affect the link prediction result greatly, and the selection of
the optimal query node set renders the problem to be much more challenging. In the above objective
function, the optimal query node selection is actually a combinatorial problem, which is NP-hard with

a search space involving
( |U |
|UQ|

)
different options.

For simplicity, we assume the weights c1, c2, c3 all to be c, i.e., all the links in the networks are
assumed to be of similar importance in training. And the new loss term of all the links in A, UQ and
U \ UQ can be simplified as

c1

2
L(fw,A)+ c2

2
L(fw,UQ)+

c3

2
L(fw,U \ UQ)

= c

2
L(fw,L)

= c

2
‖wX − y‖22 , (6.35)
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where matrix X = [x$
l1
, x$

l2
, . . . , x$

l|L| ]
T denotes the feature matrix about all these anchor links in the

potential anchor link set L.
Here, we can see that the objective function involves multiple variables, like w, y, and the query set

UQ, and the objective is not jointly convex with regarding these variables. What’s more, the inference
of the label variable y and the query set UQ are both combinatorial problems. In this section, we
propose to update the variables alternatively, while fixing the remaining ones, and design a hierarchical
alternative variable updating process for solving the problem instead:

1. fix UQ, and update y and w,
(1–1) with fixed UQ, fix y, update w,
(1–2) with fixed UQ, fix w, update y,

2. fix y and w, and update UQ.

A remark to be added here: we can see that variable UQ is different from the remaining two, which
involves the label query process with the oracle subject to the specified budget. To differentiate these
two iterations, we call the iterations (1) and (2) as the external iteration, while we call (1–1) and
(1–2) as the internal iteration. Next, we will illustrate the detailed alternative learning algorithm as
follows.

• External Iteration Step (1): Fix UQ, update y, w.
! Internal Iteration Step (1–1): Fix UQ, y, update w.

With y, UQ fixed, we can represent the objective function involving variable w as

min
w

c

2
‖Xw − y‖22 +

1
2

‖w‖22 . (6.36)

The objective function is a quadratic convex function, and its optimal solution can be
represented as

w = Hy = c(I+ cX$X)−1X$y, (6.37)

where H = c(I + cX$X)−1X$ is a constant matrix. Therefore, the weight vector w depends
only on the y variable.

! Internal Iteration Step (1–2): Fix UQ, w, update y.
With UQ, w fixed, together with the constraint, we know that terms L(fw,A), L(fw,UQ),

and ‖w‖22 are all constant. And the objective function will be

min
y

‖Xw − y‖22

s.t. yl ∈ {+1, 0},∀l ∈ U \ UQ,

yl = ỹl ,∀l ∈ UQ and yl = +1,∀l ∈ A,

0 ! Aiy ! 1, and 0 ! Aoy ! 1. (6.38)

It is an integer programming problem, which has been shown to be NP-hard and no efficient
algorithm exists that leads to the optimal solution. Here, we will introduce the greedy link
selection algorithm proposed in [20] based on values ŷ = Xw, which has been proven to achieve
1
2 -approximation of the optimal solution.
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• External Iteration Step (2): Fix w, y, update UQ.
Selecting the optimal set UQ at one time involves the search of all the potential b link instance

combinations from the unlabeled set U , whose search space is
(|U |

b

)
, and there is no known

efficient approach for solving the problem in polynomial time. Therefore, instead of selecting them
all at one time, we propose to choose several link instances greedily in each iteration. Due to the
one-to-one constraint, the unlabeled anchor links no longer bear equal information, and querying
for labels of potential positive anchor links will be more “informative” compared with negative
anchor links. Formally, the strategies introduced in Sect. 6.4.1 can all be applied to rank the links
either based on their biased likelihood or their biased entropy, and we will not introduce them again
here.

6.5 Positive and Unlabeled (PU) Network Alignment

In the previous sections, the anchor links to be inferred are subject to the one-to-one cardinality
constraint, where each user is assumed to have at most one account within one social network.
However, in some scenarios, as mentioned in Sect. 4.5, users may create multiple accounts in the
same social networks, where each account will be for different purposes, e.g., personal socialization
vs professional socialization, or family socialization vs external socialization. In such a case, each
user can be connected with multiple anchor links across networks, and the cardinality constraint on
the anchor links will become many-to-one or many-to-many instead. The identification of positive
anchor links can no longer help to infer the other potential negative anchor links.

In this section, we will introduce a network alignment to address the aforementioned problem
based on the PU learning settings [12]. Before we talk about the detailed information about the PU
network alignment model [18,19], we will first introduce the formulation and the preliminary used in
the studied problem.

6.5.1 PU Network Alignment Problem Formulation and Preliminary

Formally, given the partially aligned online social networks G = ((G(2),G(1)), (A)) with the set of
anchor links A connecting the shared users across network G(1) and G(2), we can represent the set of
existing and non-existing anchor links between these two networks asA and U = U (1) × U (2) \A. If
these existing and non-existing anchor links are treated as the “positive” and “unlabeled” anchor links,
the task of building a model to infer the existence of anchor links across networks will be formulated
as a PU learning problem.

As introduced in [19], across these two networks, we can extract the set of both existing and
unidentified anchor links. To differentiate these links, a term named “connection state”: z ∈ {−1,+1}
was introduced in [19]. If a certain link (u, v) is an existing anchor link across the networks, then
z(u, v) = +1; if (u, v) is an unidentified anchor link, then z(u, v) = −1. Meanwhile, besides the
“connection state,” all the anchor links can also have their own labels, i.e., y ∈ {−1,+1}. In this
section, if an anchor link (u, v) is/will be identified to be existing, then y(u, v) = +1; if (u, v) is not
an anchor link, then y(u, v) = −1. As shown in Fig. 6.3, for all the existing anchor links across the
networks, their connection states z and labels y are all+1, while the connection states z of all initially
unidentified anchor links are −1 but the labels y of these anchor links can be either +1 or −1, as
these unidentified anchor links include both anchor links that should either exist or not exist. These
unidentified anchor links are referred to as the unlabeled anchor links in the PU network alignment
problem.
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Fig. 6.3 Example of
connection states and
labels of links in PU link
prediction
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Based on the problem formulation and preliminary concepts introduced above, we will introduce
the PU network alignment model in the following part, which will illustrate the relationships of the
anchor link connection state and their labels.

6.5.2 PU Network Alignment Model

For each anchor link, a set of features can be extracted from the networks. For instance, the feature
vector extracted for certain anchor/social link (u, v) can be represented as x(u, v). As a result,
each anchor link (u, v) across the networks can be denoted as a tuple 〈x(u, v), y(u, v), z(u, v)〉. Let
p(x, y, z) be the joint distribution of x, y, and z. As shown in Fig. 6.3, all the existing links (z = 1)
are positive links (y = 1). In other words, we have

p(y = 1|x, z = 1) = p(y = 1|z = 1) = 1.0. (6.39)

A basic assumption in the PU network alignment model is that the existing positive links are
randomly sampled from the whole positive link set [10], which means that for two arbitrary positive
links (u1, v1) and (u2, v2) we have

p(z(u1, v1) = 1|x(u1, v1), y(u1, v1) = 1)

= p(z(u2, v2) = 1|x(u2, v2), y(u2, v2) = 1). (6.40)

Based on such an assumption, the conditional distribution p(z = 1|x, y = 1) is independent of
variable x, i.e.,

p(z = 1|y = 1) =
∑

link∈L
p(z = 1|x(link), y = 1) · p(x(link)|y = 1)

=p(z = 1|x, y = 1) ·
∑

link∈L
p(x(link)|y = 1)

=p(z = 1|x, y = 1), (6.41)

where L = A ∪ U denotes all the potential anchor links across networks.
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Meanwhile, the probabilities that anchor link l is predicted to be “existing” (z = +1) and
“positively labeled” (y = +1) can be defined as the “existence probability” (i.e., p(z = 1|x)) and
“positively labeled probability” (i.e., p(y = 1|x)), respectively [19]. The relationship between links’
“existence probability” and “positively labeled probability” can be formally represented as follows:

p(z = 1|x) = p(z = 1|x) · p(y = 1|x, z = 1) = p(y = 1, z = 1|x)
= p(y = 1|x) · p(z = 1|x, y = 1)

= p(y = 1|x) · p(z = 1|y = 1). (6.42)

Based on the above equation, the links’ positively labeled probabilities can be inferred from their
existence probabilities if we can know p(z = 1|y = 1) in advance, where p(z = 1|y = 1) is called
the bridging probability formally in the PU network alignment model.

Definition 6.2 (Bridging Probability) The term p(z = 1|y = 1) is formally defined as the bridging
probability between the existence probability and the positively labeled probability.

The bridging probability can actually be inferred with the binary classification models built with
the existing (z = +1) and unconnected (z = −1) links [10]. To achieve such a goal, we can split
all the existing and unconnected links into “training set” and “validation set” via cross validation.
Classification models built based on the training set can be applied to the validation set. Let Pos be
the subset of links that are positive in the validation set. We have

Bridging Probability Inference Equation

p(z = 1|y = 1) = 1
|POS|

∑

link∈POS

p(z = 1|y = 1)

= 1
|POS|

∑

link∈POS

p(z = 1|x, y = 1), (6.43)

where p(z = 1|y = 1) = p(z = 1|x, y = 1) can hold according to proof in the previous part. For
links in Pos, we have p(y = 1|x) = 1, p(z = 1|x, y = −1) = 0 and p(y = −1|x) = 0. Therefore,
we have

p(z = 1|y = 1) = 1
|POS|

∑

link∈POS

(p(z = 1|x, y = 1)p(y = 1|x)

+ p(z = 1|x, y = −1)p(y = −1|x))

= 1
|POS|

∑

link∈POS

p(z = 1|x). (6.44)

As a result, the average existence possibility of links in Pos works as an estimator of the bridging
probability, which clearly clarifies the correlation between link’s existence probability and positively
labeled probability. Based on the inferred bridging probability p(z = 1|y = 1), we can predict
the positively labeled probabilities of anchor and social links based on their existence probabilities.
Meanwhile, inferring the anchor links’ existence probability (i.e., p(z = 1|x)) is an easy task, which
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can be addressed with the supervised models for anchor link prediction introduced in Sect. 4 perfectly.
Based on the links’ inferred existence probability together with the above bridging probability, we will
be able to compute the anchor links’ positively labeled probability as the final output.

6.6 Summary

In this chapter, we introduced a new type of learning tasks using both labeled and unlabeled data
instances for model building, which are formally named as the semi-supervised learning tasks. Based
on three different semi-supervised learning settings, we talked about the network alignment problem
and introduced several different network alignment approaches to address the problem.

To provide readers with the background knowledge about semi-supervised learning, we used
one section to introduce the semi-supervised learning problems and algorithms. Based on different
assumptions, e.g., smoothness assumption, cluster assumption, and manifold assumption, existing
semi-supervised learning models adopt different ways to use the unlabeled data instances. Three
different semi-supervised learning models, i.e., S3VM, graph based models, and generative models,
were introduced in this section. In addition to regular semi-supervised learning, active learning and
PU learning were introduced as two special cases of the semi-supervised learning problem.

We introduced a model similar to S3VM to resolve the network alignment task with both labeled
and unlabeled anchor link instances. However, slightly different from the regular semi-supervised
learning tasks, the anchor links studied in the network alignment problem are not independent, which
are strongly correlated with each other due to the one-to-one cardinality constraint. By modeling the
anchor link cardinality constraint as a mathematical constraint on node degrees, the semi-supervised
network alignment problem was formulated as an optimization problem instead.

We also introduced a network alignment model based on active learning in this section, which can
help address the lack of training data problem. Instead of requiring a large number of training data
initially, the introduced active network alignment model adopted an active query strategy to get the
labels of unlabeled anchor links from an oracle subject to a pre-specified query budget. However, due
to the one-to-one cardinality constraint on anchor links, the information that can be provided by the
positive and negative anchor link is no longer balanced. Two query strategies, i.e., biased likelihood
and biased entropy, were introduced for anchor link selection.

At the end of this chapter, we introduced to model the network alignment problem as a positive
and unlabeled (PU) learning problem. In the PU network alignment tasks, the anchor links will be
represented as tuples, involving the feature representation, connection state, and label, respectively.
Based on the correlation between the existence probability and positively labeled probability, the
introduced model is able to infer the anchor links positively labeled probabilities from their existence
probabilities effectively.

6.7 Bibliography Notes

For the readers who are interested in the semi-supervised learning, the textbook [8] is highly recom-
mended, which provides a comprehensive introduction about semi-supervised learning problems and
algorithms. The readers can also take a look at the survey article [23], which covers the literature
review of the semi-supervised learning algorithms and potential applications. A survey about active
learning is available in [16], and the PU learning papers include [10, 12].

The PU network alignment problem was initially proposed in [18], which proposed a semi-
supervised method to infer both anchor links and social links simultaneously across aligned social
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networks. The proposed method analyzes the correlation between links existence probability and
formation probability (i.e., positively labeled probability introduced in Sect. 6.5). Active network
alignment is studied in [14, 25] for the first time. Via a step-wise selection of anchor links for
label query, active network alignment models are capable to achieve very good performance with
a small amount of labeling efforts. The semi-supervised network alignment problem formulation was
originally introduced in [14,20,21], and the readers may also refer to these academic papers for more
information about relating works.

6.8 Exercises

1. (Easy) In the S3VM model, we use Eq. (6.1) to denote the loss for the unlabeled data instances.
Please briefly explain why it can work well to utilize information of unlabeled data instances in
learning the models.

2. (Easy) In the local and global consistency model, please briefly talk about the physical meaning
of the regularization term reg = f$Lnf (as indicated in Eq. (6.10)), and explain why it can work
well in regularizing the model.

3. (Easy) Please briefly introduce what is active learning, and provide the advantages of active
learning compared against other learning tasks.

4. (Easy) According to Sect. 6.2.4, please briefly explain the ideas of PU learning and the
circumstances where it can work well.

5. (Medium) Please read article [9], and briefly introduce how to learn the semi-supervised
generative model based on the EM algorithm.

6. (Medium) When introducing the active network alignment model in Sect. 6.4, we mention that
“positive and negative anchor links may have different amounts of information.” Please explain
what does that sentence mean, and briefly talk about why the introduced biased query strategies
we introduced in Sect. 6.4.1.2 can work better than regular query strategies, e.g., the entropy based
strategy introduced in Sect. 6.4.1.1.

7. (Medium) Please briefly introduce the bridging probability inference equation used in Sect. 6.5,
and explain why it can work in inferring the potential bridging probability.

8. (Hard) Please use your preferred programming language to implement the semi-supervised
learning algorithm introduced in Sect. 6.3, and compare its advantages over the regular supervised
network alignment approach that we introduced in Sect. 4.3 with experiments on some toy data
sets.

9. (Hard) Please try to implement the active network alignment algorithm introduced in Sect. 6.4
with one of your preferred programming language, and test its effectiveness on a toy network
data set.

10. (Hard) Please try to implement the PU network alignment algorithm introduced in Sect. 6.5 with
one of your preferred programming language, and test its effectiveness on a toy network data set.
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